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We investigate the impact of the Dark Energy Spectroscopic Instrument (DESI) 2024 data on dark
energy scenarios. We thus analyze three typologies of models, the first in which the cosmic speed
up is related to thermodynamics, the second associated with Taylor expansions of the barotropic
factor, whereas the third based on ad hoc dark energy parameterizations. In this respect, we perform
Monte Carlo Markov chain analyses, adopting the Metropolis-Hastings algorithm, of 12 models. To
do so, we first work at the background, inferring a posteriori kinematic quantities associated with
each model. Afterwards, we obtain early time predictions, computing departures on the growth
evolution with respect to the model that better fits DESI data. We find that the best model to fit
data is not the Chevallier-Polarski-Linder (CPL) parametrization, but rather a more complicated
log-corrected dark energy contribution. To check the goodness of our findings, we further directly fit
the product, rdh0, concluding that rdh0 is anticorrelated with the mass. This treatment is worked
out by removing a precise data point placed at z = 0.51. Surprisingly, in this case the results again
align with the ΛCDM model, indicating that the possible tension between the concordance paradigm
and the CPL model can be severely alleviated. We conclude that future data points will be essential
to clarify whether dynamical dark energy is really in tension with the ΛCDM model.

PACS numbers: 98.80.-k, 95.36.+x, 04.50.Kd

I. INTRODUCTION

Cosmological observations indicate that, differently
from matter and radiation, the late-time universe ap-
pears dominated by some sort of anti-gravitating dark
energy that, in its simplest form is represented by a cos-
mological constant, Λ, or by a barotropic fluid [1–10].
Precisely, the concordance paradigm assumes that dark
energy is under the form of Λ, exhibiting an exotic equa-
tion of state, sufficiently negative to speed the universe
up today [11–14]. The universal characteristic of dark
energy is that the associated fluid implies a gravitational
repulsion [15–17], acting anti-gravitationally, giving rise
to an accelerated cosmological expansion [12, 18].

Thus, even though in the last decades a wide number of
dark energy models has been proposed, the concordance
paradigm has always experimentally passed all the tests,
appearing statistically favored [19–30].

At a very first glance, the preliminary release of DESI
collaboration [31] shows a possible tension with respect to
the ΛCDM model at the level of 3.9σ. Although the data
appear still non-definitive and, then, we cannot clearly
conclude that dynamical dark energy is favored than a
pure cosmological constant, supported by the DESI out-
comes, it is possible to check whether distinct models of
dark energy, that previously failed to be predictive with
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earlier data sets, could somehow revive their properties
in framing out the universe dynamics.
Hence, motivated by this possibility we here reanalyze

three classes of dark energy models. The first class is
based on frameworks derived from thermodynamic pre-
scriptions, enabling the universe to exhibit some sort of
thermodynamic acceleration. To this end, we investigate
the Chaplygin gas (CG), the generalized CG (GCG), the
Anton-Schmidt (AS) fluid, its version with the Gruneisen
index fixed to n = −1 and finally the logotropic fluid, as
limiting case of AS, when n → 0. The second class of
models is, instead, based on direct Taylor expansions of
the barotropic factor. In this respect, we focus on a linear
expansion around z = 0, on the CPL parametrization,
sometimes referred to as w0waCDM model, and on its
direct extension, namely a Taylor series up to the second
order in 1 − a. The third, and last class of models here
investigated, is finally chosen by parametric barotropic
factors. Here, we conventionally take into account the
concordance model itself, i.e., the ΛCDM paradigm, the
wCDM scenario, the Jassal-Bagla-Padmanabha (JBP)
and Efstathiou (EFs) parameterizations.
All these models are compared with the new data re-

lease provided by DESI 2024 collaboration.
In particular, we perform:

- A set of “blind” fits, involving all the DESI data
points, combined with other data sets.

- A set of fits in which we analyze the correlation
of rdh0, inspired by the analysis of Ref. [32] and,
in particular, excluding one single data point that
seems to exhibit pathology in the overall analysis.
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As claimed above, we develop combined fits made up
through type Ia Pantheon supernovae (SNe Ia), baryonic
acoustic observations (BAO) and observational Hubble
data (OHD), in a spatially-flat universe. Further, for
each model, we compute the deceleration parameter and
its variations, up the snap parameter, within the context
of cosmography [33–35]. We compare at late times our
findings adopting a Monte Carlo Markov chain analysis,
based on the Metropolis-Hastings algorithm.

In addition, we predict, at the level of linear pertur-
bations, consequences at early times, computing the per-
turbation growth with the best-fit results and checking
the main differences among each model.

We show that:

- Using the new DESI data release, dynamical dark
energy appears really favored, albeit under the form
of a log-corrected dark energy term and, not as a
CPL parametrization, as DESI claimed.

- Refining the fits including the correlation rdh0, we
find results that do not align with DESI expecta-
tions. Indeed, excluding one data point, it appears
evident the change of our findings, emphasizing a
good agreement with the standard ΛCDM model
that appears, again, favorite even with DESI data.

For each fit made in this paper, we also compute sta-
tistical criteria, useful to discriminate the best candidate
among all. The statistical criteria perfectly confirm the
expectations from cosmography and early time bounds.
Concluding, our results seem to prefer dynamical dark
energy only if all data are assumed into computation.
Nevertheless, analyzing the correlation rdh0 and exclud-
ing one single data point (that may exhibit pathologies
in constraining the matter density) show that dynamical
dark energy is not favorite as DESI initially found.
The paper is structured as follows. In Sect. II, we

briefly report all the features associated with the dark
energy models involved in our analysis. In Sect. III, we
report the main aspects related to the underlying dark
energy models. So, we introduce cosmography first and
then we discuss the small perturbations. In Sect. IV,
the main features of our numerical analyses have been
developed and, particularly, we focused on the two dif-
ferent typologies of fits, emphasizing the physical reasons
behind performing them. There, we also discuss the se-
lection criteria that we used throughout our study and
underline the main results obtained from the fitting pro-
cedures. Finally, Sect. V is devoted to conclusions and
perspectives of our work.

II. RECONSIDERING DARK ENERGY
MODELS

The current common idea is that dark energy can be
very well approximated by some sort of cosmological con-
stant, quite fine-tuned as certified by observations and

plagued by several theoretical issues and cosmological
tensions [36–40].
However, still now the idea that dark energy is not

made by a constant term throughout the entire cosmic
history has not completely rejected.
In lieu of additional confirmations of the standard

model, the DESI preliminary catalog has shown that a
possible departure from the standard cosmological model
may lie on 3.9σ confidence level.
Even though interesting, this result needs to be con-

firmed with further data and does not take into account
alternative evolutions of dark energy, besides the wCDM
model and the CPL parametrization.
So, representing dark energy under three main physi-

cal interpretations, we here check the goodness of each of
them in view of the new experimental data points pro-
vided by the DESI collaboration.
Particularly, we here distinguish dark energy as a

barotropic fluid that determines acceleration from ther-
modynamic characteristics first. Second, we assume di-
rect Taylor expansions made either at redshift z = 0 or at
scale factor a = (1+z)−1 = 1 and finally as third proposal
we tackle models that do not come from a direct expan-
sion. Below, defining the reduced Hubble rate E(a), the
matter Ωm(a) and baryon Ωb(a) densities evolution with
a, and the current dark energy density parameter1 ΩX ,
as

E(a) ≡ H(a)/H0 , (1a)

Ωm;b(a) ≡ Ωm;ba
−3 , (1b)

ΩX ≡ 1− Ωm;b , (1c)

we summarize our scenarios.
a. Thermodynamic acceleration through a barotropic

fluid. In this case we handle:

- The CG was first introduced in 1904 through an
equation of state given by

P = −A

ρ
, (2)

where A > 0 and ρ > 0 [41–44]. Immediately,

we find a dark energy density, ρ(a) =
√
A+ Ca−6,

where C is an integration constant that, in order
to match the current density of the universe, it has
to be C = 1 − A. Introducing As = Aρ−2

0 , with
ρ0 that indicates the present value of CG energy
density, the reduced Hubble rate becomes

E(a) =

√
Ωb(a) + ΩX

√
As + (1−As)a−6, (3)

where the effective matter density is given by As =
1− [(Ωm − Ωb)/(1− Ωb)]

2.

1 Throughout the paper we conventionally confuse H0 with h0 ≡
H0/(100km/s/Mpc).
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The model holds the class of unified dark energy
models. Actual comprehension toward this model
has severely puts constraints on it, showing that it
has been ruled out by previous data sets.

- The GCG is identified by the equation of state

P = − A

ρα
, (4)

where α ̸= −1 [45–48]. The model extends CG,

thus, by defining As = Aρ
−(1+α)
0 , it provides

E(a) =

√
Ωb(a) + ΩX [As + (1−As)a−3(1+α)]

1
1+α , (5)

as reduced Hubble rate, where the effective matter
density is now As = 1− [(Ωm − Ωb)/(1− Ωb)]

1+α.

- The AS fluid [49–52], offering the benefit of es-
tablishing a pressure that is both non-vanishing and
negative, based on the following equation of state

P = A

(
ρ

ρ∗

)−n

ln

(
ρ

ρ∗

)
, (6)

where ρ∗ indicates a reference density, see [53].

In this scenario, the reduced Hubble parameter is

E(a) =
√
Ωm(a) + ΩX [1 + 3B ln a] a3n, (7)

where B = [ln(ρ⋆/ρm)− 1/(n+ 1)]−1.

Here, we can analyze two different cases, specifying
the value of n.

- The n = −1 AS dark energy (AS−1). In this
case, we have as reduced Hubble parameter

E(a) =

√
Ωm(a) + ΩX [1− 3B ln a]

2
a−3, (8)

where B = ln−1 (ρm/ρ⋆).

The model is a particular case that appears disfa-
vored in principle than letting n free to vary.

- The Logotropic models (AS0). These scenar-
ios have been introduced with the aim of unifying
a description of the universe that solves the cusp
problem, meanwhile accelerating the universe to-
day [48, 54]. They mathematically correspond to
n = 0, in the AS scenario, exhibiting as reduced
Hubble rate

E(a) =
√
Ωm(a) + ΩX [1 + 3B ln a], (9)

where B = [ln(ρ⋆/ρm)− 1]−1.

b. Taylor dark energy scenarios Besides the ther-
modynamic acceleration provided by such models, we
analyze also dark energy obtained by parametrizing
the equation of state through a direct Taylor expan-
sion. In particular, we study some dark energy model
parametrizations, in which the Hubble rate assumes the
following form

E(z) =
√
Ωm(z) + ΩXf(z), (10)

with

f(z) = exp

[
3

∫ z

0

1 + w (z̃)

1 + z̃
dz̃

]
. (11)

- The z first order expanded dark energy
(TE1). We start to analyze the parametrization
given by expanding w in Taylor series with respect
to the redshift around z = 0 [55–57]. With this
assumption, we get

w(z) =

∞∑
n=0

ωnz
n, (12)

as barotropic factor.

At first order of expansion, we have the linear
parametrization, where w is expressed as w(z) =
w0 + w1z. Here, Eq. (10) becomes

E(a) =

√
Ωm(a) + ΩXa−3(w0−w1+1)e3w1(

1
a−1). (13)

- The CPL parametrization. The parametriza-
tion in Eq. (12) leads to a divergent w when z → ∞,
for any given value of n. To avoid this problem,
the CPL parametrization [42, 58–62], expands the
barotropic factor in Taylor series around a = 1,
generalizing Eq. (12) in the following way

w(a) =

∞∑
n=0

ωn (1− a)
n
. (14)

Specifically, we examine the first and second order
of expansion, i.e., w(a) = w0+w1(1−a) and w(a) =
w0 + ω1(1− a) + ω2(1− a)2, respectively.

At first order, Eq. (10) becomes

E(a) =
√

Ωm(a) + ΩXa−3(w0+w1+1)e−3ω1(1−a). (15)

- The second order CPL parametrization
(CPL2). To check whether the DESI collaboration
data can in principle prefer further orders of Taylor
expansions, we also consider the second order. This
choice involves evaluating a second-order CPL evo-
lution factor, computed from Eq. (11), represented
as follows

f(a) = a−3(w0+w1+w2+1)e
3
2 (a−1)(2w1+(3−a)w2). (16)
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c. General models of dark energy Finally, the class
of models motivated by prime principles different from
the above includes

- The concordance paradigm, or the ΛCDM
model. It is obtained by adding a constant term,
named cosmological constant, into Einstein field
equations in order to speed up the universe in our
time. Here, cosmological constant Λ plays the role
of dark energy and it does not evolve through the
history of the universe. Thus, Eq. (10) is deter-
mined by

E(a) =
√

Ωm(a) + ΩΛ, (17)

where ΩΛ = 1− Ωm.

- The wCDM model. The ΛCDM can be ex-
tended by replacing the cosmological constant with
a scalar field exhibiting a constant barotropic fac-
tor w [12, 63]. The model is named wCDM or
quintessence model and in first instance we may
assume a slowly-rolling scalar field with a non-
canonical kinetic term interpreting dark energy. In
such a context, Eq. (10) is obtained as

E(a) =
√
Ωm(a) + Ωwa−3(1+w), (18)

with Ωw = 1− Ωm.

- The JBP parameterization. It is a parametriza-
tion in which w takes the same value at high
and low redshift [57, 64–67]. Indeed, in JBP pa-
rameterization, the barotropic factor is given by
w(z) = w0 + w1

z
(z+1)2 , where w(0) = w(∞) = w0.

In this scenario, Eq. (10) turns into

E(a) =

√
Ωm(a) + ΩXa−3(w0+1)e

3
2 (1−a)2wa . (19)

- The EFs parametrization. Moreover, we con-
sider the EFs parametrization [68–70], where the
barotropic factor can be expressed as logarithmi-
cally dependent on a such that w(z) = w0 −
w1 log a, yielding the following reduced Hubble rate

E(a) =

√
Ωm(a) + ΩXa−3(1+w0− 1

2w1 log a). (20)

III. COSMOLOGICAL ASPECTS OF DARK
ENERGY MODELS

In this section, we specialize our analysis to cosmogra-
phy first, as background check for the goodness of our
model, and second to early-time expectations, at the
regime of linear perturbations, by studying the pertur-
bation growth.

A. Kinematics at background

At background level, each dark energy model has to
pass cosmological constraints provided by expanding the
scale factor around our time, namely

a(t) ≃ 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2

+
1

3!
j0H

3
0 (t− t0)

3 +
1

4!
s0H

4
0 (t− t0)

4 + . . . ,

(21)

where a0 = 1, with the subscript 0 indicating our epoch.

The above expansion is sometimes called cosmography
[71–75], being a crucial aspect of cosmology capable of
fixing bounds on dark energy without fixing the model a
priori.

Indeed, expanding the scale factor a(t) in Taylor series
offers the chance to directly expand cosmic distances and
to match them directly with data, fixing limits over the
derivatives of a(t), named cosmographic series.

As such, cosmography operates independently of Ein-
stein’s field equations, as it appears as an expansion of
the metric, albeit it is possible to formulate the terms
entering Eq. (21) and to define, at any time,

q(t) = − Ḣ

H2
− 1, (22a)

j(t) =
Ḧ

H3
− 3q − 2, (22b)

s(t) =

...
H

H4
+ 4j + 3q(q + 4) + 6. (22c)

dubbed the deceleration, q, jerk, j, and snap, s, pa-
rameters, respectively.

The significance of this approach lies on the fact that
we can compute and evaluate the cosmographic series
for each model under exam. Thus, it becomes especially
intriguing considering the latest findings from the DESI
collaboration, where the possibility of dynamical dark
energy has not been definitively ruled out.

Hence, we can theoretically compute our cosmographic
series for each model in order to propagate constraints
over them with our fits.

Thus, we write:

a. Cosmographic series for the thermody-
namic dark energy models.

- For the CG, we find

q0 =
1

2
(3As(Ωb − 1) + 1), (23a)

j0 =
1

2

(
9A2

s(Ωb − 1)− 9As(Ωb − 1) + 2
)
, (23b)

s0 =
1

4
(−27A3

s

(
Ω2

b + 4Ωb − 5
)
+ 9A2

s

(
3Ω2

b + 17Ωb − 20
)

− 63As(Ωb − 1)− 14). (23c)
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- For the GCG, we derive

q0 =
1

2
(3As(Ωb − 1) + 1), (24a)

j0 =
1

2

(
9αA2

s(Ωb − 1)− 9αAs(Ωb − 1) + 2
)
, (24b)

s0 =
1

4
(−27αA3

s(Ωb − 1)(4α+Ωb + 1) + 9αA2
s(Ωb − 1)

(18α+ 3Ωb + 2)− 9
(
6α2 − α+ 2

)
As(Ωb − 1)− 14).

(24c)

- For the AS fluid, with a generic n, we have

q0 =
1

2
(3Ωm(B + n+ 1)− 3B − 3n− 2), (25a)

j0 =
1

2
(−9B(2n+ 1)(Ωm − 1)

− 9n(n+ 1)(Ωm − 1) + 2), (25b)

s0 =
1

4
(27B2(2n+ 1)(Ωm − 1)2 + 9B(Ωm − 1)(

n(9n(Ωm − 3) + 12Ωm − 22) + 3Ωm − 4) + 9n(Ωm − 1)

(−9n2 + 3(n+ 1)2Ωm − 11n− 4)− 18Ωm + 4
)
. (25c)

- For AS−1 fluid, the cosmographic series becomes

q0 =
1

2
(−6BΩm + 6B + 1), (26a)

j0 = 1− 9B(B + 1)(Ωm − 1), (26b)

s0 =
1

2
(−9B(Ωm − 1)(B(6B(Ωm − 1) + 6Ωm − 19)− 9)− 7)

(26c)

- For the AS0 model, we obtain

q0 =
1

2
(3B(Ωm − 1) + 3Ωm − 2), (27a)

j0 =
1

2
(−9BΩm + 9B + 2), (27b)

s0 =
1

4

(
27B2(Ωm − 1)2 + 9B

(
3Ω2

m − 7Ωm + 4
)
− 18Ωm + 4

)
.

(27c)

b. Cosmographic series for Taylor-expanded
dark energy models.

- For the TE1 dark energy model, we get

q0 =
1

2
(1− 3w0(Ωm − 1)), (28a)

j0 =
1

2
(−3Ωm(3w0(w0 + 1) + w1) + 9w0(w0 + 1) + 3w1 + 2),

(28b)

s0 =
1

4
(−27w3

0(Ωm − 3)(Ωm − 1)− 9w2
0(Ωm − 1)(3Ωm − 16)

− 9w0(Ωm − 1)(w1(Ωm − 7)− 9) + 45w1(Ωm − 1)− 14).
(28c)

- For the CPL parametrization, we infer

q0 =
1

2
(1− 3w0(Ωm − 1)), (29a)

j0 =
1

2
(−3Ωm(3w0(w0 + 1) + w1) + 9w0(w0 + 1) + 3w1 + 2),

(29b)

s0 =
1

4
(−27w3

0(Ωm − 3)(Ωm − 1)− 9w2
0(Ωm − 1)(3Ωm − 16)

− 9w0(Ωm − 1)(w1(Ωm − 7)− 9) + 33w1(Ωm − 1)− 14).
(29c)

- For CPL2, the cosmographic series is instead

q0 =
1

2
(1− 3w0(Ωm − 1)), (30a)

j0 =
1

2
(−3Ωm(3w0(w0 + 1) + w1) + 9w0(w0 + 1) + 3w1 + 2),

(30b)

s0 =
1

4
(−27w3

0(Ωm − 3)(Ωm − 1)− 9w2
0(Ωm − 1)(3Ωm − 16)

(30c)

− 9w0(Ωm − 1)(w1(Ωm − 7)− 9) + 33w1(Ωm − 1) (30d)

+ 12w2(Ωm − 1)− 14). (30e)

c. Cosmographic series for the parametric
dark energy models.

- For the concordance paradigm, the ΛCDM model,
very easily we get

q0 =
3Ωm

2
− 1, (31a)

j0 = 1, (31b)

s0 = 1− 9Ωm

2
. (31c)

- For the wCDM model, the series has the form

q0 =
1

2
(1− 3w(Ωm − 1)), (32a)

j0 =
1

2

(
−9w2(Ωm − 1)− 9w(Ωm − 1) + 2

)
, (32b)

s0 =
1

4
(−27w3 (Ω2

m − 4Ωm + 3
)
− 9w2 (3Ω2

m − 19Ωm + 16
)

+ 81w(Ωm − 1)− 14). (32c)

- For the JBP parametrization, the cosmographic co-
efficients are

q0 =
1

2
(1− 3w0(Ωm − 1)), (33a)

j0 =
1

2
(−3Ωm(3w0(w0 + 1) + w1) + 9w0(w0 + 1) + 3w1 + 2),

(33b)

s0 =
1

4
(−27w3

0(Ωm − 3)(Ωm − 1)− 9w2
0(Ωm − 1)(3Ωm − 16)

− 9w0(Ωm − 1)(w1(Ωm − 7)− 9) + 7(3w1(Ωm − 1)− 2)).
(33c)
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- For the EFs parametrization, we end up with

q0 =
1

2
(1− 3w0(Ωm − 1)), (34a)

j0 =
1

2
(−3Ωm(3w0(w0 + 1) + w1) + 9w0(w0 + 1) + 3w1 + 2),

(34b)

s0 =
1

4
(−27w3

0(Ωm − 3)(Ωm − 1)− 9w2
0(Ωm − 1)(3Ωm − 16)

− 9w0(Ωm − 1)(w1(Ωm − 7)− 9) + 39w1(Ωm − 1)− 14).
(34c)

B. Consequences on early-time cosmology

Now, we turn our attention to examining the influ-
ence of the correction arising from our dark energy mod-
els on the dynamics of the universe at high redshifts.
To accomplish this, we delve into investigating the ef-
fects of the modified background evolution on density
perturbations, which arguably serve as the most appro-
priate framework for roughly assessing the efficacy of any
cosmological model at high redshifts. The perturbation
equations can be expressed as

δ̈ + 2Hδ̇ − 4πGρmδ = 0 . (35)

In the linear regime, assuming homogeneity and isotropy,
the growth evolution is closely linked to the matter den-
sity contrast δ = δρm/ρm and can be conveniently ad-
dressed through the following equation [51]

δ′′+3 (sδ)
′
+

(
2 +

H ′

H

)
(δ′+3sδ)− 3

2
SΩ(a)δ = 0 , (36)

in which we introduced x′ ≡ dx/d ln a and S = 1 + 3s,
whereas the adiabatic sound speed s = c2s and the di-
mensionless effective matter component density of the
perturbed fluid Ω(a), respectively, are given by

s =

(
∂P

∂a

)(
∂ρm
∂a

)−1

, (37a)

Ω(a) =
ρm(a)

E(a)2
. (37b)

In general, the solution of Eq. (36) is expressed in terms
of the growth variable D(a) = δ/a which is subjected to
the following boundary conditions

D(a∗) = 1, (38a)

D′(a∗) = 0. (38b)

where a∗ = (1 + z∗)
−1 and z∗ ≈ 1090 [19]. The behav-

ior of the variable D(a) closely resembles the one of the
growth index f = (ln δ)′ for which Eq. (36) reads

f ′ +

(
2 + f +

H ′

H

)
(f + 3s) + 3s′ − 3

2
SΩ(a) = 0 . (39)

IV. NUMERICAL ANALYSIS

Our numerical analyses are split into main groups, as
below reported.

- Analysis 1. It is a blind analysis, involving all
BAO data points found in DESI, which are com-
bined with the catalogs of SNe Ia and OHD. BAO
measurements are sensitive to the degeneracy be-
tween the Hubble constant H0 and the comoving
sound horizon at the drag epoch rd. To override
this issue, we perform several analyses with a fixed
rd and enable it to vary at steps of 1 Mpc within a
range rd ∈ [145, 150] Mpc, where both the Planck
satellite and DESI-BAO expectations fall within.

- Analysis 2. It is a set of further fits, where we do
not aim to break the H0–rd degeneracy and, hence,
we analyze the quantity rdh0, in fulfillment to the
recipe shown in Ref. [32]. Because of this choice,
OHD catalog is excluded from the fits because it
cannot be expressed in terms of rdh0 without in-
troducing an a priori choice on rd. Here, we also
exclude the anomalous DESI-BAO LRG data point
at zeff = 0.51 [31], since it appears pathological in
the mass evaluation [32].

A. Analysis 1

We combine the DESI-BAO catalog with standard low-
redshift data surveys: precisely, OHD [76] and the Pan-
theon catalog of SNe Ia [77]. The general best-fit pa-
rameters are inferred directly by maximizing the total
log-likelihood function

lnL = lnLB + lnLO + lnLS . (40)

Below, we define the contribution of each probe.

- DESI-BAO data. These are galaxy surveys span-
ning a redshift range z ∈ [0.1, 4.2] and divided into
NB = 7 distinct redshift bins. As remarked in Ref.
[31], all these measurements are effectively inde-
pendent from each other and, thus, no covariance
matrix is considered. The associated systematics,
generally, introduce a negligible offset [31, 78].

For computational time reasons, we consider only
two kind of DESI-BAO data ratios (see Table I)

dH(z)

rd
=

c r−1
d

H(z)
, (41a)

dV (z)

rd
=

[
c z r−3

d d2L(z)

H(z)(1 + z)2

] 1
3

, (41b)

where dL(z) is the luminosity distance.

The sound horizon at the drag epoch, rd, is a func-
tion of the matter and baryon physical energy den-
sities and the effective number of extra-relativistic
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Tracer zeff dH/rd dV /rd
BGS 0.30 − 7.93± 0.15

LRG 0.51 20.98± 0.61 −
LRG 0.71 20.08± 0.60 −
LRG+ELG 0.93 17.88± 0.35 −
ELG 1.32 13.82± 0.42 −
QSO 1.49 − 26.07± 0.67

Lya QSO 2.33 8.52± 0.17 −

TABLE I: DESI-BAO data with tracers, effective redshifts
zeff , and ratios dH/rd and dV /rd. Reproduced from Ref. [31].

degrees of freedom. Moreover, BAO data are sen-
sitive to the H0–rd.

To overcome this issue, we limit the number of pa-
rameters to be fitted and significantly reduce the
computational time without altering the final out-
puts. We perform several fits with a fixed rd and
enable it to vary at steps of 1 Mpc within a range
rd ∈ [145, 150] Mpc, where both the Planck satel-
lite and DESI-BAO expectations fall within. Only
a posteriori viable values are extracted.

Thus, with the assumption of Gaussian distributed
errors, σXi , the log-likelihood functions for each ra-
tio, dH/rd and dV /rd, can be written as

lnLX = −1

2

NX∑
i=1

{[
Xi −X(zi)

σXi

]2
+ ln(2πσ2

Xj
)

}
, (42)

and the total BAO log-likelihood turns out to be

lnLB =
∑
X

lnLX . (43)

- Hubble rate data. The most updated sample of
OHD consists of NO = 34 measurements (see Ta-
ble II). OHD are of particular interest since they are
determined from spectroscopic detection of the dif-
ferences in age, ∆t, and redshift, ∆z, of couples of
passively evolving galaxies. To do so, we make the
hypothesis that the underlying galaxies are how-
ever formed at the same time, enabling to consider
the identity H(z) = −(1 + z)−1∆z/∆t [79].

OHD systematics mostly depend upon stellar pop-
ulation synthesis models and libraries. Even in-
cluding the contributions of initial mass functions
and the stellar metallicity may contribute at most
to 20–30% errors [76, 80, 81]. These measurements
are thus not particularly accurate, albeit their de-
termination is fully model independent.

For the sake of simplicity, again we employ Gaus-
sian distributed errors, σHk

. So, the best-fit param-
eters are found by maximizing the log-likelihood

lnLO = −1

2

NO∑
i=1

{[
Hi −H(zi)

σHi

]2
+ ln(2πσ2

Hi
)

}
. (44)

z H(z) References

[km/s/Mpc]

0.0708 69.0± 19.6± 12.4⋆ [82]

0.09 69.0± 12.0± 11.4⋆ [79]

0.12 68.6± 26.2± 11.4⋆ [82]

0.17 83.0± 8.0± 13.1⋆ [83]

0.1791 75.0± 3.8± 0.5† [84]

0.1993 75.0± 4.9± 0.6† [84]

0.20 72.9± 29.6± 11.5⋆ [82]

0.27 77.0± 14.0± 12.1⋆ [83]

0.28 88.8± 36.6± 13.2⋆ [82]

0.3519 83.0± 13.0± 4.8† [85]

0.3802 83.0± 4.3± 12.9† [85]

0.4 95.0± 17.0± 12.7⋆ [83]

0.4004 77.0± 2.1± 10.0† [85]

0.4247 87.1± 2.4± 11.0† [85]

0.4497 92.8± 4.5± 12.1† [85]

0.47 89.0± 23.0± 44.0† [86]

0.4783 80.9± 2.1± 8.8† [85]

0.48 97.0± 62.0± 12.7⋆ [87]

0.5929 104.0± 11.6± 4.5† [84]

0.6797 92.0± 6.4± 4.3† [84]

0.75 98.8± 24.8± 22.7† [88]

0.7812 105.0± 9.4± 6.1† [84]

0.80 113.1± 15.1± 20.2⋆ [89]

0.8754 125.0± 15.3± 6.0† [84]

0.88 90.0± 40.0± 10.1⋆ [87]

0.9 117.0± 23.0± 13.1⋆ [83]

1.037 154.0± 13.6± 14.9† [84]

1.26 135.0± 60.0± 27.0† [90]

1.3 168.0± 17.0± 14.0⋆ [83]

1.363 160.0± 33.6‡ [91]

1.43 177.0± 18.0± 14.8⋆ [83]

1.53 140.0± 14.0± 11.7⋆ [83]

1.75 202.0± 40.0± 16.9⋆ [83]

1.965 186.5± 50.4‡ [91]

TABLE II: Updated OHD catalog with redshifts (first col-
umn), measurements with errors (second column), and refer-
ences (third column). Systematic errors here computed are
labeled with ⋆, with † if given by the literature, and with ‡
when combined with statistical errors.

- SNe Ia. Pantheon is one of the most recent cat-
alog SNe Ia and contains 1048 sources [77]. It can
be significantly reduced, once the spatial curvature
is assumed to be zero, to a catalog of NS = 6 mea-
surements, reported in a practical way as normal-
ized Hubble rates, Ei [92]. Here, the corresponding
log-likelihood function is given by

lnLS = −1

2

NS∑
i=1

{
∆ET

i C
−1
S ∆Ei + ln (2π|CS|)

}
, (45)

where we imposed ∆Ei ≡ E−1
i − E−1(zi), the co-

variance matrix CS and its determinant |CS|.

The above combinations of data sets, especially the in-
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clusion of OHD data points, enables us to further reduce
the complexity of the AS and AS0 models. In fact, with
the usual assumption that ρ⋆ coincides with the Planck
density ρP , the parameter B is not anymore an extra
parameter, since it can be expressed as a combination of
H0 and Ωm as follow

ρ⋆
ρm

=
ρP

ρcΩm
=

8πGρP
3H2

0Ωm
, (46)

where we resorted to the definition of the universe critical
density ρc = 3H2

0/(8πG).
For the AS−1 model the above substitution is not vi-

able, because it has been shown in Ref. [49] that ρ⋆ ̸= ρP .
Therefore, in this particular case, B represents an extra
model parameter.

Finally, the value of Ωb for CG and GCG models has
been fixed to the best-fit result given by the Planck satel-
lite [19].

B. Analysis 2

The aim of this further set of fits is to establish the
impact of the anomalous DESI-BAO LRG data point at
zeff = 0.51 [31], because of its pathological mass evalua-
tion [32].

Since in Analysis 1 this data point has been included,
hereby in Analysis 2 we exclude this data point and, to
make a direct comparison with Ref. [32], we hide the H0–
rd degeneracy inside the parameter rdh0. Because of this
choice, Hubble rate measurements – sensitive only to H0

and not to the combination rdh0 – are clearly excluded.
In view of these considerations, the best-fit parameters

for Analysis 2 are inferred by maximizing the total log-
likelihood function

lnL = lnL∗
B + lnLS , (47)

where the so-involved data sets are described below.

- DESI-BAO data. The log-likelihood lnL∗
B is now

obtained by the DESI-BAO catalog introduced in
Analysis 1, with the exclusion of the dH(z)/rd from
the LRG data point at zeff = 0.51. This means that
now the log-likelihood in Eq. (43) utilizes a data set
composed of N∗

B = 6 bins.

- SNe Ia. The SN Ia data set remains unchanged,
thus the number of data points is NS = 6, and the
log-likelihood in Eq. (45) remains the same.

For Analysis 2, the exclusion of OHD measurements
and the adoption of the new model parameter rdh0 does
not allow us to express the ratio ρ⋆/ρm as a combination
of H0 and Ωm. Therefore, in Analysis 2, B represents an
extra model parameter also for AS and AS0 models.
In this case, the inferences on the cosmographic pa-

rameters and the early-time cosmology request a value
of rd to disentangle H0 from the parameter rdh0. To

this aim, we will use the value provided by the Planck
satellite [19].

Clearly, also for Analysis 2, the value of Ωb for CG and
GCG models has been fixed by the best-fit result given
by the Planck satellite [19].

C. Model selection criteria

In a quite overall agreement, the ΛCDM paradigm
remains the statistically-preferred framework since it
hinges solely on the parameter Ωm, at late times.
In view of the introduction of several dark energy al-

ternatives, it becomes essential to develop methods ca-
pable of comparing these diverse cosmological models ef-
fectively.

In this regards, statistically robust, model-independent
approaches are provided by selection criteria, which aim
to identify the “best” model by weighing the combina-
tion of log-likelihood and degrees of freedom. This is
crucial because viable models incorporating higher-order
parameters might yield low log-likelihood values, yet they
should not be automatically dismissed as inferior to the
standard model.

So far, the following options are usually developed: the
Akaike information criterion (AIC), or the corrected AIC
(AICc), the Bayesian information criterion (BIC) [93]
and the DIC criterion [94], typically referred to as
standard diagnostic tools [95–99] of regression models
[94, 100–102], defined as

AIC ≡ −2 lnLm + 2d , (48a)

AICc ≡ AIC +
2d(d+ 1)

N − d− 1
, (48b)

BIC ≡ −2 lnLm + 2d lnN , (48c)

DIC ≡ 2peff − 2 lnLm (48d)

where, the log-likelihood maximum value lnLm has been
used, whereas d states the number of model parameters,
N is the number of data points, and peff = ⟨−2 lnL⟩ +
2 lnLm is the number of parameters that a dataset can
effectively constrain, where the brackets denote the av-
erage over the posterior distribution. Unlike the AIC
and BIC criteria, the DIC statistic does not penalize for
the total number of free parameters, but solely for those
constrained by the data [93].
In our two distinct analyses, we have

Analysis 1 : N1 = NB +NO +NS = 47 , (49)

Analysis 2 : N2 = N∗
B +NS = 12 . (50)

The fundamental premise involves positing two distri-
bution functions: f(x) and g(x|θ). Here, f(x) represents
the precise distribution function, while g(x|θ) serves as
an approximation. The approximation of f(x) relies on
a parameter set denoted by θ. Consequently, a specific
θmin exists, minimizing the disparity between g(x, θ) and
f(x) [103]. Therefore, AIC, AICc, BIC and DIC values
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for a single model cannot acquire any meaning since f(x)
is unknown and, thus, differences are necessary, say

∆X = Xi −X0 , Xi = AIC, AICc, BIC, DIC , (51)

where X0 represents the lowest value obtained among the
models to be statistically compared.

According to the DESI results and to our fits, we have
to calculate the differences relative not to the reference
ΛCDM flat scenario, but to the most suitable dark energy
model, involved in our analyses.

D. Results

Table III shows the results of Analysis 1 for each model,
with all the fits performed at steps of of 1 Mpc for rd ∈
[145, 150] Mpc. The statistical analysis, summarizing the
values and the differences of the AIC, AICc, BIC and DIC
selection criteria, is reported in Tab. IV.

The viable best-fit values of rd, for each dark energy
model, are extracted a posteriori as the ones providing
the minimum value of − lnL (see last column of Table
III for each dark energy model). For some models, it
appears that the best-fit rd is outside the selected range
of values ∈ [145, 150], implying that the best-fit values
determination is inconclusive. However, the statistical
analysis listed in Tab. IV put in evidence that these out-
of-range rd values occur only for the excluded models.

Indeed, the statistical criteria suggest that the best
model is not the CPL parametrization, as it was claimed
by the DESI collaboration, but rather a more compli-
cated dark energy models best-described by the AS0 or
logotropic model, whereas a viable, less suited option is
also offered by the AS model (see Table IV). Surprisingly,
the concordance model is among the strongly excluded
models with ∆X > 100 (see Table IV).

TABLE III: MCMC best-fit parameters and 1–σ (2–σ) error bars of the
dark energy model obtained from Analysis 1.

rd H0 Ωm α or n or B w or w0 w1 w2 − lnL
[Mpc] [km/s/Mpc]

Thermodynamic model: CG

145 71.79
+1.73(+2.85)

−1.88(−2.97) 0.347
+0.027(+0.044)

−0.022(−0.035) − − − − 142.03

146 71.34
+1.75(+3.00)

−1.84(−2.98) 0.348
+0.026(+0.042)

−0.024(−0.039) − − − − 141.99

147 71.14
+1.61(+2.84)

−1.96(−3.12) 0.345
+0.027(+0.044)

−0.022(−0.036) − − − − 142.02

148 70.57
+1.81(+3.00)

−1.75(−2.80) 0.348
+0.023(+0.039)

−0.026(−0.041) − − − − 142.12

149 70.18
+1.87(+2.94)

−1.76(−2.83) 0.346
+0.025(+0.040)

−0.024(−0.038) − − − − 142.28

150 69.89
+1.72(+2.87)

−1.86(−2.95) 0.344
+0.026(+0.043)

−0.024(−0.039) − − − − 142.51

Thermodynamic model: GCG

145 68.65
+2.12(+3.35)

−1.89(−3.07) 0.288
+0.027(+0.044)

−0.030(−0.047) −0.04
+0.18(+0.30)

−0.17(−0.27) − − − 177.32

146 68.25
+2.17(+3.56)

−1.75(−3.10) 0.281
+0.032(+0.051)

−0.024(−0.040) −0.04
+0.17(+0.29)

−0.17(−0.27) − − − 177.40

147 67.93
+2.15(+3.48)

−1.80(−3.20) 0.281
+0.032(+0.049)

−0.025(−0.041) −0.04
+0.17(+0.31)

−0.17(−0.26) − − − 177.54

148 67.57
+2.16(+3.46)

−1.82(−3.13) 0.284
+0.027(+0.045)

−0.029(−0.045) −0.04
+0.17(+0.29)

−0.18(−0.27) − − − 177.75

149 67.27
+2.05(+3.40)

−1.93(−3.11) 0.281
+0.028(+0.048)

−0.028(−0.043) −0.05
+0.18(+0.30)

−0.16(−0.26) − − − 178.02

150 66.88
+2.14(+3.48)

−1.93(−3.00) 0.278
+0.031(+0.050)

−0.024(−0.042) −0.05
+0.17(+0.30)

−0.17(−0.26) − − − 178.35

Thermodynamic model: AS

145 70.20
+1.92(+3.12)

−1.66(−2.76) 0.301
+0.027(+0.045)

−0.026(−0.043) +0.01
+0.10(+0.17)

−0.11(−0.18) − − − 126.00

146 69.80
+2.01(+3.15)

−1.71(−2.79) 0.296
+0.031(+0.048)

−0.023(−0.039) +0.01
+0.11(+0.17)

−0.11(−0.17) − − − 125.77

147 69.71
+1.71(+2.96)

−2.02(−3.12) 0.300
+0.026(+0.044)

−0.028(−0.044) −0.00
+0.11(+0.18)

−0.10(−0.17) − − − 125.60

148 69.28
+1.71(+2.80)

−1.83(−2.98) 0.300
+0.025(+0.043)

−0.029(−0.044) −0.01
+0.11(+0.18)

−0.10(−0.16) − − − 125.51

149 68.74
+1.93(+3.05)

−1.70(−2.88) 0.296
+0.029(+0.047)

−0.026(−0.042) −0.01
+0.11(+0.18)

−0.10(−0.16) − − − 125.49

150 69.25
+1.97(+3.16)

−1.62(−2.61) 0.294
+0.029(+0.048)

−0.025(−0.042) −0.02
+0.11(+0.19)

−0.10(−0.15) − − − 125.53

Thermodynamic model: AS−1

145 68.67
+1.86(+2.98)

−1.52(−2.52) 0.320
+0.022(+0.039)

−0.026(−0.039) −0.339
+0.014(+0.023)

−0.013(−0.021) − − − 135.21

146 68.45
+1.73(+2.67)

−1.68(−2.70) 0.315
+0.024(+0.040)

−0.022(−0.035) −0.339
+0.014(+0.022)

−0.013(−0.021) − − − 134.87

147 68.24
+1.47(+2.62)

−1.77(−2.78) 0.315
+0.024(+0.040)

−0.022(−0.036) −0.340
+0.015(+0.024)

−0.012(−0.020) − − − 134.60

148 67.62
+1.81(+2.85)

−1.50(−2.56) 0.317
+0.021(+0.037)

−0.025(−0.038) −0.339
+0.014(+0.024)

−0.012(−0.020) − − − 134.40
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TABLE III: continued.

rd H0 Ωm α or n or B w or w0 w1 w2 − lnL
[Mpc] [km/s/Mpc]

149 67.40
+1.75(+2.84)

−1.67(−2.69) 0.312
+0.025(+0.039)

−0.022(−0.035) −0.340
+0.015(+0.024)

−0.012(−0.020) − − − 134.21

150 66.96
+1.72(+2.75)

−1.54(−2.53) 0.312
+0.024(+0.041)

−0.022(−0.036) −0.337
+0.013(+0.022)

−0.014(−0.023) − − − 134.27

Thermodynamic model: AS0

145 70.17
+1.81(+2.93)

−1.52(−2.52) 0.301
+0.021(+0.036)

−0.024(−0.036) 0 − − − 126.00

146 70.05
+1.60(+2.62)

−1.75(−2.69) 0.300
+0.021(+0.036)

−0.024(−0.037) 0 − − − 125.77

147 69.46
+1.79(+2.86)

−1.57(−2.57) 0.299
+0.021(+0.038)

−0.023(−0.036) 0 − − − 125.60

148 69.27
+1.62(+2.70)

−1.72(−2.77) 0.293
+0.027(+0.041)

−0.018(−0.032) 0 − − − 125.51

149 68.88
+1.64(+2.68)

−1.70(−2.72) 0.295
+0.024(+0.039)

−0.022(−0.034) 0 − − − 125.49

150 68.40
+1.75(+2.84)

−1.50(−2.50) 0.294
+0.024(+0.038)

−0.021(−0.034) 0 − − − 125.53

Taylor-expanded model: TE1

145 68.44
+2.27(+3.18)

−2.15(−3.01) 0.308
+0.049(+0.051)

−0.293(−0.307) − −0.78
+0.15(+0.19)

−0.20(−0.27) 0.37
+0.14(+0.15)

−1.39(−1.79) − 172.00

146 68.21
+2.39(+3.23)

−2.24(−2.97) 0.307
+0.047(+0.052)

−0.293(−0.306) − −0.85
+0.21(+0.26)

−0.15(−0.19) 0.36
+0.15(+0.18)

−1.44(−1.94) − 171.93

147 67.93
+2.01(+3.12)

−2.14(−2.97) 0.304
+0.046(+0.050)

−0.299(−0.303) − −0.73
+0.10(+0.13)

−0.24(−0.34) 0.37
+0.14(+0.16)

−1.30(−1.65) − 172.17

148 67.83
+1.87(+2.79)

−2.38(−3.16) 0.299
+0.048(+0.050)

−0.298(−0.299) − −0.87
+0.24(+0.27)

−0.10(−0.20) 0.37
+0.16(+0.18)

−1.06(−1.61) − 172.13

149 67.33
+2.03(+2.89)

−2.22(−2.89) 0.302
+0.045(+0.055)

−0.292(−0.302) − −0.76
+0.11(+0.16)

−0.21(−0.30) 0.36
+0.18(+0.20)

−1.29(−1.69) − 172.32

150 67.37
+1.56(+2.99)

−2.14(−3.26) 0.302
+0.038(+0.045)

−0.300(−0.302) − −0.71
+0.09(+0.12)

−0.24(−0.35) 0.37
+0.17(+0.19)

−1.21(−1.67) − 172.60

Taylor-expanded model: CPL

145 68.66
+2.12(+3.59)

−2.12(−3.64) 0.299
+0.033(+0.055)

−0.030(−0.066) − −0.91
+0.17(+0.27)

−0.13(−0.21) −0.6
+1.0(+1.8)

−1.0(−1.7) − 176.79

146 68.33
+2.23(+3.99)

−2.20(−3.83) 0.294
+0.038(+0.061)

−0.030(−0.063) − −0.90
+0.16(+0.26)

−0.15(−0.23) −0.5
+1.1(+1.8)

−1.1(−1.8) − 176.84

147 67.89
+2.29(+4.02)

−2.26(−3.67) 0.294
+0.041(+0.064)

−0.035(−0.061) − −0.90
+0.15(+0.27)

−0.15(−0.24) −0.6
+1.7(+2.0)

−0.9(−1.8) − 176.95

148 67.65
+1.96(+3.33)

−2.09(−3.42) 0.296
+0.032(+0.051)

−0.028(−0.052) − −0.88
+0.15(+0.25)

−0.17(−0.25) −0.6
+0.9(+1.5

−1.1(−1.7) − 177.11

149 67.13
+2.15(+3.46)

−1.90(−3.20) 0.297
+0.031(+0.049)

−0.029(−0.057) − −0.87
+0.16(+0.27)

−0.16(−0.26) −0.6
+1.0(+1.6

−1.1(−1.8) − 177.35

150 66.81
+2.26(+3.62)

−1.94(−3.51) 0.292
+0.035(+0.056)

−0.029(−0.063) − −0.88
+0.16(+0.28)

−0.15(−0.22) −0.6
+1.0(+1.7

−1.1(−1.8) − 177.64

Taylor-expanded model: CPL2

145 68.75
+2.28(+3.73)

−1.82(−3.12) 0.309
+0.025(+0.039)

−0.024(−0.038) − −1.61
+0.39(+0.68)

−0.43(−0.68) +7.8
+4.6(+7.5)

−4.4(−7.4) −17.8
+9.3(+15.5)

−9.6(−16.2) 172.23

146 68.29
+2.48(+3.81)

−1.69(−3.01) 0.306
+0.026(+0.042)

−0.023(−0.036) − −1.58
+0.40(+0.64)

−0.44(−0.73) +7.3
+5.0(+8.4)

−4.2(−7.0) −16.7
+8.9(+13.6)

−10.4(−17.4) 172.31

147 68.23
+2.07(+3.35)

−2.01(−3.16) 0.304
+0.027(+0.041)

−0.021(−0.035) − −1.62
+0.42(+0.70)

−0.40(−0.66) +7.9
+4.4(+7.5)

−4.6(−7.6) −17.0
+8.4(+14.3)

−9.6(−16.8) 172.46

148 67.80
+2.20(+3.43)

−1.82(−3.04) 0.307
+0.022(+0.038)

−0.024(−0.038) − −1.58
+0.39(+0.67)

−0.43(−0.70) +6.8
+5.3(+8.5)

−3.7(−6.8) −16.8
+8.9(+14.7)

−10.1(−16.7) 172.46

149 67.28
+2.25(+3.64)

−1.60(−2.88) 0.304
+0.024(+0.040)

−0.023(−0.037) − −1.56
+0.40(+0.64)

−0.43(−0.71) +7.6
+4.6(+7.4)

−4.7(−7.3) −17.0
+9.1(+14.4)

−10.0(−16.2) 172.96

150 67.51
+1.75(+2.88)

−2.18(−3.49) 0.305
+0.025(+0.039)

−0.024(−0.038) − −1.62
+0.46(+0.74)

−0.41(−0.67) +7.0
+5.51(+8.3)

−4.0(−7.1) −16.9
+8.9(+15.7)

−10.7(−17.8) 173.31

Parametrization model: ΛCDM

145 68.62
+2.03(+3.18)

−1.53(−2.59) 0.291
+0.021(+0.037)

−0.024(−0.037) − −1 − − 177.40

146 68.40
+1.93(+3.22)

−1.65(−2.75) 0.287
+0.024(+0.041)

−0.022(−0.035) − −1 − − 177.49

147 68.34
+1.66(+2.86)

−1.92(−3.04) 0.288
+0.022(+0.039)

−0.023(−0.037) − −1 − − 177.64

148 67.93
+1.71(+2.75)

−1.79(−2.94) 0.287
+0.021(+0.036)

−0.024(−0.037) − −1 − − 177.85

149 67.43
+1.83(+2.97)

−1.66(−2.73) 0.284
+0.024(+0.040)

−0.021(−0.033) − −1 − − 178.13

150 67.13
+1.82(+2.94)

−1.66(−2.77) 0.284
+0.023(+0.038)

−0.023(−0.035) − −1 − − 178.47

Parametrization model: wCDM

145 68.17
+2.18(+3.36)

−1.85(−3.09) 0.286
+0.026(+0.045)

−0.025(−0.039) − −0.961
+0.089(+0.141)

−0.103(−0.163) − − 177.25

146 68.06
+2.25(+3.46)

−1.78(−2.97) 0.283
+0.029(+0.047)

−0.023(−0.038) − −0.963
+0.093(+0.151)

−0.097(−0.165) − − 177.33

147 68.06
+1.83(+3.06)

−2.06(−3.25) 0.283
+0.026(+0.045)

−0.025(−0.040) − −0.964
+0.092(+0.152)

−0.093(−0.152) − − 177.47

148 67.26
+2.27(+3.42)

−1.61(−2.84) 0.280
+0.030(+0.047)

−0.022(−0.037) − −0.966
+0.097(+0.146)

−0.090(−0.147) − − 177.67

149 67.02
+2.21(+3.49)

−1.68(−2.87) 0.281
+0.027(+0.044)

−0.025(−0.039) − −0.957
+0.087(+0.139)

−0.099(−0.159) − − 177.93
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TABLE III: continued.

rd H0 Ωm α or n or B w or w0 w1 w2 − lnL
[Mpc] [km/s/Mpc]

150 66.88
+1.95(+3.24)

−1.95(−3.14) 0.280
+0.028(+0.044)

−0.024(−0.039) − −0.959
+0.092(+0.144)

−0.096(−0.153) − − 178.25

Parametrization model: JBP

145 68.42
+2.15(+3.65)

−1.75(−3.22) 0.291
+0.033(+0.052)

−0.028(−0.047) − −0.90
+0.21(+0.35)

−0.19(−0.31) −0.4
+1.4(+2.2)

−1.8(−3.1) − 177.14

146 68.19
+2.08(+3.41)

−1.89(−3.04) 0.290
+0.032(+0.049)

−0.028(−0.046) − −0.88
+0.19(+0.32)

−0.22(−0.34) −0.5
+1.5(+2.4)

−1.8(−3.1) − 177.20

147 67.74
+2.10(+3.52)

−1.89(−3.04) 0.289
+0.033(+0.050)

−0.029(−0.047) − −0.89
+0.21(+0.34)

−0.21(−0.31) −0.8
+1.8(+2.6)

−1.5(−2.6) − 177.35

148 67.49
+2.13(+3.34)

−1.91(−3.13) 0.288
+0.031(+0.051)

−0.029(−0.047) − −0.89
+0.20(+0.35)

−0.21(−0.32) −0.5
+1.5(+2.3)

−1.9(−3.2) − 177.51

149 67.16
+2.08(+3.45)

−1.98(−3.24) 0.290
+0.030(+0.049)

−0.030(−0.049) − −0.88
+0.20(+0.34)

−0.21(−0.33) −0.5
+1.5(+2.3)

−1.9(−3.0) − 177.76

150 66.71
+2.14(+3.44)

−1.85(−2.96) 0.292
+0.028(+0.044)

−0.032(−0.052) − −0.88
+0.20(+0.34)

−0.20(−0.31) −0.5
+1.4(+2.3)

−1.9(−3.0) − 178.08

Parametrization model: Efs

145 68.51
+2.76(+4.06)

−2.22(−3.61) 0.302
+0.040(+0.058)

−0.039(−0.299) − −0.91
+0.17(+0.26)

−0.12(−0.19) −0.6
+1.4(+1.5)

−0.7(−1.3) − 173.99

146 68.30
+2.14(+3.66)

−2.02(−3.41) 0.303
+0.030(+0.050)

−0.031(−0.079) − −0.91
+0.16(+0.25)

−0.12(−0.20) −0.6
+0.9(+1.4)

−0.7(−1.3) − 176.41

147 67.94
+2.48(+3.95)

−2.49(−3.91) 0.299
+0.040(+0.060)

−0.041(−0.295) − −0.90
+0.16(+0.24)

−0.13(−0.21) −0.6
+1.4(+1.5)

−0.7(−1.3) − 174.34

148 67.54
+2.28(+3.95)

−2.05(−3.62) 0.295
+0.038(+0.060)

−0.025(−0.065) − −0.89
+0.16(+0.26)

−0.14(−0.21) −0.6
+0.8(+1.4)

−0.8(−1.3) − 174.58

149 67.16
+2.38(+4.00)

−2.12(−3.51) 0.302
+0.031(+0.051)

−0.037(−0.302) − −0.87
+0.15(+0.22)

−0.14(−0.22) −0.6
+1.4(+1.5)

−0.8(−1.2) − 174.85

150 66.89
+2.18(+4.03)

−2.14(−3.88) 0.299
+0.032(+0.056)

−0.035(−0.295) − −0.89
+0.17(+0.25)

−0.12(−0.20) −0.6
+1.3(+1.5)

−0.8(−1.2) − 175.14

The results of Analysis 2 are highlighted in Tab. V.
Here, the number of fits is less, according to the fact
that we fit rdh0 instead of letting rd to span within the
interval rd ∈ [145, 150].
The results of the statistical analysis are reported in

Table VI, suggesting that the ΛCDM paradigm is the
most favorable model, while the ωCDM and AS0 models
are considered viable but less preferable options.

These findings seem to confirm the claimed pathology
behind the DESI-BAO LRG data point at zeff = 0.51
[32].

From all the best-fit parameters of Analyses 1 and 2, we
infer the corresponding background quantities, namely
the cosmographic parameters in Tables VII-VIII. On the
other side, the early-time expectations, i.e., the evolution
of the cosmological perturbations, have been computed
by comparing the best fit model with the other frame-
works (see Fig. 1).

Clearly, the cosmographic parameters and the early-
time cosmological behaviors for Analysis 2 results were
obtained by imposing the value of rd from the Planck
satellite [19]. From Analyses 1 and 2, we deduce two best
models. To illustrate this, we can summarize our findings
by commenting on each model, as outlined below.

Thermodynamic dark energy models. This ap-
pellative conventionally indicate dark energy models ob-
tained by virtue of a barotropic fluid inferred from ther-
modynamic recipe. We worked out the following models,
with corresponding results:

- CG. The results of Analysis 1 show quite large
masses, albeit with larger H0 bounds, apparently
alleviating the cosmological tension. The depar-
tures from the best-fit model and the cosmographic

results are large enough to exclude at the back-
ground the CG. The result of Analysis 2 appears in
line with Analysis 1, i.e., large values of masses and
larger values statistical criteria disfavor this model.

The evolution of the perturbation in Fig. 1 shows
for both Anlysis 1 and 2 a large deviation from
the concordance model at z ≈ 1.5, resulting in a
strong suppression of the perturbation growth at
late times.

The model appears, therefore, excluded even using
the DESI 2024 data release, since at both late and
early times the model fails to be predictive.

- GCG. Even though with promising results ob-
tained from previous analyses [104–106], the model
appears particularly disfavored, even more than its
simpler version the CG model. Indeed, in both
Analyses 1 and 2, the values of masses are smaller
than those of CG, but the free parameter, α, has
very large attached errors. From the perspective
of cosmography, the model appears much more in
line with the ΛCDM model, due to the fact that
α ≈ 0. This model is indeed disfavored from DESI
2024 data release, being the statistical informa-
tion values extremely higher than CG. Although at
late time the model is strongly disfavored, at early
times, GCG behavior seems to be more in line with
the expectations and does not exhibits the strong
suppression of the perturbation growth displayed
by the CG model.

- AS. This model performs surprisingly better than
the previous ones, as confirmed by statistical crite-
ria of both Analyses 1 and 2. Its validity was certi-
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AIC AICc BIC DIC ∆AIC ∆AICc ∆BIC ∆DIC

Thermodynamic models

CG 288 288 292 288 33 33 33 33

GCG 361 361 366 361 106 106 107 106

AS 257 257 263 257 2 2 4 2

AS1 274 274 280 274 19 19 21 19

AS0 255 255 259 255 0 0 0 0

Taylor-expanded models

TE1 352 352 359 352 97 97 100 97

CPL 362 362 369 362 107 107 110 107

CPL2 355 355 364 355 100 100 105 100

Parametrization models

ΛCDM 359 359 363 359 104 104 104 104

wCDM 361 361 366 361 106 106 107 106

JBP 362 362 369 362 107 107 110 107

Efs 356 356 363 356 101 101 104 101

TABLE IV: Statistical comparison of the dark energy model best-fits (i.e., the ones providing the maximum value of the log-
likelihood for a given value of rd for each model) deduced from the results of Analysis 1 shown in Table III.

rdh0 Ωm α or n w or w0 w1 w2 − lnL
[ km/s] or B

Thermodynamic models

CG 102.07
+2.83(+4.83)

−2.81(−4.49) 0.358
+0.025(+0.042)

−0.027(−0.043) − − − − 36.89

GCG 97.78
+2.95(+5.13)

−3.31(−5.14) 0.307
+0.030(+0.047)

−0.032(−0.051) 0.05
+0.18(+0.31)

−0.19(−0.29) − − − 73.25

AS 101.83
+3.05(+4.51)

−3.52(−5.05) 0.319
+0.109(+0.175)

−0.043(−0.061) −0.31
+0.25(+0.39)

−0.20(−0.26) − − − 24.79

0.29
+0.37(+0.52)

−0.25(−0.29)

AS−1 100.73
+2.82(+4.71)

−2.97(−4.42) 0.306
+0.026(+0.043)

−0.024(−0.036) −1 − − − 33.94

−0.341
+0.013(+0.022)

−0.014(−0.021)

AS0 101.40
+3.08(+4.90)

−2.54(−4.28) 0.311
+0.027(+0.045)

−0.028(−0.043) 0 − − − 25.21

0.048
+0.096(+0.173)

−0.048(−0.048)

Taylor-expanded models

TE1 101.35
+3.64(+5.77)

−2.87(−4.71) 0.327
+0.033(+0.055)

−0.035(−0.069) − −0.96
+0.17(+0.29)

−0.16(−0.24) −0.68
+0.96(+1.21)

−0.93(−1.63) − 24.71

CPL 101.19
+3.72(+6.00)

−2.88(−4.76) 0.323
+0.041(+0.062)

−0.039(−0.094) − −0.95
+0.23(+0.40)

−0.18(−0.30) −0.9
+1.8(+2.3)

−1.7(−2.9) − 24.74

CPL2 101.61
+3.56(+5.50)

−2.88(−4.98) 0.326
+0.036(+0.057)

−0.037(−0.080) − −0.97
+0.35(+0.56)

−0.33(−0.51) −0.4
+3.4(+4.7)

−3.4(−5.7) 0.3
+5.3(+8.6)

−9.8(−10.3) 24.62

Parametrization models

ΛCDM 101.64
+2.68(+4.37)

−2.86(−4.61) 0.299
+0.024(+0.041)

−0.023(−0.038) −1 − − 25.33

wCDM 101.75
+2.75(+4.71)

−3.07(−4.67) 0.304
+0.030(+0.047)

−0.029(−0.046) − −1.03
+0.10(+0.17)

−0.13(−0.21) − − 25.22

JBP 101.40
+3.17(+4.99)

−2.76(−4.59) 0.316
+0.039(+0.061)

−0.031(−0.055) − −0.91
+0.29(+0.48)

−0.24(−0.40) −1.5
+2.5(+3.7)

−2.5(−4.3) − 24.82

Efs 101.70
+3.12(+5.46)

−3.16(−5.72) 0.325
+0.037(+0.065)

−0.036(−0.087) − −0.93
+0.19(+0.32)

−0.19(−0.29) −1.0
+1.5(+1.9)

−1.2(−2.1) − 24.73

TABLE V: MCMC best-fit parameters and 1–σ (2–σ) error bars of the dark energy model obtained from Analysis 2.

fied in Refs. [49, 50], albeit it was disfavored with
respect to the ΛCDM model. Here, the situation
appears quite different. The model shows suitable
intervals of masses for both the first and second
groups of fits, albeit the free parameter n has large

attached errors. The cosmographic parameters ap-
pear unconstrained at the level of snap, but in line
with the ΛCDM expectations, at the level of 1–σ
confidence level.

At early times, the growth of the perturbations
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AIC AICc BIC DIC ∆AIC ∆AICc ∆BIC ∆DIC

Thermodynamic models

CG 78 79 79 78 23 23 23 23

GCG 153 156 154 153 98 100 98 100

AS 58 63 60 58 3 7 4 3

AS1 74 77 76 74 19 21 20 21

AS0 57 59 58 57 2 3 2 2

Taylor-expanded models

TE1 58 63 60 58 3 7 4 3

CPL 58 63 60 59 3 7 4 4

CPL2 60 69 62 59 5 13 6 4

Parametrization models

ΛCDM 55 56 56 55 0 0 0 0

wCDM 57 59 58 57 2 3 2 2

JBP 58 63 60 58 3 7 4 3

Efs 58 63 60 58 3 7 4 3

TABLE VI: Statistical comparison of the dark energy model results of Analysis 2 shown in Table V.

q0 j0 s0

Thermodynamic models

CG −0.785
+0.025(+0.040)

−0.023(−0.037) 1.381
+0.059(+0.095)

−0.054(−0.089) −1.29
+0.28(+0.45)

−0.26(−0.42)

GCG −0.548
+0.135(+0.224)

−0.135(−0.213) 0.967
+0.16(+0.263)

−0.149(−0.237) −0.30
+0.17(+0.27)

−0.18(−0.28)

AS −0.542
+0.159(+0.260)

−0.144(−0.231) 0.958
+0.341(+0.558)

−0.310(−0.496) −0.41
+0.63(+1.02)

−0.57(−0.91)

AS−1 −0.202
+0.056(+0.089)

−0.047(−0.077) −0.389
+0.080(+0.126)

−0.068(−0.110) 0.35
+0.16(+0.25)

−0.14(−0.22)

AS0 −0.561
+0.036(+0.059)

−0.033(−0.051) 1.011
+0.001(+0.001)

−0.002(−0.002) −0.31
+0.11(+0.18)

−0.10(−0.15)

Taylor expanded models

TE1 −0.384
+0.278(+0.337)

−0.530(−0.588) 0.228
+0.667(+0.813)

−2.151(−2.772) −1.21
+0.77(+0.94)

−2.59(−3.25)

CPL −0.457
+0.224(+0.359)

−0.178(−0.311) 0.111
+1.533(+2.661)

−1.426(−2.414) −2.98
+4.49(+7.95)

−4.34(−7.34)

CPL2 −1.169
+0.465(+0.799)

−0.504(−0.797) 12.139
+7.863(+13.097)

−7.916(−12.977) unconstrained

Parametrization models

ΛCDM −0.564
+0.032(+0.056)

−0.036(−0.056) 1 −0.31
+0.09(+0.17)

−0.11(−0.17)

wCDM −0.529
+0.133(+0.216)

−0.146(−0.231) 0.880
+0.268(+0.425)

−0.309(−0.489) −0.46
+0.46(+0.74)

−0.51(−0.80)

JBP −0.457
+0.268(+0.442)

−0.240(−0.393) 0.287
+2.058(+3.285)

−2.427(−4.135) −3.04
+8.67(+13.67)

−11.00(−18.91)

Efs −0.453
+0.233(+0.351)

−0.179(−0.607) 0.115
+1.954(+2.314)

−1.091(−2.230) −2.35
+4.53(+5.15)

−2.40(−4.44)

TABLE VII: Values of the cosmographic series for each model. We here inferred the bounds through a logarithmic propagation
of errors. The 2σ confidence levels are reported in parenthesis. The average values are obtained in Tab. III.

exhibits quite different behaviors between the two
analyses. Analysis 1 provides a behavior which is
slightly above the one of the best-fit model (AS0 for
this analysis), whereas Analysis 2 shows an anoma-
lous increase of the growth at late times, likely due
to the anomalous high value of B, which is a free
parameter for Analysis 2.

In view of these considerations, the model appears
viable even using the DESI 2024 data release, even
though at late times, for Analysis 2, the model pro-

vides an anomalous growth of the perturbations.

- AS−1. This model appears statistically less com-
plicated than the previous one. However, its statis-
tical significance is not comparable with the previ-
ous cases. For both Analyses 1 and 2, we have that
the free parameter B is constrained and the mass
aligns with cosmic expectations. However, incon-
sistencies at the level of cosmographic parameters
and the values of the statistical criteria indicate
that the model does not work well at background.
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q0 j0 s0

Thermodynamic models

CG −0.776
+0.024(+0.041)

−0.026(−0.042) 1.403
+0.058(+0.097)

−0.062(−0.099) −1.40
+0.27(+0.45)

−0.29(−0.46)

GCG −0.513
+0.143(+0.238)

−0.151(−0.234) 0.956
+0.167(+0.288)

−0.177(−0.270) −0.39
+0.18(+0.29)

−0.19(−0.31)

AS −0.201
+0.368(+0.578)

−0.249(−0.328) 0.341
+0.391(+0.615)

−0.270(−0.356) −0.91
+0.45(+0.72)

−0.22(−0.30)

AS−1 −0.210
+0.054(+0.090)

−0.054(−0.081) −0.404
+0.078(+0.131)

−0.076(−0.115) 0.37
+0.16(+0.26)

−0.15(−0.23)

AS0 −0.484
+0.138(+0.243)

−0.090(−0.111) 0.851
+0.303(+0.546)

−0.155(−0.158) −0.62
+0.53(+0.95)

−0.33(−0.38)

Taylor expanded models

TE1 −0.469
+0.219(+0.372)

−0.212(−0.342) 0.197
+1.482(+2.095)

−1.426(−2.396) −2.08
+2.64(+3.60)

−2.55(−4.34)

CPL −0.465
+0.292(+0.495)

−0.238(−0.437) −0.057
+2.523(+3.529)

−2.281(−3.915) −4.32
+8.79(+11.88)

−8.09(−13.83)

CPL2 −0.481
+0.406(+0.649)

−0.387(−0.632) 0.507
+4.461(+6.390)

−4.405(−7.275) −2.90
+25.27(+37.55)

−14.56(−45.24)

Parametrization models

ΛCDM −0.552
+0.036(+0.062)

−0.035(−0.057) 1 −0.35
+0.11(+0.19)

−0.10(−0.17)

wCDM −0.575
+0.151(+0.250)

−0.181(−0.290) 1.097
+0.336(+0.571)

−0.436(−0.704) −0.21
+0.72(+1.20)

−0.89(−1.43)

JBP −0.434
+0.351(+0.576)

−0.289(−0.485) −0.791
+3.399(+5.167)

−3.252(−5.565) −9.40
+18.61(+28.24)

−17.88(−30.60)

Efs −0.442
+0.244(+0.415)

−0.243(−0.415) −0.210
+2.081(+2.876)

−1.776(−3.040) −3.57
+5.72(+7.86)

−4.87(−8.25)

TABLE VIII: Values of the cosmographic series for each model. We here inferred the bounds through a logarithmic propagation
of errors. The 2σ confidence levels are reported in parenthesis. The average values are obtained in Tab. V.

Cosmic growth of the perturbations exhibits a to-
tally unpredictive behavior, both at early and late
times. Hence, the model appears unsuitable and
does not pass the test adopting the DESI 2024 data,
in line with recent findings got in Ref. [49].

- AS0. Both Analyses 1 and 2 indicate that the
model is stable and extremely favored from a sta-
tistical perspective. The values of mass align with
Planck [19] and DESI [31] expectations and the log-
correction appears favored than other approaches.
The results provided in Ref. [51], however, were
showing that the model is disfavored at back-
ground, while the DESI results certify the contrary
at background level. Even the cosmographic sets
appear stable and similar to the concordance model
and well-behaved. Analysis 2, however, leads to less
stringent evidence for log-corrected dark energy.

At early times, the cosmic perturbations are well
behaved, in line with the expectation of the con-
cordance model, though slightly underestimated at
late times for the Analysis 2.

The logotropic model appears, therefore, viable
even using the DESI 2024 data release. Thus,
overall, it appears a possible candidate for describ-
ing dark energy and cannot be rejected, albeit be-
ing slightly disfavored with respect to the ΛCDM
model according to Analysis 2 cosmological fits.

Taylor-expanded dark energy models. Here, the
dark energy is assumed as a barotropic fluid, whose equa-
tion of state is expanded in series. The various expan-
sions here reported make use of Taylor series around

z = 0 and two approaches around a = 1, at different
orders, as below summarized.

- TE1. The TE1 is strongly disfavored in Analysis 1,
showing however proper intervals for the mass and
the free parameters. It appears somehow compara-
ble to the CPL model, even if strongly disfavored
according to the information criteria. The cosmo-
graphic results, at background appear not suitable,
albeit they improve severely in the case of the Anal-
ysis 2, for which the model appears much better
if compared with data and is not fully-rejected by
the cosmological analysis. However, the cosmo-
graphic analysis appears significantly modified and
then suggests that the model is not stable enough
to be taken as viable expansion.

However, looking at the cosmic perturbations, both
at early and late times, the model is totally unpre-
dictive, especially at early time where the model
shows its limitations due to its construction.

The model appears, therefore, not stable, passing
from one kind of fits to another. Consequently, it is
unlikely to assume it as definitive framework, albeit
not fully-excluded by observations.

- CPL. This model is the most suitable according to
DESI results [31]. We do not confirm this occur-
rence in the case of Analysis 1.

At the level of cosmography, the model appears
however unstable, while the free term wa is un-
constrained. Considering the statistical criteria,
the situation improves significantly passing to the
Analysis 2, but no improvement is observed at the
background level.
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FIG. 1: Plot of D(a) and f for each model, split into thermodynamic, Taylor-expanded and parametrization models, for the
results of Analysis 1 (left column) and for the results of Analysis 2 (right column). Net discrepancies are found from the best
suited model with respect to all the other scenarios. The parametric models appear smoother than the other frameworks.

Regarding cosmic perturbations, the model per-
forms adequately at early times but overestimates
cosmic growth at late times in both Analyses 1 and
2.

The model lacks stability, as evidenced by the dif-
ferences between outcomes from Analysis 1 to Anal-
ysis 2. Thus, it is unlikely that the CPL scenario
can be assumed as a definitive framework for de-
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scribing the dynamics of the universe.

- CPL2. Here, we worked out a further expansion
to check whether dark energy can be modeled by
directly Taylor expanding around a = 1. This case,
however, appears worse than the CPL scenario for
both Analyses 1 and 2 and also at the level of
cosmography. The overall statistical agreement is
weak.

At the cosmic perturbation level, according to
Analysis 1 results, CPL2 model show an anoma-
lous peak of growth at z ≈ 1–1.5 and a significant
cutoff at late times; on the contrary, according to
Analysis 2, the behavior is comparable to the one
got from CPL model.

Therefore, CPL2 model appears strongly not sta-
ble, showing that there is no need to further invoke
extra-expansion orders. In analogy to CPL, it is
not probable that dark energy can be featured by
some second order expansion of w.

Parametric dark energy models. These models
are constructed through precise prime principles that
model the form of w, in fulfillment to physical condi-
tions. Within this group, we conventionally place the
standard cosmological paradigm, the ΛCDM model and
the quintessence scenario, namely the wCDM picture.

- ΛCDM model. We confirm, according to Analysis
1, that the concordance paradigm fails to be pre-
dictive at background, once using the DESI 2024
data. However, passing to Analysis 2, the situa-
tion appears completely changed. The concordance
paradigm appears again stable, from the direct fit-
ting procedure, passing through cosmographic re-
sults.

At early times, the model appears compatible with
previous results got from the Planck measurements
[19] and so there is no apparent need to deviate
from it, at both late and early time.

In view of this, we find that the concordance
paradigm is again recovered and it appears a power-
ful treatment to describe the large-scale dynamics,
appearing the most favorite model to predict dark
energy. In other words, there is no apparent need
to depart from a pure cosmological constant to de-
scribe the cosmic speed up, even with DESI data,
as asserted also in Ref [107].

- wCDM model. In analogy to all the parame-
terizations here investigated, Analysis 1 disfavors
the wCDM model significantly. This appears evi-
dent even at the level of cosmography. This appar-
ent tension is, however, severely fixed for Analysis
2, where the model appears statistically recovered.
The model, in particular, appears closer to the best
candidate, the ΛCDM scenario, and looks particu-
larly similar.

This is also confirmed by the cosmic growth behav-
ior, for both Analyses 1 and 2, with slight depar-
tures from the ΛCDM scenario.

In view of this, we find that this model can can-
didate as alternative to the standard cosmological
model and is slightly favored than CPL in terms of
stability. The wCDM model is, therefore, a possi-
ble candidate to describe dark energy.

- JBP parametrization. For what concerns JBP
parametrization, in Analysis 1, wa remains unfixed,
although it yields suitable values for mass and H0.
Despite this, the model is strongly disfavored in
terms of cosmography, as evidenced by the statis-
tical criteria departing significantly from the best
fits. Analysis 2 confirms this trend. While the
results are improved, cosmographic constraints re-
main weak. Although statistical criteria show im-
provement, certain parameters, such as the sign of
j0, are inconsistent, suggesting its exclusion.

Cosmic perturbations, closely follow the concor-
dance paradigm at early times, but deviate at late
times with a pronounced change of slope leading to
the increase of the perturbation growth.

Hence, the conclusion is that, for both Analyses 1
and 2, the JBP parametrization cannot be consid-
ered as a suitable dark energy model.

- Efs parametrization. The last model we ana-
lyzed resembles the previous parametrization, as
the statistical criteria fail in Analysis 1 and the
cosmographic constraints deviate significantly from
expectations. The situation severely improves at
the level of the Analysis 2. Nevertheless, cosmo-
graphic constraints are still unbounded and, again,
j0 sign for example does not certify a change of sign
of q throughout the evolution of the universe.

Also at the level of the perturbation growth, this
model exhibits a behavior that is very similiar to
the one of the JBP model.

Hence, in analogy to the JBP parametrization, the
Efs scenario cannot be predictive and does not can-
didate as alternative to dark energy.

Summarizing, we split our analyses into two main cat-
egories of fits labeled as Analysis 1 and Analysis 2. We
demonstrated that these findings are severely different
from each other, depending on the kind of fit involved.
Precisely, the blind fit using all the DESI 2024 data set
confirms that the ΛCDM model is not favored. The CPL
parametrization is, however, not so favored and the lo-
gotropic model, indicating log-correction to dark energy,
manifests the best suite to describe the cosmic speed-up.
The situation is completely different once performing

Analysis 2. Here, we find again that the ΛCDM paradigm
is favored with respect to all the other alternatives.
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Nonetheless, the log-corrected dark energy scenario ex-
hibits acceptable corrections, although the concordance
paradigm remains statistically favored.

In other words, we concluded that, once checking the
DESI data points, it is plausible that excluding one point
and analysing the correlation between h0 and rd, the ap-
parent tension found in the original work [31] is mostly
healed, showing that the standard cosmological model is
again confirmed.

These results seem to attest the outcomes found in
Ref. [108], where the cosmographic series, obtained in a
fully model-independent way, provided strange outcomes
at the level of the jerk parameter. Indeed, it has been
found that, the deceleration and snap parameters agree
with the standard model prescriptions, while the jerk pa-
rameter seems to significantly depart from it. Since the
jerk order is intermediate between q0 and s0, it is un-
likely to expect that a physical dark energy deviations
may emerge from the DESI data points. More probably,
the results show that there is a statistical inconsistency
of one (or more) points that force the jerk to deviate from
the fixed value predicted in the standard model, namely
j0 = 1. Consequently, any model having more than one
parameter appears favored in order to modulate j0 to
j0 < 1. This strange occurrence, remarked and criticized
in Ref. [108], is in line with Ref. [32], where it was
pointed out that for the data point placed at z = 0.51, a
higher value of the mass is unexpectedly found.

V. DISCUSSION AND CONCLUSION

In this paper, we studied the impact of the new data
provided by DESI 2024 in cosmological analyses.

Precisely, we performed two kind of MCMC analyses
MCMC, based on the Metropolis-Hastings algorithm. In
the first approach, or Analysis 1, we blindly fit all DESI-
BAO data points together with SNe Ia and OHD data
points. The second set of fits, or Analysis 2, is performed
correlating h0 and rd and fitting the product of these two
parameters, and removing one single data point placed
at z = 0.51, in agreement with the findings of Refs. [32,
108].

Both Analyses 1 and 2 focused on five thermodynamic
models, three Taylor-expanded scenarios and finally four
parametric reconstructions of dark energy, among which
we included the concordance ΛCDM model.

For each typology of fit, we analyzed the background
consequences of our results, working out the deceleration
parameters and its variation, up to the snap term. In ad-
dition, we studied the consequences at early times, check-
ing how our dark energy frameworks modify the growth
of structure with respect to the statistical best model.

Quite surprisingly, we found that the best model to
fit data is not the CPL parametrization, as claimed by
DESI [31], but rather the logotropic fluid, with excellent

results provided also by the Anton-Schmidt dark energy
equation of state. Both our findings provided evidence
for a log-correction of dark energy. This result, quite in
tension with previous studies [51, 109], appears however
in net tension with our second round of fits.
From Analysis 2, in fact, we found that the ΛCDM

model is confirmed and represents the best candidate
even with DESI data points, confirming the statistical
inconsistencies of the point placed at z = 0.51.
Accordingly, we concluded that the standard cosmolog-

ical model appears favored and there is no clear evidence
for a dynamical dark energy. We emphasized this point,
working out the statistical information criteria for each
model.
In summary, our findings suggest that dynamical dark

energy is preferred only when employing a blind set of
fits with BAO data from the DESI collaboration.
However, the further analyses based on rdh0 correla-

tion and the exclusion of a single data point from the en-
tire catalog improved severely the outcomes that aligned
extremely well with the concordance paradigm, healing
the apparent tensions raised in the original paper [31]
and being in agreement with expectations recently found
in the literature [32].
As a perspective, we need to investigate the impact of

future data release. Indeed, with these results, dynamical
dark energy cannot be confirmed. Hence, it would be
crucial to analyze next mission data release that will be
provided in the near future, with the aim of refining our
expectations.
Moreover, the role played by the covariance matrix,

here neglected, following the original prescription [31],
might be investigated. Its role can shed light on the
goodness of our numerical constraints.
Last but not least, the role of spatial curvature has not

been considered in this work and clearly deserves study.
Our future research aims to reconstruct the correct

dark energy model for model-independent reconstruc-
tions in view of DESI data and extending previous find-
ings [108].
Furthermore, the role of dark fluid can be better inves-

tigated, since evidences to solve the cosmological problem
in view of it have been underlined [110–114]. Therefore,
it would be interesting to compare the ΛCDM results
with the dark energy outcomes in view of the DESI 2024
results.
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Contour plots

In this appendix, we report the contours associated
with the most viable models analyzed in this work,

namely the ΛCDM, the CPL, the logotropic and AS sce-
narios.

We split our contours for the Analysis 1 and 2, respec-
tively.
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FIG. 2: DESI-BAO+OHD+SNe Ia contour plots for Analysis 1. The best-fit parameters are indicated by black circles, whereas
the 1-σ (2-σ) contours are shown as dark (light) gray areas. From top-left to bottom-right: We plot the AS model with
rd = 149Mpc, the CPL parametrization with rd = 145Mpc, the ΛCDM paradigm with rd = 145Mpc, the logotropic model with
rd = 149Mpc and finally the wCDM scenario with rd = 145Mpc.
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FIG. 3: DESI-BAO+OHD+SNe Ia contour plots for Analysis 2. The best-fit parameters are indicated by black circles, whereas
the 1-σ (2-σ) contours are shown as dark (light) gray areas. From top-left to bottom-right: We plot the AS model, the CPL
parametrization, the ΛCDM paradigm, the logotropic model, and finally the wCDM scenario.
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