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Abstract— Traditional trajectory planning methods for au-
tonomous vehicles have several limitations. For example, heuris-
tic and explicit simple rules limit generalizability and hinder
complex motions. These limitations can be addressed using
reinforcement learning-based trajectory planning. However,
reinforcement learning suffers from unstable learning, and
existing reinforcement learning-based trajectory planning meth-
ods do not consider the uncertainties. Thus, this paper, proposes
a reinforcement learning-based trajectory planning method
for autonomous vehicles. The proposed method involves an
iterative reward prediction approach that iteratively predicts
expectations of future states. These predicted states are then
used to forecast rewards and integrated into the learning
process to enhance stability. Additionally, a method is proposed
that utilizes uncertainty propagation to make the reinforcement
learning agent aware of uncertainties. The proposed method
was evaluated using the CARLA simulator. Compared to the
baseline methods, the proposed method reduced the collision
rate by 60.17%, and increased the average reward by 30.82
times. A video of the proposed method is available at https:
//www.youtube.com/watch?v=PfDbaeLfcN4.

Index terms—-Autonomous Vehicle, Reinforcement Learning,
Motion Planning

I. INTRODUCTION

Since the 2007 DARPA Urban Challenge [1], autonomous
vehicles(AVs) have been studied intensively. In addition,
planning methods for AVs have also been researched inten-
sively and the findings have allowed AVs to drive success-
fully within limited areas, using rule-based and optimization-
based algorithms, explicit heuristic rules, and parameters
specified for the given area. However, these traditional ap-
proaches suffer from several limitations, including a lack
of generality and a lack of complex motion. For example,
the heuristic rules and parameters specified for the given
area may not be applied to the other areas, which impact
the scalability. In addition, many possible scenarios must be
considered in real-world applications. If various scenarios
are generalized with few scenarios(e.g., lane following, and
lane changing), an overly simple policy could be obtained.
Numerous studies have employed deep learning to address
these limitations [2]–[17].

The most popular approach is imitation learning(IL),
which learns a driving policy directly from expert driving
data [2], [3]; however, IL also has several limitations, includ-
ing the cost of scalability, simple driving policies, and safety.

*This work is supported by the Korea Agency for Infrastructure Technol-
ogy Advancement(KAIA) grant funded by the Ministry of Land, Infrastruc-
ture and Transport. (RS-2021-KA160853, Road traffic Infrastructure moni-
toring and emergency recovery support service technology development)
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Fig. 1: The AV(red car) plans a trajectory(red boxes) along its lane while
avoiding a parked car(blue car) on the right and a car that is changing
lanes(another blue car) from the left lane. The AV’s planned trajectories
are represented as red boxes, and their trajectories considering uncertainty,
are represented as rounded light red boxes. The other vehicles’ predicted
trajectories are represented as blue boxes, and their trajectories, considering
uncertainty, are represented as rounded light blue boxes. The goal of
each AV’s trajectory is determined iteratively at each time step from the
previously predicted state of the AV and the states of the other vehicles.
The AV’s states and corresponding goals are represented by red, orange,
yellow, green, blue, and purple circles(shown in chronological order). The
predicted states of the other vehicles and the iteratively predicted states
of the AV are employed for the prediction of reward within the planning
horizon, which stabilizes the RL learning process.

For example, to scale up the AV using the IL method, expert
data must be obtained for all scenarios and targeted areas,
which is costly. In terms of driving policies, IL is typically
used for handling simpler driving tasks, e.g., lane following.
To learn complex policies or policies in corner cases, it
should have a lot of data which can be costly and time-
consuming. In addition, an expert’s demonstrated policies
for complex scenarios or corner cases are more distributed
than the simple scenarios, which may yield large errors or
learning may be infeasible [4]. Relative to safety limitations,
insufficient amounts of data on dangerous cases or corner
cases are available; thus, the IL agent could output dangerous
policies due to a lack of training data.

Another approach is the reinforcement learning(RL)
method, which learns a policy via self-exploration and
reinforcement without expert data. RL can also simulate
and learn both complex policies and policies in corner
cases. However, RL suffers from unstable learning when a
neural network is used as a function approximation [18].
Error of function approximation results in unstable learning
or even divergence [19], [20]. In addition, most previous
RL-based trajectory planning studies did not consider the
uncertainties of the object detection, trajectory prediction of
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other traffic participants, localization, and control modules
that are essential for AV to navigate. Note that not consid-
ering uncertainties could cause sudden decelerations or even
accidents.

Thus, this study proposes an RL-based trajectory planning
method for AVs that overcomes the identified limitations of
RL and traditional planning methods. The proposed method
employs a reward prediction(RP) during the learning process
which predicts expectations of future states. These predicted
states are then used to forecast rewards and integrated into
the learning process to enhance stability. In addition, an
iterative RP(IRP) method that uses RP iteratively to predicts
relevant states, actions, and corresponding rewards accurately
is employed. As a result, the performance of the agent and
the learning stability are increased. Additionally, a method
is proposed that utilizes uncertainty propagation [21], [22]
to make the reinforcement learning agent aware of uncer-
tainties. An overview of the proposed method is shown in
Fig.1.

The primary contributions of this study are summarized
as follows:

• The proposed method increases learning stability and
the performance of the RL agent.

• The proposed method allows the RL agent to be aware
of uncertainty.

• A demonstration and comparison of the proposed
method with the baseline methods in the CARLA sim-
ulator are presented.

The remainder of the paper is organized as follows:
Section II reviews related works of RL-based trajectory
planning methods and uncertainty-aware planning methods.
Section III defines problem formulation and RP, IRP, and
application of uncertainty propagation is proposed. Section
IV shows how the proposed method and baseline methods
are evaluated in the CARLA simulator. Section V analyzes
the evaluation results and shows how the key metrics are
improved. Section VI concludes the proposed method and
discusses future works.

II. RELATED WORKS

A. RL-based Trajectory Planning

Previous RL-based trajectory planning methods for AVs
can be divided into two categories according to the action
of an RL agent, i.e., 1) control command and 2) the Goal of
the trajectory.

1) Control Command: Methods that action of an RL
agent is a control command [5]–[10], [14] use a lateral
control(e.g., steer angle and steering rate) and a longitudinal
control(e.g., acceleration and jerk) as an output of an RL
agent. However, such methods tend to fail to learn easily. The
variance of action affects the learning process; thus, to drive
an AV successfully using a control command, very specific
policies are required to yield good rewards. For example, in
a highway scenario, a small turn of the steering wheel may
yield catastrophic results. This specific policy requirement
makes it difficult for RL agents to explore and find good

states and actions, which leads to sample inefficiency during
training and ineffective learning. Thus, unless the RL agent
find good policy early on by chance, learning will fail. In
addition, an agent’s intentions are unknown; thus they lack
interpretability.

Kendall et al. [5] employed monocular images as an
observation and DDPG as the main algorithm to follow the
lane in real-world scenarios. In addition, Chen et al. [6],
employed the bird-view semantic mask as an observation and
evaluated their method in CARLA simulator. Their work was
developed further [7] by increasing interpretability using the
probabilistic graphical model. Saxena et al. [8], employed
a field-of-view as an observation and proximal policy op-
timization(PPO) as the main algorithm. Their primary task
was lane changing in dense traffic scenarios. In addition,
Wu et al. [9], employed the Dyna algorithm with PPO as the
main algorithm, and they imitated the world model using
the Gaussian process. Li et al. [14]. proposed a method
using an hierarchical RL(HRL). Their model-based high-
level policy generates subgoals via optimization that utilizes
a low-level policy and an offline low-level policy outputs a
control command.

2) Goal for Trajectory: Approaches that action of RL
agent is goal/goals for trajectory [11]–[13], [15] are com-
parably stable in learning. The action variance of these
approaches has a relatively small effect on learning process
of RL compared to approaches that action of an RL agent
is control command. For example, in a highway scenario, a
small change in the lateral deviation of a goal would result
in a smaller amount of change in a result compared to the
result of the control command example.

Gao et al. [11] proposed method using HRL. Their high-
level policy generates subgoals in the Frenet frame to guaran-
tee the temporal and spatial reachability of the generated goal
and the low-level policy outputs control commands. Their
work was developed further [12] by ensuring safety using the
safe-state enhancement method. In addition, Qiao et al. [13]
employed a hybrid HRL method, where a high-level policy
generates optimal behavior decisions, and a low-level policy
generates a trajectory point that the AV intends to trace. They
also employed a PID controller to trace the trajectory point.
Ma et al. [15] used the latent state inference method, and
employs PPO as a main algorithm.

B. Uncertainty-aware Planning

Uncertainty-aware planning methods are used to plan a
trajectory for an AV by considering the uncertainty of the
AV(i.e., localization and control) and the traffic partici-
pants(i.e., object detection, and trajectory prediction). Xu
et al. [21] employed a Kalman filter to estimate the uncer-
tainty of the traffic participants, and the LQG framework
to estimate the uncertainty of the AV. They also used the
uncertainty estimation in planning by widening the size of
the AV and the traffic participants when checking for the
collision conditions. Fu et al. [22] and Qie et al. [23] also
employed a Kalman filter to estimate the uncertainty of
the traffic participant. Fu et al. used estimated uncertainty



as a chance constraint when planning a velocity profile,
and Qie et al. employed estimated uncertainty in a tube-
based MPC to plan a trajectory. In addition, Hubmann et
al. [24] formulated the planning problem with uncertainties
as a partially observable Markov decision process. They
estimated the intent of a traffic participant and utilized it as an
uncertainty. By using the adaptive belief tree and uncertainty,
they determined the optimal longitudinal motion of the AV.
Khaitan et al. [25] estimated the uncertainty of the traffic
participants by utilizing reachable set in short-term horizon
and used it in the tube MPC to execute the trajectory safely
in the presence of uncertainty.

III. METHOD

To solve trajectory planning problems using RL, RL
algorithms with continuous action space, e.g., the DDPG
[26], TD3 [20], and PPO [27] algorithms, are more suitable
than algorithms that utilize a discrete action space. Since
getting smooth behaviors requires an increase in the size
of the discrete action space which leads to discrete control
methods being intractable. In addition, for simplicity and
interpretability, algorithms with deterministic policies(rather
than stochastic policies) are selected. Furthermore, generat-
ing the goal for a trajectory is a better action choice than
control command because more specific policies are required
for control command methods to yield rewards successfully.
Thus, the proposed trajectory planning method generates a
goal using a deterministic continuous control RL algorithm.
It is assumed that information about the localization, route
path, trajectory prediction of other traffic participants, and
object detection is provided. However, trajectory prediction
of other traffic participants is only used during the learning
process.

A. Problem Formulation

The trajectory planning problem is formulated as a Markov
decision process, which is defined by the tuple (S,A, P,R).
Here, s ∈ S is the continuous state space, a ∈ A is
the continuous action space, P is the probability of state
transition, and R is the reward received after each transition.
The return is defined as discounted sum of rewards Gt =∑∞

k=0 γ
kRt+k+1, where γ ∈ (0, 1) is the discount factor

determining the priority of short-term rewards. The purpose
of RL is to learn an optimal policy that maximizes the
expected cumulative reward as follows:

max
π

J(π) = Es∼ρπ,a∼π[

∞∑
i=0

γir(s, a)], (1)

where r is the reward function, ρπ is the state distribution
under the policy π. The future states of the AV and other
traffic participants are assumed to follow the planned trajec-
tory and the predicted trajectory, respectively, with deviations
following a normal distribution, as assumed in [21].

Fig. 2: The AV(red car) is following the lane while the other traffic
participant(blue car) attempts to change lanes. The predicted states of the
AV and the other traffic participant are represented as red and blue boxes
respectively. The state of the AV at time t and its goal is represented as
red circles. The predicted states of the other traffic participant are assumed
to be given. The predicted states(red boxes) of the AV are predicted by the
RL agent’s action π(st,0), i.e., the goal of the trajectory.

B. Reward Prediction

Continuous control RL algorithms employ the policy gra-
dient method to learn policies directly. The policy gradient
method maximizes the following objective function.

∇θJ(πθ) = Es∼ρπ,a∼πθ
[∇θlogπθ(a|s)Qπ(s, a)]. (2)

This theorem is derived from the following objective
function:

J(πθ) = Es∼ρπ,a∼πθ
[r(s, a)]. (3)

The objective function J(πθ) in (2) can be defined as the
action value function Q, the advantage function A, and the
TD error δ. The action value and advantage functions are
approximated with neural networks in the deep RL method;
however, function approximation with neural network always
involves errors, which causes instability during the learning
process and poor performance. To address this, the N-step
SARSA concept is employed in RP. N-step SARSA improves
learning stability by utilizing the error reduction property of
n-step returns. Nevertheless, the learning process of N-step
SARSA remains susceptible to instability.

To overcome this, the RP method that utilizes the error
reduction property of the n-step returns and enhances the
learning stability is proposed. To achieve this stability, RP
enables the agent to explicitly learn the consequences of
actions. This is accomplished by utilizing predictions of
traffic participants’ behavior and the planned trajectory of the
AV, which is obtained using the agent’s output goal. Specifi-
cally, future rewards are predicted by considering the planned
future states of the AV and the predicted states of other
traffic participants. Thus, RP leverages the advantages of N-
step SARSA while explicitly learning action consequences.
These two traits of RP contribute to stabilizing the learning
process. The proposed RP method is employed during the
action value function update process as follows:



set,τ ∈ T e
t , s

o,k
t,τ ∈ T

o,k
t , sot,τ = {so,t,τ , s

o,1
t,τ , · · · s

o,n
t,τ }

st,τ = f(set,τ , s
o
t,τ ), Rt,τ+δ = g(st,τ , st,τ+δ),

J(π) = Qπ(st, at),

L(θQ) = Est∼ρπ,at∼πθ
[(Qπ(st, at)− yt)

2],

yt = Rt,δ + γ ·Rt,2δ + · · ·
+ γT/δ−1 ·Rt,T + γT/δ ·Qπ(st,T , π(st,T )),

(4)

where time t is when the AV’s trajectory is planned and the
trajectory prediction of other traffic participants is made, T
is a planning/prediction horizon, δ is a sufficiently small time
step size, τ is the time within the planning horizon τ ∈ [δ, T ],
set,τ is the predicted future state of the AV at time t+τ from
trajectory T e

t planned at time t using the goal π(st,0), s
o,k
t,τ is

the predicted future state of the kth other traffic participant
at time t + τ from prediction T o,k

t predicted at time t, sot,τ
is the predicted future states of n other traffic participants
at time t + τ from prediction at time t. In addition, f is a
function that combines the predicted future states of the AV
and the other traffic participants at the same time to output
the state st,τ for the RL agent, g is a function that predicts
the reward Rt,τ+δ at time t + τ + δ during transition from
st,τ to st,τ+δ , L(θQ) is the loss for the action value function
Qπ , yt is the expected return inferred by utilizing predicted
rewards and the action value of the predicted state at the
planning horizon, and its corresponding action, and Rt,δ is
a reward received from the environment. Predicted future
states are used to predict rewards, which are then utilized
during the action value function update process. Fig.2 shows
the predicted states of the other vehicle and the AV with its
goal at time t.

Unlike N-step SARSA, the expected return from the action
value function learned by RP is not based on rewards
resulting directly from state transitions, but rather on rewards
associated with expected states. Namely, RP increases learn-
ing stability by utilizing expected future states, yet it does
not directly account for the variation of these future states.
However, in terms of predicting the states of other traffic
participants and the AV, its variance is strongly related to
safety. Therefore, uncertainty propagation on future states of
other traffic participants and the AV is utilized to consider
this variance. Additional details about the uncertainty prop-
agation process are given in Section III-D.

C. Iterative Reward Prediction

In general, AVs plan a trajectory at every time step,
which is a common practice due to potential inaccuracies
in predicting the behavior of other traffic participants and
the imprecise path tracking by the controller. Therefore, the
proposed method also assumes trajectory planning at every
time step. Given this assumption, even if the controller tracks
the given trajectory perfectly, there is no guarantee that the
trajectory generated using the agent’s output will be the same
as the previous one. Consequently, this inaccuracy of RP
leads to inaccurate prediction of rewards, resulting in learn-

Fig. 3: Demonstration of inaccuracy problem of RP. Here, the agent has
planned a trajectory that takes AV close to the reference. The trajectories
planned at each time step beginning from each state-action pair are repre-
sented by different colors. The return predicted using RP, QRP , is based on
the red trajectory planned at time t. The agent plans a new trajectory at each
step; therefore, the planned trajectory that RP utilized at time t(red) and the
actual trajectory executed by the AV(blue) are different. Thus, QRP has an
error ϵ compared to the true return Qtrue, which is the return obtained by
following the blue trajectory.

ing instability and poor performance. Fig.3 demonstrates the
inaccuracy problem of RP.

To address the inaccuracy problem of RP, the IRP method
is proposed. This method predicts the rewards by iteratively
planning a new trajectory at the predicted state and predicting
the reward of that trajectory for one time step. Fig. 4 shows
how the proposed IRP method operates. Compared to the
conventional RP, the proposed IRP predicts the rewards more
accurately and reduces the error of the function approxi-
mation of the action value function Qπ . The mathematical
representation of the IRP is given as follows:

st+τ,0 = f(set+τ,0, s
o
t,τ )

st+τ,δ = h(st+τ,0, π(st+τ,0)),

Rt+τ,δ = g(st+τ,0, st+τ,δ),

J(π) = Qπ(st, at),

L(θQ) = Est∼ρπ,at∼π[(Q
π(st, at)− yt)

2],

yt = Rt,δ + γ ·Rt+δ,δ + · · ·+ γT/δ−1 ·Rt+T−δ,δ

+ γT/δ ·Qπ(st+T−δ,δ, π(st+T−δ,δ)),

(5)

where time t is when planning first started, st+τ,δ is
the predicted state at time t + τ + δ predicted from the
previously predicted state at time t+ τ , and h is a function
that outputs a predicted state using the current state, and
action. Here, the predicted state, such as st+τ,δ is used as
st+τ+δ,0 for iteratively predicting the next state st+τ+δ,δ . In
function h, the future states of the other traffic participants
are assumed to follow the trajectories predicted at time t,
which is assumed to be given. However, the future states of
the AV are updated iteratively at each time step.

In addition, considering the agent’s future action more
accurately enables the agent to drive along a complicated
trajectory because the agent has a more comprehensive
understanding of its future actions. As shown in Fig.4, the
AV can plan a red trajectory by considering the agent’s future
actions; thus, it is capable of driving a complicated trajectory.

D. Uncertainty Propagation

During RP and IRP, the expected future states are consid-
ered; however, the variance and uncertainty of the predicted



Fig. 4: Predicted states(blue boxes) of other traffic participants(blue cars)
and predicted states(red boxes) of the AV(red car) and actions of the RL
agent. The action of the RL agent is determined iteratively from the previous
state of the AV, its goal, and the states of the other vehicles. The goals and
the AV’s start states are represented as red, orange, yellow, green, blue,
and purple circles in chronological order. The predicted states of the other
vehicles and the iteratively predicted states of the AV are utilized to predict
the rewards during the learning process.

future states are not considered. Note that not considering
the variance of the prediction leads to inaccurate function
approximation and the RL agent being unaware of the
uncertainty. In addition, ignoring the uncertainty can cause
the agent to perform sudden deceleration or become involved
in an accident. For example, if a low-functioning controller
is employed to track a trajectory, and the RL agent does not
take that into account, then the AV may encounter various
dangerous situations and the predicted rewards may have
significant error. To consider the variance of the prediction
and the uncertainty of future states, uncertainty propagation
on the RP and IRP motivated by [21], [22] is utilized.

The uncertainty propagation process is built on the Kalman
filter; however, the measurement update process of the
Kalman filter is removed because observing future states is
impossible. The uncertainty propagation utilized on the RP
is modeled as follows:

šet,τ ∼ N(set,τ ,Σ
e
t,τ ), š

o
t,τ ∼ N(sot,τ ,Σ

o
t,τ )

Σe
t,τ+1 = FΣe

t,τF
T +Qe

τ , Σ
o
t,τ+1 = FΣo

t,τF
T +Qo

τ ,
(6)

where each state of the AV šet,τ , and states of the other
traffic participants šot,τ is modeled as Gaussian a random
variable with means set,τ , and sot,τ , and covariance of Σe

t,τ ,
and Σo

t,τ , respectively, based on the assumption made on III-
A, F is the state transition matrix and Qe

τ , Qo
τ represent the

process noise of the AV and the other traffic participants,
respectively, where Qe

τ is attributed to localization, control
error, and Qo

τ is attributed to object detection, trajectory
prediction error respectively. The introduced states šet,τ and
šot,τ are utilized in the collision checking process of the IRP
method to account for uncertainty. Here, the ellipse defined
by the covariance matrix can provide an upper bound of the
probability 1 − δ that the AV and other traffic participants
exist. However, to check for a collision between the AV
and other traffic participants, the rectangle shapes of the

AV and other traffic participants must be considered. In
the proposed method, the Minkowski sum of the rectangle
and the ellipse [21] is computed. The new shape from the
Minkowski sum is then utilized for collision checking, which
guarantees the probability of (1 − δ)2 whether collide or
not. The illustration of uncertainty propagation using the
Minkowski sum is shown in Fig.1.

E. Overall Algorithm

Below, a demonstration showcasing the combination of
IRP and uncertainty propagation is provided. The proposed
method, based on the existing deterministic policy gradi-
ent algorithm, is applied during the critic update process.
The pseudocode of the proposed method is given in Algo-
rithm 1. Here, in lines 6-7, the uncertainty propagation and
Minkowski sum are executed using the state of the AV and
the other traffic participants set+τ,0, s

o
t+τ,0. In line 9, the state

st+τ,δ results from the utilization of the agent’s previous
state st+τ,0, and the agent’s action π(st+τ,0). In line 10,
the reward is predicted during the transition from st+τ,0 to
st+τ,δ . In line 12, the state st+τ,δ is divided into set+τ,δ , and
sot+τ,δ , which are used as the states set+τ+δ,0, and sot+τ+δ,0

for the next iteration.

Algorithm 1 Pseudo code of proposed method

1: procedure CRITICUPDATE( )
2: se ← set,0, s

o ← sot,0
3: r ← Rt,δ ▷ Initialize predicted return with received

reward from the simulator
4: τ ← δ
5: while τ < T do
6: še, šo ← UncertaintyPropagation(se, so)
7: se′, so′ ←MinkowskiSum(še, šo)
8: s← f(se′, so′) ▷ Merge states
9: s′ ← h(s, π(s)) ▷ Prediction of st+τ,δ

10: R← g(s, s′) ▷ Predict the reward Rt+τ,δ

11: r ← r + γτ/δR ▷ Update the predicted return
12: se, so ← f−1(s′) ▷ Update the next state
13: τ ← τ + δ
14: end while
15: še, šo ← UncertaintyPropagation(se, so)
16: se′, so′ ←MinkowskiSum(še, šo)
17: s← f(se′, so′) ▷ Merge states
18: Set yt = r + γT/δQ(s, π(s|θπ)|θQ)
19: Update critic by minimizing the loss:
20: L(θQ) = (Q(st, at|θQ))− yt)

2

21: end procedure

IV. EXPERIMENTS

The proposed method and baseline methods were eval-
uated using the CARLA simulator. The experimental con-
figuration, baseline methods, and implementation details are
described in the following sections.



A. Experiment Configuration

The proposed and baseline methods were evaluated in
four distinct scenarios. Scenario 1 involved lane following
with static obstacles, scenario 2 involved lane following
with traffic participants, scenario 3 involved lane changing
with traffic participants, and scenario 4 entailed overtaking
parked cars with traffic participants. All necessary inputs,
e.g., route path, object detection, trajectory prediction, and
localization were given. Success was determined if the AV
reached the goal without a collision within specified time. In
this evaluation, the goal was 130m ahead of the AV’s initial
position. Here, a maximum lateral deviation of 1.5m from
the center of the target lane was permitted.

In each scenario, the AV was spawned on the road
with a random lateral deviation of [−1.5m, 1.5m] from
the center of the road, and a random heading angle de-
viation of [−20deg, 20deg] with a random initial speed of
[5km/h, 15km/h]. In scenario 1, a maximum of two static
obstacles(i.e., vehicles) were spawned at random positions
with a lateral deviation of [−0.5m, 0.5m] from the center of
the road, and a heading angle deviation of [−20deg, 20deg].
Scenario 2 included a maximum of five randomly spawned
traffic participants. In scenario 3, the other traffic participants
were the same as in scenario 2; however, the AV’s goal
was to change lanes. In scenario 4, a maximum of two
static obstacles(parked cars) and three traffic participants
were spawned, and the goal of the AV was to overtake the
parked cars while avoiding collisions with the other traffic
participants. Note that the traffic participants in each scenario
were designed to change lanes randomly.

B. Baseline Methods

The following two baseline methods were considered in
this evaluation. In baseline 1, the output of an agent was a
control command, and it is identical to the method proposed
in [5], except that in [5], monocular images are used as input.
In baseline 2, the output of the agent was the trajectory goal,
the same as that of the proposed method, for fair comparison.
However, baseline 2 did not include RP, IRP, or uncertainty
propagation. In addition, proposed method was evaluated
individually as follows: RP, IRP, and IRP with uncertainty
propagation.

C. Implementation Details

All five methods, i.e., baseline1, baseline2, RP, IRP, and
IRP with uncertainty propagation were implemented using
the DDPG algorithm with the same state, and reward func-
tion.

1) State: The features of the state space s are composed
of se and so. Here, se is the state of the AV and comprises
(d, ḋ, d̈, σ̇, σ̈, θ, vspeed_limit, l, w), where σ and d are the
longitudinal and lateral position on the Frenet frame, θ is
the heading angle difference with the center of the road,
vspeed_limit is the speed limit of the road, and l and w
are length and width of the AV in consideration of the
Minkowski sum. so is composed of so,k, k ∈ N, where N is a
natural number. so,k is the state of the kth traffic participant,

which is composed of (σ, d, θ, l, w, vσ, vd), where vσ and vd
are the longitudinal and lateral velocity on the Frenet frame.

2) Action: The action space a is the goal of the trajec-
tory which is composed of (Ttarget, dtarget, σtarget, σ̇target),
where Ttarget is the time interval between the current state
and the goal state, σtarget, and dtarget are the longitudinal
and lateral target positions on the Frenet frame, and σ̇target

is the target longitudinal speed. Here, the trajectory plan-
ning method [28] is employed to plan a trajectory toward
the goal. The lateral jerk-optimal trajectory is generated
given the initial state of the AV [d, ḋ, d̈], and the end state
[dtarget, ḋtarget = 0, d̈target = 0] at Ttarget from the
action. In addition, the longitudinal jerk-optimal trajectory
is generated given the initial state of the AV [σ, σ̇, σ̈], and
the end state [σtarget, σ̇target, σ̈target = 0] at Ttarget from
the action. The final trajectory is obtained by combining the
lateral and longitudinal trajectories. Note that the planned
trajectory is tracked using an MPC-based controller.

3) Reward: The reward function is designed to encourage
safe, comfortable, and efficient driving as follows:

R =λlat_acc · alat_acc + λlat_jerk · alat_jerk
+λlong_acc · along_acc + λlong_jerk · along_jerk

+λd · |d|+ λv · |v − vdes|+ rcollision,

(7)

where λlat_acc, and alat_acc represent the weight and penalty
for the lateral acceleration, λlat_jerk, and alat_jerk are
the weight and penalty for the lateral jerk, λlong_acc, and
along_acc are the weight and penalty for the longitudinal
acceleration, λlong_jerk, and along_jerk are the weight and
penalty for the longitudinal jerk, λd, and |d| are the weight
and penalty for the lateral deviation from the target lane, λv ,
|v − vdes| are the weight and the penalty for being slower
or faster than the desired speed respectively, and rcollision
represents the reward and penalty for a collision event. Here,
rcollision is negative when a collision occurs and positive
when no collision occurs. Note that the above reward is also
utilized during RP.

V. RESULTS

The average reward per time step, collision rate, and
success rate across all training scenarios are depicted in Fig.
5. Table I showcases the best scores achieved by each method
across all training scenarios, providing a comprehensive
overview of performance comparisons.

Baseline 2 consistently outperformed baseline 1 in every
scenario and key metric while demonstrating stable learning.
The robustness of baseline 2 against action variance enabled
it to explore and identify optimal states and actions, resulting
in stable learning and improved performance. Furthermore,
agents utilizing RP, IRP, and IRP with uncertainty propaga-
tion exhibit stable learning compared to the baseline meth-
ods, as illustrated in Fig. 5. Across all scenarios, these agents
consistently outperformed the baseline methods, showing
sequential performance improvements. The agent with RP
outperformed the baseline methods, which is attributed to its
utilization of the error reduction property of N-step SARSA
and explicit learning of the consequences of actions. The
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Fig. 5: Average reward per time step in an episode, collision rate, and success rate of all methods for all scenarios during training.

agent with IRP surpassed the agent with RP due to accurate
prediction of future actions, resulting in more precise reward
prediction and improved overall performance. Additionally,
the agent with IRP and uncertainty propagation outperformed
the agent with IRP, benefiting from the consideration of
uncertainty.

In scenario 3, although lane changes are quite challenging
in typical road situations, the collision rate was relatively
low compared to the other scenarios. This was due to the
conservative driving behavior of the other traffic participants
used in the experiment, which helped reduce the collision
rate. In scenario 4, the collision rate was much higher
than in scenarios 1-3 because it was considerably more
challenging to avoid parked cars while also avoiding the
other traffic participants, compared to the other scenarios.

A video of the agent with IRP and uncertainty propagation
is available at https://www.youtube.com/watch?
v=PfDbaeLfcN4.

VI. CONCLUSIONS AND FUTURE WORK

In this study, methods including RP, IRP, and uncertainty
propagation are proposed to reduce the function approx-
imation error and improve the performance and learning
stability of an AV’s RL-based planning agent. The proposed
method was evaluated under several scenarios, and the results
demonstrated that the proposed method improves both learn-
ing stability and agent performance compared to baseline
methods. However, the result of the evaluation showed that
the proposed method still has poor performance in difficult
and complex scenarios. Future work will involve increasing

https://www.youtube.com/watch?v=PfDbaeLfcN4
https://www.youtube.com/watch?v=PfDbaeLfcN4


TABLE I: Best scores for each compared method for all scenarios during
training.

Scenario Average Collision Success
reward rate rate

1 Baseline 1 0.0589 42.81% 20.65%
Baseline 2 0.0942 28.32% 70.95%
RP 0.1854 14.83% 84.15%
IRP 0.2194 13.47% 84.81%
IRP+UP 0.2297 5.682% 93.86%

2 Baseline 1 0.0383 61.71% 21.68%
Baseline 2 0.0912 43.04% 56.73%
RP 0.2200 16.75% 82.79%
IRP 0.2252 8.385% 91.50%
IRP+UP 0.2460 5.782% 94.11%

3 Baseline 1 0.0073 60.04% 15.81%
Baseline 2 0.1424 42.12% 19.62%
RP 0.1980 14.16% 85.86%
IRP 0.2083 5.913% 93.85%
IRP+UP 0.2250 3.590% 96.08%

4 Baseline 1 0.0694 78.43% 6.911%
Baseline 2 0.0909 54.65% 37.84%
RP 0.1870 31.87% 67.67%
IRP 0.2173 21.55% 78.40%
IRP+UP 0.2299 18.26% 81.91%

safety while having better performance.
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[10] Błażej Osiński, Adam Jakubowski, Paweł Zięcina, Piotr Miłoś,
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