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CONVEX SEQUENCE AND CONVEX POLYGON

ANGSHUMAN R. GOSWAMI AND ISTVÁN SZALKAI

Abstract. In this paper, we deal with the question; under what conditions the points
Pi(xi, yi) (i = 1, · · · , n) form a convex polygon provided x1 < · · · < xn holds. One of the main
findings of the paper can be stated as follows

"Let P1(x1, y1), · · · , Pn(xn, yn) are n distinct points (n ≥ 3) with x1 < · · · < xn. Then
P1P2, · · ·PnP1 form a convex n-gon that lies in the half-space

H =

{

(x, y)
∣

∣ x ∈ R and y ≤ y1 +

(

x− x1

xn − x1

)

(yn − y1)

}

⊆ R
2

if and only if the following inequality holds
yi − yi−1

xi − xi−1

≤
yi+1 − yi

xi+1 − xi

for all i ∈ {2, · · · , n− 1}.”

Based on this result, we establish a linkage between the property of sequential convexity and
convex polygon. We show that in a plane if any n points are scattered in such a way that their
horizontal and vertical distances preserve some specific monotonic properties; then those points
form a 2-dimensional convex polytope.

Various definitions, backgrounds, motivations, findings, and other important matters are dis-
cussed in the introduction section.

Introduction

Throughout this paper N, R, and R+ denote the set of natural, real, and positive numbers
respectively. R

2 is used to indicate the usual 2-dimensional plane.

A sequence
〈

ui
〉∞

i=0
is said to be convex if it satisfies the following inequality

2ui ≤ ui−1 + ui+1 for all i ∈ N.

In other words,
〈

ui
〉∞

i=0
possesses sequential convexity if the sequence

〈

ui−ui−1

〉∞

i=1
is increasing.

If the converse of the above inequality holds, we will term
〈

ui
〉∞

i=0
as a concave sequence.

The very first evidence where the terminology of sequential convexity was used is the book of
[8]. Since then many important results have been discovered in this direction; such as establishing
a discrete version of Hermite-Hadamard type inequality, Ulam’s type stability theorems, applica-
tions in the field of trigonometric functions, generalization of sequential convexity to the higher
order and in an approximate sense. The details of these can be found in the papers [[8]-[20]] and
the mentioned references there.

In discrete geometry, there are many results that primarily mention about the scattered ran-
dom points and the underlying convex geometry. One of the familiar examples of it is well-known
Radon’s theorem. Helly’s and Caratheodory’s results also indirectly deal with the same. The
background, origin, generalization, and other research development related details can be found
in the papers [1, 2, 3, 4, 5] and in the book [6]. There are many tempting open problems that deal
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2 A. R. GOSWAMI AND ISTVÁN SZALKAI

with questions regarding the possibilities of existing a specifically shaped convex body in a higher
dimensional space provided the scattered point bounds with some specific patterns or numbers.
For instance, the famous Erdös–Szekeres conjecture is still unsolved even after almost 90 years of
first mention. To better understand the problem, we can look into [7].

The purpose of this paper is to investigate a necessary and sufficient condition that n distinct
points in R

2 namely P1(x1, y1), · · · , Pn(xn, yn) with x1 < · · · < xn must follow in order to form a
convex n−gon. It turns out that if the following inequality holds

yi − yi−1

xi − xi−1

≤
yi+1 − yi
xi+1 − xi

for all i ∈ {2, · · · , n− 1}

then the line segments P1P2, · · ·PnP1 form a convex polygon with n-sides that lies below PnP1.
The converse implication of this statement can also be established. Similarly under the same
assumptions the reverse inequality holds if and only if the the convex n-gon lies above the line
segment PnP1.

Based on this result, we derived some other interesting findings. We assume some sequential
convexity properties on

〈

xi
〉n

i=1
and

〈

yi
〉n

i=1
as follows

(i)
〈

xi
〉n

i=1
is strictly increasing and concave;

(ii)
〈

yi
〉n

i=1
is increasing and convex.

Then P1, · · · , Pn are the vertices of a n-convex polygon. A more generalized version of this result
is also presented.

Having prior knowledge of the vertices of a convex polygon often reduces lot of mathemati-
cal and computational tasks. In linear programming problems, the optimized value of the cost
function always lies in one of the vertices of the constrains formulated convex polygon. In com-
putational geometry, efficient algorithms are highly dependent upon the extreme points of convex
n-gons. In computer graphics, various rotation, translation and orientation related techniques are
performed at the end points of a convex polygon.

In the way of proving our results, we establish several lemmas, and propositions related to
fractional inequality, convex sequence, and convex function theory.

1. Main Results

Our first result shows a very important fractional inequality. Later this inequality is going to
be used extensively to establish some of the results. This inequality is also mentioned in one of
our recently submitted papers. However, for readability purpose, we mentioned the statement
along with the proof.

Lemma 1.1. Let n ∈ N be arbitrary. Then for any a1, · · · , an ∈ R and b1, · · · , bn ∈ R+; the
following inequalities hold

(1) min

{

a1
b1

, · · · ,
an
bn

}

≤
a1 + · · ·+ an
b1 + · · ·+ bn

≤ max

{

a1
b1

, · · · ,
an
bn

}

.

Proof. We will prove the theorem by using mathematical induction. For n = 1, there is nothing

to prove. For a1, a2 ∈ R and b1, b2 ∈ R+, without loss of generality, we can assume that
a1
b1

≤
a2
b2

;

which is equivalent to

a1(b1 + b2) ≤ (a1 + a2)b1 and (a1 + a2)b2 ≤ (b1 + b2)a2.
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The two inequalities above together yield the following

(2)
a1
b1

≤
a1 + a2
b1 + b2

≤
a2
b2

which validates (1) for n = 2. Now we assume that the statement is true for a n ∈ N.
Let a1, · · · , an, an+1 ∈ R and b1, · · · , bn, bn+1 ∈ R+. Utilizing (2) and our induction assumption

(1), we can compute the following two inequalities

min

{

a1
b1

, · · · ,
an
bn

,
an+1

bn+1

}

≤ min

{

a1 + · · ·+ an
b1 + · · ·+ bn

,
an+1

an+1

}

≤
a1 + · · ·+ an + an+1

b1 + · · ·+ bn + bn+1

and

a1 + · · · + an + an+1

b1 + · · ·+ bn + bn+1

≤ max

{

a1 + · · ·+ an
b1 + · · ·+ bn

,
an+1

an+1

}

≤ max

{

a1
b1

, · · · ,
an
bn

,
an+1

bn+1

}

.

This justifies (1) for any n ∈ N and completes our proof. �

We can obtain several mean inequalities as a consequence of the above result.
If b1 = · · · = bn = 1; then (1) turns into the standard arithmetic mean inequality which is
represented by as follows

min{a1, · · · , an} ≤
a1 + · · ·+ an

n
≤ max{a1, · · · , an}.

On the other hand, we can consider bi = 1/xi and ai = 1 for all i ∈ {1, · · · , n}. Upon substituting
these in (1), we get the Harmonic mean inequality for the positive numbers x1, · · · , xn that can
be formulated as

min{x1, · · · , xn} ≤
n

1

x1
+ · · ·+

1

xn

≤ max{x1, · · · , xn}.

Before moving to the main result of this section, there are some notions and terminologies that
we need to recall. There are several ways to represent a convex function. Besides the standard
definition of convexity; for any given function, the monotonic property of the associated slope
function can also be used to determine convexity. In other words, A function f : I → R is said to
be convex if for any x′, x and x” ∈ I with x′ < x < x′′, the below mentioned inequality holds

(3)
f(x)− f(x′)

x− x′
≤

f(x”)− f(x)

x”− x
.

The other concept we are going to utilize is the epigraph of a function. For a function f : I → R;
the notion of epigraph can be formulated as follows

epi(f) =
{

(x, y) : f(x) ≤ y, x ∈ I
}

.

One of the basic characterizations of a convex function can be stated as "A function f is convex
if and only if epi(f) is a convex set."

Now we have all the required tools to proceed to state the first theorem.

Theorem 1.2. Let P1(x1, y1), · · · , Pn(xn, yn) are n points(n ≥ 3) with x1 < · · · < xn. Then
P1P2, · · ·PnP1 form a convex n-gon in the below mentioned half-space

(4) H =

{

(x, y)
∣

∣ x ∈ R and y ≤ y1 +

(

x− x1
xn − x1

)

(yn − y1)

}

⊆ R
2

if and only if the following inequality holds

(5)
yi − yi−1

xi − xi−1

≤
yi+1 − yi
xi+1 − xi

for all i ∈ {2, · · · , n− 1}.
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Proof. There are several steps involve in the proof. To prove the theorem, we assume that (5) is
valid. We define the function f : [x1, xn] → R as follows
(6)
f(x) := tyi + (1− t)yi+1 where x := txi + (1− t)xi+1 (t ∈ [0, 1] and i ∈ {1, · · · , n− 1}.

From the construction, it is clearly visible that f is formulated by joining total n− 1 consecutive
line segments that are defined in between the points xi and xi+1 for all i ∈ {1, · · · , n − 1}. we
term these as functional line segments of f . For the proof, first we are going to establish that the
function f is convex. But before that we need to validate the statement below

(7)

Slope of the functional line segment(s) of f that contains (x′, f(x′))

≤ Slope of the line joining the points (x′, f(x′)) and (x′′, f(x′′))

≤ Slope of the functional line segment(s) of f that contains (x′′, f(x′′)).

If both the points (x′, f(x′)) and (x′′, f(x′′)) lie in the same functional line segment, the statement
is obvious.

Next we consider the case when x′ ∈ [xi−1, xi[ and x′′ ∈]xi, xi+1], (i ∈ {2, · · · , n − 1}) that is
x′ and x′′; lie in two consecutive intervals. Utilizing (5) and basic geometry of slopes in straight
lines, we can compute the inequality below

(8)
f(xi)− f(x′)

xi − x′
=

f(xi)− f(xi−1)

xi − xi− 1
≤

f(xi+1)− f(xi)

xi+1 − xi
=

f(x”)− f(xi)

x”− xi
.

The expression
f(x”)− f(x′)

x”− x′
can also be written as

f(x”)− f(xi) + f(xi)− f(x′)

(x”− xi) + (xi − x′)
. This along

with (2) and (8) yields

f(xi)− f(x′)

xi − x′
≤

f(x”)− f(x′)

x”− x′
≤

f(x”)− f(xi)

x”− xi
.

and validates the statement (7) for this particular case.
Finally we assume x′ ∈ [xj , xj+1], x” ∈ [xk, xk+1] where j ∈ {1, · · · , n − 2} and k ∈ {3, · · · , n}
such that k − j ≥ 2. First using (1) of Lemma 1.1 and then by applying (5); we can obtain the
inequality below

f(x”)− f(x′)

x”− x′
=

(

f(x”)− f(xk)
)

+
(

f(xk)− f(xk−1)
)

+ · · ·+
(

f(xj+1)− f(x′)
)

(

x”− xk

)

+
(

xk − xk−1

)

+ · · ·+
(

xj+1 − x′
)

≤ max

{

f(x”)− f(xk)

x”− xk
,
f(xk)− f(xk−1)

xk − xk−1

, · · · ,
f(xj+1)− f(xj)

xj+1 − xj

}

=
f(x”)− f(xk)

x”− xk
=

f(xk+1)− f(xk)

xk+1 − xk
.

Similarly, we can compute the following inequality as well

f(xj+1)− f(xj)

xj+1 − xj
=

f(xj+1)− f(x′)

xj+1 − x′

= min

{

f(xj+1)− f(x′)

xj+1 − x′
,
f(xj+2)− f(xj+1)

xj+2 − xj+1

, · · · ,
f(x”)− f(xk)

x”− xk

}

≤

(

f(xj+1)− f(x′)
)

+
(

f(xj+2)− f(xj+1)
)

+ · · · +
(

f(x”)− f(xi)
)

(

xj+1 − x′
)

+
(

xj+2 − xj+1)
)

+ · · ·+
(

x′”− xk

)

=
f(x”)− f(x′)

x”− x′
.
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The above two inequalities establishes the statement (7).
We are now ready to show that f is convex. we assume x′, x, x” ∈ [x1, xn] with x′ < x < x”. More
specifically, x′ ∈ [xj , xj+1],x ∈ [xi, xi+1] and x” ∈ [xk, xk+1] for fixed i, j and k ∈ {1, · · · , n − 1}.
Then first using the last part of inequality in (7) and then applying the initial part of the same
inequality, we obtain the following

f(x)− f(x′)

x− x′
≤

f(xi+1)− f(xi)

xi+1 − xi
=

yi+1 − yi
xi+1 − xi

and

yi+1 − yi
xi+1 − xi

=
f(xi+1)− f(xi)

xi+1 − xi
≤

f(x”)− f(x)

x”− x
.

Combining the above two inequalities, we arrive at (3). It shows that the function f possesses
convexity and also implies epi(f) is an unbounded convex polygon. Due to the convexity property
of f , the line segment PnP1 that forms by joining (x1, y1) and (xn, yn) entirely lies in epi(f). The
extension of PnP1 creates two closed convex half-spaces. One of these is defined as in (4).

All these yields, H ∩ epi(f) gives the convex polygon P1P2, P2P3, · · · , PnP1 that lies in H.

Conversely, suppose that under the strict monotonic assumptions on x′is, the n distinct points
P1, · · · , Pn form a convex polygon. A convex polyhedron is nothing but the intersection of
a finite number of hyper-planes. By neglecting the underlying hyperplane due to the exten-
sion of PnP1; we will end up in an unbounded convex polygon formed by the line segments
P1P2, · · · , Pn−1Pn. In other words; this unbounded convex set is just the epigraph of the function
f : [x1, xn] → R; that was defined in (6). Convexity of epi(f) implies f is a convex function. Since,
P1(x1, y1), · · · , Pn(xn, yn) ∈ gr(f); by (3) we can also conclude that (5) holds. This completes
the proof of the statement. �

Remark 1.3. In the above theorem, the strict monotonicity of the sequence
〈

xi
〉n

i=1
can be

relaxed for the end points. For instance, instead of strict increasingness; we can assume that the
elements of the sequence

〈

xi
〉n

i=1
satisfies the following inequality

x1 ≤ x2 < x3 < · · · < xn−1 ≤ xn.

In the case of x1 = x2, the points P1, · · · , Pn still configure a n sided convex polygon provided
(5) holds for all i ∈ {2, · · · , n − 1}. Similar to the proof of Theorem 1.2; one can show that, by
joining of n−1 distinct points (x2, y2), · · · , (xn, yn) we can formulate the convex function f . Then
H ∩ epi(f) results in a convex set. This set is bounded from below by the n − 2 line segments
that form the function f . The line segment joining the points (x1, y1) and (xn, yn) gives the
upper bound. And finally, the line segment that passes through (x1, y1) and (x2, y2) also lies in
the set. In other words, we ended up in a convex polygon which is formed by the line segments
P1P2, · · · , PnP1. Similar conclusion can be drawn by considering equality in the right most or
simultaneously in both end points of the sequence

〈

xi
〉n

i=1
.

We can also establish the following theorem. The proof of it is analogous to Theorem 1.2.
Hence, the proof is not included.

Theorem 1.4. Let P1(x1, y1), · · · , Pn(xn, yn) are n points(n ≥ 3) with x1 < · · · < xn. Then
P1P2, · · ·PnP1 form a convex n-gon in the below mentioned half-space

H =

{

(x, y)
∣

∣ x ∈ R and y1 +

(

yn − y1
xn − x1

)

(x− x1) ≤ y

}

⊆ R
2

if and only if the following inequality holds

yi − yi−1

xi − xi−1

≥
yi+1 − yi
xi+1 − xi

for all i ∈ {2, · · · , n− 1}.

In the next section, we are going to see how sequential convexity is linked with a convex polygon.
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2. The subsequent results

The results of this section heavily depend upon the previous section’s findings. The initial
proposition resembles the slope property of a convex function.

Proposition 2.1. Suppose
〈

xi
〉∞

i=0
is a strictly increasing and concave sequence. While

〈

yi
〉∞

i=1
is

a increasing and convex sequence. Then for any i ∈ N, the following discrete functional inequality
holds

(9)
yi − yi−1

xi − xi−1

≤
yi+1 − yi
xi+1 − xi

.

Proof. By our assumptions 0 < xi+1 − xi ≤ xi − xi−1 and 0 ≤ yi − yi−1 ≤ yi+1 − yi. Multiplying
these two inequalities side by side and rearranging the terms of the resultant inequality, we obtain
(9). �

In the above proposition, the respective positive/non-negative conditions in sequences
〈

xi −

xi−1

〉∞

i=1
and

〈

yi − yi−1

〉∞

i=1
cannot be compromised. One can easily verify this fact by relaxing

this crucial condition. Similar to the above proposition, we can also show the next result.

Proposition 2.2. Suppose
〈

xi
〉∞

i=0
is a strictly increasing convex sequence. While

〈

yi
〉∞

i=1
is a

decreasing convex sequence. Then for any i ∈ N, the discrete functional inequality (9) is satisfied.

Now we can propose the first theorem of this section. The establishment of it is similar to the
first part of Theorem 1.2; hence only the statement is mentioned.

Theorem 2.3. Let P1, · · · , Pn are n points with the respective coordinates (x1, y1), · · · , (xn, yn)
scattered in the standard R

2 such that the sequences
〈

xi
〉n

i=1
is strictly monotone and concave;

while
〈

yi
〉n

i=1
is convex and increasing . Then P1P2, · · · , Pn−1Pn. form a convex polygon.

Proof. This theorem is a direct consequence of Proposition 2.1 and Theorem 1.2. �

The converse of the above theorem is not necessarily always true. We consider the three vertices
of the △P1P2P3 as P1(0, 0), P2(2, 2) and P3(3, 1). One can easily observe that both the X and
Y -coordinated sequences are strictly concave which shows reverse implication is not valid.

The next result is similar to the above one. By using Proposition 2.2 and Theorem 1.2; we can
establish it.

Theorem 2.4. Let P1, · · · , Pn are n points with the respective coordinates (x1, y1), · · · , (xn, yn)
scattered in the standard R

2 such that the sequences
〈

xi
〉n

i=1
is strictly monotone and convex; while

〈

yi
〉n

i=1
is convex with yi+1 − yi ≤ 0 for all i ∈ {1, · · · , n − 1}. Then P1, · · ·Pn form a convex

polygon.

A more general result can be formulated by combining these two theorems. But Before pro-
ceeding, we must go through a proposition.

Proposition 2.5. Let
〈

ui
〉n

i=1
be a convex sequence. Then there exists an element m ∈ N∩ [1, n],

that satisfies at least one of the following

(10) ui ≤ um for all i < m or um ≤ ui for all m < i.

Proof. The sequential convexity of
〈

ui
〉n

i=1
implies increasingness of the sequence

〈

ui+1 − ui
〉n−1

i=1
.

If all the terms in this monotone sequence are either non-negative or non-positive, then one can
easily validates (10). If not, then there exists a m ∈ N∩]1, n[ such that the following inequalities
holds

um+1 − um ≥ 0 or um − um−1 ≤ 0.

This together with non-decreasingness property of the sequence
〈

ui+1 − ui−1

〉n−1

i=1
yields (10) and

completes the proof of the statement. �
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The next theorem generalizes our previous results Theorem 2.3 and Theorem 2.4. Hence just a
scratch of the proof is mentioned.

Theorem 2.6. Let P1, · · · , Pn are n distinct points with the respective coordinates (x1, y1), · · · , (xn, yn)
scattered in the standard R

2. The sequences
〈

yi
〉n

i=1
is convex such that min

1≤i≤n
yi = ym. Suppose the

sequence
〈

xi
〉n

i=1
is increasing and the sub-sequences

〈

xi
〉m

i=1
and

〈

xi
〉n

i=m
are sequentially convex

and concave respectively. Then the points P1, · · ·Pn form a convex polygon.

Proof. We construct the function f as in (6). From there by utilizing Lemma 1.1, Proposition 2.1,
Proposition 2.2, Theorem 2.3 and Theorem 2.4 we can conclude (7). Analogous to Theorem 1.2;
it leads us to the establishment that the function f is convex. Finally from the epi(f); we can get
the desired result. �

Off course, as mentioned in the remark of Theorem 2.3; one can discuss relaxing strict mono-
tonic property of the sequence

〈

xi
〉n

i=1
in its extreme points to simply increasingness.

This investigation also raises several interesting new problems and challenges. For instance,
one obvious task is generalizing this concept to any finite dimension. It leads us to question, in
higher dimensions, what must be the coordinate-oriented inequalities need to be satisfied by the
scattered points in order to obtain a convex polytope?

Another area of discussion is the possible outcome in R
2; if the coordinates of the points follow

higher order sequential convexity/concavity properties. Are we still able to extract an underlying
convex polygon out of it or a complex interesting geometric figure?
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