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Generic free fermions are free fermions with a single particle spectrum that satisfies the q no
resonance condition, i.e., where equal sums of single-particle energies are unique. This property
guaranties that they have no degeneracies and gives them relaxation properties more similar to
those of generic systems. In this article we provide a minimal example of a generic free fermionic
model with nearest neighbour interactions — a tight-binding model with complex hopping. Using
some standard results from number theory we prove that this model fulfils the q no resonance
condition when the number of lattice sites is prime. Whenever this is not the case one can recover
the q no resonance condition by adding hopping terms between sites corresponding to the divisors
of the number of sites. We further discuss its many-body spectral statistics and show that local
probes — like the ratio of consecutive level spacings — look very similar to what is expected for
the Poisson statistics. We however demonstrate that free fermion models can never have Poisson
statistics with an analysis of the moments of the spectral form factor.

I. INTRODUCTION

In the last two decades there has been a large amount
of progress classifying and understanding the dynamics
generated by isolated quantum many body Hamiltonians.
A rich literature is forming discussing properties of quan-
tum systems in the context of equilibration, thermaliza-
tion, and information spreading [1–10]. This also lead us
to revisit concepts like quantum chaos, integrability, and
localization in the quantum many-body setting [11–17].

The field has made several advances in terms of un-
derstanding late time dynamics and the corresponding
equilibrium values of dynamical quantities such as expec-
tation values, correlation functions, entanglement mea-
sures, out of time ordered correlators and more. Tradi-
tionally there have been two main approaches for char-
acterising these quantities. The first consists in study-
ing the problem directly in the thermodynamic limit and
then explicitly take the limit of large times. This ap-
proach is particularly convenient for analytic studies and
relies on some special simplifications occurring in the
thermodynamic limit [5, 10]. The second approach in-
stead consists of studying infinite time averages in finite
systems. This second approach is more suited to nu-
merical investigations and does not require any special
simplification. Instead, late time properties are stud-
ied through dephasing arguments based on some typi-
cality assumptions on the spectrum of the system and,
sometimes, the functional form of the observables in
the energy eigenbasis. Generally one assumes the q no-
resonance condition [18–22]∑

j∈M

Ej =
∑
k∈N

Ek s.t |M | = |N | =⇒ M = N, (1)

where M,N are sets of indices with q entries, identifying
the energy values of the model. This allows one to make

progress when taking the infinite time average. Such a
simple assumption on the spectrum allows one to make
strong statements on equilibration and quantum recur-
rence times [19] with fixed q assumptions being the most
common in the literature [23–33]. Late time properties
can typically be deduced with few additional assumptions
like eigenstate typicality/thermalization, chaos, large in-
verse participation ratios etc [22, 32–35]. Eq. (1) is a
strong assumption on the spectrum and is generally as-
sumed to hold for quantum chaotic models. Recently the
spectral statistics of (1) was studied, and indeed the lo-
cal spectral statistics for many body chaotic (or random)
Hamiltonians for the condition when q > 1 are Poisso-
nian, indicating that violations of the conditions should
be rare or non-existent [21]. Probing whether or not a
given model violates the condition in Eq. (1) is however
generically unfeasible, both analytically and numerically.
In this document we focus our attention on a more an-

alytically tractable set of models: free fermionic systems,
whose spectral properties have lately been at a centre of
a resurgence of interest [36–40]. Specifically, we consider
free fermion models defined by

Ĥ =

L∑
n,m=1

Mn,mf̂†
nf̂m, (2)

with M Hermitian. One can always solve this model by
diagonalising the matrix M = OϵO†, where O is unitary
and ϵ is a diagonal matrix with real entries. Therefore
we can write

Ĥ =

L∑
k=1

ϵkd
†
kdk, (3)

where d†k =
∑L

n=1 On,kf̂
†
n. We make two demands of this

model. First we ask it to have no non-trivial resonances
in the eigenmode spectrum. This property is referred
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to as the single particle q no resonance condition. More
precisely, letting Rq and R′

q be two sets of exactly q eigen-
modes ϵj , we say the model satisfies the single particle q
no resonance condition if∑

j∈Rq

ϵj =
∑
j∈R′

q

ϵj =⇒ Rq = R′
q . (4)

The second property we require from our free model is
extensivity, i.e.,

On,k =
cn,k√
L
, (5)

with cn,k = O(1). throughout this text we refer to mod-
els that satisfy these conditions as generic free fermion
models.

These two properties imply the free model has expo-
nentially long quantum recurrence times, and the concen-
tration of equilibration is exponentially tight in system
size [19]. This is to be compared to the typical tight bind-
ing model which has a quantum recurrence time that is
linear in size system and a concentration around equilib-
rium that is a power law [24, 30, 41? ? –44]. Therefore,
a model that satisfies Eqs. (4) and (5) has late time prop-
erties more similar to those of a generic system than typ-
ically studied free ones. Although generic free models of
this kind can be constructed relatively easily if one allows
for long range couplings, the open question is whether
such a model can be found if we restrict to local interac-
tions. In this article we resolve this question by providing
the example of a “minimal” generic free fermion model
with nearest neighbour interactions.

The model we construct has a non-degenerate many-
body spectrum, a property that the tight binding model
lacks, and a relevant question concerns the nature of its
spectral correlations. First we show that under the ra-
tio test its spectrum is compatible with an underlying
Poissonian statistics of the energy levels. Therefore the
system seems to follow the Berry Tabor conjecture [45]
like interacting integrable systems. However, analysing
its spectral form factor, and more precisely its higher
moments, we show that this is not the case. The spec-
tral statistics is Poissonian only at the level of two point
correlations: higher point correlations can never be Pois-
sonian in free systems.

The rest of this manuscript is laid out as follows. In
Sec. II we construct the minimal generic free fermion
model and show that it satisfies (4) and (5). In Sec. III we
show that, contrary to the tight binding model, its level
spacing distribution appears Poissonian. In Sec. IV we
characterise its spectral statistics using the spectral form
factor and its higher moments. Finally, Sec. V contains
our conclusions.

II. MINIMAL MODEL

In this section we show that to achieve a generic free
fermion model it is sufficient to add a parity-breaking

term to the tight binding model. Namely we consider

Ĥ =
α+ iβ

2

L∑
n=1

f̂†
nf̂n+1 +

γ

2

L∑
n=1

f̂†
nf̂n + h.c.. (6)

In the spin language (i.e. via a standard Jordan Wigner
transformation) this system is mapped into an XX chain
with a magnetic field and a Dzyaloshinskii–Moriya inter-
action of the form

∝
∑
j

σx
j σ

y
j+1 − σx

j σ
y
j+1. (7)

Because of the translational invariance of (6), the diago-
nal form (3) is simply attained by Fourier transform, i.e.
by choosing

On,k =
ei

2π
L kj

√
L

, (8)

and gives a dispersion relation of the form

ϵk = α cos

(
2π

L
k

)
+ β sin

(
2π

L
k

)
+ γ. (9)

Note that the On,k in Eq. (8) immediately satisfies our
second condition (5). Instead, the validity of (4) is as-
sessed by the following

Property 1. When the couplings α, β and γ are incom-
mensurate the dispersion relation (9) fulfils (4) iff L is
prime.

We begin by giving a more precise definition of incom-
mensurate. Let

CL =

{
cos

(
2π

L
k1

)
+ . . .+ cos

(
2π

L
kn

)
,

n ∈ ZL, 1 ≤ k1 < · · · < kn ≤ L

}
,

(10)

be the finite set of points achieved by summing any
group of cosine terms generated by our finite quantised
wave-numbers. Likewise we denote by SL set of sums of
sines. We demand that α, β, γ be chosen such that for
any choice of x ∈ CL, y ∈ SL we have that xα/yβ and
(xα+ yβ)/γ are irrational.
This gives us two important properties. First, sums of

cosine and sine terms will not cancel each other. Second,
sums of different numbers of eigenmodes also cannot be
equal. As we now show these properties are enough to
ensure property (4). In fact they lead to an even stronger
feature of the single-particle spectrum called rational in-
dependence. Namely they imply that

L∑
k=1

akϵk = 0, ak ∈ Q, (11)

has no solutions except for the trivial case when ak = 0
for all k.
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To see this we note that, due to the incommensurability
of α, β and γ, we can break Eq. (11) into the following
three equations

L∑
k=1

ak cos

(
2π

L
k

)
= 0, (12)

L∑
k=1

ak sin

(
2π

L
k

)
= 0, (13)

L∑
k=1

ak = 0. (14)

Focussing on the first two equations and combining them
into one we arrive at

P (ξ) ≡
L−1∑
k=0

akξ
k = 0, (15)

where we set ξ ≡ exp (i2π/L). The third equation is then
rewritten as

P (1) = 0. (16)

The key observation now is that Eq. (15) defines a poly-
nomial with integer coefficients that has a zero at the
first L-th root of unity. This family of polynomials is
well studied in mathematics, with a particularly impor-
tant role played by the so called L-th cyclotomic poly-
nomial [46], which we denote by ΦL(z). The latter is
the unique polynomial with roots at primitive L-th roots
of unity [47] that is irreducible in Q, i.e. it cannot be
factored as the product of two non-constant polynomials
with rational coefficients.

Recalling some basic facts about the cyclotomic poly-
nomial we have that it has degree ϕ(L) ≤ L − 1, where
ϕ(L) is Euler’s totient function [46]. In particular, this
means that its degree is strictly smaller than L−1 when-
ever L is not prime. Instead, for prime L one has [46]

ΦL(z) = 1 + z + · · ·+ zL−1 . (17)

Since by definition ΦL(z) must divide P (z) and the de-
gree of P (z) is at most L − 1, for L prime we have ei-
ther P (z) = 0 or P (z) = ΦL(z). Namely we either have
ak = 0 for all k or ak = 1 for all k. Considering now (16)
we see that it is only fulfilled by the former choice. This
proves that, for L prime we have rational independence.
Next, let us show that Eq. (4) does not hold for non-

prime L by providing an explicit counter example. Con-
sider a system size L = np, with p prime and n > 1, and
let w = ξn. Then w is a p-th primitive root of unity and,
therefore, it is a zero of the cyclotomic polynomial Φp(z).
Namely

Φp(w) = wp−1 + wp−2 + . . . 1 = 0. (18)

Expressing this equation in terms of ξ, we can write it as
Q(ξ) = 0, where we introduced the polynomial

Q(z) ≡ zn(p−1) + zn(p−2) + . . .+ 1. (19)

Since Q(ξ) = 0 we can multiply any R(ξ) into Q(ξ) giving
R(ξ)Q(ξ) = 0. We can use this to construct suitable P (z)
fulfilling (15) and (16).
Take for example

R(z) = z − 1, (20)

and set P (z) = R(z)Q(z). This is a legitimate choice
because R(z)Q(z) has degree L−n+1 ≤ L−1. Moreover,
since R(1) = 0 we have that this polynomial also fulfils
Eq. (16).
To recover rational independence for non-prime L one

should add higher harmonics to the dispersion relation.
In particular, for a generic L a rational independent dis-
persion relation takes the form

ϵk =
∑
d|L

(
αd cos

(
2πd

L
k

)
+ βd sin

(
2πd

L
k

))
+ γ (21)

where the sum is over all the divisors of L strictly smaller
than L and {αd, βd}, and γ are again incommensurable.
The corresponding real space Hamiltonian is recovered
by again taking the Fourier transform in Eq. (8). The
resulting model can be written similarly to Eq. (6) with
the addition of terms of the form

Ĥd =
αd + iβd

2

L∑
n=1

f̂†
nf̂n+d + h.c.. (22)

This point is discussed more extensively in Appendix A
where we provide the explicit example of L = pq with p
and q primes.

III. LEVEL SPACING STATISTICS OF THE
MANY BODY SPECTRUM

In this section we investigate the level spacing statistics
of the many body spectrum En = n⃗ · ϵ where we take ϵ
from our minimal model in Eq. (9). In particular we per-
form the ratio test introduced in Ref. [48]. This method
avoids unfolding the spectrum while still probing the
spectrum’s similarity to random matrix theory. Suppose
we take En and re-order it such that Ek < Ek+1 for all k.
Then we define gaps in the spectrum as sk = Ek −Ek−1.
The ratio test is then concerned with the quantity

rk =
min{sk, sk+1}
max{sk, sk+1}

. (23)

A spectrum obeying Poisson statistics will follow the
distribution [49]

p(r) =
2

(1 + r)2
. (24)

and have the mean ⟨r⟩ = 2 ln 2− 1 ≈ 0.38629436112.
In Fig. 1 we see the surprising result that this model

looks approximately Poisson both when calculating ⟨r⟩
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FIG. 1. In the top figure we have a histogram of the ratio
test with our generic single particle spectrum ϵk for L = 23.
In purple we plot the Poisson distribution. On the bottom
figure we print the average of the ratios for various prime
system sizes.

and when overlaying its distribution p(r). The model
clearly experiences some form of level attraction but the
gaps do not cluster around zero as one expects for a
typical tight binding model. At L = 23 we observe
⟨r⟩ = 0.36936, a value somewhat similar the expected
Poisson result. One may be tempted to conclude that
the model has Poisson spectral statistics and is just ex-
periencing relatively slow convergence to that behaviour.
We demonstrate in the next section that this cannot be
true by presenting a more extensive probe of the spec-
tral statistics. For comparison we plot the ratio test for
L = 20, a non-prime system size, in Fig. 2. The ratios
cluster around zero with a large amount of exact degen-
eracies. Note, in the case of the tight binding model,
the vast majority of gaps are zero and we would have an
approximate delta function at 0.
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FIG. 2. In this figure we have a histogram of the ratio test
with our generic single particle spectrum ϵk for L = 20. In
purple we plot the Poisson distribution.

IV. MOMENTS OF THE SPECTRAL FORM
FACTOR

A more robust probe of the spectral statistics is given
by the so called spectral form factor (SFF) [13, 40, 50–
61], which is the Fourier transform of the spectral two-
point function. The SFF is expressed as

K(t, L) = E[|Tr [(Ut)]|2], (25)

where Ut = eiĤt and E[·] is an average (either over an
ensemble of similar systems or in time) that removes non-
universal features [62]. Contrary to the level spacing
statistics this quantity tests spectral correlations over all
energy scales, not only over short ones.
To probe also higher point correlations among energy

levels, here we consider arbitrary higher moments of the
SFF. Namely

Kq(t, L) = E[|Tr [(Ut)]|2q], (26)

and take E[·] to be the moving time-average over a time
window of size τ

E[f(t)] =
1

τ

∫ t+τ

t

f(s)ds. (27)

In fact, to make the expressions more readable we will
always consider the limit of large τ [63].
Let us now compute Kq(t, L) in our minimal generic

free fermionic model and compare our results with the
predictions of the Poissonian statistics, which gives the
following SFF higher moments for large L [64]

Kq(t, L) = 2qLq!. (28)

We begin by considering q = 1 and noting that the trace
can be expressed as

Tr [(Ut)] =

2L∑
m=1

eitm⃗·⃗ϵ, (29)
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where m⃗ is the L-bit binary representation of m and ϵ⃗ =
(ϵ1, . . . , ϵL). This means that we can write

|Tr [(Ut)]|2 =
∑
m,n

eit(m⃗−n⃗)·⃗ϵ. (30)

A term survives the time average and the τ → ∞ limit
iff

(m⃗− n⃗) · ϵ⃗ = 0. (31)

This is clearly fulfilled when m⃗ = n⃗. To see that this is
the only case we expand it as

(m⃗− n⃗) · ϵ⃗ =
∑
k

(mk − nk)ϵk = 0. (32)

mk − nk ∈ Z. It then follows that our only choice is for
mk − nk = 0 because of the rational independence of ϵk.
Putting all together we then have

K1(t, L) =
L∏

k=1

∑
mk

1 = 2L. (33)

Therefore our spectrum gives the first moment expected
for the Poisson ensemble.

Considering now arbitrary higher moments we have

|Tr [(Ut)]|2q =

2L∑
mi,ni=1

eitϵ·
∑q

i=1(m⃗i−n⃗i). (34)

We now wish to understand which terms survive time
average and infinite τ limit. This is again when the ar-
gument of the exponential is zero

ϵ ·
q∑

i=1

(m⃗i − n⃗i) = 0, (35)

writing this component-wise gives

L∑
k=1

ϵk

q∑
i=1

(mik − nik) = 0. (36)

The number
∑q

i=1 (mik − nik) takes integer values in
[−q, q]. Therefore, the rational independence of {ϵk} tells
us that the only solution to this equation is

q∑
i=1

(mik − nik) = 0, ∀k . (37)

This means that there are precisely q! ways for this term
to survive the average and we obtain

Kq(L) =

L∏
k=1

∑
m

(i)
k

q! = (q!2q)L. (38)

This result agrees with Eq. (28) for q = 1 but disagrees
with it for q > 1. Note in particular that the disagree-
ment comes because Eq. (38) is larger than Eq. (28).

This happens because, even though the Hamiltonian in
Eq. (6) has a non-degenerate spectrum for α, β, γ incom-
mensurate and L prime, the spectrum of

Ĥq =

q−1∑
j=0

j︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗Ĥ ⊗ I ⊗ · · · ⊗ I, (39)

has far more degeneracies than

Ĥint,q =

q−1∑
j=0

j︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗Ĥint ⊗ I ⊗ · · · ⊗ I , (40)

where Ĥint is an Hamiltonian with a generic Poisson dis-
tributed spectrum, e.g. that of a Bethe Ansatz integrable
model. Indeed, whereas Ĥint,q has an obvious q! degen-

eracy due to permutation symmetry, Ĥq has a degener-
acy of (q!)L because it is invariant under permutations
of each separate mode. Therefore, free fermionic models
cannot display Poisson statistics in the many body spec-
trum. However, thanks to the rational independence of
{ϵk}, one can claim that our model produces the smallest
possible SFF moments for a free fermionic system.

V. CONCLUSION

In this article we have identified a locally interacting
free fermionic system — a tight binding model with a
parity breaking term — for which we could prove ra-
tional independence of the single-particle spectrum, i.e.,
that for fixed system size its energy eigenvalues are lin-
early independent over rational numbers. Free fermionic
systems with this property are known to have special
late time behaviour including “interacting-like” concen-
tration of equilibration and quantum recurrence times
and are sometimes referred to as generic free fermions:
Here we presented the first example of such systems that
also has local interactions.
We have also shown that our local generic free fermion

model has a non-degenerate many body spectrum that
under local probes of the spectrum (the ratio test [48])
looks strikingly Poissonian — this is not the case when
rational independence is lifted as seen in Fig. 1. Studying
the higher moments of the spectral form factor, however,
we have shown that the spectral statistics of our system
agrees with the Poissonian prediction only at the level of
two-point spectral correlations. In fact, this is the closest
any free system can ever be to have Poissonian statistics.
This shows that the predictions of local probes should be
taken with care.
An immediate direction for future research is to iden-

tify other dynamical signatures of rational independent
single-particle spectrum in the context of local interac-
tions. In particular, a fascinating question concerns the
interplay between rational independence and interacting
perturbations. Since rational independence reduces the
number of thermalising channels — for a fixed size there
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are no non-trivial energy conserving scattering processes
— systems with rational independence should anoma-
lously long prethermalization plateaus in finite volume.
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Appendix A: Higher order harmonics

In this appendix we discuss how the inclusion of higher
harmonics helps achieving rational independence also for
non-prime sizes.

First we note that our counter example from Sec. II
does not apply if one adds higher harmonics. To see this
consider again L = np with p prime and add the term

δ cos

(
2πp

L
k

)
+ η sin

(
2πp

L
k

)
(A1)

to the dispersion relation (9). Here δ and η are chosen to
retain incommensurability of the individual terms in the
dispersion. This means that we now have the following
three equations

P (1) = 0, P (ξ) = 0, P (ξp) = 0. (A2)

where we again set ξ = exp(i2π/L). Our choice P (z) =
(z−1)Q(z) in the main text, with Q(z) given in Eq. (19),
does not satisfy the third equation. Indeed, we have wp =
ξnp = 1 and Q(ξp) = p ̸= 0.

Second, we show that when n is also prime we have ra-
tional independence if we add harmonics of order p and

n. This can be seen as follows. Assuming again incom-
mensurability, we obtain that (11) can be decomposed
into the following four equations

P (1) = 0, P (ξ) = 0, P (ξp) = 0, P (ξn) = 0. (A3)

Considering the last three equations we have that P (z)
has zeros at the primitive roots of unity ξ, ξp, and ξn.
This means that it must be proportional to the cyclo-
tomic polynomials Φnp(z), Φn(z), and Φp(z). Namely
we have

P (z) = R1(z)Φnp(z) = R2(z)Φn(z) = R3(z)Φp(z).
(A4)

for some Rj(z), j = 1, 2, 3. Since by definition each cy-
clotomic polynomial is irreducible the above equation im-
plies

P (z) = R4(z)Φn(z)Φp(z)Φnp(z). (A5)
for some R4(z).

We now recall another important property of products
of cyclotomic polynomials [46]∏

d|n

Φd(z) = zn − 1. (A6)

This tells us that Φn(z)Φp(z)Φnp(z) is by definition

Φn(z)Φp(z)Φnp(z) = 1 + z + · · ·+ zpn−1, (A7)

Since pn−1 is the maximal degree that P (z) can have (cf.
Eq. (15)) we then conclude R4(z) = 0 or R4(z) = 1. The
first choice gives rational independence and the second is
incompatible with the first of (A3). This concludes the
proof.

Upon adding all d order harmonics such that the
step in (A6) is reproduced, this argument can be di-
rectly extended to arbitrary products of powers of primes.
Namely, to arbitrary L ∈ N.
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[56] J. Šuntajs, T. Prosen, and L. Vidmar, Annals of Physics

435, 168469 (2021), special issue on Philip W. Anderson.
[57] S. J. Garratt and J. T. Chalker, Phys. Rev. X 11, 021051

(2021).
[58] S. J. Garratt and J. T. Chalker, Phys. Rev. Lett. 127,

026802 (2021).
[59] B. Bertini, P. Kos, and T. Prosen, Phys. Rev. B 105,

165142 (2022).
[60] S. Shivam, A. De Luca, D. A. Huse, and A. Chan, Phys.

Rev. Lett. 130, 140403 (2023).
[61] A. Chan, S. Shivam, D. A. Huse, and A. De Luca, Nature

communications 13, 7484 (2022).
[62] R. E. Prange, Phys. Rev. Lett. 78, 2280 (1997).
[63] More precisely we take t ≫ τ ≫ 1.
[64] F. Haake, Quantum Signatures of Chaos, Physics and

astronomy online library (Springer, 2001).

http://dx.doi.org/ 10.1103/RevModPhys.91.021001
http://dx.doi.org/ 10.1103/RevModPhys.91.021001
http://arxiv.org/abs/2403.07111
http://arxiv.org/abs/2403.07111
http://dx.doi.org/ 10.1103/PhysRevLett.131.110601
http://dx.doi.org/10.21468/SciPostPhys.15.4.165
http://dx.doi.org/10.1103/PhysRevA.101.042126
http://dx.doi.org/10.1103/PhysRevA.101.042126
http://arxiv.org/abs/2307.05417
http://arxiv.org/abs/2307.05417
http://dx.doi.org/10.1088/0305-4470/32/7/007
http://dx.doi.org/10.1088/0305-4470/32/7/007
http://arxiv.org/abs/1907.13392
http://arxiv.org/abs/1907.13392
http://dx.doi.org/10.1103/PhysRevB.101.024202
http://dx.doi.org/10.1103/PhysRevB.101.024202
http://dx.doi.org/10.1103/PhysRevLett.111.140401
http://dx.doi.org/10.1103/PhysRevLett.111.140401
http://dx.doi.org/10.1103/PhysRevX.7.031027
http://dx.doi.org/ 10.1007/978-3-319-99046-0_18
http://dx.doi.org/ 10.1007/978-3-319-99046-0_18
http://dx.doi.org/10.1103/PhysRevA.89.043620
http://dx.doi.org/10.1103/PhysRevA.89.043620
http://arxiv.org/abs/2310.03924
http://dx.doi.org/10.21468/SciPostPhys.15.6.244
http://dx.doi.org/10.21468/SciPostPhys.15.6.244
http://dx.doi.org/10.1088/1367-2630/14/4/043020
http://dx.doi.org/10.1088/1367-2630/14/4/043020
http://dx.doi.org/10.1088/1367-2630/13/5/053009
http://dx.doi.org/10.1103/PhysRevLett.124.110605
http://dx.doi.org/https://doi.org/10.1002/andp.201600318
http://dx.doi.org/https://doi.org/10.1002/andp.201600318
http://dx.doi.org/10.1103/PhysRevX.9.011006
http://dx.doi.org/10.1103/PhysRevLett.125.250602
http://dx.doi.org/10.1103/PhysRevLett.125.250602
http://dx.doi.org/10.1103/PhysRevLett.125.250601
http://dx.doi.org/10.1103/PhysRevLett.125.250601
http://dx.doi.org/10.1103/PhysRevB.103.104206
http://dx.doi.org/10.1103/PhysRevB.103.104206
http://dx.doi.org/10.1103/PhysRevB.104.214203
http://dx.doi.org/10.1103/PhysRevB.104.214203
http://dx.doi.org/10.1103/PhysRevB.107.064205
http://dx.doi.org/10.1103/PhysRevB.107.064205
http://dx.doi.org/10.1103/PhysRevE.87.012106
http://dx.doi.org/10.1103/PhysRevE.87.012106
http://dx.doi.org/10.1103/PhysRevE.92.042164
http://dx.doi.org/10.7566/JPSJ.84.064002
http://dx.doi.org/10.7566/JPSJ.84.064002
http://arxiv.org/abs/https://doi.org/10.7566/JPSJ.84.064002
http://dx.doi.org/10.1103/PhysRevA.100.013606
http://dx.doi.org/10.1103/PhysRevA.100.013606
https://royalsocietypublishing.org/doi/10.1098/rspa.1977.0140
https://royalsocietypublishing.org/doi/10.1098/rspa.1977.0140
https://royalsocietypublishing.org/doi/10.1098/rspa.1977.0140
https://mathworld.wolfram.com/CyclotomicPolynomial.html#:~:text=The%20roots%20of%20cyclotomic%20polynomials,the%20first%20few%20cyclotomic%20polynomials.&text=is%20illustrated%20above%20in%20the,increasing%20outside%20the%20unit%20disk.&text=(Riesel%201994%2C%20p.,-307).
https://mathworld.wolfram.com/CyclotomicPolynomial.html#:~:text=The%20roots%20of%20cyclotomic%20polynomials,the%20first%20few%20cyclotomic%20polynomials.&text=is%20illustrated%20above%20in%20the,increasing%20outside%20the%20unit%20disk.&text=(Riesel%201994%2C%20p.,-307).
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/ 10.1103/PhysRevLett.110.084101
http://dx.doi.org/10.1103/PhysRevLett.121.060601
http://dx.doi.org/10.1103/PhysRevLett.121.060601
http://dx.doi.org/10.1103/PhysRevLett.121.264101
http://dx.doi.org/10.1103/PhysRevLett.121.264101
http://dx.doi.org/10.1103/PhysRevLett.123.210603
http://dx.doi.org/ 10.1103/PhysRevE.102.062144
http://dx.doi.org/ 10.1103/PhysRevE.102.062144
http://dx.doi.org/10.1007/s00220-021-04139-2
http://dx.doi.org/10.1007/s00220-021-04139-2
http://dx.doi.org/ 10.1103/PhysRevResearch.3.023176
http://dx.doi.org/ 10.1103/PhysRevResearch.3.023176
http://dx.doi.org/https://doi.org/10.1016/j.aop.2021.168469
http://dx.doi.org/https://doi.org/10.1016/j.aop.2021.168469
http://dx.doi.org/10.1103/PhysRevX.11.021051
http://dx.doi.org/10.1103/PhysRevX.11.021051
http://dx.doi.org/10.1103/PhysRevLett.127.026802
http://dx.doi.org/10.1103/PhysRevLett.127.026802
http://dx.doi.org/10.1103/PhysRevB.105.165142
http://dx.doi.org/10.1103/PhysRevB.105.165142
http://dx.doi.org/ 10.1103/PhysRevLett.130.140403
http://dx.doi.org/ 10.1103/PhysRevLett.130.140403
http://dx.doi.org/10.1038/s41467-022-34318-1
http://dx.doi.org/10.1038/s41467-022-34318-1
http://dx.doi.org/10.1103/PhysRevLett.78.2280
https://books.google.co.uk/books?id=Orv0BXoorFEC

	Generic free fermions with nearest neighbour interactions
	Abstract
	Introduction
	Minimal model
	Level spacing statistics of the many body spectrum
	Moments of the spectral form factor
	Conclusion
	Acknowledgments
	Higher order harmonics
	References


