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ABSTRACT
Community search over heterogeneous information networks has

been applied to wide domains, such as activity organization and

team formation. From these scenarios, the members of a group

with the same treatment often have different levels of activity and

workloads, which causes unfairness in the treatment between ac-

tive members and inactive members (called individual unfairness).

However, existing works do not pay attention to individual fairness

and do not sufficiently consider the rich semantics of HINs (e.g.,

high-order structure), which disables complex queries. To fill the

gap, we formally define the issue of individual fairest community

search over HINs (denoted as IFCS), which aims to find a set of

vertices from the HIN that own the same type, close relationships,

and small difference of activity level and has been demonstrated to

be NP-hard. To do this, we first develop an exploration-based filter

that reduces the search space of the community effectively. Further,

to avoid repeating computation and prune unfair communities in

advance, we propose a message-based scheme and a lower bound-

based scheme. At last, we conduct extensive experiments on four

real-world datasets to demonstrate the effectiveness and efficiency

of our proposed algorithms, which achieve at least ×3 times faster

than the baseline solution.
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1 INTRODUCTION
Heterogeneous information networks [8] (HINs) are networks in-

volving interconnected objects with different types (aka labels).
Compared to the traditional homogeneous network with the same

type, HIN enables to storing more rich semantic information and

has become prevalent in various domains, such as citation networks

[38], social networks [21] and human-resource networks [36]. Fig. 1

illustrates an HIN modeling a Database System and Logic Program-

ming (DBLP) network, which contains four types of vertices: author
(A), paper (P), venue (V), and topic (T). The edges between differ-

ent types of vertices have different semantic relationships, such as

authorship (A-P) and publication (P-V).

In recent years, community search over HIN has attracted much

attention due to its importance in many applications, such as recom-

mendation [10, 17], team formation [37] and identification of pro-

tein functions [7]. Existing works like [8, 14–16, 31] extend the tra-

ditional cohesive community models such as 𝑘-core [1], 𝑘-truss [35]

and 𝑘-clique [9], and these works require users to customize query

requests like meta-path [8, 16, 31], relational constraints [15] and

motif [14]. However, they did not fully consider the rich semantics

of the HIN, which can not handle the complex customized query

request. The other important factor in the community search prob-

lem is the fairness. As revealed in [10, 18, 28], the notion of fairness

was proposed to mitigate the bias and systematic discrimination

for disadvantaged people in terms of sensitive features (e.g., gender,

age and race) in communities. For example, assume that people are

almost composed of a specific gender in a community. In this case,

members of the community are generally inclined to communicate

with people of a specific gender, which causes discrimination for

people of the other gender. To mitigate the discrimination in the

community search problem, Matth et al. [19] considered the no-

tion of fairness as the difference in the proportion of vertex types

between communities and proposed a fairness-based clustering

method, which guarantees the similarity proportion of vertex type

in each cluster. Similarly, Zhang et al. [34] considered fairness as the

difference in vertices quantity between different types of vertex in a

community. However, these works only focus on group-based fair-

ness, i.e., keeping the similarity of certain metrics between groups,
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Figure 1: An example of HIN
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Figure 2: An example of fairness community search

which can not handle the fairness at a fine granularity level, e.g.,

mitigating the discrimination between members (called individual

fairness) in a group.

IFCS problem. In this paper, we study the problem of Individual
Fairest Community Search over HINs (IFCS) to find a set of vertices

with the target type hold (1) each vertex satisfies the customized

query request and has close relationships; (2) the vertices have small

difference of level of activities. To formulate the IFCS problem, we

face two key questions: (1) How to model the customized query

requests and relationships for vertices in a community? (2) How to

measure the active level of a member and the difference of active

level among members in a community?

For the former question, we extend the well-known concept of

motif [14] to model the customized query request and relationship.

A motif, also known as a higher-order structure or graphlet, is a small

subgraph pattern. For example, Figure 2 shows two motifs𝑚1,𝑚2.

To specify the target type, we select a vertex with user preference

in a motif and use its type as the target type, and call such motif the

target-aware motif. For instance, Figure 2 illustrates a target-aware
motif 𝑞1, where the vertex 𝑢3 with a wider border is the selected

vertex. It describes that each author should collaborate on a paper

with the other two authors in the community, respectively. In this

case, the author 𝑣1 in Figure 1 has relationships with author 𝑣2 and

𝑣3 through the instance of target-aware motif {𝑣3, 𝑣12, 𝑣1, 𝑣11, 𝑣2}.
For the latter question, we follow the idea in [10] that the active

level of a member is related to the number of motif instances around

it. In addition, we adopt the concept of the Gini coefficient [11]

to measure the difference in active levels among members of a

community. As the difference in active level among members in

a community becomes small, the gini coefficient will approach

zero. By carefully considering the above problems, given an HIN

and a target-aware motif with a target type, the objective of IFCS

is to find the community that contains vertices of the target type

connected via instances of the target-awaremotif and has the lowest

Gini coefficient. Example 1 describes a scenario where the fairest

community can be found.

Example 1. Assume an institute wants to recruit a group of re-
searchers for a development position such that each researcher must

collaborate on at least a paper with the other two researchers of the
group, respectively. This customized query request can be modeled as
the target-aware motif 𝑞1 in Figure 2. Intuitively, if a researcher col-
laborates more papers with more researchers, his/her level of activity
should be higher. In this case, highly active researchers in the group
may be more suitable for better treatment because they have more
project experience and the capability to do more work. In addition,
the existence of low-activity researchers is unfair to others, because
they did fewer projects but have the same treatment as others. From a
fairness perspective, a group is better if researchers in the group have
a small difference in level of activity. Our proposed fairest community
search problem can support such a scenario.

In this case, we enumerate the instances of motif 𝑞1 from the
HIN in Figure 1, and get two groups 𝑇𝑐1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, 𝑇𝑐2 =

{𝑣8, 𝑣9, 𝑣10} shown in Figure 2𝐺𝑀1
. We can see that all the authors in

𝑇𝑐2 collaborate on a paper with the other two authors, but the authors
𝑣2, 𝑣3, 𝑣4, 𝑣5 in 𝑇𝑐1 collaborate a paper with other two authors and
the author 𝑣1 in 𝑇𝑐1 collaborate four papers with other five authors.
Obviously, the activity level of 𝑣1 in 𝑇𝑐1

is different from others, and
the activity levels of members in𝑇𝑐2

are the same. So𝑇𝑐2
have a small

difference in activity level and we can identify the community 𝑇𝑐2 as
the fairest community.

Challenges. To find the fairest communities, a basic method

is to enumerate all the communities and calculate the fairness

score of each community, then return the maximal community has

the lowest fairness score. However, there are two computational

challenges of the basic method: (1) we need to re-enumerate an

instance of motif around each vertex of the target type to verify the

satisfaction of the customized query request once a vertex of the

target type is removed; (2) we need to enumerate all motif instances

around each member of the community to calculate their active

level.

To conquer the first challenge, we propose an exploration-based

filter strategy to reduce the potential target vertices that need to

be checked and a message-passing based optimization strategy to

avoid redundant computation. To solve the second challenge, we

derive the lower bound of the fairness score to prune the unfair

communities in advance.

Contributions.We state our main contributions as follows:

• To the best of our knowledge, this is the first work to for-

malize the problem of individual fairest community search
(IFCS) over HINs, which introduces individual fairness for

the community model.

• As the IFCS problem is NP-hardness, we develop a Filter-
Verify algorithm to solve the IFCS problem.

• We further propose an exploration-based and a message-

passing based optimization strategy to reduce redundant

computation, then we provide a lower bound based optimiza-

tion strategy to identify and prune the unfair community in

advance during the process of community search.

• We conducted extensive experiments on four real-world

datasets to demonstrate the effectiveness of the proposed

fair community model and the efficiency of the proposed

optimization strategies.

The rest of this paper is organized as follows. First, we present

the definition of the IFCS problem in Section 2. Then we describe
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Table 1: The summary of notations

Notation Description
𝐺 = (𝑉𝐺 , 𝐸𝐺 ) an HIN with vertex set 𝑉𝐺 and edge set 𝐸𝐺
𝜓𝐺 (𝑣) the type of vertex 𝑣 in HIN 𝐺

A the vertex type set in HIN

𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) a target-aware motif with vertex set 𝑉𝑞 , edge

set 𝐸𝑞 and target vertex 𝑣𝑡

𝜉𝑞 the bijective function of motif 𝑞

𝑔
𝑞
𝑚 an instance of motif 𝑞

𝑝 (𝑣) the active level of target vertex instance 𝑣

𝑇𝑐 ,𝐶 the target-aware community and the candidate

target-aware community

FS(Tc) the fairness score of target-aware community

𝑇𝑐

the detailed procedure for the baseline solution of the problem in

Section 3. Next, we discuss the techniques in Section 4 to speed

up finding the fairest communities. In Section 5, we report the

experimental setting and the evaluation results. Finally, we review

the related work in Section 6, and conclude our work in Section 7.

2 PROBLEM DEFINITION
2.1 Preliminaries
We model an HIN as a directed graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) with a vertex-

type mapping function 𝜓 : 𝑉𝐺 → A , where each vertex 𝑣 ∈ 𝑉𝐺
has a vertex type 𝜓 (𝑣) ∈ A. We use | · | to denote the number of

elements in a set, for example, |𝑉𝐺 | and |𝐸𝐺 | denote the number of

vertices and edges in𝐺 , respectively. Here, we summarize the most

important notations in Table 1.

We first introduce the notion of motif, which has been widely

used to describe subgraph patterns.

Definition 1 (Motif [25]). Given an HIN with its vertex-type set

A , a motif 𝑞 = (𝑉𝑞, 𝐸𝑞) is a small connected HIN with vertex-type

mapping functions𝜓𝑞 : 𝑉𝑞 → A𝑞 , where A𝑞 ⊆ A.

Definition 2 (Instance of Motif [25]). Given an HIN 𝐺 with its

vertex-type mapping functions𝜓 and a motif 𝑞 = (𝑉𝑞, 𝐸𝑞) with its

vertex-type mapping functions 𝜓𝑞 , a subgraph 𝑔
𝑞
𝑚 = (𝑉𝑞

𝑚, 𝐸
𝑞
𝑚) of

𝐺 is an instance of motif 𝑞, if ∃ bijection function 𝜉𝑞 : 𝑉𝑞 → 𝑉𝑚
satisfies (1) ∀𝑣 ∈ 𝑉𝑞 , 𝜓𝑞 (𝑣) = 𝜓 (𝜉𝑞 (𝑣)) holds; (2) ∀(𝑣, 𝑣 ′) ∈ 𝐸𝑞 ,

(𝜉𝑞 (𝑣), 𝜉𝑞 (𝑣 ′)) ∈ 𝐸𝑚 holds.

2.2 Target-aware Community
To model the customized query request and formulate the target-

aware community, we introduce the following new concepts.

Definition 3 (Target-aware Motif). Given a motif 𝑞 = (𝑉𝑞, 𝐸𝑞)
with its vertex-type mapping function𝜓𝑞 , we can specify a vertex

𝑣𝑡 ∈ 𝑉𝑞 as the target vertex. We also use 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) to represent
and call it target-aware motif.

For simplicity, all the motifs mentioned in the following are

target-aware motifs.

Definition 4 (Instances of Target Vertex). Given an HIN𝐺 , a motif

𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) with its bijection function 𝜉𝑞 and the instances of

motif 𝑞 in𝐺 , the instances of target vertex 𝑣𝑡 are the corresponding

vertex 𝜉𝑞 (𝑣𝑡 ) of the instances of motif 𝑞.

Definition 5 (Instances of Motif around Instance of Target Vertex).
Given an HIN 𝐺 , a motif 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) with its bijection function

𝜉𝑞 and an instance 𝑣 of target vertex 𝑣𝑡 in 𝐺 , the instances of motif

around 𝑣 are the instances of motif in𝐺 whose corresponding vertex

𝜉𝑞 (𝑣𝑡 ) = 𝑣 .

Here, we regard the instance of target vertex 𝑣 as𝑀-neighbor of
the instance of target vertex 𝑢 if there exists an instance of motif

around 𝑢 containing 𝑣 . In addition, we regard these two instances

of target vertex 𝑣,𝑢 as𝑀-connected if there exists a chain of vertices

from 𝑣 to 𝑢 such that one vertex of any two adjacent vertices in the

chain is a𝑀-neighbor of the other vertex.

Definition 6 (Active Level of Target Vertex Instance). Given an

HIN 𝐺 , a motif 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) and a set of 𝑀-connected target

vertex instances 𝐼 , the active level 𝑠𝑣 of a target vertex instance

𝑣 ∈ 𝐼 is the number of motif instances 𝑔
𝑞
𝑚 = (𝑉𝑞

𝑚, 𝐸
𝑞
𝑚) which

satisfies ∀𝑣 ′ ∈ 𝑉𝑞
𝑚 ∧𝜓 (𝑣 ′) = 𝜓𝑞 (𝑣𝑡 ), 𝑣 ′ ∈ 𝐼 around 𝑣 in 𝐺 .

Definition 7 (Target-aware Community). Given an HIN𝐺 with its

vertex-type mapping function𝜓 and a motif 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) with
its bijection function 𝜉𝑞 , the target-aware community 𝑇𝑐 is a set

of𝑀-connected target vertex instances in 𝐺 that satisfies ∀𝑣 ∈ 𝑇𝑐 ,
𝑠𝑣 ⩾ 1.

Based on definition 7, we call a target-aware community is max-

imal if it is not contained in any other target-aware community.

For a motif 𝑞, we can also induce a homogeneous graph 𝐺𝑀 (de-

fined in the following) from an HIN 𝐺 , called𝑀-graph, to record

the 𝑀-neighbors of each member of the target-aware community.

Essentially, the maximal target-aware communities are the vertices

of the weakly connected subgraphs of 𝐺𝑀 .

Definition 8 (𝑀-graph). Given an HIN 𝐺 and a motif 𝑞, the 𝑀-

graph is a directed homogeneous network 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀 ) such
that (1) it contains all the M-connected target vertex instances

whose active level is not less than 1; (2) for each vertex 𝑣𝑀 ∈ 𝑉𝑀 , it

has an edge linked to each of its𝑀-neighbors.

2.3 Problem Statement
In this paper, we invoke a widely-accepted fairness measurement,

i.e., Gini coefficient [11] to measure the similarity of active level

among members in a target-aware community. It can be defined as

follows.

Definition 9 (Fairness Score of Target-Aware Community). Given

a target-aware community 𝑇𝑐 and the list of active levels 𝑆 of each

member in 𝑇𝑐 , the fairness score of 𝑇𝑐 can be measured as follows:

𝐹𝑆 =

∑ |𝑆 |
𝑖=1

∑ |𝑆 |
𝑗=1

��𝑠𝑖 − 𝑠 𝑗 ��
2|𝑆 |∑ |𝑆 |

𝑚=1
𝑠𝑚

(1)

where 𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑚 are active levels in 𝑆 . Based on the property of

Gini coefficient, the fairness score is in (0, 1], where 0 represents
perfect equality while 1 means maximal inequality. Intuitively, it
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is directly proportional to the difference of active levels among

instances of target vertex and inversely proportional to the number

of target vertex instance.

Example 2. Consider the HIN 𝐺 in Figure 1 and the motif 𝑞1 in
Figure 2. We can get the M-graph 𝐺𝑀1 and two maximal target-
aware communities𝑇𝑐1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5},𝑇𝑐2 = {𝑣8, 𝑣9, 𝑣10} shown
in Figure 2. For 𝑇𝑐1, the active levels of 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 are 12, 2, 2, 2,
2, respectively, and the fairness score of 𝑇𝑐1 is 0.4. For 𝑇𝑐2, the active
levels of 𝑣8, 𝑣9, 𝑣10 is 2, 2, 2 and the fairness score of 𝑇𝑐2 is 0.

Based on the above definitions, the target of this work is to

find the maximal target-aware communities owning the minimum

fairness score. Next, we formalize the problem as Individual Fairest

Community Search (IFCS) over HIN.

ProblemStatement (Individual Fairest Community Search). Given
an HIN 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) and a motif 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ), the problem of
Individual Fairest Community Search (IFCS) over HIN is to find a
maximal target-aware community 𝑇𝑐 from 𝐺 satisfying:

arg min 𝐹𝑆 (𝑇𝑐 )
Problem Complexity: Now, we demonstrate that the IFCS prob-

lem is NP-hard by reducing themotif instance enumeration problem

to it. Given an HIN 𝐺 that has a vertex of type 𝑏 and all other ver-

tices with type 𝑎, we want to find a target-aware community that

each vertex of type 𝑏 in the community should connect at least

two vertices of type 𝑎, that is, the motif 𝑞 is a small HIN graph that

contains a vertex with type 𝑏 connected with two vertices of type 𝑎.

This is equivalent to enumerating all instances of 𝑞 from𝐺 because

the active level of each community member is calculated by enu-

merating all instances of 𝑞 in𝐺 . Apparently, the feasible solution of

IFCS corresponds to the motif instance enumeration problem. As

discussed in [13], enumerating the instance of motif from a graph

is an NP-complete problem. Therefore, the IFCS problem is also an

NP-hard problem.

3 THE FILTER-VERIFY SOLUTION
To address the IFCS problem, a basic solution is to enumerate all

the maximal target-aware communities and calculate their fairness

scores. Then, the fairest target community can be returned by se-

lecting the one that has the minimum fairness score. In specific,

we follow the same paradigm of the filter-verify algorithm [3]. It

consists of three steps: (1) filter the unsatisfied vertices that are not

in𝑀-graph; (2) build the𝑀-graph and calculate the active level of

each vertex of𝑀-graph; (3) for each weakly connected subgraph

𝑔𝑀 in𝑀-graph, calculate its fairness score, then return the vertices

in 𝑔𝑀 that has the lowest fairness score. The process is presented

in Algorithm 1.

We first initialize a set 𝑁𝑅 to store the edges of 𝑀-graph and

a dictionary 𝐷 to store the active level of each vertex of target-

aware communities (Line 1). Next, we filter the unsatisfied vertices

by enumerating a motif instance around the vertices of the target

type (Lines 2-7). We first initialize a list 𝑉𝑁 to store the candidate

vertices of𝑀-graph and add vertices with type𝜓𝑞 (𝑣𝑡 ) in 𝐺 to 𝑉𝑁
(Line 3). For each iteration, we enumerate a motif instance around

each vertex 𝑣 in 𝑉𝑁 using the state-of-the-art subgraph matching

algorithm [27]. If there is no motif instance 𝑔
𝑞
𝑚 around 𝑣 , we can

Algorithm 1: Basic Solution
Input: An HIN𝐺 = (𝑉𝐺 , 𝐸𝐺 ) , a motif 𝑞 = (𝑉𝑞 , 𝐸𝑞 , 𝑣𝑡 ) with vertex type mapping

function𝜓𝑞 .

Output: A list of maximal individual fairness communities𝑚𝑎𝑥𝐶

1 𝑁𝑅 ← ∅, 𝐷 ← empty dictionary ;

2 repeat
3 𝑉𝑁 ← vertices with type𝜓𝑞 (𝑣𝑡 ) in𝐺 ;

4 for each vertex 𝑣 ∈ 𝑉𝑁 do
5 if no motif instance around 𝑣 found by an existing subgraph isomorphism

algorithm from𝐺 then
6 Delete 𝑣 from𝐺 ;

7 until𝑉𝑁 \ vertices with type𝜓𝑞 (𝑣𝑡 ) in𝐺 = ∅;
8 for each instance 𝑔𝑞𝑚 = (𝑉𝑞

𝑚 , 𝐸
𝑞
𝑚 ) of motif 𝑞 around 𝑣 in𝐺 found by an existing

subgraph isomorphism algorithm do
9 if 𝐷 [𝑣 ] = ∅ then 𝐷 [𝑣 ] ← 1 ;

10 else 𝐷 [𝑣 ] ← 𝐷 [𝑣 ] + 1;

11 for each vertex 𝑣′ with type𝜓𝑞 (𝑣𝑡 ) in𝑉𝑞
𝑚 \ 𝑣 do

12 𝑁𝑅 ← 𝑁𝑅 ∪ { (𝑣′, 𝑣) }

13 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀 ) ← generate graph using 𝑁𝑅 ;

14 𝑚𝑎𝑥𝐶 ← [],𝑚𝑎𝑥𝐹𝑆 ← 0 ;

15 for each weakly connected subgraph 𝑔𝑤 = (𝑉𝑤 , 𝐸𝑤 ) of𝐺𝑀 do
16 if |𝑉𝑤 | ≥ 𝑘 then
17 𝑃 ← [];

18 for 𝑣 ∈ 𝑉𝑤 do 𝑃 .add(𝐷 [𝑣 ]);
19 𝐹𝑆 ← calculate the fairness score using active levels in 𝑃 ⊲ Equation 1 ;

20 if 𝐹𝑆 <𝑚𝑎𝑥𝐹𝑆 then
21 𝑚𝑎𝑥𝐶 .removeAll();

22 𝑚𝑎𝑥𝐶 .add(𝑉𝑤 ),𝑚𝑎𝑥𝐹𝑆 = 𝐹𝑆 ;

23 else if 𝐹𝑆 =𝑚𝑎𝑥𝐹𝑆 then
24 𝑚𝑎𝑥𝐶 .add(𝑉𝑤 );

25 Return𝑚𝑎𝑥𝐶 ;

know 𝑣 is not included in 𝑀-graph and delete it from 𝐺 (Lines

4-6). We repeat the above process until no vertex is removed in this

iteration.

Next, we build the𝑀-graph and calculate the active level of each

target vertex instance (Lines 8-13). For each vertex 𝑣 with type

𝜓𝑞 (𝑣𝑡 ) in 𝐺 , we enumerate the rest of motif instances around 𝑣

using the state-of-the-art subgraph matching algorithm [27]. Once

a motif instance 𝑔
𝑞
𝑚 around 𝑣 is enumerated, we update the active

level of 𝑣 in 𝐷 and add the edges that connect 𝑣 with other vertices

of target type in 𝑔
𝑞
𝑚 to 𝑁𝑅 (Lines 8-12). After enumerating all the

motif instances around vertices in 𝑉𝑁 , we can build the𝑀-graph

𝐺𝑀 using edges in 𝑁𝑅 (Line 13).

Finally, we get the target-aware communities and calculate their

fairness scores (Lines 14-24). We initialize 𝑚𝑎𝑥𝐶 and 𝑚𝑎𝑥𝐹𝑆 to

store the target-aware communities and the fairness score of the

target-aware communities (Line 14). Then we get the maximal

target-aware communities by returning the weakly connected sub-

graphs of 𝐺𝑀 . For each weakly connected subgraph, we calculate

its fairness score using active levels stored in 𝐷 . Once the fairness

score of a community is smaller than the existing fairest communi-

ties, we remove all communities in𝑚𝑎𝑥𝐶 and put this community

to 𝑚𝑎𝑥𝐶 and the corresponding fairness score to 𝑚𝑎𝑥𝐹𝑆 (Lines

15-24). In the end, the fairest communities in𝑚𝑎𝑥𝐶 are the final

results.

Example 3. Take the HIN𝐺 in Figure 1, the motif𝑞1 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ) in
Figure 2 as an example. Firstly we enumerate motif instances around
𝑣1 − 𝑣10 and get a motif instances around 𝑣1 − 𝑣5, 𝑣8 − 𝑣10. So we
delete the vertices 𝑣6, 𝑣7. Due to the leaving of 𝑣6, 𝑣7 may cause the
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𝑣1 − 𝑣5, 𝑣8 − 𝑣10 do not exist a motif instance around them, we re-
enumerate motif instances around 𝑣1 − 𝑣5, 𝑣8 − 𝑣10 and get a motif
instance around them, respectively. Next, we enumerate the rest of
the motif instances around 𝑣1 − 𝑣5, 𝑣8 − 𝑣10 and record the active
levels 𝑠𝑣1

= 12, 𝑠𝑣2
= 2, 𝑠𝑣3

= 2, 𝑠𝑣4
= 2, 𝑠𝑣5

= 2, 𝑠𝑣8
= 2, 𝑠𝑣9

=

2, 𝑠𝑣10
= 2. After that, we generate the𝑀-graph𝐺𝑀1 shown in Figure 2

and get two target-aware community 𝑇𝑐1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, 𝑇𝑐2 =

{𝑣8, 𝑣9, 𝑣10} from 𝐺𝑀1, and calculate the fairness score 0.4, 0 of 𝑇𝑐1

and 𝑇𝑐2, respectively. Finally, we can conclude that the fairest target-
aware community is 𝑇𝑐2.

Complexity Analysis. The time complexity analysis of Algo-

rithm 1 consists of the following steps. We first construct the index

discussed in [27] to enumerate instances of motif, which takes

𝑂 ( |𝐸𝐺 | · |𝐸𝑞 |) time. For each iteration of target vertex identification

process, it takes 𝑂 (𝑑
3

2
𝑑𝑡 · |𝑉𝑡 |) to enumerate a motif instance for

each vertex in𝑉𝑡 using the algorithm in [12], where 𝑑 is the average

degree of HIN𝐺 , 𝑑𝑡 is the length of the shortest path between target

vertex and its most distanced node in motif 𝑞, and |𝑉𝑡 | is the number

of vertices of target type. In the worst case, the number of itera-

tion could be |𝑉𝑡 |, so the total time complexity of the target vertex

identification process is 𝑂 (𝑑
3

2
𝑑𝑡 ·𝑉 2

𝑡 ). In the process of active level

calculation, the time complexity is |𝑉𝑡 | |𝑉𝑞 | because the number of

motif instances could be |𝑉𝑡 | |𝑉𝑞 | . In the process of maximal target-

aware communities generation, the time cost is 𝑂 ( |𝑉𝑡 | + |𝐸𝐺 |) by
returning the weakly connected subgraphs of 𝐺𝑀 . Thus, the total

time complexity of Algorithm 1 is𝑂 (𝑑
3

2
𝑑𝑡 ·𝑉 2

𝑡 + |𝑉𝑡 | |𝑉𝑞 | + |𝐸𝐺 | · |𝐸𝑞 |)
in total.

It is obvious that the complexity of basic solution is high. The

main drawbacks lie in: (1) all the vertices of target type need to be

identified for each iteration in target vertex identification process;

(2) all the vertices in𝑀-graph need to enumerate themotif instances

around them to calculate their active level.

4 OPTIMIZATION
To overcome the above drawbacks, in this section, we first propose

an exploration-based filter to prune the ineligible vertices of the

target type. Then, we develop amessage-passing based optimization

strategy to avoid redundant computation. Finally, we propose a

lower bound-based to filter the unfair community in advance by

using the derived lower bound of fairness score.

4.1 Reducing Potential Target Vertices
In this subsection, we propose an exploration-based filter to further

reduce potential instances of target vertex. Before introducing the

details, we first introduce a query vertex filtering strategy, called

Neighborhood Label Frequency (NLF) filter [2]. It aims to find the

candidate vertices of a query vertex in amotif that may be contained

in instances of motif.

Definition 10 (Neighborhood Label Frequency (NLF) Filter [2]).
Given a query vertex 𝑢 in a motif 𝑞 and a vertex 𝑣 in an HIN 𝐺 ,

𝑣 is the candidate vertex of 𝑢 if 𝑣 satisfies ∀𝑙 ∈ 𝐿𝑁 (𝑢), 𝑑𝑖 (𝑣, 𝑙) <
𝑑𝑖 (𝑢, 𝑙) ∧ 𝑑𝑜 (𝑣, 𝑙) < 𝑑𝑜 (𝑢, 𝑙).

where 𝐿𝑁 (𝑣) is the set of unique labels of 𝑢’s in-neighbors and
out-neighbors, 𝑑𝑖 (𝑣, 𝑙) is the number of in-neighbors of 𝑣 with label

𝑙 , and 𝑑𝑜 (𝑣, 𝑙) is the number of out-neighbors of 𝑣 with label 𝑙 . In

addition, we also introduce the other candidate vertex filter method,

which supports our exploration-based filter search.

Definition 11 (Exact Star Isomorphism Constraint [27]). Given

an HIN 𝐺 , a query vertex 𝑢 of a motif 𝑞 and a candidate vertex 𝑣

of 𝑢 pass the NLF filter in 𝐺 , 𝑣 satisfies the exact star isomorphism

constraint if ∀𝑢′ ∈ 𝑁 (𝑢), ∃𝑣 ′ ∈ 𝑁 (𝑣) such that 𝑣 ′ ∈ 𝑢′ .𝐶 .
where 𝑁 (𝑢) is the in-neighbors and out-neighbors of 𝑢, 𝑢′ .𝐶 is a

set of candidate vertices of 𝑢′ in HIN𝐺 . Intuitively, if the candidate

vertex 𝑣 of 𝑢 satisfies the exact star isomorphism constraint, there

exists at least one candidate vertex of 𝑢′ in neighbors of 𝑣 for each

neighbor𝑢′ of𝑢. Here, we adopt the breadth-first search (BFS) order
starting from the vertex 𝑣𝑡 in 𝑞 to find the candidate vertices of

each query vertex. Based on the exact star isomorphism constraint

and BFS order, we have the following corollary.

Corollary 1. Given an HIN 𝐺 , a query vertex 𝑢 of a motif 𝑞, the
BFS order 𝜋 of 𝑞 and a vertex 𝑣 in 𝐺 . If 𝑣 satisfies the exact star
isomorphism constraint, it must hold the following two conditions: (1)
∀𝑢′ ∈ 𝑁 (𝑢) ∧ 𝑖𝑑𝑥𝑢′ (𝜋) < 𝑖𝑑𝑥𝑢 (𝜋), ∃𝑣 ′ ∈ 𝑁 (𝑣) such that 𝑣 ′ ∈ 𝑢′ .𝐶 ;
(2) ∀𝑢′ ∈ 𝑁 (𝑢) ∧ 𝑖𝑑𝑥𝑢′ (𝜋) > 𝑖𝑑𝑥𝑢 (𝜋), ∃𝑣 ′ ∈ 𝑁 (𝑣) such that 𝑣 ′ ∈
𝑢′ .𝐶 ;

where 𝑖𝑑𝑥𝑢 (𝜋) is the position (i.e., index) of 𝑢 in the searching

order 𝜋 . Based on the NLF filter and corollary 1, we can find the

candidate target vertex instances and explore the candidate regions

around each candidate target vertex instance that may containmotif

instances around it. Intuitively, the candidate region is composed

of the candidate vertices of each query vertex. In this case, the

candidate𝑀-neighbors of a candidate target vertex instance 𝑣 are

the vertices of the target type in the candidate region. We use a

directed homogeneous network, denoted as𝐶𝑀-graph, to store the

candidate𝑀-connected target vertex instances.

Definition 12 (𝐶𝑀-graph). Given a HIN𝐺 = (𝑉𝐺 , 𝐸𝐺 ) and a motif

𝑞 = (𝑉𝑞, 𝐸𝑞, 𝑣𝑡 ), the 𝐶𝑀-Graph is a directed homogeneous graph

𝐺𝐶𝑀 = (𝑉𝐶𝑀 , 𝐸𝐶𝑀 ) such that (1) it contains all the vertices of

target type 𝑣𝐶𝑀 ∈ 𝑉𝐶𝑀 passing the NLF filter and satisfying the

constraints in corollary 1; (2) for each vertex 𝑣𝐶𝑀 ∈ 𝑉𝐶𝑀 , it has an

edge linked to each of its candidate𝑀-neighbors.

We process the exploration-based filter in two steps: (1) generate

the candidate regions and 𝐶𝑀-graph to explore the candidate𝑀-

connected vertices using condition 1 of Corollary 1 in the forward

candidate exploration; (2) refine the candidate regions and 𝐶𝑀-

graph to prune ineligible candidate 𝑀-connected vertices using

condition 2 of Corollary 1 in the backward candidate refinement;

Forward Candidate Exploration. We first initialize 𝑆 to store the

edges of candidate regions, 𝐸𝐶𝑀 to store the edges in 𝐶𝑀-graph,

and 𝜋 to store the BFS order of motif 𝑞 (Line 1). Then we get the

candidate target vertex instances 𝐶 from HIN 𝐺 by selecting the

vertices of the target type passing the NLF filter (Lines 2-3), and

delete the vertices of type𝜓𝑞 (𝑣𝑡 ) in 𝑉𝐺 but not contained in 𝐶 to

reduce the searching space (Line 4). Next, we explore the candidate

region around each candidate target vertex instance 𝑐 ∈ 𝐶 following

the BFS-order 𝜋 in the forward candidate exploration process (Lines

5-31).

Specifically, we initialize 𝑆 ′ to store the set of edges in the candi-

date region around 𝑐 , u.𝐶′ to store the candidate vertices of a query
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Figure 3: Example of exploration-based filtering search

vertex 𝑢, and use a boolean variable i-add to denote whether 𝑣 has

a candidate region around it (Line 6). Intuitively, i-add is false if

a query vertex has no candidate vertex, which means there is no

candidate region around 𝑣 . Then we get the candidate vertex of

each vertex 𝑢 ∈ 𝜋 \ 𝑣𝑡 in the candidate region around 𝑐 (Lines 7-22).

We first get the neighborhoods 𝑁 ′𝑢 of 𝑢 whose candidate vertices

have been found (Line 9). Then we randomly select a vertex 𝑢𝑏 in

𝑁 ′𝑢 and use its candidate vertices to find the candidate vertex of 𝑢

(Lines 10-22). To achieve this, for each candidate vertex 𝑣 of 𝑢𝑏 , we

first find the neighbours 𝑁 (𝑣) of 𝑣 satisfying: (1) have the same type

as 𝑢; (2) pass the NLF filter, and (3) have the same edges direction

𝑑𝑖𝑟 (𝑣, 𝑣 ′) between 𝑣 and 𝑣 ′ ∈ 𝑁 (𝑣) as edges direction 𝑑𝑖𝑟 (𝑢𝑏 , 𝑢)
between vertices 𝑢𝑏 and 𝑢 (Line 12). If there does not exist such

neighbor, the i-add is set to be false (Line 22). Otherwise, we verify

whether 𝑣 ′ satisfies condition 1 of Corollary 1 (Lines 13-21).

We use 𝐸𝑡 to store the edges between 𝑣 ′ and its neighbors that

are contained in the candidate vertices of query vertices 𝑁 ′𝑢 \ 𝑢𝑏
(Line 13), and use a boolean variable c-add to denote whether 𝑣 ′

satisfies the condition 1 of Corollary 1 (Line 14). For each query

vertex 𝑢 ∈ 𝑁 ′𝑢 \ 𝑢𝑏 , we add the edges between candidate vertices

of 𝑢 and 𝑣 ′ into 𝐸′𝑡 (Line 16). If 𝐸
′
𝑡 is empty, we know that there

is no candidate vertex of 𝑢 around 𝑣 ′, i.e., 𝑣 ′ does not satisfy the

condition 1 of Corollary 1 (Lines 17-18). Otherwise, we add edges

in 𝐸′𝑡 to 𝐸𝑡 (Line 19). If 𝑣
′
is eligible, we add edges in 𝐸𝑡 to 𝑆

′
(Lines

20-21). Once 𝑣 is an eligible candidate vertex instance, we add the

edges in 𝑆 ′ to 𝑆 and add candidate vertices of query vertex 𝑢 in

motif to the candidate target vertex set 𝑢.𝐶 (Lines 23-24). Finally,

we get the candidate𝑀-neighbors of 𝑐 by selecting the vertices with

type 𝜓𝑞 (𝑣𝑡 ) in the candidate region around 𝑐 except 𝑐 , then add

edges between 𝑐 and its candidate 𝑀-neighbors into 𝐸𝐶𝑀 (Lines

25-26). After that, we filter the ineligible 𝑀-connected candidate

target vertex instance whose quality is less than 𝑘 (Lines 27-29)

and delete the vertices with type𝜓𝑞 (𝑣𝑡 ) in 𝑉𝐺 but not included in

𝑣𝑡 .𝐶 to reduce the searching space in backward exploration process

(Lines 30-31).

Backward Candidate Refinement. In the backward processing,

we refine each candidate region based on the unexploited neighbors

of each query vertex𝑢 in the forward candidate exploration process,

i.e., the in-neighbors and out-neighbors 𝑁 (𝑢) of 𝑢 whose index is

larger than 𝑢 in BFS order (Lines 32-41). In contrast to the forward

processing, now we find the candidate vertices of each query vertex

following the in reverse order of 𝜋 and get the refined candidate

region of each vertex of target type in 𝑢𝑓 .𝐶 .

Algorithm 2: Exploration-based Filter(𝐺,𝑞)
Input: An HIN𝐺 = (𝑉𝐺 , 𝐸𝐺 ) , a motif 𝑞 = (𝑉𝑞 , 𝐸𝑞 , 𝑣𝑡 ) with vertex type mapping

function𝜓𝑞
Output: a𝐶𝑀-Graph and a refined𝐺

1 𝑆 ← ∅, 𝐸𝐶𝑀 ← ∅,𝐶 ← ∅, 𝜋 ← BFS order of 𝑞 ;

2 for each vertices 𝑣 ∈ 𝐺 do
3 𝐶 ← 𝐶 ∪ {𝑣 | 𝜓 (𝑣) = 𝜓𝑞 (𝑣𝑡 ), 𝑣 pass the NLF filter } ;
4 Delete vertices {𝑣 ∈ 𝑉𝐺 | 𝜓 (𝑣) = 𝜓𝑞 (𝑣𝑡 ) } \𝐶 from𝐺 ;

// Lines 5-31: Forward candidate Exploration

5 for each vertices 𝑐 ∈ 𝐶 do
6 𝑆′ ← ∅ , 𝑣𝑡 .𝐶

′ ← {𝑐 }, i-add← True ;

7 for each query vertex𝑢 ∈ 𝜋 \𝑣𝑡 do
8 𝑢.𝐶′ ← ∅ ;

9 𝑁 ′𝑢 ← {𝑢′ ∈ 𝑁 (𝑢 ) | 𝑖𝑑𝑥𝑢 (𝜋 ) < 𝑖𝑑𝑥𝑢′ (𝜋 ) } ;
10 𝑢𝑏 ← Random select a vertex from 𝑁 ′𝑢 ;

11 for each vertex 𝑣 ∈ 𝑢𝑏 .𝐶′ do
12 for each vertex 𝑣′ ∈ {𝑣 ∈ 𝑁 (𝑣) | 𝜓 (𝑣) = 𝜓𝑞 (𝑢 ) ∧ 𝑣 pass the NLF

filter ∧ 𝑑𝑖𝑟 (𝑣, 𝑣) = 𝑑𝑖𝑟 (𝑢𝑏 ,𝑢 ) } do
13 𝐸𝑡 ← edges between 𝑣 and 𝑣′ with the same direction as edges

between𝑢𝑏 and𝑢;

14 c-add←True ;

15 for each vertex �̂� ∈ 𝑁 ′𝑢 \𝑢𝑏 do
16 𝐸′𝑡 ← {(𝑣, 𝑣′ ) ∈ 𝐸 (𝑣′ ) \ (𝑣, 𝑣′ ) |𝑣 ∈ �̂�.𝐶′ } ;
17 if 𝐸′𝑡 = ∅ then
18 c-add← 𝐹𝑎𝑙𝑠𝑒 , Break ;

19 else 𝐸𝑡 ← 𝐸𝑡 ∪ 𝐸′𝑡 ;

20 if c-add = True then
21 𝑆′ ← 𝑆′ ∪ 𝐸𝑡 ,𝑢.𝐶′ ← 𝑢.𝐶′ ∪ {𝑣′ } ;

22 if 𝑢.𝐶′ ← ∅ then i-add← false, Break;

23 if i-add = true then
24 𝑆 ← 𝑆 ∪ 𝑆′ , for each𝑢 ∈ 𝜋 do𝑢.𝐶 ← 𝑢.𝐶′ ;
25 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 ) ← Induce graph from𝐺 using 𝑆′ ;
26 𝐸𝐶𝑀 ← 𝐸𝐶𝑀 ∪ { (𝑐, 𝑣) | 𝑣 ∈ 𝑉𝑐 \ 𝑐 ∧𝜓 (𝑣) = 𝜓𝑞 (𝑣𝑡 ) } ;

27 𝐺𝐶𝑀 = (𝑉𝐶𝑀 , 𝐸𝐶𝑀 ) ← Induce graph using 𝐸𝐶𝑀 ;

28 Delete vertices not include in 𝑣𝑡 .𝐶 from𝐺𝐶𝑀 ;

29 Remove the connected subgraphs whose number of vertices is smaller than 𝑘 from𝐺𝐶𝑀 ;

30 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) ← Induce graph from𝐺 using 𝑆 ;

31 Delete vertices {𝑣 ∈ 𝑉𝐺 | 𝜓 (𝑣) = 𝜓𝑞 (𝑣𝑡 ) } \𝑉𝐶𝑀 from𝐺 ;

// Lines 32-40: Backward candidate refinement

32 𝑢𝑓 ← last vertex in 𝜋 ;

33 for each vertices 𝑣 ∈ 𝑢𝑓 .𝐶 ∩𝑉𝐺 ′ do
34 𝑆′ ← ∅ , 𝑣𝑓 .𝐶

′ ← {𝑐 }, i-add← True ;

35 for each query vertex𝑢 ∈ 𝜋 \𝑢𝑓 in reverse order do
36 Same as Lines 8 ;

37 𝑁 ′𝑢 ← {𝑢′ ∈ 𝑁 (𝑢 ) | 𝑖𝑑𝑥𝑢 (𝜋 ) > 𝑖𝑑𝑥𝑢′ (𝜋 ) } ;
38 Same as Lines 10-22 ;

39 Same as Lines 23-24 ;

40 Delete vertices not include in 𝑣𝑡 .𝐶 from𝐺𝐶𝑀 ;

41 Same as Line 27-31 ;

42 Return𝐺𝐶𝑀 ,𝐺 ;

Example 4. Consider the motif 𝑞 in Figure 3a and the HIN in Fig-
ure 3b. Firstly, we get the BFS order {𝑢1, 𝑢2, 𝑢3, 𝑢4} of 𝑞 and the can-
didate target vertex instances 𝐶 = {𝑣1, 𝑣2, 𝑣3}. Next we explore the
candidate region around each candidate target vertex instance in 𝐶 .

For 𝑣1, (1) in the forward processing, we first find the candidate
vertex of 𝑢2 with 𝑁 ′𝑢 = {𝑢1} and 𝑢𝑏 = 𝑢1. Then we process each
vertex 𝑣 ′ in {𝑣6, 𝑣8}. Note that although 𝑣5 is the neighbor of 𝑣1 with
the same label as 𝑢2, it is pruned because it does not pass the NLF
filter. Due to the 𝑁 ′𝑢 \ 𝑢𝑏 is empty, we conduct that 𝑣6, 𝑣8 are can-
didate vertex of 𝑢2 and add the edges (𝑣1, 𝑣6), (𝑣1, 𝑣8) in 𝐸𝑡 to the
𝑆 ′. Next, we find that 𝑣7, 𝑣9 are the candidate vertex of 𝑢2, but 𝑣9

will be pruned because it does not satisfy the condition 1 of Corol-
lary 1, i.e., there is no candidate vertex of 𝑢1 in the neighbors of 𝑣9.
Then we add (𝑣6, 𝑣7), (𝑣8, 𝑣7), (𝑣1, 𝑣7) into 𝑆 ′. Finally we find 𝑣13 as
the candidate vertex of 𝑢4 and add (𝑣13, 𝑣7), (𝑣13, 𝑣8) into 𝑆 ′. The
candidate region around 𝑣1 is the subgraph induced by edges 𝑆 ′ =
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Figure 4: An example of message-passing strategy

{(𝑣1, 𝑣6), (𝑣1, 𝑣8), (𝑣6, 𝑣7), (𝑣8, 𝑣7), (𝑣1, 𝑣7), (𝑣13, 𝑣7), (𝑣13, 𝑣8)} and the
candidate vertex 𝐶′ of each query vertex is 𝑢1 = {𝑣1}, 𝑢2 = {𝑣6, 𝑣8},
𝑢3 = {𝑣7} and 𝑢4 = {𝑣13}.

(2) In the backward processing, we first process the candidate vertex
of 𝑢3, i.e., 𝑣7, with 𝑁 ′𝑢 = {𝑢4} and 𝑢𝑏 = 𝑢4. Then we find the edges
{(𝑣13, 𝑣7)} connected with 𝑣7 and candidate vertices of 𝑢𝑏 i.e., { 𝑣13

}, and add them to 𝐸′𝑡 . Next we process the 𝑢2’s candidate vertices
{𝑣6, 𝑣8}. We pruned 𝑣6 because it does not pass the NLF filter, so
we add edge {(𝑣13, 𝑣8), (𝑣8, 𝑣7)} into 𝐸′𝑡 . Finally we process the 𝑢1’s
candidate 𝑣1 and add the edges {(𝑣1, 𝑣7), (𝑣1, 𝑣8)} to 𝐸′. The candidate
region around 𝑣1 after backward refinement is the subgraph induced
by edges 𝑆 ′ = {(𝑣1, 𝑣7), (𝑣1, 𝑣8), (𝑣8, 𝑣7), (𝑣13, 𝑣7), (𝑣13, 𝑣8)}.

The time complexity of Algorithm 2 consists of the following

steps. In the forward candidate exploration process, we need to

take 𝑂 ( |𝐸𝐺 | · 𝑑𝑞 (𝑢)) to check the candidate vertices around query

vertex 𝑢, where 𝑑𝑞 (𝑢) is the degree of vertex 𝑢 in motif 𝑞. Thus the

total running time of the forward candidate exploration process is

𝑂 (∑𝑢∈𝑉𝑞 |𝐸𝐺 | · 𝑑𝑞 (𝑢)), i.e., 𝑂 ( |𝐸𝐺 | · |𝐸𝑞 |). In backward candidate

refinement, we have the same process to check the candidate ver-

tices around each query vertex 𝑢 in motif 𝑞. So the total complexity

of Algorithm 2 is 𝑂 ( |𝐸𝐺 | · |𝐸𝑞 |).

4.2 Message-passing based Optimization
Strategy

By reviewing the process of filter-verify solution, we can see that

all the vertices of the target type need to re-enumerate a motif

instance around them in each iteration to check whether they are

in 𝑀-graph. For example, considering the motif in Figure 4b and

the HIN in Figure 4a, if we remove 𝑣3 by NLF filter, we need to re-

enumerate a motif around 𝑣1, 𝑣2 in the next iteration. However, 𝑣1

do not need to re-enumerate after removing 𝑣3 because the deleting

of 𝑣3 does not affect the structure around 𝑣1. To solve this challenge,

we propose a message-passing based strategy to avoid unnecessary

re-enumeration.

The key idea of our strategy is that the target vertex instance

does not need to re-enumerate a motif around it if none of its

𝑀-neighbors is removed. Recall that the candidate target vertex

instances and their candidate𝑀-neighbors have been stored in the

𝐶𝑀-graph. Thus, if a candidate target vertex instance is removed

from 𝐶𝑀-graph, we can send a message to its in-neighbors in 𝐶𝑀-

graph to re-identify whether there exists a motif instance around

them in the next iteration.

The detailed procedure is presented in Algorithm 3. We first

initialize 𝑉𝑒 to store the candidate vertex instances that need to

check whether it has a motif instance around it (Line 1), then we

Algorithm 3:Message-Passing(𝐺,𝑞,𝐺𝐶𝑀 )
Input: An HIN𝐺 = (𝑉𝐺 , 𝐸𝐺 ) , a motif 𝑞 = (𝑉𝑞 , 𝐸𝑞 , 𝑣𝑡 ) with vertex type mapping

function𝜓𝑞 and a𝐶𝑀 graph𝐺𝐶𝑀 = (𝑉𝐶𝑀 , 𝐸𝐶𝑀 )
Output: A list of individual fairness community𝑚𝑎𝑥𝐶

1 𝑉𝑒 ← vertices with type𝜓𝑞 (𝑣𝑡 ) in𝐺 ;

2 while𝑉𝑒 ≠ ∅ do
3 𝑉 ′𝑒 ← ∅ ;

4 for each vertex 𝑣𝑒 in𝑉𝑒 do
5 if no motif instance around 𝑣𝑒 found by an existing subgraph isomorphism

algorithm from𝐺 ′ then
6 𝑉 ′𝑒 ← 𝑉 ′𝑒 ∪ {in-neighbors of 𝑣𝑒 in𝐺𝐶𝑀 } ;
7 Delete 𝑣𝑒 from𝐺𝐶𝑀 and𝐺 ;

8 𝑉𝑒 ← 𝑉 ′𝑒
9 Return𝐺 ;

iteratively check the instances in 𝑉𝑒 until 𝑉𝑒 is empty (Lines 2-

8). We first initialize 𝑉 ′𝑒 to record the candidate target vertices

whose candidate𝑀-neighbors are removed (Line 3). For each vertex

instance 𝑣𝑒 in 𝑉𝑒 , once a motif instance around 𝑣𝑒 is enumerated

by an existing subgraph isomorphism, we immediately check the

next vertex instance. Otherwise, we add the in-neighbors of 𝑣𝑒 into

𝑉 ′𝑒 and delete 𝑣𝑒 from 𝐺𝐶𝑀 and 𝐺 (Lines 4-7). Once the checking

process is finished, if 𝑉 ′𝑒 is not empty, we continue to check the

candidate vertex in 𝑉 ′𝑒 in the next iteration (Line 8). Finally, we

return the HIN 𝐺 (Lines 9).

4.3 The Lower Bound of Fairness Score
In this subsection, we propose a lower bound of fairness score to

filter the unfair communities in advance. The key idea is that if we

have calculated the active levels of some𝑀-connected target vertex

instances and know the lower bound of the fairness score is not

lower than the fairness score of the existing fairest communities, we

immediately know that the𝑀-connected target vertex instances are

not fairest and do not need to enumerate motif instances around the

rest𝑀-neighbor target vertex instances. Before providing a detailed

proof of the lower bound, we provide an equivalent formula of the

Equation (1) proved in [33].

𝐹𝑆 =

2

(
𝑠1 + 2𝑠2 + . . . + |𝑆 |𝑠 |𝑆 |

)
|𝑆 |∑ |𝑆 |

𝑗=1
𝑠 𝑗

− |𝑆 | + 1

|𝑆 | (2)

subject to

𝑠1 < 𝑠2 < . . . < 𝑠 |𝑆 |
which can be transferred into the following form:

𝐹𝑆 =
𝑠1 + 3𝑠2 + . . . + (2|𝑆 | − 1)𝑠 |𝑆 |

|𝑆 |∑ |𝑆 |
𝑗=1

𝑠 𝑗

− 1 (3)

subject to

𝑠1 < 𝑠2 < . . . < 𝑠 |𝑆 |
Based on the Equation (3), we can get the following property.

Property 1. Given a candidate target-aware community𝐶 and a list
of active levels 𝑆 ′ of 𝑛 𝑀-connected target vertex instances 𝐶′ in 𝐶 ,
the active levels 𝑆 ′′ of each target vertex instance in 𝐶 \𝐶′ should be
smaller than the maximum value 𝑆 ′𝑚𝑎𝑥 of 𝑆 ′ if we intend to minimize
the fairness score 𝐹𝑆 of 𝐶 .
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Proof. We prove the correctness of this property by contra-

diction. Assume 𝑆 = 𝑆 ′ ∪ 𝑆 ′′ has been sorted in ascending order.

Through using the Equation 3, fairness score of 𝐶 can be writ-

ten as 𝐹𝑆 =

∑|𝐶 |
𝑖=1
(2𝑖−1)𝑠𝑖

|𝐶 |∑|𝐶 |
𝑖=1

𝑠𝑖
− 1, where 𝑠𝑖 ∈ 𝑆 . It’s a multivariate

equation where the elements in 𝑆 ′′ are independent variables. The

first-order partial derivatives of 𝐹𝑆 is
𝜕𝐹𝑆
𝜕𝑠𝑝

=
(2𝑝−1)𝐵−𝐴
(𝑠𝑝+𝐵)2 , where

𝑠𝑝 ∈ 𝑆 ′′, 𝐴, 𝐵 are constants and 𝐴 =

(∑ |𝐶 |
𝑗=1
(2 𝑗 − 1)𝑠 𝑗

)
− (2𝑝 − 1)𝑠𝑝 ,

𝐵 = (∑ |𝐶 |
𝑗=1

𝑠 𝑗 ) − 𝑠𝑝 . In this case, if 𝑠 |𝐶 | > 𝑆 ′𝑚𝑎𝑥 , 𝑠 |𝐶 | must in 𝑆 ′′, and
the first-order partial derivatives of 𝐹𝑆 w.r.t 𝑠 |𝐶 | is positive because
(2|𝐶 | − 1)𝐵 > 𝐴. Therefore, 𝑠 |𝐶 | must be less than or equal to 𝑆 ′𝑚𝑎𝑥

if we want to minimise 𝐹𝑆 because 𝐹𝑆 will become larger as 𝑠 |𝐶 |
becomes larger when 𝑠 |𝐶 | is greater than 𝑆 ′𝑚𝑎𝑥 . Through the above

inference, we can determine that other active levels in 𝑆 ′′ must be

less than or equal to 𝑆 ′𝑚𝑎𝑥 iteratively. □

In addition, we proved the following property to support the

lower bound of the fairness score.

Property 2. Given a list of numbers 𝐿 = 𝑙1, . . . , 𝑙𝑚 , each number in
𝑋 = 𝑥1, . . . , 𝑥𝑛 should be equal to the median value of 𝐿 if we intend
to minimize 𝑧 =

∑ |𝑆 |
𝑖=1

∑ |𝑆 |
𝑗=1

��𝑠𝑖 − 𝑠 𝑗 ��, where 𝑆 = 𝐿 ∪ 𝑋 and 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 .

Proof. We rewrite 𝑧 to 𝑧 = (2∑ |𝐿 |
𝑗=1

∑ |𝑋 |
𝑖=1
|𝑙 𝑗−𝑥𝑖 |)+

∑ |𝑋 |
𝑖=1

∑ |𝑋 |
𝑗=1
|𝑥𝑖−

𝑥 𝑗 |. As proved in [26],

∑ |𝐿 |
𝑗=1
|𝑙 𝑗 − 𝑥 | is minimal if 𝑥 is equal to the

median of 𝑆 . Thus, (2∑ |𝐿 |
𝑗=1

∑ |𝑋 |
𝑖=1
|𝑙 𝑗 − 𝑥𝑖 |) can be minimized when

𝑥𝑖 ∈ 𝑋 is the median of 𝐿. In addition,

∑ |𝑋 |
𝑗=1
|𝑥𝑖 − 𝑥 𝑗 | can be min-

imized when 𝑥𝑖 ∈ 𝑋 are the same. Thus, we can conclude 𝑧 can

be minimized when each number in 𝑋 equals the median value of

𝐿. □

Now, we show a lower bound of the fairness score in Property 3

based on Property 1, 2 and Equation 1.

Property 3. Given a candidate target-aware community 𝐶 and a
list of active levels 𝑆 ′ = {𝑠1 . . . 𝑠𝑚} of𝑚 𝑀-connected target vertex
instances 𝐶′ in 𝐶 , the lower bound 𝐹𝑆𝐿𝐵 of the fairness score can be
calculated as:

𝐹𝑆𝐿𝐵 =

∑ |𝑆 |
𝑖=1

∑ |𝑆 |
𝑗=1
|𝑠𝑖 − 𝑠 𝑗 |

2|𝐶 |
(∑ |𝑆 ′ |

𝑚=1
𝑠𝑚 + (|𝑆 | − |𝑆 ′ |)𝑆 ′𝑚𝑎𝑥

) (4)

where 𝑆 contains the active levels in 𝑆 ′ and |𝐶 | − |𝑆 ′ | median

value of 𝑆 ′, 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 and 𝑠𝑚 ∈ 𝑆 ′.

Proof. We get the lower bound of 𝐹𝑆 by minimize the nu-

merator and maximize the denominator of Equation 1 separately.

Based the property 2, we can get the minimum value of numerator∑ |𝑆 |
𝑗=1
|𝑠𝑖 −𝑠 𝑗 | when the active levels of target vertex instances𝐶 \𝐶′

equal to the medium value of 𝑆 ′. To get the maximum value of the

denominator 2|𝑆 |
(∑ |𝑆 |

=1
𝑠𝑚

)
, we need to get the maximum value

of |𝑆 | and ∑ |𝑆 |
=1

𝑠𝑚 . Recall that the target-aware community is con-

tained in the candidate candidate community, thus the maximum

value of |𝑆 | are the size of candidate community |𝐶 |. As discussed in
Property 1,

∑ |𝑆 |
=1

𝑠𝑚 have the maximum value when the active levels

of target vertex instances𝐶 \𝐶′ are equal to the maximum value of

𝑆 ′. Based on the maximum and minimum value of the denominator

and numerator, we can get the lower bound of fairness score. □

4.4 The optimization Algorithm
Algorithm 4 presents the optimization algorithm by reducing po-

tential target vertices and utilizing message-passing based strategy

and the lower bound of fairness score. Initially, we remove the ineli-

gible vertices of the target type using Algorithm 2 (Line 1) and find

the vertices in 𝑀-graph using Algorithm 3 (Line 2). Then we ini-

tialize 𝐷,𝑚𝑎𝑥𝐶, 𝐹𝑆𝑚 to store active levels, the fairest communities

and their fairness score (Line 3). Next, we search the target-aware

community in each candidate target-aware community 𝑔, i.e., each

weakly connected subgraph of 𝐺𝐶𝑀 using the lower bound of fair-

ness score (Lines 4-35). For each candidate target-aware community,

we first initialize𝑉𝑠𝑡, 𝐼𝑉 ,𝑈𝑉 ,𝑉 𝐼𝑉 to store the visited𝑀-connected

target vertex instances, in-neighbors of visited target vertex in-

stances, unvisited 𝑀-connected vertices of visited target vertex

instances and visited target vertex instances but not𝑀-connected

by target vertex instances in 𝑉𝑠𝑡 (Line 5). Then we randomly add

a vertex from 𝑔 to 𝑈𝑉 (Line 6), and start to find the target-aware

community by visiting the vertex in𝑈𝑉 (Lines 7-35). For each vertex

𝑣 in𝑈𝑉 , we add it to 𝑉𝑠𝑡 , enumerate the motif instances around it

to calculate its active level, and add the𝑀-neighbors of 𝑣 which is

not visited to𝑈𝑉 (Lines 8-12). Based on the active levels of visited

target vertex instances, we calculate the lower bound of the fairness

score. If the lower bound is higher than the fairness score of existing

fairest communities, we remove this candidate target-aware com-

munity; else, we continue to implement the above process (Lines

13-15). If𝑈𝑉 is empty, we consider whether the in-neighbors𝑂𝑉 of

vertices in 𝑉𝑠𝑡 but not contained in 𝑉𝑠𝑡 and the vertices in 𝑉𝑠𝑡 are

𝑀-connected (Lines 16-35). We first get the 𝑀-neighbors of each

vertex 𝑣 in 𝑂𝑉 (Line 17). If 𝑣 is contained in 𝑉 𝐼𝑉 , we can get the

𝑀-neighbors of 𝑣 by collecting the out-neighbors of 𝑣 in 𝑔 (Lines

33-35); else, we get its𝑀-neighbors and active level by enumerating

the motif instances around 𝑣 (Lines 18-26). If𝑀-neighbors of 𝑣 are

contained in 𝑉𝑠𝑡 , we know that 𝑣 is 𝑀-connected to the vertices

in 𝑉𝑠𝑡 (Line 27-29); if not, we record the 𝑀-neighbors and active

level of 𝑣 (Lines 30-32). We repeat the above process until 𝑈𝑉 and

𝑂𝑉 are empty. Finally, we return the fairest communities stored in

𝑀𝑎𝑥𝐶 .

The time complexity of Algorithm 4 is 𝑂 (𝑑
3

2
𝑑𝑡 ·𝑉 2

𝑡 + |𝑉𝑡 | |𝑉𝑞 | +
|𝐸𝐺 | · |𝐸𝑞 |) in total. But the exploration-based filter and message-

passing based optimization strategy help to filter out ineligible

vertices in 𝑉𝑡 , and the lower bound based pruning rules filter the

unfair communities so as to improve the efficiency.

5 EXPERIMENTS
5.1 Experimental Setup
Dataset.We performed extensive experiments on four real-world

HIN datasets: IMDB
1
, DBLP

1
, Freebase

1
, and Amazon

1
. Their sta-

tistics, such as the number of vertices, edges, vertex types, average

degree of vertices and number of distinct motifs, are presented in

1
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Algorithm 4: The Optimization Algorithm

Input: An HIN𝐺 = (𝑉𝐺 , 𝐸𝐺 ) , a motif 𝑞 = (𝑉𝑞 , 𝐸𝑞 , 𝑣𝑡 ) with vertex type mapping

function𝜓𝑞
Output: A list of individual fairness communities𝑚𝑎𝑥𝐶

1 𝐺𝐶𝑀 ← Exploration-based Filter(𝐺,𝑞) ;
2 𝐺 ←Message-Passing(𝐺,𝑞,𝐺𝐶𝑀 ) ;
3 𝐷 ← empty dictionary, 𝐹𝑆𝑚 = 1,𝑚𝑎𝑥𝐶 = [ ] ;
4 for each weakly connected graph 𝑔 = (𝑉𝑔, 𝐸𝑔 ) of𝐺𝐶𝑀 in ascending order of |𝑔 | do
5 𝑉𝑠𝑡 ← ∅, 𝑖𝑓 ← False, 𝐼𝑉 ← ∅,𝑈𝑉 ← ∅𝑉 𝐼𝑉 ← ∅;
6 𝑈𝑉 ← Random select a vertex from𝑉𝑔 \𝑉𝑠𝑡 ;

7 while𝑈𝑉 ≠ ∅ do
8 Random pop a vertex 𝑣 from𝑈𝑉 to𝑉𝑠𝑡 ;

9 𝐼𝑉 ← 𝐼𝑉 ∪ { in-neighbors of 𝑣 in 𝑔 } ;
10 for each instance 𝑔𝑞𝑚 = (𝑉𝑞

𝑚 , 𝐸
𝑞
𝑚 ) of motif 𝑞 around 𝑣 in𝐺 do

11 Same as Line 9-10 of Algorithm 1 ;

12 𝑈𝑉 ← 𝑈𝑉 ∪ {𝑣′ ∈ 𝑉𝑞
𝑚 | 𝜓 (𝑣′ ) = 𝜓𝑞 (𝑣𝑡 ) ∧ 𝑣′ ∉ 𝑉𝑠𝑡 } ;

13 if 𝑖𝑓 = False then
14 𝐹𝑆𝐿𝐵 ← calculate the lower bound using active levels of𝑉𝑠𝑡 ;

15 if 𝐹𝑆𝐿𝐵 > 𝐹𝑆𝑚 then 𝑖𝑓 ← True ;

16 if 𝑈𝑉 = ∅ then
17 𝑂𝑉 ← 𝐼𝑉 \𝑉𝑠𝑡 , 𝐼𝑉 ← ∅ ;

18 if 𝑂𝑉 = ∅ then
19 Same as Line 19-24 of Algorithm 1 ;

20 else
21 for each vertex 𝑣 ∈ 𝑂𝑉 do
22 if 𝑣 ∉ 𝑉 𝐼𝑉 then
23 𝑀𝑁 ← ∅ ;

24 for each instance 𝑔𝑞𝑚 = (𝑉𝑞
𝑚 , 𝐸

𝑞
𝑚 ) of motif 𝑞 around

𝑣 in𝐺 do
25 Same as Line 9-10 of Algorithm 1 ;

26 𝑀𝑁 ← 𝑀𝑁 ∪ {𝑣′ ∈ 𝑉𝑞
𝑚 |𝜓 (𝑣′ ) = 𝜓𝑞 (𝑣𝑡 ) } ;

27 if 𝑀𝑁 ∩𝑉𝑠𝑡 ≠ ∅ then
28 𝑈𝑉 ← 𝑈𝑉 ∪ (𝑀𝑁 \𝑉𝑠𝑡 ) ;
29 𝑉𝑠𝑡 ← 𝑉𝑠𝑡 ∪ {𝑣} ;
30 else
31 𝑉 𝐼𝑉 ← 𝑉 𝐼𝑉 ∪ {𝑣};
32 Delete out-edges of 𝑣 in 𝑔 and add out-edges

between 𝑣 and vertices in𝑀𝑁 to 𝑔 ;

33 else
34 𝑀𝑁 ← out-neighbors of 𝑣 in 𝑔 ;

35 Same as Line 27-29 ;

36 Return𝑚𝑎𝑥𝐶 ;

Table 2. IMDB is an online dataset of movies and television pro-

grams, which consists of three types of vertices (movies, directors,

and actors). DBLP is a website for computer science bibliography,

which has four vertex types containing authors, papers, terms, and

publication venues after data preprocessing and extraction. Free-

base is a huge collaborative knowledge graph, which contains 8

genres of entities. Amazon is a co-purchase graph. Its nodes repre-

sent goods and edges indicate that two goods are frequently bought

together.

Parameters. We randomly create motifs to test different sit-

uations and reported the average running time, space cost and

effectiveness metrics. In particular, we first generate a small HIN by

conducting a random walk on the data graph following [2]. After

that, we randomly choose a vertex in the small HIN as the target

vertex and select the small HIN as a motif if it has at least two

vertices with the type of target vertex. For performance evaluation,

we create motifs with varying sizes from 3 to 7 (default size is 5)

because the size of the motifs is bounded from 3 to 7 in real appli-

cations [14, 19, 25]. We randomly create 5 motif sets, each of which

contains 100 motifs of the same size. We treat the running time of

Table 2: Dataset Statistics

Dataset Vertices Edges Vertex types motifs

IMDB 11,616 34,212 3 6

DBLP 26,128 239,566 4 7

Freebase 180,098 1,057,688 8 16

Amazon 1,569,960 264,339,468 107 76
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Figure 5: Time cost of Target-aware Community Search on
Four Datasets under Default Parameter Setting

a query as infinite (Inf) if the query set cannot be finished in 24

hours.

Algorithms.We evaluate four algorithms in our experiments,

namely Baseline, FVA, FVA-M, FVA-L. Baseline is the filter-verify so-

lution discussed in Section 3. FVA is the filter-verify algorithm with

the reducing potential target vertices strategy. FVA-M considers

the reducing potential target vertices strategy and message-passing

based optimization strategy. FVA-L utilize the reducing potential

target vertices strategy, message-passing based strategy and the

lower-bound to search community, i.e., the Algorithm 4.

Environment. All the experiments are implemented in Python

3.7 programming language and are conducted on a Linux system

that has an Intel Core i5 CPU @ 2GHz and 8GB of memory. For

subgraph isomorphism, we use Grand-Iso [24], which is a state-of-

the-art subgraph isomorphism algorithm.

5.2 Evaluation of Efficiency
In this subsection, we present the performance of our proposed

three algorithms compared with the baseline solution. Figure 5

demonstrates the time cost of four methods over four datasets

under the default parameter settings. Clearly, FVA-L runs much

faster than the other three methods for every dataset. In specific,

FVA-L reduces the time cost by ×2.41, ×3.18, and ×11.15 compared

to the baseline method for IMDB, DBLP, Freebase, and Amazon

dataset, respectively.

To show the impact of each parameter, we also evaluate the

efficiency of the proposed algorithms over four datasets by varying

the motif size |𝑉𝑞 |.
Varying motif size |𝑉𝑞 |. Figure 6 shows the average time cost

of the four algorithms when motif size |𝑉𝑞 | varies from 3 to 7.

We obverse all the algorithms consume higher time costs when

the motif size increases. This is because the cost of active level

calculation (i.e., motif enumeration) increases with the motif size.

In addition, the three proposed algorithms consume significantly
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Figure 6: Efficiency evaluation over motif size |𝑉𝑞 | on four datasets
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Figure 7: Time cost of four methods with different sampling ratios on four datasets
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Figure 8: Effectiveness Analysis
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Figure 10: The number of visited vertices after performing baseling, FVA and FVA-L over motif size |𝑉𝑞 |

less time than the baseline method and consume decreasing time in

a similar trend as the results under the default parameter settings.

Thus, we conclude that our proposed methods effectively enhance

the performance of target-aware community search under different

motif sizes.

Memory overheads analysis. Table 3 shows the total memory

overheads of the methods on four datasets. Note that the mem-

ory overheads of algorithms do not contain the memory overhead

of the subgraph isomorphism algorithm. Obviously, the memory

overheads of FVA, FVA-M, and FVA-L are significantly higher than

that of baseline. This is because FVA, FVA-M, and FVA-L store the

candidate vertices of each query vertex in the exploration-based

filter stage. Additionally, we also see the memory overheads of

FVA, FVA-M, and FVA-L are almost the same. This is because the

message-passing based postponing enumeration search and lower

bound-based approach changed the method of searching, which

does not incur additional memory overhead. Furthermore, we can

see the memory overheads of same method in Amazon dataset



Effective Individual Fairest Community Search over Heterogeneous Information Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3: Evaluation of memory overheads (MB)

Dataset Baseline FVA FVA-M FVA-L

IMDB 4.15 11.10 11.11 11.13

DBLP 8.22 34.41 34.44 34.43

Freebase 7.16 27.38 27.41 27.47

Amazon 4.71 9.31 9.32 9.32
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Figure 11: r-degree distribution of communities

is significant lower than other three datasets. This is because the

number of motif instances and target-aware community stored in

memory is less than other three datasets.

Efficiency of pruning strategies. Figure 10 evaluates the prun-
ing efficiency of Baseline, FVA, FVA-M and FVA-L by comparing

the number of remaining vertices that need to calculate their active

levels on four datasets with varying |𝑉𝑞 |. As can be seen from Fig-

ure 10, FVA, FVA-M, and FVA-L can significantly reduce the number

of vertices compared to the baseline method as expected. Moreover,

the number of remaining vertices decreases as |𝑉𝑞 | increases. For
instance, in the IMDB dataset, FVA reduces the number of vertices

from 4670 to 1592; FVA-M reduces the number of vertices from

3683 to 1587; and FVA-L further reduces the number of vertices

from 3198 to 1372. Compared with the baseline method, FVA and

FVA-M have nearly same number of remaining vertices. These re-

sults confirm that the pruning effect of FVA and FVA-M mainly

comes from the exploration-based filter. In addition, we can find

that FVA-L substantially reduces the number of vertices compared

to FVA. This is because FVA-L not only prunes the unpromising

vertices in the exploration-based filter but also prunes the vertices

of the candidate target-aware communities that do not pass the

lower bound of fairness score.

5.3 Evaluation of Scalability
Weevaluate the scalability of four proposed algorithms over datasets

IMDB, DBLP, Freebase and Amazon. For each dataset, we generate

four small datasets with different sizes by randomly sampling 20%,

40%, 60%, and 80% vertices from the datasets, respectively. Note

that the dataset itself is considered with the 100% data size. Fig-

ure 7 shows the time cost of four algorithms on the size-varying

datasets. With the increase of the dataset size, we can observe that

the running time of Baseline, FVA, FVA-M and FVA-L has a linear

increasing trend. This implies that our proposed three algorithms

are easily applied to large-scale networks. However, the baseline

method can not be finished within 24 hours in large datasets (i.e.,

Amazon and Freebase). Thus, we conclude that the baseline solution

has limitations in scalability.

5.4 Evaluation of Effectiveness
To show the effectiveness of community search in HIN, we compare

our fairest target-aware community (t-community) with the 𝑘-P
Core [8] and 𝑘-P Truss [31]. To achieve this, we generate five

symmetric meta-paths P discussed in [8] that are the sequences

of vertex types between two given target vertex types, and can be

seen as the motifs in our work. We calculate the quality metrics of

each 𝑘-P Core and 𝑘-P Truss, and report the highest metrics as

result. We utilize the following metrics to analyze the quality of

communities.

Relational Degree of Community Members. Conventionally,
the degree of a vertex is the number of edges connecting it. To

adapt it for communities in HINs, we redefine it as the number

of𝑀-neighbors of a vertex and call it relational degree (r-degree).

For each community, we count the percentages of vertices whose

r-degree varies from 1 to 20. Due to the space limitation, we only

report the average percentage values on IMDB and DBLP datasets

in Figures 11. Clearly, compared to 𝑘-P Core and 𝑘-P Truss, the

variances of the r-degree of target-aware community are smaller.

Thus, the engagement between vertices in t-communities is more

similar than the engagement between vertices in 𝑘-P Core and 𝑘-P
Truss.

Similarity of Community Members. We measure the simi-

larity of community members by using PathSim [29]. Specifically,

we first find communities of 𝑘-𝑃 core, 𝑘-𝑃 Truss and target-aware

community, then compute the PathSim value for each pair of ver-

tices in these communities. Figure 8a shows the average PathSim

values on four datasets. Clearly, target-aware communities achieve

higher similarity values than those of 𝑘-𝑃 core and 𝑘-𝑃 Truss, so

their members are more similar to each other.

Density of link relationships. To measure the density of link

relationships, we extend the traditional density and redefine it as

the number of vertex pairs that are connected by meta-path over

the number of vertices in community. The average densities for

communities of each community model are depicted in Figure 8b.

We observe that the densities of t-communities are higher than

the 𝑘-𝑃 core but lower than the 𝑘-𝑃 Truss. Thus, the target-aware

community model achieves stronger cohesiveness than the 𝑘-𝑃 core

model but less cohesiveness than the 𝑘-𝑃 Truss model.

Closeness of Community. To measure the closeness of com-

munities, a commonly-used metric is the diameter [22], which is

the largest shortest distance between any pair of vertices in the

community. To adapt it for communities in HINs, we redefine the

distance as motif-constrained distance, i.e.,𝑀-distance; that is, the

𝑀-distance between two target vertex instances linked by an in-

stance of the motif is 1. In our experiment, we first calculate the

shortest𝑀-distance of each pair of target vertex instances in these

communities and report the largest distance in Figure 8c. Clearly,

the t-communities have smaller diameter than 𝑘-𝑃 cores and 𝑘-𝑃

Trusses on all datasets, which means that the community members

tend to have closer relationships.

Evaluation of Fairness. We conduct the study on the relation-

ship between fairness scores and the similarity between members
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in t-communities. Specifically, we first find t-communities on each

dataset, then compute the fairness score of each t-communiy and

the PathSim value for each pair of vertices in each community. Fig-

ure 9 shows the average PathSim values against the fairness scores

of t-communities on four datasets. Clearly, the average PathSim

consumes higher when the fairness score decreases. For instance,

we can find 14 t-communities in DBLP, the fairness scores are 0.16,

0.19, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.33, 0.36, 0.37, 0.38, 0.4, 0.56,

and the average PathSim values are 0.36, 0.25, 0.23, 0.22, 0.20, 0.18,

0.18, 0.16, 0.14, 0.06, 0.05, 0.04, 0.04, 0.005, respectively. Thus, we

conclude that the community members will be more similar if the

target-aware community has a higher fairness score.

6 RELATEDWORK
Community search: Community search aims to query cohesive

subgraphs that satisfy the customized query request. To measure

cohesiveness of a subgraph, existing works develop different com-

munity models such as 𝑘-core [1, 30], k-truss [5], k-clique [20],

k-edge-connected component [4], and the k-plex [6]. However,

these works focus on searching communities over homogeneous

graphs, which cannot be directly used in a heterogeneous network

because the relation between vertex types is different. Recently,

researchers attempted to find cohesive communities from HINs.

For instance, [8, 14–16, 31] utilize different customized query re-

quests such as meta-path [8, 16, 31], relational constraint [15] and

motif [14] to extend traditional community models. However, these

studies did not consider the notion of fairness, which may lead sys-

tematic discrimination for disadvantaged people in communities.

Fairness-aware Community Mining: The notion of fairness

graph retrieval has received much attention in recent years. It

is used to alleviate the bias problem caused by the tendency of

retrieval. For example, [19] proposed a fair spectral clustering al-

gorithm to generate communities, which ensures that each cluster

contains roughly the same number of group elements. [17, 32] pro-

vided a parity-based fairness measurement to distinguish the differ-

ences in behavior between dominant and disadvantaged users. [10]

proposed a heuristic reordering based fairness algorithm to reduce

the influence of active users’ history on inactive users’ recommen-

dations. [23] refined the attributes that need to be considered fairly.

It applied the fairness measures to user-defined attributes and al-

lowed other attributes to bias in the recommendation. However, the

current works focus on how to make unbiased recommendations

through keeping the similarity of certain metrics between groups,

which can not make sure the fairness in fine granularity level (e.g.,

keep fairness between members in a group).

7 CONCLUSIONS
In this paper, we first discussed the necessity of individual fairness

in community search problem, then formalized the novel problem of

individual fairest community search, which considers the similarity

of active level between members in a community. To model the rela-

tionships between members of communities and customized query

requests of users, we extended the well-known concept of motif.

To tackle this problem, we first proposed an filter-verify algorithm,

then we propose an exploration-based filter strategy to reduce

the potential target vertices. Based on the filter, we developed a

message-passing based postponing enumeration search method

to reduce redundant computation. We further boosted the query

efficiency by identifying and pruning the unfair community in ad-

vance during the process of community search. Our experimental

results on four real HINs show the efficiency of our proposed filter

and algorithms, and the effectiveness of our proposed community.
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