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Non-reciprocal (NR) effective interactions violating Newton’s third law occur in many biological systems, but can also
be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous
effects on the overall collective behaviour and pattern formation, but can also influence aggregation processes on the
particle scale. Here we focus on the impact of non-reciprocity on the self-assembly of an (originally passive) colloidal
system with anisotropic interactions whose character is tunable by external fields. In the absence of non-reciprocity, that
is, under equilibrium conditions, the colloids form square-like and hexagonal aggregates with extremely long life times
yet no large-scale phase separation [Kogler et al., Soft Matter 11, 7356 (2015)], indicating kinetic trapping. Here we
study, based on Brownian Dynamics (BD) simulations in 2D, a NR version of this model consisting of two species with
reciprocal isotropic, but NR anisotropic interactions. We find that NR induces an effective propulsion of particle pairs
and small aggregates (“active colloidal molecules”) forming at initial stages of self-assembly, an indication of the NR-
induced non-equilibrium. The shape and stability of these initial clusters strongly depends on the degree of anisotropy.
At longer times we find, for weak NR interactions, large (even system-spanning) clusters where single particles can
escape and enter at the boundaries, in stark contrast to the small rigid aggregates appearing at the same time in the
passive case. ln this sense, weak NR shortcuts the aggregation. Increasing the degree of NR (and thus, propulsion), we
even observe large-scale phase separation if the interactions are weakly anisotropic. In contrast, system with strong NR
and anisotropy remain essentially disordered. Overall, the NR interactions are shown to destabilize the rigid aggregates
interrupting self-assembly and phase separation in the passive case, thereby helping the system to overcome kinetic
barriers.

I. INTRODUCTION

In equilibrium soft-matter systems, interactions between
constituents are, by definition, reciprocal, that is, they obey
Newton’s third law (action-reaction symmetry)1,2. This holds
even for coarse-grained descriptions where the environment is
treated only implicitly. However, the action-reaction symme-
try can be broken3 when the system is out of equilibrium, as it
occurs in many biological systems4–6 and synthetic colloidal
systems with certain “activity” or external driving7–12. Effec-
tive descriptions of such systems often involve non-reciprocal
(NR) interactions. An example is the following: Consider a
binary mixture of colloids, where one species (say, species
B) can chemically react with the surrounding solvent, result-
ing in the formation of certain products, while the other (say,
species A) remain inert with respect to the solvent. This can
be achieved, for e.g., by coating the B-particles with a catalyst.
The A-particles, although not directly coupled to the solvent,
can respond to the chemical gradient caused by the reaction
products (due to diffusiophoresis13,14) and thus move towards
regions with high product concentrations. Ultimately, when
particles of opposite species approach each other, the (inert)
A-particle is attracted to the (reactive) B-particle, but not vice-
versa11,15–18.

Recent research has shown that NR interactions can
have crucial impact on the collective behaviour and pat-
tern formation19 in systems of active particles and scalar
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mixtures19–22. In the present paper we are specifically con-
cerned with self-assembly processes on the particle scale. In
particular, we ask for the impact of NR interactions on clus-
ter aggregation of passive (i.e., non-motile) colloidal particles
with anisotropic interactions.

A variety of studies involving systems with isotropic NR
interactions have already shown interesting effects such as the
formation of "active colloidal molecules" with self-propulsion
in theory23–27 and in experiments8–11,17,18. In some of these
systems, NR even induces phase separation28,29. More gener-
ally, NR has found to have profound effects on complex (e.g.,
multifarious) self-assembly where, in equilibrium, the aggre-
gation process is often stuck in metastable minima of the free
energy landscape, that is, the system is kinetically trapped. In
such situations, NR can help to overcome kinetic barriers30–32,
similar to what is seen in complex self-assembly processes of
Janus colloids when these are activated, e.g., by light33.

In this study, we are specifically interested in the inter-
play of NR, on the one hand, and anisotropy of interactions,
on the other hand. To this end we investigate a NR ver-
sion of a two-dimensional (2D) model of a (passive) colloidal
model system34 describing aggregation in orthogonal electric
and magnetic fields35. The fields are assumed to induce four
“patches” on the particles whose detailed configuration de-
pends on the field strength34. The resulting anisotropy of
the two-particle interaction thereby becomes tunable, allow-
ing for different cluster types from hexagonal (low anisotropy)
to square-like (strong anisotropy). Such clusters dominate the
equilibrium collective behaviour over a broad range of tem-
peratures and densities; in particular, there is no large-scale
phase separation despite the fact that the anisotropic inter-
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actions are, overall, attractive34. Here we extend this model
by introducing two species of particles whose inter-species
anisotropic interactions are NR (the isotropic part is symmet-
ric). We show that already small degrees of NR lead to ef-
fective propulsion on the two-particle level and to activity of
small aggregates formed at initial stages of aggregation. This
has profound impact on the speed of aggregation and also on
the system’s long-time behaviour. In particular, we observe an
analogue of motility-induced phase separation familiar from
active particles at large NR and low anisotropy. In contrast,
strong anisotropy destroys this effect.

The rest of the paper is organised as follows. In Section II,
we summarize features of the original passive model34 and in-
troduce the NR variant. Our numerical results are described
in Sec. III, focussing first on the dynamics of a NR pair of
particles. We then move to aggregation in weakly NR sys-
tems as compared to that in the reciprocal reference case, and
eventually to strongly NR systems. Finally, in Section IV, we
summarize our findings.

II. MODEL

Our model is inspired by previous work on two-
dimensional (2D) systems of colloidal particles in orthogonal
electric (e) and magnetic (m) fields34. Specifically, we con-
sider a system of N disk-like particles with diameter σ , where
we distinguish two species, A and B with NA = NB = N/2.
The intra-species (A-A and B-B) interactions are reciprocal
and equal to each other regarding both, isotropic (steric) and
orientational, contributions. The same holds for the isotropic
part of the inter-species (A-B and B-A) interactions. In con-
trast, the orientational inter-species interactions are NR.

To introduce the details of the orientational pair interac-
tions, we start by describing the effect of the external fields on
one particle (of either species), for details see Ref.34. We as-
sume that the external fields of type m and e are pointing along
the x− and y−axes, respectively, and induce two dipole mo-
ments along their respective directions in each particle34–36.
The two dipole moments are assumed to be of equal mag-
nitudes and to be independent of each other, i.e., they inter-
act only with dipole moments of the same type in other par-
ticles. We mimic each of these dipole moments using two
fictitious, opposite point charges qα1 = −qα2 separated by a
distance 2δr, where index α = e,m, represents the two fields.
A schematic of the particle is given in Fig. 1(a). The displace-
ment vector of the point charges from the particle’s centre is
given by δαk = (−1)kδr êα , where the index k = 1,2 and the
unit vectors êe = ŷ and êm = x̂. The parameter δr describes
the distance between each of these point charges from the
particle’s centre and may be considered as a measure of the
strength of the fields. Following34, we assume that each point
charge has the same absolute value |±q|= 2.5(ε/σ)1/2. The
interaction potential between two particles of the same species
β (with β = A,B) is given by

Uββ (ri j) =UWCA(ri j)+UDIP(ri j). (1)

The first term on the right side of Eq. (1) represents
the steric repulsion of the particles and is described by the
Weeks-Chandler-Andersen (WCA) potential37, UWCA(ri j) =

4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
+ 1

4

]
, where ε is the WCA energy pa-

rameter that is used as the unit for energy for our simulations,
and ri j = |ri j| = |ri − r j| is the distance between the parti-
cle pairs. The potential UWCA(ri j) is made purely repulsive
by employing a cut-off distance of rWCA = 21/6σ . The sec-
ond term on the right side of Eq. (1) describes the interac-
tion potential due to the two point charge pairs on each parti-
cle. We implicitly assume that the interactions between these
point charges are screened by choosing a Yukawa potential34.
The interaction between two point charges of different parti-
cles i, j of type α = e, m and sign k, l = 1,2 is described by,

Uαkl
YU(r

αkl
i j ) = qαk qαl

exp
(
−κr

αkl
i j

)
r

αkl
i j

, where rαkl
i j = |ri j +δαl −δαk |

is the distance between the charge pairs. The overall contribu-
tion of the charges to the pair-interaction potential is given by
the sum of the Yukawa potentials for the magnetic and electric
charges, UDIP(ri j) = ∑α∈e,m ∑

2
k,l=1 Uαkl

YU(r
αkl
i j ). In the present

study we consider three different values of δr, 0.1σ , 0.21σ

and 0.3σ . The inverse screening length κ is set to κ = 4.0/σ .
The potential is cut-off at a distance rYU = 4.0σ .

In Fig. 1(b), we plot the potential UDIP(ri j) for two parti-
cles that are in contact with each other as function of θ , the
polar angle between ri j and the x−axis, for different values of
charge separation δr. It is seen that UDIP(ri j) is negative for
all values of θ at the distance considered and also for all δr.
This shows that UDIP(ri j) is, on the angular average, purely
attractive. Furthermore, UDIP(ri j) has minima at ri j = σ êα

(with α = e, m), i.e., when the particles are aligned along the
direction of one of the external fields, reflecting the direction
dependency of the potential. Increasing δr renders the min-
ima of UDIP(ri j) more pronounced, resulting in an increase
of anisotropy. In conclusion, when two particles get in con-
tact with each other, they feel an (angle-dependent) mutual
attraction. As a consequence, at sufficiently large coupling
strength, the particles tend to stick to each other, forming a
simple example of a "colloidal molecule"38,39. Note that we
have normalised UDIP(ri j) such that it has a constant value for
ri j = σ and ri j pointing along one of the fields (ri j = σ êα )
(see Appendix A), independent of δr.

Now, we turn to the two-species system. The NR is in-
troduced for the inter-species orientational interactions (A-B
and B-A). Specifically, we modify the interaction potential in
Eq. (1) by introducing a pre-factor Dβγ in front of UDIP(ri j),
where the indices β ,γ ∈ {A,B} correspond to the particle
species and Dβγ are the elements of a 2× 2 NR matrix de-
fined by

D =

(
1 1+κnr

1−κnr 1

)
. (2)

As seen from Eq. (2), the diagonal elements DAA = DBB =
1, while the off-diagonal elements relate to the inter-species
interactions and can differ depending on the NR parameter
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FIG. 1. (a) Schematics of a particle with two pairs of fictitious point charges (mimicking induced dipole moments) separated by a distance of
2δr. The point charges are colour coded according to the corresponding dipole type: green for electric field (e) pointing in y−direction and
red for the magnetic field (m) pointing in x−direction. (b) Anisotropic potential UDIP(ri j) for two particles at contact (ri j = σ ) and at different
spatial configurations plotted as a function of the angle θ between the connecting vector ri j and the x−axis. In the bottom, we show typical
configurations pertaining to specific values of θ (indicated by red arrows). The black arrows indicate the x− and y−axes. One particle is kept
in place, while the other is rotated around that particle. The dashed line represents the connecting vector.

κnr (κnr ̸= 0 implies a NR system). We here consider system
with κnr ∈ [0,1], such that the sign of the B-A interaction po-
tential remains unchanged. Note that the first term in Eq. (1),
UWCA(ri j), remains reciprocal. The complete interaction po-
tential for two particles i and j belonging to species β and γ

respectively is then given by,

Uβγ(ri j) =UWCA(ri j)+DβγUDIP(ri j). (3)

The motion of the particles is governed by the overdamped
Langevin equation,

γ ṙi,β =−∑
j ̸=i

∇riUβγ(ri j)+FR,i(t), (4)

where ri,β is the position vector of each particle i of species
β = A,B, with i = 1, ..,N and ri j = |ri,β − r j,γ | is the centre-
to-centre displacement vector between particle i and another
particle j of species γ = A,B. FR,i(t) is a random force act-
ing on particle i at time t with the properties of a Gaussian
white noise, that is,

〈
Fa

R,i(t)
〉
= 0 and

〈
Fa

R,i(t)F
b
R, j(t

′)
〉
=

2γkBT δ (t − t ′)δi jδab where i, j are particle indices and a,b ∈
{1,2} represent the vector components. The properties of the
random force remain the same for both species of particles.
Further, γ is the friction coefficient of the medium in which
the colloidal particles are dispersed in, T is the temperature
and kB the Boltzmann constant.

We perform simulations consisting of an equal number of
particles of both species, NA = 900 and NB = 900, for a total

of N = NA +NB = 1800 particles in a square-like simulation
box with periodic boundary conditions. The reduced number
density ρ∗ = ρσ2 is set to 0.3 and the reduced temperature
is set to T ∗ = kBT/ε = 0.05. The temperatures and densi-
ties are chosen such that the system remains below the crys-
tallization and the anisotropic interactions remain dominant.
Simulations are performed for different values of κnr, rang-
ing from 0 to 1. The Langevin equations (4) are solved via
the Euler-Maruyama integration scheme for stochastic ordi-
nary differential equations40. The integration step-size is set
to ∆t = 10−5τB, where τB is defined as the Brownian timescale
of the system and is given as τB = σ2γ/kBT . The simulations
are performed until the simulation time reaches 100τB.

III. RESULTS

A. Dynamics of two particles

As a first step to understand the collective behaviour result-
ing from Eqs. (3) and (4), we consider the dynamics of two
nearby particles of different species. The anisotropic char-
acteristics of UDIP(ri j) alone, i.e., without the NR pre-factor
Dβγ in Eq. (3), are summarized in Sec. II. We now explore the
effect of the full NR potential given in Eq. (3).

If κnr > 0, it follows from Eq. (3) that |UAB(ri j)| >
|UBA(ri j)|, for all distances and angles between the A- and
B- particle. This means that the force FAB = −∇riUAB act-
ing on an A− particle due to a neighbouring B- particle is
more attractive than the other way around. This situation is
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FIG. 2. (a) MSD of a particle pair at contact with reciprocal (orange) and NR (blue) interactions. The green and red dashed lines indicate
ballistic (MSD ∝ τ2) and diffusive (MSD ∝ τ) behaviour, respectively. (b) Schematics of a non-reciprocally interacting particle pair indicating
the mutual forces. (c) Plot of the effective propulsion velocity v0 of the NR particle pair as a function of κnr for the different values of δr. The
simulations are performed at T ∗ = 0.05.

depicted schematically in Fig. 2(b). Note that the steric repul-
sions are reciprocal in nature for all combinations of particles
(this choice is similar to that in other studies involving NR
Brownian systems23,41). Therefore, the overall effect when
a particle of species A gets close to one of species B is that
they tend to stick together because of the attractive nature of
the anisotropic potential, but A tends to push B along the di-
rection of attraction. This remarkable effect can be seen as a
propulsion mechanism, resulting in a directed motion of the
pair of particles considered.

In order to quantify the degree of propulsion, we perform
simulations of a dilute system consisting of one A-B pair of
particles (that are initially at contact) for 100τB and calculate
the mean squared displacement (MSD) defined as

MSD(τ) =
2

∑
i=1

〈
[ri(t + τ)− ri(t)]

2
〉
/2. (5)

Here, the ⟨..⟩ brackets denote a noise as well as time av-
erage and the factor of 1/2 is introduced to average over
the two particles. We average over 50 noise realisations for
each parameter combination to calculate the MSD. Two ex-
emplary MSDs illustrating the reciprocal (κnr = 0) and NR
(κnr > 0) case are plotted in Fig. 2(a). In both cases the two
particles stick together for the entire run. However, the time
dependence is different. In particular, the MSD of the non-
reciprocally interacting A-B pair shows a ballistic behaviour,
that is, MSD(τ) ∼ τ2, for the entire length of the simulation.
This reflects persistent motion. We note that the absence of a
long-time diffusive regime is expected due to the absence of

other particles. In contrast, the MSD of the reciprocally inter-
acting pair shows diffusive behaviour, that is, MSD(τ)∼ τ1.

The MSD of the NR pair resembles that of an active Brown-
ian particle (ABP) with an infinite persistence time42–44. This
motivates us to fit this MSD to the analytic expression for
the MSD of an ABP42,43,45 in the ballistic regime (see Ap-
pendix B). From the fit parameters, we can extract the effec-
tive propulsion velocity v0. In Fig. 2(c), we present v0 as a
function of the NR parameter κnr for different values of δr. It
can be seen that v0 increases with κnr for all δr values con-
sidered, clearly revealing the role of NR for the existence and
strength of propulsion. Another interesting observation is that
v0 also depends on δr. At fixed κnr, v0 increases with δr, and
this effect becomes more pronounced the larger κnr is. This
can be attributed to the direction-dependent nature of the po-
tential, whose minima become more pronounced with increas-
ing δr.

To summarize, the non-reciprocally interacting pair can
be seen as a realization of a simple active colloidal
"molecule"8,39 (specifically, a dimer). However, we empha-
size that the "activity" in our system is solely due to NR inter-
species interactions. This is different from studies where the
individual particles are intrinsically self-propelled7,16,46–53.
Similar propulsion mechanisms induced by NR interactions
have also been reported in other recent studies, both in
theory23–27 and in experiments8,9,11,17,18, yet for isotropic in-
teractions.
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B. Aggregation in reciprocal and weakly non-reciprocal
systems

We now turn to the collective behaviour of the many-
particle system consisting of N = 1800, particles. In the next
paragraph we first consider, as a reference, the reciprocal case
(κnr = 0) corresponding to a single-species system (see also
Ref.34). In Sections III B 2 and III C we then explore the im-
pact of NR (κnr > 0). To quantify the self-aggregation process
we study the evolution of the size of the largest cluster, Nmax,
as a function of time t. We calculate Nmax(t) based on a dis-
tance criterion. Particles whose centre-to-centre distances are
smaller than rcl = 1.15σ are defined as being bonded, and all
particles that are mutually bonded are defined as belonging
to the same cluster. We then determine the cluster with the
largest number of constituent particles. The number of parti-
cles in the largest cluster yields Nmax. To characterize the sta-
bility of the aggregates, we calculate the time-dependent bond
auto-correlation function B(τ) (see Appendix D). Further tar-
get quantities are the distribution of the position resolved local
area fractions (see Appendix C) and the MSD.

1. The reciprocal reference system

First, we focus on the reciprocal case. It has been shown
in Ref.34 that, at the temperature and density considered, δr is
the key parameter that can tune the aggregation. In Figs. 3(a)-
(c) we show snapshots of simulations started from a random,
uniform distribution of particles, after a simulation time of
t = 100τB for the three values of δr (already considered in
Ref34). We observe multiple aggregates in all three cases.
However, the nature of these aggregates depend on δr. For
weakly anisotropic interactions [corresponding to low δr in
the range of 0.1-0.21 σ , see the example δr = 0.1σ shown
in Fig. 3(a)], hexagonal structures are preferred due to their
packing efficiency. In contrast, when the interactions become
strongly anisotropic [corresponding to high δr in the range of
0.21-0.3 σ , see the example δr = 0.3σ shown in Fig. 3(c)],
quadratic and chain-like structures, aligning along the direc-
tion of the induced dipoles, are preferred. At intermediate
values [see the case δr = 0.21σ shown in Fig. 3(b)], neither
the hexagonal structure, nor the quadratic structure is strongly
preferred, rather there is a competition. This leads to a system
where hexagonal and quadratically ordered aggregates exist
simultaneously.

The different types of local structure also affect the stability
of the clusters. To quantify this, we plot in Fig. 4(b) the bond
auto-correlation function as a function of time difference τ for
the three values of δr. Here, B(τ) is calculated starting from
the finite time at which initial aggregates form (t0 = 0.5τB)
until τ = 100τB. For a system consisting of aggregates with
absolutely stable, rigid bonds, we would expect the bond au-
tocorrelation function to remain constant in time. Here, we
see that B(τ) decays for all the three values of δr in Fig. 4(b),
yet very slowly. Specifically, the decay of B(τ) is slowest
for δr = 0.1σ , followed by δr = 0.3σ and it is significantly
faster for δr = 0.21σ . This indicates that the aggregates in

the δr = 0.1σ and δr = 0.3σ cases are more stable compared
to those in the δr = 0.21σ case. This can be attributed to the
competition of structures in the case δr = 0.21σ . For all the
three systems, B(τ) never reaches zero within the simulation
time.

In addition, we show in Fig. 4(a) the quantity Nmax/N as a
function of time for a particular noise realisation for the three
values of δr [corresponding to solid lines in Fig. 4(a)]. We
stress that the general trends were found to be robust for differ-
ent noise realisations. It can be seen that Nmax/N increases in
a step-like manner for all three values of δr. Remarkably, in all
cases it remains below 0.6 even after 100τB. This shows that,
within the simulation time, the aggregation is not complete.
Additionally, it can be seen that Nmax evolves more slowly for
δr = 0.21σ than in the other two cases, particularly compared
to the case δr = 0.1σ . From a physical point of view, we
can understand the aggregation process in the three cases as
follows. For all values of δr, we observe first, the formation
of small clusters from individual particles and, second, their
subsequent merging into larger clusters54–56. For δr = 0.21σ ,
there is no clear preference of a specific local structure, and
thus, the particles have a probability to re-orient and bond with
other clusters. This ultimately leads to quite compact clusters
[see Fig. 3(b)]. In contrast, for δr = 0.1σ and δr = 0.3σ , the
clusters have finer structures and are more spread out. This is
a consequence of the stronger rigidity of bonds [also indicated
by the slow decay of B(τ)]. At the same time, the finer struc-
tures increase the likelihood of cluster merging, causing the
value of Nmax/N to increase more rapidly than for δr = 0.21σ .

2. Weakly non-reciprocal systems

We now turn to equimolar binary mixtures characterized by
finite values of κnr. In this section we mainly focus on weakly
NR systems characterized by κnr ≤ 0.3. Exemplary simulation
snapshots after t = 100τB for the three anisotropy parameters
δr are shown in Figs. 3(d)-(f). In all cases the particles have
aggregated into large, percolated clusters (note the periodic
boundary conditions). This is in stark contrast to the corre-
sponding reciprocal systems [see Figs. 3(a)-(c)] where, at the
same simulation time, multiple small clusters have formed.

These observations are substantiated by the behaviour of
the quantity Nmax/N as function of time. Already for κnr =
0.1, as seen from Fig. 4(a), the size of the largest cluster in-
creases much faster in the two-species systems than in their
reciprocal counterparts. Moreover, Nmax/N reaches the value
of 1 (corresponding to a single large cluster comprising all
particles) before 50τB for all anisotropy parameters, where
the fastest increase occurs for the weakly anisotropic system
(δr = 0.1σ ). Still, full aggregation (i.e., Nmax/N ≈ 1) is even
reached for the somewhat delicate case δr = 0.21σ where,
with reciprocal interactions, different cluster structures com-
pete.

Another interesting observation for the particular case δr =
0.21σ are the step-like jumps of Nmax/N even at long times.
This reflects that clusters tend to break apart and re-form. In-
deed, already in the corresponding reciprocal system, the ag-



6

FIG. 3. Snapshots of simulations started from random, uniformly distributed particles at T ∗ = 0.05 and ρ∗ = 0.3 after t = 100τB for the
single-species (reciprocal) system with (a) δr = 0.1σ , (b) δr = 0.21σ , (c) δr = 0.3σ and for the two-species (NR) system with κnr = 0.1 and
(d) δr = 0.1σ , (e) δr = 0.21σ and (f) δr = 0.3σ . For the two-species system, the blue particles correspond to particles of species A and the
red ones to species B.

gregates are less stable than for other anisotropy parameters,
as revealed by the bond correlation functions B(τ) plotted in
Fig. 4(b). These differences regarding the breaking of bonds
persist for weakly NR systems (κnr = 0.1), as seen from the
functions B(τ) plotted in Fig. 4(c). The data show that B(τ)
decays more rapidly than in the reciprocal case for all three δr
values, but the decay is most pronounced at δr = 0.21σ .

Given the NR induced effective “propulsion”, detected al-
ready for pairs of particles (see Sec. III A), we may speculate
that propulsion also provides the main mechanism for the ac-
celerated aggregation in our anisotropic many-particle system
(indeed, similar observations have been made in simulation
studies involving NR systems with isotropic interactions7,23).

To illustrate the emergence of effective propulsion in our
many-particle system, we show in Fig. 5(a) the system-
averaged MSD defined as

MSD(τ) =
N

∑
i=1

〈
[ri(t + τ)− ri(t)]

2
〉
/N, (6)

where the brackets ⟨..⟩ denote a time as well as a noise av-
erage. The data in Fig. 5(a) pertain to δr = 0.1σ and differ-

ent values of κnr. The general trends observed here hold for
other values of δr as well. In the reciprocal case (κnr = 0), the
short-time MSD is nearly diffusive, but as time progresses,
its slope decreases and we observe sub-diffusive behaviour
with MSD(τ)∼ τ0.43. That is, within the simulation time, the
system does not reach the diffusive regime (MSD(τ) ∼ τ1)
expected in a fully equilibrated many-particle system. We
consider this as an indication of the aggregation into multi-
ple, small clusters that barely change in time. This behaviour
changes markedly already for κnr = 0.1. Here, not only the
initial increase of the MSD is faster (although not yet ballis-
tic), but we also observe a diffusive regime at long times. As
expected, the initial increase of the MSD becomes the faster
the larger κnr is, reflecting an increasing contribution of ef-
fectively propelled and, thus, ballistically moving particles.
Moreover, all NR systems reach the diffusive limit.

So far we have considered system-averaged quantities. Fur-
ther interesting information is gained when we analyze the
simulations on a particle level. In particular, to better un-
derstand the early stages of aggregation, we have searched
for the type of aggregated structures spontaneously formed
at short times (i.e., before the merging into large, percolated
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FIG. 4. (a) Largest cluster size (Nmax/N) as a function of time for δr = 0.1σ ,0.21σ ,0.3σ in the reciprocal (solid lines) and the NR case
(dashed lines) with κnr = 0.1. (b) Bond auto-correlation function as a function of time difference τ for δr = 0.1σ ,0.21σ ,0.3σ in the reciprocal
case and (c) in the NR case. The data pertain to T ∗ = 0.05 and ρ∗ = 0.3.

FIG. 5. (a) MSD of the many particle system (averaged over all particle trajectories) with δr = 0.1σ for the reciprocal case (κnr = 0) and
the NR case with different values of κnr. The coloured dashed lines indicate ballistic behaviour (MSD(τ) ∝ τ2, blue), diffusive behaviour
(MSD(τ) ∝ τ1, green) and sub-diffusive behaviour (MSD(τ) ∝ τ0.43, brown). The data are obtained at T ∗ = 0.05 and ρ∗ = 0.3. Examples of
"active" colloidal molecules (b)-(e): δr = 0.1σ and κnr = 0.1, (f)-(g): δr = 0.3σ and κnr = 0.1.
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clusters). Indeed we have found a variety of initial structures
(or “molecules”) that, in the NR case and depending on the pa-
rameters, can propel and even rotate. The formation of such
small colloidal molecules has already been reported in recent
literature8,10,11,24,27,51,57 on isotropic systems. In the present
systems, anisotropy adds an additional layer of complexity.
Examples (for κnr = 0.1) are shown in Figs. 5(b)-(g). The
green arrows next to the molecules indicate their respective di-
rections of propulsion or rotation. The smallest building block
are the pairs of opposite species ("active colloidal dimers") al-
ready discussed in Sec. III A. These pairs then combine with
other pairs or single particles. The features of the result-
ing larger “molecules” depend on the anisotropy parameter
δr, since increasing anisotropy causes the active dimers to be
more and more aligned along the direction of induced dipoles
(i.e., the x− or y− axis). This alignment can tune the compo-
sition and orientation of the formed “molecules”. Therefore,
at weak anisotropy (δr = 0.1σ ) we often find rather compact
structures that, moreover, can rotate. In contrast, at larger
anisotropy, the molecules consist of particles aligned strictly
along the axes, and rotations do not occur.

FIG. 6. Largest cluster size (Nmax/N) as a function of time for δr =
0.1σ and κnr = 0.2 (dashed blue lines), and δr = 0.21σ and κnr = 0.3
(dashed red lines).

As we increase κnr, the effective velocity of mixed pairs of
A and B particles increases as well [see Fig. 2(c)], thereby
speeding up the active “molecules” that form from these self-
propelled particle pairs. As an accompanying effect, we find
that the large clusters formed at later times of aggregation
break up and recombine more frequently. These trends are re-
vealed when we inspect again, in Fig. 6 the size of the largest
cluster (Nmax/N) as a function of time, this time at somewhat
larger values of κnr than those considered in Fig. 4. As shown
for δr = 0.1σ and κnr = 0.2, the size of the largest cluster
grows and drops in large steps, reflecting that clusters split up
and re-merge. However, Increasing κnr even further causes
the induced propulsion to start counteracting the clustering

mechanism. At this stage, some of the self-propelled particle
pairs can escape from large clusters. An example pertaining
to δr = 0.21σ and κnr = 0.3 is also plotted in Fig. 6. Here,
in addition to the step-like changes of Nmax/N, we observe
pronounced fluctuations that can be attributed to the escape of
particle pairs from the largest cluster. We will come back to
this cluster destruction in the next Section III C.

C. Phase separation and disorder in strongly non-reciprocal
systems

Upon further increase of the NR parameter κnr, we leave
the parameter regime of cluster aggregation (at the density
and temperature considered). Indeed we observe, depending
on the degree of anisotropy measured by δr, essentially two
types of behaviours: phase separation into a (mixed) dense
and (mixed) dilute phase (δr = 0.1σ ), or a completely disor-
dered state (δr = 0.21σ and δr = 0.3σ ).

We first discuss the phase separation for weakly anisotropic
systems (δr = 0.1σ ). As an illustration, Fig. 7(a) shows a
simulation snapshot at κnr = 0.7 after a simulation time of
t = 100τB, started from a mixed, random distribution of parti-
cles. The snapshot clearly reveals the co-existence of a dense,
large cluster of particles of both species with a dilute region
consisting of many single particles and particle pairs. The
presence of phase separation is also reflected in the (time-
averaged) distribution of the local area fraction, P(φ̄(x,y)),
plotted in Fig. 7(b) (for details of the calculation, see Ap-
pendix C). A phase-separated state is indicated by a double-
peak structure of P(φ̄(x,y))58,59, which is clearly visible here.
Interestingly, such a double-peak structure does not occur for
the two larger values of δr discussed below, indicating that
(too) strong anisotropy of the field-induced interactions de-
stroys phase separation. Within the phase-separated state ob-
served at δr = 0.1σ , single particles and particle pairs keep
leaving and re-entering the cluster, revealing a dynamically
balanced situation. This is seen from the quantity Nmax/N as
a function of time plotted in Fig. 7(c). The size of the largest
cluster exhibits persistent, small fluctuations around a mean
value of around 0.8 measuring the cluster’s average size.

The observation of phase separation induced by NR con-
forms with results from previous simulation studies of NR
mixtures with isotopic interactions (see, e.g., Ref.28). For such
systems, it was also shown that the character of phase sepa-
ration (e.g. condensation versus de-mixing) depends on the
overall volume fraction and mixing ratio28. We expect that
variation of these parameters (which were kept constant here)
would also lead to different types of phase separation in the
present, weakly anisotropic mixture.

We now turn to the behaviour of systems with stronger
anisotropy (δr = 0.21σ and 0.3σ ) and NR. Here, there is no
large-scale phase separation, rather the systems develop a dis-
ordered, yet highly dynamical state. Exemplary snapshots ob-
tained at δr = 0.21σ and κnr = 0.4 are presented in Fig. 8(a),
revealing the formation and subsequent breaking of a small
cluster as time proceeds. Corresponding results for Nmax/N(t)
are plotted in Fig. 8(b), along with data for another, com-
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FIG. 7. (a) Snapshot of a simulation at δr = 0.1σ and κnr = 0.7 started from a random, uniform distribution of particles at ρ∗ = 0.3 at T ∗ = 0.05
after a simulation time of t = 100τB. The blue particles correspond to particles of species A and the red ones to species B. (b) Distribution of
the position resolved local-area fractions P(φ̄(x,y)). (c) Largest cluster size (Nmax/N) as a function of time.

parable parameter combination. In both cases, Nmax/N ex-
hibits rapid fluctuations around a rather low average value in
the range 0.1-0.2, which is substantially smaller than in the
case of phase separation [see Fig. 7(c)] or in weakly NR sys-
tems [see Fig. 4(a)]. Similar signs of disorder are seen at even
higher values of the NR parameter.

To shed some light on the impact of anisotropy at large
κnr from a microscopic point of view, we investigate the fate
of the small aggregates formed at initial stages of aggrega-
tion. As discussed in Section III B 2, NR leads to the for-
mation of self-propelled colloidal “molecules” (see Fig. 5) at
early times that turn out to be quite stable for small values
of κnr. However, upon increase of κnr, the induced propul-
sion starts to counteract the aggregation; in other words, the
small molecules quickly fall apart. This can be seen from the
bond-autocorrelation functions plotted in Fig. 8(c) for all three
values of δr and representative NR parameters κnr ≥ 0.4. In
all cases, the correlation function decays much faster in time
than at low NR [see Fig. 4(c)], confirming our previous state-
ment of the reduced stability of “molecules” (in fact, an ap-
preciable number of bonds at longer times is found only for
δr = 0.1σ ). Thus, at large κnr, the system’s structure is rather
dominated by single particles and self-propelled A-B pairs.
If these pairs could freely move in any direction, one would
expect a behaviour similar to that of repulsive active particle
systems where, the combination of propulsion and repulsion

indeed leads to trapping and eventually to “motility-induced”
phase separation60. Such a (essentially) free motion indeed
occurs in our system when the anisotropy parameter is small
(δr = 0.1σ ). We thus speculate that trapping of pairs (that
can approach each other from any direction), together with
the angle-averaged attraction via the anisotropic potential, is
essentially the mechanism behind the observed phase separa-
tion at weak anisotropy (see Fig. 7). The situation is different
at δr = 0.21σ and δr = 0.3σ where the anisotropic interac-
tions force the particles to form pairs only along the x− and
y− axis. These axes also restrict the direction of motion of the
pairs. In this situation, trapping can only occur in the (rather
unlikely) case that oppositely moving particle pairs have a
head-on collision. Even if larger clusters form, they will be
easily disturbed by other, freely moving particles or particle
pairs and thus quickly dissolve [see Fig. 8(a)]. Thereby, large
interaction anisotropy can suppress phase separation and lead
to a disordered state.

As an overview of the behaviours seen in the binary mix-
ture at different degrees of NR and anisotropy, we present in
Fig. 9 a state diagram in the parameter plane spanned by κnr
and δr. We have identified three overall "states" whose char-
acteristics are summarize in Table I. For weak NR (κnr ≤ 0.3),
the systems behave similar to the reciprocal reference system
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FIG. 8. (a) Zoomed-in snapshots at δr = 0.21σ , κnr = 0.4, and different times, showing the formation and the subsequent dissolution of a small
cluster. (b) Largest cluster size (Nmax/N) as a function of time for δr = 0.21σ , κnr = 0.4 and δr = 0.3σ , κnr = 0.6. (c) Bond auto-correlation
function for δr = 0.1σ , κnr = 0.7; δr = 0.21σ , κnr = 0.4; and δr = 0.3σ , κnr = 0.6.

TABLE I. Characteristics of the different states
State Nmax/N No. of peaks in P(φ̄(x,y))

Aggregates ≥ 0.7 with large, step-like fluctuations one (at large φ̄ )
Phase separation ∼ 0.7−0.9 with small fluctuations two (at low and large φ̄ )

Disorder ≤ 0.03 with large fluctuations one (at low φ̄ )

insofar that there is no large scale phase separation, but rather
aggregation into clusters. In this regime, the main effect of
NR is that the clusters, at a given time, are much larger and
“thermalized” (i.e., particle can escape and re-enter), in con-
trast to the rigid structures formed in the reciprocal case. In
this sense, our results show that NR shortcuts the overall ag-
gregation process. On the particle level, we find that weak NR
leads to the formation of active “molecules” whose character
and stability depends on the anisotropy of interactions.

At larger degrees of NR, the overall behaviour strongly de-
pends on δr. In particular, phase separation is only found for
weakly anisotropic systems (dominated by freely moving self-
propelled pairs) whereas strongly anisotropic interactions lead
to disordered configurations where only small clusters occa-
sionally occur.

IV. CONCLUSION

This study has been devoted to the impact of NR on a
self-aggregating system of passive colloidal particles with
anisotropic interactions induced by external fields. To this
end, we have considered a binary version of a model in-
troduced earlier34, where NR occurs as a prefactor of the
anisotropic inter-species interactions. We then performed ex-
tensive BD simulation for a range of parameters regulating the
degree of NR, on the one hand, and anisotropy, on the other
hand.

Consistent with earlier studies involving isotropic
interactions8,9,11,17,18,23–27 we found that NR can lead to
the formation of effectively self-propelled pairs (or larger
“molecules”) of particles of different species. In this regime,
the degree of anisotropy mainly determines the molecules’
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FIG. 9. State diagram after t = 100τB at ρ∗ = 0.3 and T ∗ = 0.05 in
the plane spanned by the NR parameter κnr (horizontal axis) and the
anisotropy parameter δr (vertical axis).

structure and modes of motion. The NR-induced motion is a
signature that the system is indeed driven out of equilibrium
(as one would generally expect in an NR system). For
relatively weak NR, the effective motility enhances the ag-
gregation processes in the sense that, at the same simulation
times, the size of clusters is substantially larger than in the
reciprocal case, and the bonds are less stable. This overall
“annealing” effect is essentially independent of the degree of
anisotropy. We note, in this context, an interesting analogy to
other types of non-equilibrium self-assembly: for example, in
dense systems of triblock Janus colloids that tend to stuck in
long-lived transients33,61, introducing intrinsic activity to the
particles was shown to overcome free energy barriers, thereby
allowing the system to form faster the thermodynamically
favoured (Kagome lattice) state33. In the present system,
the role of activity is, to some extent, replaced by NR
interactions. However, when the anisotropic interactions are
strongly NR, we find different behaviour where the clusters
become unstable: in this regime, weakly anisotropic systems
exhibit phase separation, whereas strong anisotropy leads to
complete disorder.

In this study we have considered the collective behaviour
only at one density, composition and temperature. It seems
likely that by varying these parameters the phase boundaries
in Fig. 9 are shifted, or even new states emerge (as reported
in the case of isotropically interacting particles28,29). An-
other open question is what would happen in the case of an-
tagonistic couplings where the interactions are not only NR,
but have even different signs. Judging from recent studies
on other NR systems19,21,22,28,29,41,62, such antagonistic cou-
plings could open up the intriguing possibility of observing
spontaneously formed time-dependent states, e.g. travelling
patterns or chiral motion, whose interplay with aggregation
processes has yet to be explored. Work in these directions is
under way.
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Appendix A: Normalization of UDIP(ri j)

To allow for the comparison of UDIP(ri j) at different δr,
we normalize UDIP(ri j) such that it has the same value at the
minima for different δr, i.e.,

ŨDIP(ri j) =UDIP(ri j)
u

UDIP(σ êα)
. (A1)

Here, u = −0.2804ε is a constant (chosen consistently
with Ref.34) calculated from the un-normalized potential
UDIP(σ êα) for δr = 0.3σ .

Appendix B: Extracting the effective propulsion velocity v0

The MSD of a single particle is defined as MSD(τ) =〈
(r(t + τ)− r(t))2

〉
. The analytic expression for the MSD of

an active Brownian particle (ABP) is given by42,43,45,

MSD(τ) = 4Dtτ +2v2
0τ

2
r

(
τ

τr
+ exp

(
− τ

τr

)
−1

)
. (B1)

where Dt = kBT/γ is the translational diffusion coefficient and
τr is the persistence time of the ABP. At short times, when
τ ≪ τr, Eq. (B1) can be re-written as

MSD(τ) = 4Dtτ + v2
0τ

2, (B2)

indicating a combination of diffusive motion and ballistic mo-
tion with velocity v0. In the present work, we use Eq. (B2)
to fit our data of the MSD of the non-reciprocally interact-
ing particle pair. We thereby extract an effective propulsion
velocity corresponding to v0. Since the MSD is observed to
scale ballistically throughout the length of the simulation [see
Fig. 2(a)], we use the entire range of data for performing the
fit.

Appendix C: Position-resolved local area fractions

To study the occurrence of phase separation, we calcu-
late the position-resolved local area fraction distributions. A
phase-separated state is indicated by a double peak structure
of this distribution. We first begin by calculating the local area
fraction φi around each particle i. To this end, a Voronoi cell
is constructed around each particle i whose area is denoted by
Ai

63. In order to ensure that the central simulation box is prop-
erly partitioned by the Voronoi tessellation algorithm, we also
take into account four nearest images of the centrally placed
actual simulation box59. The local area fraction of each parti-
cle is then given by



12

φi =
area occupied by particle i

area of the corresponding Voronoi cell
=

π(σ/2)2

Ai
.

(C1)
Now, we divide the system into a grid where the mesh size

is set to be equal to σ , such that it is large enough to preserve
the particle-resolved information58,59. For each grid point
(x,y) we first identify the index i of the Voronoi cell that it falls
within and assign φ(x,y) = φi, to finally obtain the position-
resolved local area fractions. We further perform a time av-
erage (φ̄(x,y)) over the last 30 simulation time points to filter
out any transient small clusters in the dilute region58,59. From
this, we finally obtain a histogram representing the probability
distribution of φ̄(x,y).

Appendix D: Bond auto-correlation function

Bond auto-correlation functions are dynamical quantities
that can be used to study the lifetime of bonds that form be-
tween particles in self-aggregating systems. To calculate the
bond auto-correlation function in time (B(τ)) for our system,
we first define an N ×N matrix b(t) whose elements bi j(t0)
are assigned a value of 1 if particles i and j are boned and 0 if
they are not, at time t. Two particles are considered to be mu-
tually bonded if their centre-to-centre distance is smaller than
rcl = 1.15σ34. The bond auto-correlation function is then de-
fined as34

B(τ) =
N

∑
i, j=1,i ̸= j

〈
bi j(t0)bi j(τ)

〉
, (D1)

where the brackets ⟨..⟩ denote an average over all the parti-
cle pairs that are bonded at time t0.
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