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Abstract. We develop a unified method to study spectral determinants for several different
manifolds, including spheres and hemispheres, and projective spaces. This is a direct conse-
quence of an approach based on deriving recursion relations for the corresponding zeta functions,
which we are then able to solve explicitly. Apart from new applications such as hemispheres, we
also believe that the resulting formulae in the cases for which expressions for the determinant
were already known are simpler and easier to compute in general, when compared to those
resulting from other approaches.
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2 J. CUNHA AND P. FREITAS

1. Introduction

In the last few decades the problem of evaluating the determinant of the Laplace operator on
Riemannian manifolds has received considerable attention in the literature. These calculations
may be traced back to the work of Minakshisundaram and Pleijel [23], Seeley [30], and Ray and
Singer [28], and they are based on a regularization procedure via an associated zeta function.
Techniques related to zeta function regularization gained some momentum within the mathe-
matical physics community after Dowker and Critchley’s [12], and Hawking’s [20] papers from
1976 and 1977, respectively, described possible applications to physics – for a more complete
historical account, see [13], for instance; see also [15].

Briefly, given an elliptic differential operator T defined on a compact manifold (with or without
boundary) with discrete spectrum λ1 ≤ λ2 ≤ λ2 ≤ . . . , where in the case without boundary we
leave out the zero eigenvalue, we define the spectral zeta function associated with T by

ζT,M (s) =
∞∑

k=1
(λk)−s ,

which converges on some half–plane ℜ(s) > µ. Under certain conditions, which will be satisfied
by the Laplace–Beltrami operator on a compact manifold M (with or without boundary), for
instance, the function ζT,M may be continued analytically to a meromorphic function on the
whole of the complex plane, while being analytic at zero. We now see that, if it were possible
to differentiate the original series with respect to s at zero we would obtain, formally,

ζ ′
T,M (0) = −

∞∑
k=1

log (λk) ,

and thus

e−ζ′
T,M (0) =

∞∏
k=1

λk. (1.1)

Clearly this procedure is not justified as such, but it suggests that we may use the analytic
continuation of ζT,M to the whole complex plane as a meromorphic function to define the deter-
minant of the operator T as

det(T,M) := e−ζ′
T,M (0), (1.2)

where we now use the expression ζT,M to denote this meromorphic function. Also, whenever
there is no ambiguity, we will omit the operator both in the index of the zeta function and in
the determinant as in (1.2).

Formally, the above definition of det(T,M) is the product of the nonzero eigenvalues of the
operator T acting on M , and is, in fact, a natural extension to the infinite dimensional setting
of a formula that is valid in finite dimensions. While this allows us to make sense of the infinite
product appearing in (1.1), the expression on the right-hand side of (1.2) will not, in general,
admit a straightforward evaluation. In spite of this, there are several manifolds where this has
been done, and for which the determinant has been calculated explicitly. One such example
which will be relevant for us are the n−spheres Sn with the standard metric, which have, in
fact, deserved the attention of many authors across a span of more than thirty years, beginning
with the work of Vardi in 1988 [33], and followed by several others such as Voros [34], Quine and
Choi [27], Kumagai [21], Quine, Heydari and Song [26], Choi and Srivastava [9, 10], Awonusika [1]
and Halji [17], with the last two papers dating from 2020.
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As a first simple example, consider the case of the circle S1, for which, leaving out the zero
eigenvalue, the spectrum is given by λ1,k = k2 for k = 1, 2 . . . , with multiplicities m1

k = 2. This
yields an associated zeta function given by

ζS1(s) =
∞∑

k=1

2
k2s

= 2ζ(2s),

where ζ(s) denotes the Riemann zeta function. Proceeding as described above and taking into
consideration that ζ ′(0) = −1

2 log(2π), we obtain det(∆, S1) = 4π2. It is possible to continue in
a similar way for higher-dimensional spheres, but not only do the resulting expressions become
more involved as n increases, it also becomes clear that in order to find a general formula it
will be necessary to make the dependence on the dimension more explicit – for illustration, see
the expressions for the determinant for dimensions up to 9, given in Corollary 2.9. This has
led the authors of the papers quoted above to try out different procedures to obtain closed-
form formulae valid for all n, with the first explicit results having been obtained by Quine and
Choi [27], and Kumagai [21]. Finally, we also note that spheres with the standard metric play
an important role as critical and extremal metrics for the determinant of the Laplacian among
certain classes of metrics [24, 25].

The purpose of the present paper is to provide a unified approach allowing us not only to
compute the determinant of Sn but also of other manifolds such as hemispheres and projective
spaces. This is based on shifting the original eigenvalue sequence in order to obtain a suitable
eigenvalue sequence leading to an appropriate zeta function to which we can then apply the
method developed by the first author for the case of the quantum harmonic oscillator [14],
namely, the derivation of a recursion formula for the new zeta function. This is then related to the
zeta function of the original problem using the techniques devised by Voros [34] – this part of the
process has some similarities with Choi’s paper [8], where a general formula for the determinant
in the odd-dimensional sphere is given. An important step in our method is an explicit formula
for the spectral zeta function associated with the shifted eigenvalue sequence (see Lemma 2.3),
obtained as a result of being able to determine the solutions of the recursion equations satisfied
by the zeta-function. To the best of our knowledge, the derivation of recursion formulae and the
solution of the corresponding equations in the context of spectral determinants had not been
used previously, although we could trace some examples of the derivation of recursion formulae
for partition functions to the work of Camporesi [7]. The recursions obtained also emphasize
the dependence of determinants on the dimension. This is a well-known feature, which has been
observed on several occasions in the literature – see, for instance [3, 14] for the determinant
of the Dirac operator on the n-dimensional sphere and the quantum harmonic oscillator in n
dimension, and [24] for extremal problems on spheres.

As a result of this process, we obtain explicit expressions for the determinant of the Laplacian
on even- and odd-dimensional spheres, which may be found in Theorems 2.7 and 2.8, respectively.
For further reference and comparison purposes, and apart from providing explicit expressions for
some low–dimensional spheres explicitly, we also compute the numerical values up to dimension
10 000, showing the first 100 in Table 2.

Due to the flexibility of our method, we are able to apply it to other eigenvalue sequences such
as those corresponding to hemispheres (with Dirichlet boundary conditions), and real projective
spaces, for instance. The latter case was studied recently in [19], but we believe the results for
hemispheres to be new – see [18] for a study of the analytic torsion in that case. The graphs
with the values of the determinants as a function of the dimension in all these cases may be seen
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in Figures 1, 2, and 3, displaying in a very clear way the dependence of these values on whether
the dimension is even or odd. The behaviour observed in these graphs raises several questions
related to monotonicity, the precise asymptotic behaviour of the determinants in each case and,
on a more speculative side, whether the different limits observed in the only case considered
where the manifold has a boundary are a consequence of that fact.

Due to its nature, we believe this method to be applicable to other situations such as complex
and quaternionic projective spaces, and to hemispheres with Neumann boundary conditions,
among others. These also include the quantum harmonic oscillator, closely related to the Dirac
operator on spheres, which was studied in [14], and to which we return now to determine a
closed-form solution of the recursion formulae derived there for the corresponding zeta function.
The fact that in this case the asymptotic behaviour of the determinant in the dimension is
exponentially decreasing, while we expect the remaining cases analysed here to have an algebraic
behaviour, would indicate that our approach is not restricted to determinants with a specific
behaviour.

The structure of the paper is as follows. In the next section we collect the necessary results
and describe the procedure using the case of the n−sphere as an example. In Section 3 we apply
our method to the other examples already mentioned above. Appendix A contains some useful
facts about central factorial numbers which are used throughout the paper, while in Appendix B
we provide some tables with numerical values for reference.

2. Method description: the case of Sn

2.1. Eigenvalues and a tale of two zeta functions. Let Sn = {x ∈ Rn+1 : ∥x∥ = 1} be
the n−dimensional unit sphere with the standard metric induced by the Rn+1 Euclidean norm.
The spectrum of the Laplace operator ∆ on Sn is well known and given by [2]

ωn,k = k(k + n− 1)
for k = 0, 1, 2, . . . , with multiplicities

mn
k := mult(ωn,k) =

(
n+ k

k

)
−
(
n+ k − 2
k − 2

)
= (2k + n− 1)(k + n− 2)!

k!(n− 1)! (2.1)

Consider now the associated zeta function

ζSn(s) =
∞∑

k=1
(ωn,k)−s =

∞∑
k=1

mn
k

(k(k + n− 1))s

In order to compute ζ ′
Sn(0), we will consider a shift of the eigenvalues by a constant yielding a

perfect square and a more manageable zeta function. To this end, define

λn,k := ωn,k + λn =
(
k + n− 1

2

)2
,

the eigenvalue sequence obtained after shifting ωn,k by λn =
(

n−1
2

)2
, and consider its associated

zeta function

ζSn(s, λn) =
∞∑

k=1
(ωn,k + λn)−s =

∞∑
k=1

(λn,k)−s (2.2)

It is clear that ζSn(s, 0) = ζSn(s) and, for simplicity, in what follows we use a prime to denote
the derivative with respect to the variable s, namely, ζ ′(s, a) = ∂ζ(s,a)

∂s . More important, this
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new zeta function yields an associated determinant which is now possible to calculate in any
dimension, and from which the original determinant may then be retrieved.

2.2. Relating the determinants of ζSn(s) and ζSn(s, λn): the method of Voros.

In 1987 Voros studied several functions associated with infinite increasing sequences of real
numbers [34]. This was later extended to the more general case of complex number sequences
by Quine, Heydari and Song [26]. Of particular relevance here are sequences formed by the
eigenvalues of elliptic operators, including the Laplacian, and one important issue is to know
when a certain sequence may be what is referred to in [26] as zeta regularizable, that is, when
the corresponding zeta function has a meromorphic continuation with at most simple poles, to
a right-half-plane containing the origin, and is analytic at the origin.

One possible way to address these issues, which was used in [34], uses techniques from analytic
number theory, including the analytical continuation of Mellin transforms and the Weierstrass
canonical product E(λ) associated with the sequence {λk}, defined by

E(λ) :=
∞∏

k=1

{(
1 − λ

λk

)
exp

(
λ

λk
+ λ2

2λ2
k

+ · · · + λ⌊µ⌋

⌊µ⌋λ⌊µ⌋
k

)}
, (2.3)

where µ denotes the abscissa of (absolute) convergence of ζT,M , and the sum in the exponent is
considered to vanish when µ < 1.

In the following theorem we collect a result from [34, pp. 447] in an appropriate form to be
used by us in the sequel.

Theorem 2.1 (Voros [34]). Suppose that the sequence of eigenvalues {λk} associated with the
operator T acting on M is a monotonically increasing sequence of real numbers. Given a constant
λ, the relationship between the determinants associated with the sequences {λk − λ} and {λk} is
given by

ζ ′
T,M (0) = ζ ′

T,M (0,−λ) +
⌊µ⌋∑

m=1
FP [ζT,M (m,−λ)] λ

m

m
+

⌊µ⌋∑
m=2

c−mHm−1
λm

m! − log(E(λ))

where an empty sum (i.e. the case where µ < 1) is to be considered zero, the Harmonic numbers
Hn are given by

Hn =
n∑

k=1

1
k
,

the finite part (FP ) is defined by

FP [f(s)] =


f(s), if s is not a pole of f

lim
ϵ→0

(
f(s+ ϵ) − Res(f, s)

ϵ

)
, if s is a pole of f

(2.4)

and
c−m = Res(ζT,M ,m)Γ(m) (2.5)

where Γ(z) denotes the Gamma function.

Remark 2.1. For a different formula for the coefficients c−m see Section 2.6.

For our purposes, and for ease of reference, consider the following corollary of Theorem 2.1.
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Corollary 2.2. Assume that
∣∣∣ λ

λk

∣∣∣ < 1 for all k ∈ N. Then

ζ ′
T,M (0) = ζ ′

T,M (0,−λ) +
⌊µ⌋∑

m=1
FP [ζT,M (m,−λ)] λ

m

m
+

⌊µ⌋∑
m=2

c−mHm−1
λm

m!

+
∞∑

m=⌊µ⌋+1
ζT,M (m,−λ)λ

m

m

Proof. Applying logarithms to both sides of (2.3) yields

− log(E(λ)) =
∞∑

k=1

− log
(

1 − λ

λk

)
−

⌊µ⌋∑
m=1

λm

mλm
k


=

∞∑
k=1

 ∞∑
m=1

λm

mλm
k

−
⌊µ⌋∑

m=1

λm

mλm
k


=

∞∑
m=⌊µ⌋+1

ζT,M (m,−λ)λ
m

m

where, in the first step, we can exchange the order of summation of the infinite series since both
series are absolutely convergent due to the assumption

∣∣∣ λ
λk

∣∣∣ < 1 for all k; this also allows us to
use the logarithm series expansion in the second line. □

2.3. Recursions. We shall now introduce the crucial step underlying our approach. Following
Theorem A in [14], in which a two-term recursion formula in the dimension was derived for the
spectral determinant of the quantum harmonic oscillator, we show that a similar recursion may
also be obtained in our first example, i.e the Laplace operator on Sn. For this case, the zeta
function ζSn(s, λn) defined in (2.2) takes the form

ζSn(s, λn) =
∞∑

k=1

mn
k(

k + n−1
2

)2s . (2.6)

Lemma 2.3. The zeta function ζSn(s, λn) in (2.6) satisfies the following two-term recursion

ζSn+2(s, λn+2) =
ζSn(s− 1, λn) − (n−1

2 )2ζSn(s, λn)
n(n+ 1) −

( 2
n+ 1

)2s

with initial conditions

ζS1(s, λ1) = 2ζ(2s)
ζS2(s, λ2) = (4s − 2)ζ(2s− 1) − 4s

Proof. Consider the multiplicities mn
k given in (2.1) and note that

mn+2
k = (2k + n+ 1) (k + n)!

k!(n+ 1)!

= mn
k+1

(k + n)(k + 1)
n(n+ 1)
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= mn
k+1

k2 + k(n+ 1) + n

n(n+ 1)

= mn
k+1

(2k + n+ 1)2 − (n− 1)2

4n(n+ 1) .

Substituting this in the expression for ζSn(s, λn) given by (2.6) yields

ζSn+2(s, λn+2) =
∞∑

k=1

mn+2
k(

k + n+1
2

)2s

=
∞∑

k=1

mn
k+1(

k + n+1
2

)2s

(2k + n+ 1)2 − (n− 1)2

4n(n+ 1)

=
∞∑

k=1

mn
k+1(

k + n+1
2

)2s

(k + n+1
2 )2 − (n−1

2 )2

n(n+ 1)

=

 ∞∑
k=1

mn
k+1(

k + n+1
2

)2(s−1) −
(
n− 1

2

)2 ∞∑
k=1

mn
k+1(

k + n+1
2

)2s

 1
n(n+ 1)

=

 ∞∑
k=2

mn
k(

k + n−1
2

)2(s−1) −
(
n− 1

2

)2 ∞∑
k=2

mn
k(

k + n−1
2

)2s

 1
n(n+ 1)

=
ζSn(s− 1, λn) − (n−1

2 )2ζSn(s, λn)
n(n+ 1) −

( 2
n+ 1

)2s

.

□

Even though {λn,k} is not the original eigenvalue sequence associated with the Laplacian on
Sn, its relevance should be clear by now. In the preceding section we presented a method due
to Voros by which we are able to relate the functional determinant of zeta functions associated
with different sequences, as long as these are only shifted by a constant. In fact we have that

− log [det (Sn)] = ζ ′
Sn(0) = ζ ′

Sn(0, λn) +
⌊µ⌋∑

m=1
FP [ζSn(m,λn)] (λn)m

m
+

⌊µ⌋∑
m=2

c−mHm−1
(λn)m

m!

+
∞∑

m=⌊µ⌋+1
ζSn(m,λn)(λn)m

m

The recursion in the preceding lemma will enable us to derive an explicit formula for ζSn(s, λn),
specifically, a finite weighted sum of Riemann zeta functions ζ(s). The properties of such weights
are induced by the recursion and shall be dealt with in Appendix A. As mentioned in the
Introduction, this recursion clearly shows a dual behavior on the dimension.

2.4. Solution to the recursion: explicit expressions for ζSn(s, λn). We are now able to
solve the recursion in Lemma 2.3 to obtain more manageable expressions for ζSn(s, λn) in even
and odd dimensions separately.
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Theorem 2.4. Let n ∈ N. The zeta function ζSn(s, λn) defined in (2.6) satisfies the following
identities

ζS2n+1(s, λ2n+1) =
n∑

i=1
ū(n, i)ζ(2(s− i)) − n−2s

ζS2n(s, λ2n) =
n∑

i=1
v̄(n, i)

(
4s − 22i−1)ζ(2s− 2i+ 1) −

(2n− 1
2

)−2s

where ū(n, i) and v̄(n, i) are defined in (A.5) and (A.6) respectively.

Proof.
- Odd dimensional case:
♦ Induction on n.
♢ Base case: n = 1
In view of Lemma 2.3, ζS3(s, λ3) = ζ(2(s−1))−1 which agrees with Theorem 2.4 since ū(1, 1) = 1.
♢ Induction step:
Following the recursion in Lemma 2.3 for ζS2n+1(s, λ2n+1) we obtain

ζS2n+1(s, λ2n+1) = ζS2n−1(s− 1, λ2n−1) − (n− 1)2ζS2n−1(s, λ2n−1)
2n(2n− 1) − n−2s

=

n−1∑
i=1

ū(n− 1, i)ζ(2(s− i− 1)) − (n− 1)2
n−1∑
i=1

ū(n− 1, i)ζ(2(s− i))

2n(2n− 1) − n−2s Induction Hypothesis

=

n∑
i=1

ū(n− 1, i− 1)ζ(2(s− i)) − (n− 1)2
n∑

i=1
ū(n− 1, i)ζ(2(s− i))

2n(2n− 1) − n−2s Proposition A.1 (iv) and (v)

=
[

n∑
i=1

ū(n− 1, i− 1) − (n− 1)2ū(n− 1, i)
2n(2n− 1) ζ(2(s− i))

]
− n−2s

=
n∑

i=1
ū(n, i)ζ(2(s− i)) − n−2s Proposition A.3 (ii)

- Even dimensional case: Analogous to the odd dimensional case by means of Proposition
A.5. □

From Theorem 2.4 we conclude that ζS2n+1(s, λ2n+1) is defined for ℜ(s) > n+ 1
2 and it can be

meromorphically continued to a function of the whole complex plane, since it depends uniquely
on the zeta function ζ(s), with exactly n poles at {3

2 ,
5
2 , . . . ,

2n+1
2 }. Analogously, we conclude

that ζS2n(s, λ2n) is defined for ℜ(s) > n and can be analytically continued to a meromorphic
function of the whole complex plane with exactly n poles at {1, 2, . . . , n}.

2.5. Recovering ζSn(s) and the determinant. We are now able to combine the expressions
obtained in Theorem 2.4 and Voros method, namely, Corollary 2.2, to obtain simple and effi-
ciently computable expressions for the determinant of the Laplacian ∆ on the odd (S2n+1) and
even (S2n) dimensional spheres separately.

In the following proposition we recall some properties of the Riemann and Hurwitz zeta
functions, ζ(s) and ζ(s, a), respectively, and of the Bernoulli numbers Bn, all of which are
well-known and may be found in [9, Chapter 2].
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Proposition 2.5. Let p, n ∈ N and consider the Bernoulli numbers, Bn. The following identities
hold true.

(i) ζ(s) = ζ(s, 1) = 1
(2s − 1)ζ(s,

1
2)

(ii) ζ(s, a) = ζ(s, a+ n) +
n−1∑
j=0

(j + a)−s

(iii) ζ ′(s, n) = ζ ′(s) +
n−1∑
j=1

j−s log(j)

(iv) ζ ′(s, n+ 1
2) = log(2)2sζ(s) + (2s − 1)ζ ′(s) +

n∑
j=1

(2j − 1
2

)−s

log
(

2j−1
2

)
(v) ζ ′(0) = −1

2 log(2π)

(vi) ζ(−n) = (−1)nBn+1
n+ 1

(vii)
n∑

k=1
kp = 1

p+ 1
p∑

j=0

(p+1
j

)
Bjn

p+1−j Faulhaber’s formula

These will be used multiple times throughout. It will also prove useful to consider the following
identities which can be found in [9, pp. 258, identities (64) and (67)].

Proposition 2.6. Let i ∈ N0 and |t| < |a|. The following identities hold true.

(i)
∞∑

m=1−i

ζ(2m, a)
m+ i

t2m+2i =
2i∑

k=0

(
2i
k

)[
ζ ′(−k, a− t) + (−1)kζ ′(−k, a+ t)

]
t2i−k − 2ζ ′(−2i, a)

(ii)
∞∑

m=−i
i ̸=0

ζ(2m+ 1, a)
m+ i+ 1 t2m+2i+2 =

2i+1∑
k=0

(
2i+ 1
k

)[
ζ ′(−k, a− t) − (−1)kζ ′(−k, a+ t)

]
t2i−k+1

− t2i+2

i+ 1[ψ(2i+ 2) − ψ(a) + γ] − 2ζ ′(−2i− 1, a)

where ψ(z) denotes the digamma function defined as the logarithmic derivative of Γ. For n ∈ N
we have

ψ(n) = Hn−1 − γ (2.7)

where γ is the Euler-Mascheroni constant.

In particular, these will allow us to compute the Weiestrass canonical product E(λ) defined
by (2.3) and reduce it to a finite sum of more manageable functions.

2.5.1. The case of S2n+1.

It is now clear that FP [ζS2n+1(m,λ2n+1)] = ζS2n+1(m,λ2n+1) from (2.4) and that c2n+1
−m = 0

from (2.5) for m ∈ N. From Corollary 2.2 we obtain

ζ ′
S2n+1(0) = ζ ′

S2n+1(0, λ2n+1) +
∞∑

m=1
ζS2n+1(m,λ2n+1)(λ2n+1)m

m
(2.8)
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where λ2n+1 = n2. Differentiating ζS2n+1(s, λ2n+1) in Theorem 2.4 at s = 0 yields

ζ ′
S2n+1(0, λ2n+1) =

n∑
i=1

2ū(n, i)ζ ′(−2i) + log(n2) (2.9)

In view of (2.8), and again using the expression for ζS2n+1(s, λ2n+1) in Theorem 2.4 consider the
following tedious yet simple computations

∞∑
m=1

ζS2n+1(m,λ2n+1)(λ2n+1)m

m
=

∞∑
m=1

n2m

m

[
n∑

i=1
ū(n, i)ζ(2(m− i)) − n−2m

]

=
∞∑

m=1

1
m

[
n∑

i=1
ū(n, i)n2m

(
ζ(2(m− i), n+ 1) +

n∑
k=1

k−2m+2i

)
− 1

]
Proposition 2.5 (ii)

=
∞∑

m=1

1
m

[
n∑

i=1
ū(n, i)n2mζ(2(m− i), n+ 1) +

n∑
i=1

ū(n, i)n2i

+ n2m
n−1∑
k=1

k−2m
n∑

i=1
ū(n, i)k2i − 1

]

=
∞∑

m=1

1
m

n∑
i=1

ū(n, i)n2mζ(2(m− i), n+ 1) Proposition A.3 (iii) and (iv)

=
n∑

i=1
ū(n, i)

∞∑
m=1

ζ(2(m− i), n+ 1)n2m

m

=
n∑

i=1
ū(n, i)

∞∑
m=1−i

ζ(2m,n+ 1)n2m+2i

m+ i

=
n∑

i=1
ū(n, i)

( 2i∑
k=0

(
2i
k

)[
ζ ′(−k) + (−1)kζ ′(−k, 2n+ 1)

]
n2i−k Proposition 2.6 (i)

a=n+1,t=n

− 2ζ ′(−2i, n+ 1)
)

Proposition 2.5 (iii)

=
n∑

i=1
ū(n, i)

( 2i∑
k=0

(
2i
k

)
ζ ′(−k)n2i−k

[ (
1 + (−1)k

)
+ (−1)k

2n∑
j=1

jk log(j)
]

− 2ζ ′(−2i) − 2
n∑

j=1
j2i log(j)

)

=
n∑

i=1
ū(n, i)

(
i∑

k=0
2
(

2i
2k

)
ζ ′(−2k)n2i−2k +

2n∑
j=1

log(j)n2i
2i∑

k=0

(
2i
k

)(−j
n

)k

− 2ζ ′(−2i) +
n∑

j=1
j2i log(j2)

)

=
n∑

i=1
ū(n, i)

(
i∑

k=0
2
(

2i
2k

)
ζ ′(−2k)n2i−2k − 2ζ ′(−2i) +

2n∑
j=1

log(j)(n− j)2i
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−
n∑

j=1
j2i log(j2)

)

=
n∑

i=1
ū(n, i)

(
i∑

k=0
2
(

2i
2k

)
ζ ′(−2k)n2i−2k − 2ζ ′(−2i) +

n−1∑
j=1

log
(

1 − j2

n2

)
j2i

− log
(
n

2

)
n2i

)

=
n∑

i=1
ū(n, i)

i∑
k=0

2
(

2i
2k

)
ζ ′(−2k)n2i−2k −

n∑
i=1

2ū(n, i)ζ ′(−2i) − log
(
n

2

)
Proposition A.3 (iii) and (iv)

Theorem 2.7. Let n ∈ N. The determinant of the Laplacian ∆ on odd-dimensional spheres
S2n+1 satisfies the following identity

− log
[
det

(
S2n+1

)]
= ζ ′

S2n+1(0) = 2
(2n)!

n∑
k=1

ζ ′(−2k)[s(2n, 2k) + s(2n+ 1, 2k + 1)] + log
(
n

π

)
where s(n, k) are the Stirling numbers of the first kind as defined in Proposition A.1.

Proof. Using (2.8), (2.9) and the previous result we obtain

ζ ′
S2n+1(0) =

n∑
i=1

2ū(n, i)
i∑

k=0

(
2i
2k

)
ζ ′(−2k)n2i−2k + log (2n)

=
n∑

i=1
2ū(n, i)

i∑
k=1

(
2i
2k

)
ζ ′(−2k)n2i−2k + 2ζ ′(0)

n∑
i=1

ū(n, i)n2i + log (2n)

=
n∑

i=1
2ū(n, i)

i∑
k=1

(
2i
2k

)
ζ ′(−2k)n2i−2k + log

(
n

π

)

=
n∑

k=1
2ζ ′(−2k)

n∑
i=k

(
2i
2k

)
ū(n, i)n2i−2k + log

(
n

π

)

= 2
(2n)!

n∑
k=1

ζ ′(−2k)[s(2n, 2k) + s(2n+ 1, 2k + 1)] + log
(
n

π

)
where the second step follows by Proposition 2.5 (v) and Proposition A.3 (iii) and the last step
follows from Proposition A.3 (v). □

2.5.2. The case of S2n.

From Corollary 2.2 together with the previous insights we obtain

ζ ′
S2n(0) = ζ ′

S2n(0, λ2n) +
n∑

m=1
FP

[
ζ ′
S2n(0, λ2n)

] (λ2n)m

m
+

n∑
m=2

c2n
−mHm−1

(λ2n)m

m!

+
∞∑

m=n+1
ζ ′
S2n(m,λ2n)(λ2n)m

m
(2.10)
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where λ2n =
(

2n−1
2

)2
. Unlike the odd-dimensional case, the components of (2.10) need further

care. Differentiating ζ ′
S2n(s, λ2n) in Theorem 2.4 at s = 0 yields

ζ ′
S2n(0, λ2n) =

n∑
i=1

v̄(n, i)
(

log(4)ζ(−2i+ 1) + (2 − 22i)ζ ′(−2i+ 1)
)

− 2 log
( 2

2n− 1

)
(2.11)

Consider the coefficients c2n
−m defined by (2.5) and note that, using Theorem 2.4, we obtain

c2n
−m = Res (ζS2n(s, λ2n),m) Γ(m)

=
(
4m − 22m−1)v̄(n,m) Res

(
ζ(2s− 2m+ 1),m

)
(m− 1)!

= 22m−1v̄(n,m) Res
(
ζ(2s− 1), 1

)
(m− 1)!

= 22m−2v̄(n,m)(m− 1)!

which leads to, in view of (2.10),
n∑

m=2
c2n

−mHm−1
(λ2n)m

m! =
n∑

m=2
v̄(n,m)(2n− 1)2m

4m Hm−1 (2.12)

Furthermore, consider the definition of the finite part as given by (2.4) and note that, using
Theorem 2.4, we obtain

FP [ζS2n(m,λ2n)] =
n∑

i=1
v̄(n, i)

(
4m − 22i−1)FP [ζ(2m− 2i+ 1)] −

( 2
2n− 1

)2m

=
n∑

i=1
i ̸=m

v̄(n, i)
(
4m − 22i−1)ζ(2m− 2i+ 1)︸ ︷︷ ︸

fi(m)

−
( 2

2n− 1

)2m

+ lim
ϵ→0

{
fm(m+ ϵ) + Res(fm,m)

ϵ

}
Using the fact that ζ(s) satisfies (see [32, pp. 219])

lim
ϵ→0

{
ζ(1 + ϵ) − 1

ϵ

}
= γ

we see that the last term in the previous equation simplifies as follows

lim
ϵ→0

{
fm(m+ ϵ) − Res(fm,m)

ϵ

}
= lim

ϵ→0

{
v̄(n,m)

(
22m+2ϵ − 22m−1)ζ(1 + 2ϵ) − v̄(n,m)22m−1

2ϵ

}

= v̄(n,m)22m−1 lim
ϵ→0

{(
22ϵ+1 − 1

) (
ζ(1 + 2ϵ) − 1

2ϵ

)
+ 22ϵ − 1

ϵ

}
= v̄(n,m)22m−1(γ + log(4)

)
Consider now, in virtue of (2.10), the following
∞∑

m=n+1
ζS2n(m,λ2n)(λ2n)m

m
+

n∑
m=1

FP [ζS2n(m,λ2n)] (λ2n)m

m
=



RECURRENCE FORMULAE FOR SPECTRAL DETERMINANTS 13

=
∞∑

m=1

1
m

 n∑
i=1
i ̸=m

v̄(n, i)
(
4m − 22i−1)ζ(2m− 2i+ 1)

(2n− 1
2

)2m

− 1


+

n∑
i=1

v̄(n, i)(2n− 1)2i

2i
(
γ + log(4)

)
We will now handle the infinite sum in the last equation by means of a procedure similar to that
used in the odd-dimensional case.

∞∑
m=1

1
m

 n∑
i=1
i ̸=m

v̄(n, i)
(
4m − 22i−1)ζ(2m− 2i+ 1)

(2n− 1
2

)2m

− 1


=

∞∑
m=1

1
m

(
n∑

i=1
i ̸=m

v̄(n, i)ζ(2m− 2i+ 1)(2n− 1)2m

− 22i−1
n∑

i=1
i ̸=m

v̄(n, i)ζ(2m− 2i+ 1)
(2n− 1

2

)2m

− 1
)

=
∞∑

m=1

1
m

(
n∑

i=1
i ̸=m

v̄(n, i)ζ(2m− 2i+ 1, 2n)(2n− 1)2m

− 22i−1
n∑

i=1
i ̸=m

v̄(n, i)ζ(2m− 2i+ 1, n)
(2n− 1

2

)2m
)

+
∞∑

m=1

1
m

[
n∑

i=1
i ̸=m

v̄(n, i)(2n− 1)2m

(
n−1∑
k=1

(2k)−2m+2i−1 −
2n−1∑
k=1

k−2m+2i−1
)

− 1
]

=
n−1∑
i=0

v̄(n, i+ 1)
( ∞∑

m=−i
m ̸=0

ζ(2m+ 1, 2n)
m+ i+ 1 (2n− 1)2m+2i+2

− 22i+1
∞∑

m=−i
m ̸=0

ζ(2m+ 1, n)
m+ i+ 1

(2n− 1
2

)2m+2i+2
)

+
∞∑

m=1

1
m

[
(2n− 1)2m

n−1∑
k=1

(2k − 1)−2m
n∑

i=1
v̄(n, i)(2k − 1)2i−1

+
n∑

i=1
v̄(n, i)(2n− 1)2i−1 − 1

]
−
(
Hn−1

2 −H2n−1

) n∑
i=1

v̄(n, i)(2n− 1)2i

i

=
n−1∑
i=0

v̄(n, i+ 1)
( ∞∑

m=−i
m ̸=0

ζ(2m+ 1, 2n)
m+ i+ 1 (2n− 1)2m+2i+2
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− 22i+1
∞∑

m=−i
m ̸=0

ζ(2m+ 1, n)
m+ i+ 1

(2n− 1
2

)2m+2i+2
)

−
(
Hn−1

2 −H2n−1

) n∑
i=1

v̄(n, i)(2n− 1)2i

i

where the second step follows from Proposition 2.5 (ii) and, in the last step, we used Propo-
sition A.5 (iii) and (iv) to conclude the terms inside the square brackets vanish. In order to
simplify the two infinite sums inside the parenthesis, consider the second equation in Proposi-
tion 2.6 (ii) applied twice (a = 2n, t = 2n− 1 and a = n, t = 2n−1

2 resp.) to obtain
∞∑

m=−i
m̸=0

ζ(2m+ 1, 2n)
m+ i+ 1 (2n− 1)2m+2i+2 − 22i−1

∞∑
m=−i
m̸=0

ζ(2m+ 1, n)
m+ i+ 1

(2n− 1
2

)2m+2i+2

=
2i+1∑
k=0

(
2i+ 1
k

)[
ζ ′(−k) + (−1)k+1ζ ′(−k, 4n− 1)

]
(2n− 1)2i+1−k

− (2n− 1)2i+2

i+ 1
(
ψ(2i+ 2) − ψ(2n) + γ

)
− 2ζ ′(−2i− 1, 2n)

− 22i+1
( 2i+1∑

k=0

(
2i+ 1
k

)[
ζ ′
(

−k, 1
2

)
+ (−1)k+1ζ ′

(
−k, 2n− 1

2

)]

×
(2n− 1

2

)2i+1−k

−
(2n−1

2 )2i+2

i+ 1
(
ψ(2i+ 2) − ψ(n) + γ

)
− 2ζ ′(−2i− 1, n)

)

=
i∑

k=0
2
(

2i+ 1
2k + 1

)
(2n− 1)2i−2k(22k+1ζ ′(−2k − 1) − log(2)ζ(−2k − 1)

)
+

2n−1∑
j=1

log
(2j − 1

2

)
(2n− 2j)2i+1 −

4n−2∑
j=1

log(j)(2n− j − 1)2i+1

+ (2n− 1)2i+2

i+ 1

(
ψ(2i+ 2)

2 − ψ(2n) + ψ(n)
2 + γ

2

)

+ (22i+2 − 2)ζ ′(−2i− 1) + 2

n−1∑
j=1

log(j)(2j)2i+1 −
2n−1∑
j=1

log(j)j2i+1


where Proposition 2.5 (iii) was used in the last step.

Theorem 2.8. Let n ∈ N. The determinant of the Laplacian on even-dimensional spheres
satisfies the following identity

− log
[
det

(
S2n

)]
= ζ ′

S2n(0) = 2
(2n− 1)!

n∑
k=1

ζ ′(−2k + 1)
(
s(2n− 1, 2k − 1) + s(2n, 2k)

)
+

n∑
i=1

v̄(n, i)(2n− 1)2i

2i

(
Hi−1

2 −H2i−1

)
+ log(2n− 1)
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where s(n, k) are the Stirling numbers of the first kind as defined by equation (A.1), and v̄(n, k)
are as defined by formula (A.6).

Proof. Using (2.11), (2.12) and the previous result together with (2.10) we obtain

ζ ′
S2n(0) =

n∑
i=1

v̄(n, i)
[

(2n− 1)2i

4i Hi−1 + (2n− 1)2i

2i
(
γ + log(4)

)
+

i∑
k=1

2
(

2i− 1
2k − 1

)
(2n− 1)2i−2k(22k−1ζ ′(−2k + 1) − log(2)ζ(−2k + 1)

)
+ (2n− 1)2i+2

i+ 1

(
ψ(2i+ 2)

2 − ψ(2n) + ψ(n)
2 + γ

2

)
−
(
Hn−1

2 −H2n−1

) (2n− 1)2i

i

+ log(4)ζ(−2i+ 1) + (2 − 22i)ζ ′(−2i+ 1)

+
2n−1∑
j=1

log
(2j − 1

2

)
(2n− 2j)2i+1 −

4n−2∑
j=1

log(j)(2n− j − 1)2i+1

+ 2
n−1∑
j=1

log(j)(2j)2i+1 − 2
2n−1∑
j=1

log(j)j2i+1
]

− 2 log
( 2

2n− 1

)

=
n∑

i=1
v̄(n, i)

[
log(4)ζ(−2i+ 1) + (2n− 1)2i

2i

(
log(4) +H2i−1 − Hi−1

2

)

+
i∑

k=1
2
(

2i− 1
2k − 1

)
(2n− 1)2i−2k(22k−1ζ ′(−2k + 1) − log(2)ζ(−2k + 1)

)
− log(4)

n−1∑
j=1

(2j)2i−1
]

− log
(2n− 1

2

)

= 2
(2n− 1)!

n∑
k=1

ζ ′(−2k + 1)
(
s(2n− 1, 2k − 1) + s(2n, 2k)

)
+

n∑
i=1

v̄(n, i)
[

− log(4)
i∑

k=1

(
2i− 1
2k − 1

)
(2n− 1)2i−2kζ(−2k + 1) + log(4)ζ(−2i+ 1)

+ (2n− 1)2i

2i

(
log(4) +H2i−1 − Hi−1

2

)
− log(4)

n−1∑
j=1

(2j)2i−1
]

+ log
(2n− 1

2

)

= 2
(2n− 1)!

n∑
k=1

ζ ′(−2k + 1)
(
s(2n− 1, 2k − 1) + s(2n, 2k)

)
+

n∑
i=1

v̄(n, i)(2n− 1)2i

2i

(
Hi−1

2 −H2i−1

)
+ log(2n− 1)
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where, in the second step, both (2.7) and Proposition A.6 (i) and (ii) are used and, in the third
step, we employ Proposition A.5 (v) and finally, in the last step, we use Proposition 2.5 (vi) and
(vii). □

Using the expressions for the determinant obtained in Theorem 2.7 and Theorem 2.8 we
present the first few values explicitly and numerically in the following corollary.

Corollary 2.9. The determinant of the Laplacian on Sn (n = 2, 3, 4, 5, 6, 7, 8, 9) are given by

det
(
S2
)

= e
1
6A4

= 3.19531 . . .

det
(
S3
)

= π exp
[
ζ(3)
2π2

]
= 3.33885 . . .

det
(
S4
)

= 1
3 exp

[ 83
144 − 2ζ ′(−3)

3

]
A

13
3

= 1.73694 . . .

det
(
S5
)

= π

2 exp
[23ζ(3)

24π2 − ζ(5)
8π4

]
= 1.76292 . . .

det
(
S6
)

= 1
5 exp

[1381
2160 − 2ζ ′(−3) − ζ ′(−5)

30

]
A

149
30

= 1.29002 . . .

det
(
S7
)

= π

3 exp
[949ζ(3)

720π2 − 13ζ(5)
24π4 + ζ(7)

32π6

]
= 1.22252...

det
(
S8
)

= 1
7 exp

[4730849
7257600 − 1199ζ ′(−3)

360 − 71ζ ′(−5)
360 − ζ ′(−7)

1260

]
A

383
70

= 1.05041 . . .

det
(
S9
)

= π

4 exp
[16399ζ(3)

10080π2 − 2087ζ(5)
1920π4 + 31ζ(7)

128π6 − ζ(9)
128π8

]
= 0.94673 . . .

where A := e
1

12 −ζ′(−1) is the Glaisher-Kinkelin’s constant.

In Appendix B we provide the numerical values for determinants up to dimension 100 for
reference. However, the above formulae allow us to compute much higher dimensions and in
Figure 1 we show a graph with the values up to dimension 10000. The two distinct sets of points
correspond to even and odd dimensions.

2.6. Discrepancies in the numerical values in the literature. There are some discrep-
ancies in the literature for the values of the determinant of the sphere, namely, between those
obtained by Kumagai [21] and Quine and Choi [27], and those obtained by Choi and Srivastava
in [9]. Commenting upon these discrepancies in [9, Section 5.5], Choi and Srivastava trace them
back to the values used for the coeffiients c−m in these papers, as the differences coincide with
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Figure 1. The first 10 000 values for det (Sn) (odd dimensions: blue; even di-
mensions: red).

some of the values of c−m used. They then suggest that the way in which these values are
calculated should be examined carefully. The formulae for these coefficients are originally given
in Voros [34, pp. 444] as in formula (2.5) above, and this is what we have used in this paper.
We believe that there is a misprint in the simplified formula given in [34, equation (3.3)], and
that the correct formula for positive m should read as

c−m = (−1)m lim
s→m

ζT,M (s)
Γ(1 − s) .

To see this, note that following the usual procedure using the Mellin transform of the partition
function associated with an eigenvaue sequence λk, namely,

Θ(t) =
∞∑

k=0
e−tλk ,

we obtain
ζT,M (s) = 1

Γ(s)

∫ +∞

0
ts−1Θ(t) dt

= 1
Γ(s)

∫ 1

0
ts−1Θ(t) dt+ 1

Γ(s)

∫ +∞

1
ts−1Θ(t) dt

where the rightmost term is analytic in s. Following the notation used in [34], the expansion of
the partition function at 0+ for the Laplace-Beltrami operator on a compact manifold (with or
without boundary) may be written as

Θ(t) ∼
+∞∑
k=0

cik
tik ,

where the indexes ik form an increasing sequence of real numbers growing to infinity – for more
details on the coefficients cik

and ik see, for instance, [16] and the references therein. We now
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sketch the remaining part of the argument, which still follows a standard approach. Writing the
above as

ζT,M (s) = 1
Γ(s)

∫ 1

0
ts−1

[
Θ(t) −

p∑
k=0

cik
tik

]
dt+ 1

Γ(s)

∫ 1

0
ts−1

p∑
k=0

cik
tik dt

+ 1
Γ(s)

∫ +∞

1
ts−1Θ(t) dt

= 1
Γ(s)

p∑
k=0

cik

s+ ik
+ 1

Γ(s)F (s),

where p is such that all the singular terms have been incorporated into the finite sum and F is a
function analytic for Re(s) > 0. The above is valid for Re(s) > µ and, by analytic continuation,
also for 0 < Re(s) < µ, with the exception of the poles at the points s = −ik. Dividing now
both sides by Γ(1 − s) and using Euler’s reflection formula we obtain

ζT,M (s)
Γ(1 − s) = sin(πs)

π

p∑
k=0

cik

s+ ik
+ sin(πs)

π
F (s).

As was pointed out in [34], the function ζT,M has poles at the positive values of −ik and,
whenever this equals an integer m, we obtain

lim
s→m

ζT,M (s)
Γ(1 − s) = (−1)mc−m,

yielding the desired formula.

3. Application to other examples

The spectra of the Laplacian on the n-dimensional hemisphere Sn
+ with Dirichlet boundary

conditions, and on the n-dimensional real projective space RPn are well known [2, 4] and quite
similar, for geometrical reasons, to the spectra of spheres. This enables us to replicate the
previous steps for these examples and obtain the recursions, and explicit formulae for the zeta
functions and determinants which we indicate below. Since the proofs are analogous to those
for the sphere given above, except in the case of hemispheres for which the results are new,
we present them without proof. In addition, we also revisit the case of the quantum harmonic
oscillator, already studied in [14], but for which we now present an explicit expression for the
corresponding zeta function.

3.1. Hemispheres. The spectral determinant of hemispheres with Dirichlet boundary condi-
tions has never, to the best of our knowledge, been analyzed in the literature before. We shall
now show how the method described in the previous section for the case of spheres may be ap-
plied in a similar way to this case. Except for the zero eigenvalue, the spectrum of the Laplacian
on the n−dimensional hemisphere with Dirichlet boundary conditions is, in fact, the same as
that on the n−dimensional sphere, namely, of the form k(k+ n− 1), with k a positive integeer.
The difference between the two lies in the corresponding multiplicities which are now given by

mn
k =

(
n+ k − 2
k − 1

)
,
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where k ∈ N - see [2]. As in the sphere case, we apply a shift to the spectrum of λn and the
corresponding shifted zeta function is thus defined as

ζSn
+

(s, λn) =
∞∑

k=1

mn
k(

k + n−1
2

)2s

with the series being absolutely convergent for Re(s) > n. From this it is possible to derive a
recurrence relation similar to Lemma 2.3 which now reads as

ζSn+2
+

(s, λn+2) =
ζSn

+
(s− 1, λn) − ζSn

+
(s− 1

2 , λn) −
(

n2−1
4

)
ζSn

+
(s, λn)

n(n+ 1) (3.1)

valid for all positive integers n and complex numbers s in the domain of the functions involved.
Furthermore,

ζS1
+

(s, λ1) = ζ(2s)

ζS2
+

(s, λ2) = (22s−1 − 1)ζ(2s− 1) − (22s−1 − 1
2)ζ(2s)

so that ζSn
+

(s, λn) may be determined for all n by successive applications of the recursion formula.

Theorem 3.1. Let n ∈ N. The zeta function ζSn
+

(s, λn) satisfies the following identities

ζS2n−1
+

(s, λ2n−1) = 1
2

n∑
i=1

ū(n− 1, i− 1)
[
ζ(2s− 2i+ 2) − (n− 1)ζ(2s− 2i+ 3)

]

ζS2n
+

(s, λ2n) =
n∑

i=1
v̄(n, i)

[ (
22s−1 − 22i−2

)
ζ(2s− 2i+ 1) − (2n− 1)

(
22s−1 − 22i−3

)
ζ(2s− 2i+ 2)

]

Proof.
- Odd dimensional case:
♦ Induction on n.
Induction step:
Following the recursion in (3.1) for ζS2n+1(s, λ2n+1) we obtain

ζS2n+1
+

(s, λ2n+1) =
ζS2n−1

+
(s− 1, λ2n−1) − ζS2n−1

+
(s− 1

2 , λ2n−1) − (n(n− 1)) ζS2n−1
+

(s, λ2n−1)

2n(2n− 1)

= 1
2n(2n− 1)

[
n∑

i=1
ū(n− 1, i− 1) (ζ(2s− 2i) − nζ(2s− 2i+ 1))

− (n− 1)2
n∑

i=1
ū(n− 1, i− 1) (ζ(2s− 2i+ 2) − nζ(2s− 2i+ 3))

]

= 1
2

n∑
i=1

ū(n− 1, i− 1)
[
ζ(2s− 2i+ 2) − (n− 1)ζ(2s− 2i+ 3)

]
where we use the Induction Hypothesis and Proposition A.1 (iv), (v) and A.3 (ii) in that order.
The even dimensional case can be shown in exactly the same way by means of Proposition
A.5. □
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For completeness, and since the results for hemispheres are new, we will provide some insight
into the proof in spite of its similarities with the case of spheres. We begin by obtaining the
recursion (3.1) and its solution ζSn

+
(s, λn), in terms of the Riemann zeta function as presented

in Theorem 3.2 and in total analogy with Sections 2.3 and 2.4. Then we leverage such expres-
sions together with Voros method, namely Corollary 2.2, to obtain the associated determinant.
Namely, we obtain that det

(
Sn

+
)

satisfies the following identity.

− log
[
det

(
Sn

+
)]

= ζ ′
Sn

+
(0) = ζ ′

Sn
+

(0, λn) +
⌊µ⌋∑

m=1
FP

[
ζSn

+
(m,λn)]

] (λn)m

m
+

⌊µ⌋∑
m=2

c−mHm−1
(λn)m

m!

+
∞∑

m=⌊µ⌋+1
ζSn

+
(m,λn)(λn)m

m
(3.2)

3.1.1. The case of S2n−1
+ . We observe that ζS2n−1

+
(s, λ2n−1) as given in Theorem 3.1 is convergent

in the half-plane Re(s) > n − 1 = µ, and λ2n−1 = (n − 1)2. The first part of equation (3.2) is
given by the following expression.

ζ ′
S2n−1

+
(0, λ2n−1) =

n∑
i=1

ū(n− 1, i− 1)
[
ζ ′(−2i+ 2) − (n− 1)ζ ′(−2i+ 3)

]
(3.3)

Now consider the coefficients c2n−1
−m as defined by (2.5) which, in this case, translates into

c2n−1
−m = Res

(
ζS2n−1

+
(s, λ2n−1),m

)
Γ(m)

= −ū(n− 1,m)(m− 1)!(n− 1)
4 ,

with the third term in (3.2) then becoming

n−1∑
m=2

c2n−1
−m Hm−1

(λ2n−1)m

m! = −
n∑

m=2
ū(n− 1,m)(n− 1)2m+1

4m Hm−1. (3.4)

Next, we evaluate the finite part of ζS2n−1
+

(m,λ2n−1) as indicated in (2.4). This gives

FP [ζS2n−1
+

(m,λ2n−1)] = 1
2

n∑
i=1

ū(n− 1, i− 1)FP [ζ(2m− 2i+ 2) − (n− 1)ζ(2m− 2i+ 3)]

= 1
2

n∑
i=1

ū(n− 1, i− 1)ζ(2m− 2i+ 2)

− (n− 1)1
2

n∑
i=1

i ̸=m+1

ū(n− 1, i− 1)ζ(2m− 2i+ 3)]

− ū(n− 1,m)(n− 1)
2 γ
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We proceed with the evaluation of the second and fourth terms in expression (3.2), making use
of Proposition 2.5 (ii) and Proposition A.3 (iii) and (iv) in the following way:

∞∑
m=n

ζS2n−1
+

(m,λ2n−1)(λ2n)m

m
+

n−1∑
m=1

FP [ζS2n−1
+

(m,λ2n−1)] (λ2n−1)m

m

=
∞∑

m=1

(n− 1)2m

2m

[
n∑

i=1
ū(n− 1, i− 1)ζ(2m− 2i+ 2) − (n− 1)

n∑
i=1

i ̸=m+1

ū(n− 1, i− 1)ζ(2m− 2i+ 3)
]

−
n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i γ

= 1
2

n∑
i=1

ū(n− 1, i− 1)

 ∞∑
m=2−i

ζ(2m,n)
m+ i− 1(n− 1)2m+2i−2 − (n− 1)

∞∑
m=2−i

m̸=0

ζ(2m+ 1, n)
m+ i− 1 (n− 1)2m+2i−2


−

n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i (γ − 2Hn−1)

Once again, to simplify the two infinite sums inside the brackets, consider Proposition 2.6 (i)
and (ii) (a = n and t = n− 1) to obtain

1
2

n∑
i=1

ū(n− 1, i− 1)
[ 2i−2∑

k=0

(
2i− 2
k

)[
ζ ′(−k) + (−1)kζ ′(−k, 2n− 1)

]
(n− 1)2i−k−2

−
2i−3∑
k=0

(
2i− 3
k

)[
ζ ′(−k) + (−1)k+1ζ ′(−k, 2n− 1)

]
(n− 1)2i−k−2

+ (n− 1)2i−1

i− 1 [ϕ(2i− 2) − ϕ(n) + γ]

− 2ζ ′(−2i+ 2, n) + 2(n− 1)ζ ′(−2i+ 3, n)
]

−
n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i (γ − 2Hn−1)

=
n∑

i=1
ū(n− 1, i− 1)

[
i−1∑
k=0

(
2i− 2

2k

)
ζ ′(−2k)(n− 1)2i−2k−2 −

i−1∑
k=0

(
2i− 3
2k − 1

)
ζ ′(−2k + 1)(n− 1)2i−2k−1

− ζ ′(−2i+ 2) + (n− 1)ζ ′(−2i+ 3)
]

+
n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i H2i−1

= 1
(2n− 2)!

2n−1∑
k=0

ζ ′(−k)[s(2n− 1, k + 1) + (−1)ks(2n− 2, k)]

−
n∑

i=1
ū(n− 1, i− 1)

[
ζ ′(−2i+ 2) − (n− 1)ζ ′(−2i+ 3)

]
+

n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i H2i−1.
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Combining this with (3.3) and (3.4) we are able to compute (3.2) and obtain det
(
S2n−1

+

)
as

given in Theorem 3.2.

3.1.2. The case of S2n
+ . We observe that ζS2n

+
(s, λ2n) as given in Theorem 3.1 is convergent in

the section ℜ(s) > n = µ and λ2n−1 = (2n−1
2 )2. The first part of equation (3.2) is given by the

following expression.

ζ ′
S2n

+
(0, λ2n) =

n∑
i=1

v̄(n, i)
[

log(2)
(
ζ ′(−2i+ 1) − (2n− 1)ζ ′(−2i+ 2)

)
+
(
1 − 22i−1) ζ ′(−2i+ 1) − (2n− 1)

(
1 − 22i−2) ζ ′(−2i+ 2)

]
.

Now consider the coefficients c2n−1
−m as defined by (2.5) which, in this case, are given by

c2n
−m = Res

(
ζS2n

+
(s, λ2n),m

)
Γ(m)

= 22m−3v̄(n,m)(m− 1)!

and the third part of (3.2) is then
n−1∑
m=2

c2n
−mHm−1

(λ2n)m

m! =
n∑

m=2
v̄(n,m)(2n− 1)2m

8m Hm−1 (3.5)

Next we evaluate the finite part of ζS2n
+

(m,λ2n). Since

FP [ζS2n
+

(m,λ2n)] =
n∑

i=1
i ̸=m

v̄(n, i)
(
22m−1 − 22i−2

)
ζ(2m− 2i+ 1)

− (2n− 1)
n∑

i=1
v̄(n, i)

(
22m−1 − 22i−3

)
ζ(2m− 2i+ 2)

+ v̄(n,m)22m−2
(
γ + log(2)

)
we may proceed by evaluating the second and fourth parts of expression (3.2) using Proposi-
tion 2.5 (ii) to convert the Riemann zeta functions into Hurwitz zeta functions, and Proposition
A.5 (iii) and (iv) to simplify the resulting extra terms in a similar manner to the even sphere
case.

∞∑
m=n

ζS2n
+

(m,λ2n)(λ2n)m

m
+

n−1∑
m=1

FP [ζS2n
+

(m,λ2n)] (λ2n)m

m
=

=
∞∑

m=1

(
2n−1

2

)2m

m

 n∑
i=1
i ̸=m

v̄(n, i)
(
22m−1 − 22i−2

)
ζ(2m− 2i+ 1)

−(2n− 1)
n∑

i=1
v̄(n, i)

(
22m−1 − 22i−3

)
ζ(2m− 2i+ 2)

]

+
n∑

i=1
v̄(n, i)(2n− 1)2i

4i
(
γ + log(4)

)



RECURRENCE FORMULAE FOR SPECTRAL DETERMINANTS 23

=
n∑

i=1

v̄(n, i)
2

 ∞∑
m=1−i

m ̸=0

ζ(2m+ 1, 2n)
m+ i

(2n− 1)2m+2i − 22i−1
∞∑

m=1−i
m ̸=0

ζ(2m+ 1, n)
m+ i

(2n− 1
2

)2m+2i

−(2n− 1)
∞∑

m=2−i
m ̸=0

ζ(2m, 2n)
m+ i− 1(2n− 1)2m+2i−2 − (2n− 1)22i−2

∞∑
m=2−i

m ̸=0

ζ(2m,n)
m+ i− 1

(2n− 1
2

)2m+2i−2


+

n∑
i=1

v̄(n, i)(2n− 1)2i

4i
(
γ + log(4) +Hn−1 − 2H2n

)

By substituting a = 2n and t = 2n − 1 and a = n and t = 2n−1
2 into Proposition 2.6 (ii), we

can expand and simplify the first and second infinite sums within the brackets. Likewise, by
substituting into Proposition 2.6 (i), we can expand and simplify the third and fourth infinite
sums.
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n∑
i=1

v̄(n, i)
2

{ 2i−1∑
k=0

(
2i− 1
k

)[
ζ ′(−k) + (−1)k+1ζ ′(−k, 4n− 1)

]
(2n− 1)2i−k−1

−
2i−2∑
k=0

(
2i− 2
k

)[
ζ ′(−k) + (−1)kζ ′(−k, 4n− 1)

]
(n− 1)2i−k−1

−22i−1
2i−1∑
k=0

(
2i− 1
k

)[
ζ ′(−k, 1

2) + (−1)k+1ζ ′(−k, 2n− 1
2)
] (2n− 1

2

)2i−k−1

+22i−2(2n− 1)
2i−1∑
k=0

(
2i− 1
k

)[
ζ ′(−k, 1

2) + (−1)k+1ζ ′(−k, 2n− 1
2)
] (2n− 1

2

)2i−k−2

−(2n− 1)2i

i
[ϕ(2i) − ϕ(2n) + γ] − 2ζ ′(−2i+ 1, 2n)

+22i−1


(

2n−1
2

)2i

i
[ϕ(2i) − ϕ(n) + γ] + 2ζ ′(−2i+ 1, n)


+(2n− 1)

[
2ζ ′(−2i+ 2, 2n) − 22i−1ζ ′(−2i+ 2, n)

]}

+
n∑

i=1
v̄(n, i)(2n− 1)2i

4i
(
γ + log(4) +Hn−1 − 2H2n

)

=
n∑

i=1
v̄(n, i)

{
i∑

k=1

[
22k−1

(
2i− 1
2k − 1

)
ζ ′(−2k + 1)(2n− 1)2i−2k − 22k−2

(
2i− 2
2k − 2

)
ζ ′(−2k + 2)(2n− 1)2i−2k+1

]

− log(2)

2i−1∑
k=0

(−1)k+1
(

2i− 1
k

)
(2n− 1)2i−k−1ζ(−k) + (2n− 1)

n−1∑
j=1

(2j)2i−2 − (2n− 1)2i

2i


+
(
22i−1 − 1

)
ζ ′(−2i+ 1) − (2n− 1)

(
22i+2 − 1

)
ζ ′(−2i+ 2)

}

−
n∑

i=1
v̄(n, i)(2n− 1)2i

4i H2i−1

= 1
(2n− 1)!

n∑
k=0

ζ ′(−k)
[
s(2n, k + 1) + (−1)k+1s(2n− 1, k)

]
−

n∑
i=1

v̄(n, i)(2n− 1)2i

4i H2i−1

−
n∑

i=1
v̄(n, i)

{
log(2)

2i−1∑
k=0

(−1)k+1
(

2i− 1
k

)
(2n− 1)2i−k−1ζ(−k) + (2n− 1)

n−1∑
j=1

(2j)2i−2 − (2n− 1)2i

2i


−
(
22i−1 − 1

)
ζ ′(−2i+ 1) + (2n− 1)

(
22i+2 − 1

)
ζ ′(−2i+ 2)

}

By using the previous equation along with equations (3.5) and (3.1.2) in (3.2), we can derive
the expression for det

(
S2n

+
)

as presented in Theorem 3.2. We note that the terms multiplied by
log(2) cancel in a manner identical to that in the sphere case, using Proposition 2.5 (vi) and
(vii).
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Theorem 3.2. Let n ∈ N. The determinant of the Laplacian on odd - S2n−1
+ - and even - S2n

+
- dimensional hemispheres satisfies the following identity.

− log
[
det

(
S2n−1

+

)]
= ζ ′

S2n−1
+

(0)

= 1
(2n−2)!

2n−1∑
k=0

ζ ′(−k)
[
s(2n− 1, k + 1) + (−1)ks(2n− 2, k)

]

−
n−1∑
i=1

ū(n− 1, i)(n− 1)2i+1

2i

(
Hi−1

2 −H2i−1

)
− log

[
det

(
S2n

+
)]

= ζ ′
S2n

+
(0)

= 1
(2n−1)!

2n−1∑
k=0

ζ ′(−k)
[
s(2n, k + 1) + (−1)k+1s(2n− 1, k)

]

+
n∑

i=1
v̄(n, i)(2n− 1)2i

4i

(
Hi−1

2 −H2i−1

)

As in the case of spheres, we give the first 100 numerical values in Appendix B, and show
the graphs of the first 10 000 values in Figure 2. Note that now the behavior for even and odd
dimensions is even more striking, in that the corresponding limits as the dimension grows are
different.

Figure 2. The first 10 000 values for det
(
Sn

+
)

(odd dimensions: blue; even di-
mensions: red).

3.2. Real projective space. The case of the real projective space has recently been considered
by Hartmann and Spreafico in [18]. Since our approach is different and, above all, the results
obtained are given in a different form, we now indicate the main steps in the application of our
method for this case, leaving out the main part of the proofs, as they are similar to those done
above.
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The spectrum of the Laplacian is given by integers of the form 2k(2k + n − 1) with the
associated multiplicities

mn
k =

(
n+ 2k

2k

)
−
(
n+ 2k − 2

2k − 2

)

where k ∈ N0 - see [4]. As in the sphere case, we apply a shift on the spectrum of λn and the
corresponding shifted zeta function is thus defined as

ζRPn(s, λn) :=
∞∑

k=1

mn
k(

2k + n−1
2

)2s

with the series being absolutely convergent for Re(s) > n – see Theorem 3.3. From this it is
possible to derive a recurrence relation similar to that given in Lemma 2.3, namely,

ζRPn+4(s, λn+4) =
ζRPn(s− 2, λn) −

(
n2+1

2

)
ζRPn(s− 1, λn) +

(
n2−1

4

)2
ζRPn(s, λn)

n(n+ 1)(n+ 2)(n+ 3) −
( 2
n+ 1

)2s

valid for all positive integers n and complex numbers s in the domain of the functions involved.
Furthermore,

ζRP1(s, λ1) = 21−2sζ(2s)

ζRP2(s, λ2) = 22−2sζ
(
2s− 1, 5

4

)
ζRP3(s, λ3) = (1 − 22−2s)ζ(2(s− 1)) − 1

ζRP4(s, λ4) = 2−2s−1

3

[
16ζ

(
2s− 3, 7

4

)
− ζ

(
2s− 1, 7

4

)]
so that ζRPn(s, λn) may be determined for all n by successive applications of the recursion
formula. Remarkably, even though the recursion highlights the need to treat four independent
cases, in the end we are able to recover the dimensional dichotomy similar to the previous spaces.

Theorem 3.3. For each n ∈ N the zeta function ζRPn(s, λn) satisfies the following identities:

ζRP2n−1(s, λ2n−1) =
n∑

i=1
ū(n− 1, i− 1)(τn − (−1)n22i−2s−2)ζ(2s− 2i+ 2) − (n− 1)−2s

ζRP2n(s, λ2n) =
n∑

i=1
v̄(n, i)24i−2s−2ζ(2s− 2i+ 1, 5

4 + τn
2 ) − γn

[ 2
(2n− 1)

]2s

where

γn =
{

0, if n = 1, 2
1, otherwise τn =

{
0, if n is odd
1, if n is even
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The determinant of the Laplacian on odd– and even–dimensional real projective spaces, RP2n−1

and RP2n, respectively, satisfies

ζ ′
RP2n−1(0) = − log

[
det

(
RP2n−1

)]
= 1

(2n− 2)!
n−1∑
k=0

22k+1ζ ′(−2k) [s(2n− 1, 2k + 1) + s(2n− 2, 2k)] + log(4(n− 1))

ζ ′
RP2n(0) = − log

[
det

(
RP2n

)]
= 1

(2n− 1)!
2n−1∑
k=0

(1 − τk2k+1)ζ ′(−k) [s(2n, k + 1) + s(2n− 1, k)]

+ log(4n− 2) +
n∑

i=1
v̄(n, i)(2n− 1)2i

4i

(
Hi−1

2 −H2i−1

)
The first 10 000 values are displayed in Figure 3.

Figure 3. The first 10 000 values for det (RPn) (odd dimensions: blue; even
dimensions: red).

3.3. The quantum harmonic oscillator revisited. In [14] the first author studied the de-
terminant of the quantum harmonic oscillator in Rn, whose spectrum is now given by integers
of the form 2k + n with the associated multiplicities

mn
k =

(
n+ k − 1

k

)
,

where k ∈ N0. The corresponding zeta function is thus defined as

ζHn(s) :=
∞∑

k=0

mk

(2k + n)s ,
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with the series being absolutely convergent for Re(s) > n – see [14] for the details. From this it
was possible to derive the recurrence relation [14, Theorem A]

ζHn+2(s) = 1
4n(n+ 1)ζHn(s− 2) − n

4(n+ 1)ζHn(s),

for all positive integers n and complex numbers s in the domain of the functions involved.
Furthermore,

ζH1(s) = (1 − 2−s) ζ(s)
ζH2(s) = 2−sζ(s− 1),

so that ζHn(s) may be determined for all n by successive applications of the recursion formula
above. Most of the study in [14] then followed along lines closer to a more classical complex
analytic line of approach to the study of zeta functions, without making use of these formulae.
However, the similarities with the identities given in Lemma 2.3 and the other cases considered
in this paper are striking, and, indeed, a similar approach is possible, allowing us to determine
an explicit formula for ζHn(s) – note that the study carried out in [14] was mostly concerned
with finding, in a rigorous way, the asymptotic behavior of the determinant as n became large.

Theorem 3.4. Let n ∈ N. The zeta function ζHn(s) is given by

ζH2n(s) = 2−s

(2n− 1)!

n∑
i=1

u(n, i)ζ(s− 2i+ 1)

ζH2n−1(s) = 1
4n(2n− 2)!

n∑
i=1

v(n, i)
(
4 − 2−s+2i

)
ζ(s− 2i+ 2)

while the corresponding determinants satisfy

− log
[
det(H2n)

]
= 1

(2n− 1)!

n∑
i=1

u(n, i)
[
ζ ′(−2i+ 1) − log(2)ζ(−2i+ 1)

]
and

− log
[
det(H2n−1)

]
= 1

4n(2n− 2)!

n∑
i=2

(
4 − 4i

)
v(n, i)ζ ′(−2i+ 2) + (−1)n8 log(2)(2n− 2)!

16n((n− 1)!
)2 .

Appendix A. Central factorial numbers and relevant properties

The Stirling numbers of the first kind, s(n, k) can be defined as the coefficients of the expansion
of the falling factorial polynomial of degree n, denoted [x]n

[x]0 = 1, [x]n = x(x− 1) . . . (x− n+ 1) =:
n∑

k=0
s(n, k)xk. (A.1)

They have received a lot of attention and are at the core of the study of permutations, as s(n, k)
counts the number of permutations of n elements with k cycles. We shall only present here their
properties which are relevant for our purposes, and refer to [11, Chapter 5] for a more complete
treatment of these numbers.
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We shall, however, make extensive use of central factorial numbers of the first kind t(n, k),
which have received less attention in the literature. They can be defined as the coefficients of
the expansion of the central factorial polynomial of degree n, denoted by x[n].

x[0] = 1, x[n] = x

(
x+ n

2 − 1
)
. . .

(
x− n

2 + 1
)

=:
n∑

k=0
t(n, k)xk (A.2)

A short introductory reference to central factorial numbers may be found in [29, pp. 213-217],
and we refer to [5] for a more systematic treatment, including their main properties and a
variety of applications. Although more closely related to the Stirling numbers of the first kind,
the central factorial numbers are also related to the Euler and Bernoulli numbers (see [6, 22]). In
this appendix, we shall summarize and introduce several properties which were used throughout
the paper.

The identities in the following proposition follow directly from the aforementioned definitions.
For more details we refer to [5, pp. 428, Propostion 2.1] with the exception of entry (vii) which
is given in [5, pp. 480, Propostion 7.3]. We remark the similarities between the recursion in
entry (i) and the recursion given for ζSn(s, λn) in Lemma 2.3.

Proposition A.1. Let n ∈ N. The following identities hold.

(i) t(n, k) = t(n− 2, k − 2) −
(

n−2
2

)2
t(n− 2, k) 2 ≤ k ≤ n

(ii) s(n, k) = s(n− 1, k − 1) − (n− 1) s(n− 1, k) 2 ≤ k ≤ n

(iii) t(n, n) = s(n, n) = 1 n ≥ 0

(iv) t(n, k) = s(n, k) = 0 n < k

(v) t(n, 0) = s(n, 0) = δn,0 n ≥ 0

(vi) t(2n, 2k + 1) = t(2n+ 1, 2k) = 0 n, k ≥ 0

(vii) s(n, k) = (−1)n+k
n∑

i=1

( i−1
k−1
) (

n
2
)i−k

t(n, k) n, k ≥ 1

It will be useful to consider the central factorial numbers with even and odd indices separately,
which is also justified by Proposition A.1 (vi). These are defined as

u(n, k) := t(2n, 2k) (A.3)
v(n, k) := 4n−kt(2n− 1, 2k − 1) (A.4)

Both of these integer sequences are present in the On-line Encyclopedia of Integer Sequences
(OEIS) under A008955 for u(n, k) and under A008956 for v(n, k). In Table 1 their values for
n, k = 0, . . . , 6 are given. We remark that sgn(s(n, k)) = sgn(v(n, k)) = sgn(u(n, k)) = (−1)n−k

for n, k ≥ 1 which follows straight from their respective definitions.

https://oeis.org/A008955
https://oeis.org/A008956
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Table 1. Central factorial numbers
(Riordan [29, pp.217, Table 6.1])

u(n, k) v(n, k)
k\n 0 1 2 3 4 5 6 k\n 0 1 2 3 4 5 6

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 −1 4 −36 576 −14400 1 1 −1 9 −225 11025 −893025
2 1 −5 49 −820 21076 2 1 −10 259 −12916 1057221
3 1 −14 273 −7645 3 1 −35 1974 −172810
4 1 −30 1023 4 1 −84 8778
5 1 −55 5 1 −165
6 1 6 1

A.1. Central factorial numbers with even indices.

A detailed treatment of the central factorial numbers with even indices u(n, k) may be found
in Shiha [31], where a recurrence relation, generating function, distribution and general formula
are presented, together with several combinatorial identities and applications. For our purposes
we shall only need the following lemma which is also a direct consequence of definitions (A.2)
and (A.3).

Lemma A.2 (Shiha [31, pp. 6]). For n ∈ N, then
n∑

k=1
u(n, k)xk =

n−1∏
i=0

(x− i2)

for all x ∈ R.

Consider now the following associated sequence of numbers

ū(n, k) := 2
(2n)!u(n, k) (A.5)

These are key to understanding the functional determinant of the Laplacian on odd-dimensional
spheres and, in particular, they are intrinsic to the associated spectral zeta function as we shall
see in Theorem 2.4. A few of their properties are summarized in the following proposition and
shall be used several times.

Proposition A.3. Let n ∈ N. The following identities hold true:

(i) u(n, k) = u(n− 1, k − 1) − (n− 1)2 u(n− 1, k) 2 ≤ k ≤ n

(ii) ū(n, k) = ū(n− 1, k − 1) − (n− 1)2ū(n− 1, k)
2n(2n− 1) 1 ≤ k ≤ n

(iii)
n∑

k=1
ū(n, k)j2k = 0 0 ≤ j < n

(iv)
n∑

k=1
ū(n, k)n2k = 1

(v)
n∑

i=k

(2i
2k

)
n2i−2kū(n, i) = s(2n, 2k) + s(2n+ 1, 2k + 1)

(2n)! 1 ≤ k ≤ n
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Proof.
(i) Follows from the definition of u(n, i) in (A.3) applied to Proposition A.1 (i).
(ii) Follows from (i) and the definition of ū(n, i) in (A.5).
(iii) Considering Lemma A.2 with x = j2 for 0 ≤ j < n and diving both sides by (2n)!

2 we obtain
n∑

k=1
ū(n, k)j2k = 2

(2n)!

n−1∏
i=0

(j2 − i2),

and since 1 ≤ i, j < n, the RHS of the previous equation is 0.
(iv) Similarly, considering Lemma A.2 with x = n2 and diving both sides by (2n)!

2 we obtain
n∑

k=1
ū(n, k)n2k = 2

(2n)!

n−1∏
i=0

(n2 − i2) = 1.

(v) Consider the following
n∑

i=k

(
2i
2k

)
n2i−2kū(n, i) = 2

(2n)!

n∑
i=k

(
2i
2k

)
n2i−2kt(2n, 2i)

= 2
(2n)!

2n∑
i=2k

(
i

2k

)
ni−2kt(2n, i) Proposition A.1 (vi)

= 2
(2n)!

2n∑
i=2k

[(
i− 1

2k − 1

)
+
(
i− 1
2k

)]
ni−2kt(2n, i)

= 2
(2n)! [s(2n, 2k) − n s(2n, 2k + 1)] Proposition A.1 (vii)

= 1
(2n)! [s(2n, 2k) + s(2n+ 1, 2k + 1)] Proposition A.1 (ii)

□

A.2. Central factorial numbers with odd indices.

A comprehensive treatment of the central factorial numbers with odd indices v(n, k) may
be found in [35] and is very similar to the treatment given for u(n, k) with the exception of a
general formula. One notes the unsurprising similarities in what follows. The following lemma
is a direct consequence of definitions (A.2) and (A.4).

Lemma A.4 (Zaid, Shiha and El-Desouki [35, pp. 62]). For n ∈ N, then
n∑

k=1
v(n, k)xk = x

n−1∏
i=1

(
x− (2i− 1)2)

for all x ∈ R.

Consider now the following associated sequence of numbers

v̄(n, k) := 4−(n−1)

(2n− 1)!v(n, k) (A.6)

As before, these are key to understanding the functional determinant of the Laplacian on even-
dimensional spheres and, in particular, they are intrinsic to the associated spectral zeta function
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as we shall see in Theorem 2.4. A few of their properties are presented below in the following
proposition which is the counterpart of Proposition A.3 for even indices, and will also be used
throughout the paper.

Proposition A.5. Let n ∈ N. The following identities hold true.

(i) v(n, k) = v(n− 1, k − 1) − (2n− 3)2 v(n− 1, k) 2 ≤ k ≤ n

(ii) v̄(n, k) = v̄(n− 1, k − 1) − (2n− 3)2v̄(n− 1, k)
4(2n− 2)(2n− 1) 1 ≤ k ≤ n

(iii)
n∑

k=1
v̄(n, k)(2j − 1)2k−1 = 0 0 ≤ j < n

(iv)
n∑

k=1
v̄(n, k)(2n− 1)2k−1 = 1

(v)
n∑

i=k

(2i−1
2k−1

)
(2n− 1)2i−2kv̄(n, i) = (s(2n, 2k) + s(2n− 1, 2k − 1)) 2−2k+1

(2n− 1)! 1 ≤ k ≤ n

Proof.
(i) Follows from the definition of v(n, i) in (A.4) applied to Proposition A.1 (i).
(ii) Follows from (i) and the definition of v̄(n, i) in (A.6).
(iii) Considering Lemma A.4 with x = (2j − 1)2 for 0 ≤ j < n and multiplying both sides by

4−(n−1)

(2n−1)!(2j−1) we obtain

n∑
k=1

v̄(n, k)(2j − 1)2k−1 = 4−(n−1)(2j − 1)
(2n− 1)!

n−1∏
i=1

(
(2j − 1)2 − (2i− 1)2)

and since 1 ≤ i, j < n, the RHS of the previous equation is 0.
(iv) Similarly, considering Lemma A.4 with x = (2n − 1)2 and multiplying both sides by

4−(n−1)

(2n−1)!(2n−1) we obtain

n∑
k=1

v̄(n, k)(2n− 1)2k−1 = 4−(n−1)

(2n− 2)!

n−1∏
i=1

(
(2n− 1)2 − (2i− 1)2) = 1
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(v) In a similar manner to the proof of Proposition A.3 (v), making use of the identities in
Proposition A.1 consider the following

n∑
i=k

(
2i− 1
2k − 1

)
(2n− 1)2i−2kv̄(n, i) = 22−2k

(2n− 1)!
n∑

i=k

(
2i− 1
2k − 1

)(2n− 1
2

)2i−2k

t(2n− 1, 2i− 1)

= 22−2k

(2n− 1)!
2n∑

i=2k

(
i

2k − 1

)(2n− 1
2

)i−2k+1
t(2n− 1, i)

= 22−2k

(2n− 1)!
2n∑

i=2k−1

((
i− 1

2k − 1

)
+
(
i− 1

2k − 2

))

×
(2n− 1

2
)i−2k+1

t(2n− 1, i)

= 22−2k

(2n− 1)!
[
s(2n− 1, 2k − 1) −

(2n− 1
2

)
s(2n− 1, 2k)

]
= 21−2k

(2n− 1)!
(
s(2n− 1, 2k − 1) + s(2n, 2k)

)
□

From Proposition A.5 we are able to simplify some expressions which are presented below
and will prove useful in this essay. They are quite simple but we provide a proof for clarity.

Proposition A.6. Let n ∈ N. The following identities hold true.

(i)
n∑

i=1
v̄(n, i)

(
2n−1∑
j=1

log
(

2j−1
2

)
(2n− 2j)2i−1 −

4n−2∑
j=1

log(j)(2n− j − 1)2i−1
)

= log(4n− 2)

(ii)
n∑

i=1
v̄(n, i)

(
n−1∑
j=1

log(j)(2j)2i−1 −
2n−1∑
j=1

log(j)j2i−1
)

= − log(2)
n∑

i=1

n−1∑
j=1

v̄(n, i)(2j)2i−1 − log(2n− 1)

Proof. (i) Note that
2n−1∑
j=1

log
(2j − 1

2

)
(2n− 2j)2i−1 −

4n−2∑
j=1

log(j)(2n− j − 1)2i−1 =

= −
2n−1∑
j=1

log(2)(2n− 2j)2i−1

︸ ︷︷ ︸
=0

−
2n−1∑
j=1

log(2j)(2n− 2j − 1)2i−1

= log(4n) +
n−1∑
j=1

log(2n+ 2j)(2j + 1)2i−1 −
n−1∑
j=1

log(2n− 2j)(2j − 1)2i−1

= log(4n− 2)(2n− 1)2i−1 −
n−1∑
j=1

log
( 2n− 2j

2n+ 2j − 2

)
(2j − 1)2i−1

where, in the first step, the second sum was separated in its even and odd parts. Now applying
n∑

i=1
v̄(n, i) on both sides together with Proposition A.5 (iii) and (iv) yields the result.
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(ii) Note that
n−1∑
j=1

log(j)(2j)2i−1 −
2n−1∑
j=1

log(j)j2i−1 = −
n−1∑
j=1

log(2)(2j)2i−1 −
n−1∑
j=1

log(2j + 1)(2j + 1)2i−1

= −
n−1∑
j=1

log(2)(2j)2i−1 −
n−2∑
j=1

log(2j + 1)(2j + 1)2i−1

− log(2n− 1)(2n− 1)2i−1

and now applying
n∑

i=1
v̄(n, i) on both sides together with Proposition A.5 (iii) and (iv) yields

the result. □
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Appendix B. Numerical values

Table 2. Numerical evaluation of the determinant of the Laplace operator on
Sn, Sn

+ and RPn for n = 1, 2, . . . , 100.

det(Sn) det(Sn
+) det(RPn)

1 39.47842 2 3.195311 1 6.283185 2 0.713127 1 9.869604 2 2.240353
3 3.338851 4 1.736943 3 1.328388 4 0.896916 3 2.004050 4 1.312925
5 1.762919 6 1.290018 5 1.126034 6 0.969512 5 1.226325 6 0.985390
7 1.222521 8 1.050409 7 1.045956 8 1.011931 7 0.909314 8 0.804377
9 0.946733 10 0.896183 9 1.001319 10 1.040842 9 0.732550 10 0.686519
11 0.778048 12 0.786904 11 0.972171 12 1.062300 11 0.618221 12 0.602558
13 0.663546 14 0.704655 13 0.951307 14 1.079117 13 0.537518 14 0.539189
15 0.580375 16 0.640108 15 0.935449 16 1.092804 15 0.477157 16 0.489387
17 0.517020 18 0.587870 17 0.922876 18 1.104258 17 0.430114 18 0.449052
19 0.467028 20 0.544581 19 0.912592 20 1.114048 19 0.392302 20 0.415618
21 0.426495 22 0.508027 21 0.903976 22 1.122559 21 0.361172 22 0.387384
23 0.392915 24 0.476683 23 0.896618 24 1.130057 23 0.335047 24 0.363179
25 0.364604 26 0.449464 25 0.890236 26 1.136739 25 0.312775 26 0.342163
27 0.340384 28 0.425571 27 0.884630 28 1.142750 27 0.293538 28 0.323722
29 0.319410 30 0.404403 29 0.879653 30 1.148199 29 0.276737 30 0.307391
31 0.301055 32 0.385501 31 0.875192 32 1.153175 31 0.261923 32 0.292814
33 0.284847 34 0.368503 33 0.871164 34 1.157746 33 0.248752 34 0.279711
35 0.270420 36 0.353124 35 0.867501 36 1.161966 35 0.236958 36 0.267861
37 0.257491 38 0.339133 37 0.864149 38 1.165881 37 0.226330 38 0.257085
39 0.245830 40 0.326342 39 0.861067 40 1.169528 39 0.216696 40 0.247239
41 0.235257 42 0.314597 41 0.858219 42 1.172938 41 0.207921 42 0.238201
43 0.225623 44 0.303770 43 0.855575 44 1.176137 43 0.199889 44 0.229874
45 0.216803 46 0.293752 45 0.853113 46 1.179148 45 0.192509 46 0.222172
47 0.208698 48 0.284452 47 0.850811 48 1.181989 47 0.185701 48 0.215026
49 0.201221 50 0.275793 49 0.848653 50 1.184676 49 0.179400 50 0.208374
51 0.194300 52 0.267707 51 0.846623 52 1.187225 51 0.173549 52 0.202167
53 0.187874 54 0.260138 53 0.844708 54 1.189647 53 0.168100 54 0.196357
55 0.181891 56 0.253035 55 0.842899 56 1.191953 55 0.163012 56 0.190909
57 0.176305 58 0.246355 57 0.841185 58 1.194152 57 0.158249 58 0.185786
59 0.171076 60 0.240060 59 0.839558 60 1.196254 59 0.153780 60 0.180960
61 0.166171 62 0.234115 61 0.838011 62 1.198265 61 0.149578 62 0.176405
63 0.161561 64 0.228491 63 0.836536 64 1.200193 63 0.145618 64 0.172098
65 0.157217 66 0.223163 65 0.835129 66 1.202043 65 0.141881 66 0.168018
67 0.153118 68 0.218106 67 0.833784 68 1.203822 67 0.138346 68 0.164147
69 0.149243 70 0.213298 69 0.832496 70 1.205533 69 0.134999 70 0.160469
71 0.145573 72 0.208723 71 0.831261 72 1.207181 71 0.131822 72 0.156970
73 0.142093 74 0.204362 73 0.830077 74 1.208770 73 0.128805 74 0.153635
75 0.138786 76 0.200199 75 0.828938 76 1.210304 75 0.125934 76 0.150454
77 0.135642 78 0.196222 77 0.827842 78 1.211787 77 0.123198 78 0.147416
79 0.132647 80 0.192418 79 0.826787 80 1.213220 79 0.120589 80 0.144510
81 0.129791 82 0.188775 81 0.825770 82 1.214608 81 0.118097 82 0.141728
83 0.127064 84 0.185283 83 0.824788 84 1.215953 83 0.115714 84 0.139063
85 0.124457 86 0.181932 85 0.823840 86 1.217256 85 0.113434 86 0.136505
87 0.121963 88 0.178713 87 0.822923 88 1.218521 87 0.111249 88 0.134050
89 0.119575 90 0.175619 89 0.822035 90 1.219749 89 0.109153 90 0.131690
91 0.117284 92 0.172642 91 0.821176 92 1.220942 91 0.107142 92 0.129421
93 0.115086 94 0.169775 93 0.820343 94 1.222102 93 0.105209 94 0.127236
95 0.112975 96 0.167013 95 0.819536 96 1.223231 95 0.103350 96 0.125131
97 0.110945 98 0.164348 97 0.818752 98 1.224330 97 0.101562 98 0.123101
99 0.108992 100 0.161777 99 0.817991 100 1.225400 99 0.0998387 100 0.121143
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