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Abstract

The aim of the papers is to describe the left regular left quotient ring 'Q(R) and the right
regular right quotient ring Q'(R) for the following algebras R: S, = SP" is the algebra of
one-sided inverses, where S1 = K(z,y|yx = 1), T, = K(01,...,0n, [|,..., [,) is the algebra
of scalar integro-differential operators and the Jacobian algebra A; = K(x,9, (0x)™"). The
sets of left and right regular elements of the algebras Si, Zi, Ay and Iy = K{(z,0, ). A
progress is made on the following conjecture, [10]:

'Q(,) ~ Q(A,) where ]In:K<x1,...,acm@l,...,an,/‘,...,/‘>
1 n

is the algebra of polynomial integro-differential operators and Q(Ay) is the classical quotient
ring (of fractions) of the n’th Weyl algebra A, i.e. a criterion is given when the isomorphism
holds. We produce several general constructions of left Ore and left denominator sets that
appear naturally in applications and are of independent interest and use them to produce
explicit left denominator sets that give the localization ring isomorphic to ‘Q(S») or ‘Q(I,)
or 'Q(A,) where A, := AP™. Several characterizations of one-sided regular elements of a ring
are given in module-theoretic and one-sided-ideal-theoretic way.
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1 Introduction

In this paper, module means a left module. The following notation will remain fixed throughout
the paper (if it is not stated otherwise):

e R is a unital ring and R* be its group of units,

e C = Cp is the set of regular elements of the ring R (i.e. C is the set of non-zero-divisors of
the ring R);

e 'Cp is the set of left regular elements of the ring R, i.e. 'Cgr := {c € R|ker(-c) = 0} where
c:R— R, r—rc

o Cp :={c € R|ker(c:) = 0} is the set of right reqular elements of R;
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Q = Qu,a(R) := Cx' R is the left quotient ring (the classical left ring of fractions) of the ring
R (if it exists, i.e. if Cg is a left Ore set) and Q> is the group of units of @Q;

e Ore)(R) :={S]|S is a left Ore set in R};
e Den(R) := {S|S is a left denominator set in R};
o Assi(R) :={ass(S5)|S € Den;(R)} where ass(S) := {r € R|sr =0 for some s = s(r) € S};

e Den;(R,a) is the set of left denominator sets S of R with ass(S) = a where a is an ideal of
R;

o So = Sa(R) = Si.a(R) is the largest element of the poset (Deny(R,a),C) and Qq(R) :=
Qua(R) :== SR is the largest left quotient ring associated with a. The fact that S, exists
is proven in [9, Theorem 2.1];

e In particular, Sop = So(R) = Si0(R) is the largest element of the poset (Deny(R,0),C), i.e.
the largest regular left Ore set of R, and Q;(R) := So_lR is the largest left quotient ring of R
[9);

e 'S(R) ='Si(R) is the largest left denominator setin 'Cr and 'Q(R) :='Q,(R) :="S,(R)™'R
is the left regular left quotient ring of R;

o 'a:=assp('S;(R)) and 'w : R SR = R/, r—T:=r+"a;

e S'(R) = S/.(R) is the largest right denominator set in Cj, and Q'(R) := QL.(R) := RS.(R)™!
is the right regular right quotient ring of R.

Semisimplicity criteria for the ring 'Q; . (R). For each element r € R, let - : R — R,
z — rez and «r : R — R, « — ar. The sets 'Cr := {r € R|ker(-r) = 0} and Cj := {r €
R|ker(r-) = 0} are called the sets of left and right regular elements of R, respectively. Their
intersection Cr = 'Cr N Cl is the set of regular elements of R. The rings Q;(R) := Cx'R and
Qr.c(R) := RC};1 are called the classical left and right quotient rings of R, respectively. Goldie’s
Theorem states that the ring @ o(R) is a semisimple Artinian ring iff the ring R is semiprime,
udim(R) < oo and the ring R satisfies the a.c.c. on left annihilators (udim stands for the uniform
dimension). In [7], four more new criteria are given based on different ideas, [7, Theorems 3.1,
41,5.1,6.2].

In [10], the rings 'Qpa(R) := 'Cz'R (the classical left regular left quotient ring of R) and

' a(R) = RC}%71 (the classical right regular right quotient ring of R) are introduced and studied,

and several semisimplicity criteria for them are given ([10, Theorems 1.1, 3.1, 3.3, 3.4, 3.5]). The
ring 'Q; ¢ (R) is a semisimple Artinian ring iff the ring 'Q;(R) is so ([10, Theorem 4.3]).

A subset S of a ring R is called a multiplicative setif 1 € §, SS C S and 0 ¢ S. Suppose that
S and T are multiplicative sets in R such that S C T. The multiplicative subset S of T is called
dense (or left dense) in T if for each element ¢ € T there exists an element r € R such that rt € S.
For a left ideal I of R, let

'Cri={i€l|-i:I—1, z+ zi isan injection}.

For a nonempty subset S of a ring R, let assg(S) := {r € R|sr = 0 for some s € S}. Let us
mention a semisimplicity criteria for the ring 'Q; «(R) that is used in the paper (see the proofs of
Theorem 4.4 and Theorem 5.4).

Theorem 1.1. ([10, Theorems 1.1]) Let R be a ring, 'C ='Cgr and a := assg('C). The following

statements are equivalent.
1. 'Q :="Q1.a(R) is a semisimple Artinian ring.

2. (a) a is a semiprime ideal of R,



(b) the set'C :=n('C) is a dense subset of 'Cx where m: R — R:= R/a, r — T :=r +a,

(¢) udim(zR) < oo, and
(d) 'Cy # 0 for all uniform left ideals V of R.

3. a is a semiprime ideal of R, 'C is a dense subset of Cz and Qa1 (R) is a semisimple Artinian
Ting.

If one of the equivalent conditions holds then 'C € Den(R,0), 'C is a dense subset of Cx and
'Q ~ T 'R~ Quc(R). Furthermore, the ring 'Q is a simple ring iff the ideal a is a prime ideal.

The left regular left quotient ring 'Q;(R) of a ring R and its semisimplicity criteria.
Let R be a ring. In general, the classical left quotient ring @ ;(R) does not exists, i.e. the set
of regular elements Cr of R is not a left Ore set. The set Cr contains the largest left Ore set
denoted by S;(R) and the ring @Q;(R) := S;(R)™'R is called the (largest) left quotient ring of R,
[9]. Clearly, if Cg is a left Ore set then Cr = S;(R) and Qp.«;(R) = Qi(R). Similarly, the set 'Cr of
left regular elements of the ring R is not a left denominator set, in general, and so in this case the
classical left regular left quotient ring 'Q; .(R) does not exist. The set ‘Cr contains the largest
left denominator set 'S;(R) ([10, Lemma 4.1.(1)]) and the ring 'Q;(R) :='S;(R) "' R is called the
left reqular left quotient ring of R, [10]. If 'Cr is a left denominator set then 'Cr = 'S;(R) and
'Qua(R) = "Qu(R).

The main difficulty in constructing the rings ‘Q(R) and Q'(R) is to find descriptions of the
sets 'S(R) and S’(R). The main idea in constructing the rings ‘Q(R) and Q'(R) is to find larger
or smaller or other denominator sets that give the same localization as the sets 'S(R) and S’(R)
do. In order to do so, we produce several constructions of Ore or denominator sets (that satisfy
various conditions, appear naturally in applications and are of independent interest) and use them
in the paper.

The paper is organized as follows. In Section 2, we present several results on and constructions
of left Ore and denominator sets of a ring (Proposition 2.7) and give a sufficient condition for the
sets ’Cég, C," and C% being denominator sets (Proposition 2.10). Lemma 2.5 and Corollary 2.6
give equivalent conditions to the left Ore condition. Lemma 2.16 makes connection between the
sets of right or left regular elements of a ring and sets of module monomorphisms. Lemma 2.17 is
an application of Lemma 2.16 for one-sided ideals. For a module M and its submodule N, Lemma
2.18 makes connections between the sets ‘Cps, Cj, and Cp and 'Cn, Cy and Cpn, respectively.
Corollary 2.19 and Corollary 2.20 are applications of the above result to one-sided essential ideals.
These two corollaries are used in proofs.

In Section 3, the rings ‘Q(S,) and Q'(S,) are described (Theorem 3.11 and Corollary 3.15.(1))
where S,, := S" is the algebra of one-sided inverses and S; := K(x,y|yxz = 1). It is proven
that 'Cs, = 'S(S,) and 'Qra(Sn) = 'Q(Sy) (Corollary 3.13), Cg = 5'(S,) and Q) ,(Sn) =
Q'(S,) (Corollary 3.15.(2)). The algebra S, is a non-commutative, non-Noetherian, central, prime,
catenary algebra; its ideals commute and satisfy the ascending chain condition; its classical Krull
dimension is 2n but the weak and the global dimensions are n, [2]. The same results hold for the
algebra of scalar integro-differential operators (K is a field of characteristic zero),

InZZK 81,...,8n,/,...,/ ,
< o))
see Corollary 3.18.

Let K be a field of characteristic zero. The algebra A,, = K{(x1,...,2p,01,...,0p) is called the
n’th Weyl algebra. It is canonically isomorphic to the algebra of polynomial differential operators
(0; = %). The algebra A,, is a Noetheian domain. Hence, by Goldie’s Theorem it (left and right)
classical quotient ring Q(A,) is a division ring.

The algebra
Hn ::K<:c1,...,xn,ﬁl,...,ﬁn,/,...,/>
1 n



is called the algebra of polynomial integro-differential operators. The algebra I, is a prime, central,
catenary, non-Noetherian algebra of classical Krull dimension n and of Gelfand-Kirillov dimension
2n, [3]. In [10], explicit descriptions of the sets ‘Cy, and Cj, are given ([10, Theorem 6.7]). These
descriptions are far from being trivial or obvious. It is also proven that

'Qra(ly) ~ Q(A1),

see [10, Theorem 6.5.(1)]. In [10], it is conjectured that

/Ql,cl (Hn) = Q(An)

In Section 4, we make progress on the conjecture. Namely, Theorem 4.6 is a criterion for
the the ring 'Q(I,) being isomorphic to quotient ring Q(A,). Despite the fact that there are
no descriptions yet for the set 'Cy, and C; where n > 2, Theorem 4.4 provides explicit left
denominators sets S € Den;(I,,, a,,) such that S71I,, ~'Q(L,).

Definition 1.2. (/1]) The Jacobian algebra A, is the subalgebra of Endk (P,,) generated by the
Weyl algebra A, and the elements Hl_l, ..., H ' € Endg(P,) where

H1 = (915[:1, .. .,Hn = 6n:vn

The algebra I,, properly contains the algebras A,, I, and Z,.
In Section 5, a criterion is given for ‘Q(A,,) ~ Q(A,) (Theorem 5.4). As a corollary it is shown
that
'Q(A1) ~ Q(A1) and Q'(A1) ~ Q(A1),

see Theorem 5.5 and Corollary 5.6. The sets ‘Cy, and Cj  are described (Theorem 5.7). There
are no descriptions yet of the sets 'Cy, and Cf% for n > 2 but Theorem 5.4 provides explicit left
denominators sets S € Den;(A,,,a,) such that S71A, ~'Q(A,,).

2 Ore sets, denominator sets and left or right regular ele-
ments of a ring

The aim of this section is to present several results on and constructions of left Ore and denomi-
nator sets of a ring. Several characterizations of one-sided regular elements of a ring are given in
module-theoretic and one-sided-ideal-theoretic way. These results are used in the paper and are
of independent interest.

Ore and denominator sets, localization of a ring at a denominator set. Let R be a
ring. A subset S of R is called a multiplicative set if SS C S, 1€ S and 0 ¢ S. A multiplicative
subset S of R is called a left Ore set if it satisfies the left Ore condition: for each r € R and s € S,

STﬂRS#@.

Let Ore;(R) be the set of all left Ore sets of R. For S € Ore/(R), assi(S) := {r € R|sr =
0 for some s € S} is an ideal of the ring R.

A left Ore set S is called a left denominator set of the ring R if rs = 0 for some elements r € R
and s € S implies tr = 0 for some element ¢ € S, i.e., r € ass;(S). Let Den;(R) (resp., Den;(R, a))
be the set of all left denominator sets of R (resp., such that ass;(S) = a). For S € Den;(R), let

STR={s"'r|se€ S rcR}

be the left localization of the ring R at S (the left quotient ring of R at S). By definition, in Ore’s
method of localization one can localize precisely at the left denominator sets. In a similar way, right
Ore and right denominator sets are defined. Let Ore,(R) and Den,(R) be the set of all right Ore



and right denominator sets of R, respectively. For S € Ore,.(R), the set ass,.(S) := {r € R|rs=0
for some s € S} is an ideal of R. For S € Den,(R),

RS™'={rs7'|se S,rc R}

is the right localization of the ring R at S.

Given ring homomorphisms v4 : R — A and vp : R — B. A ring homomorphism f: A — B is
called an R-homomorphism if vg = fra. A left and right Ore set is called an Ore set. Let Ore(R)
and Den(R) be the set of all Ore and denominator sets of R, respectively. For S € Den(R),

ST'R~RS™!
(an R-isomorphism) is the localization of the ring R at S, and ass(S) := ass;(S) = ass,(5).

The ring R(S™!) and the ideal assg(S). Let R be a ring and S be a subset of R. Let
R(Xs) be aring freely generated by the ring R and aset Xg = {z;s | s € S} of free noncommutative
indeterminates (indexed by the elements of the set S). Let I's be the ideal of R{Xg) generated by
the set {szs — 1,258 —1|s € S} and

R(S™') == R(Xs)/Is. (1)

The ring R(S~!) is called the localization of R at S. Let ass(S) = assgr(S) be the kernel of the
ring homomorphism

os: R— R(S™Y, re—r+Is. (2)
The map 75 : R — R := R/assr(S), r — T := r + assg(9) is an epimorphism. The ideal
assg(S) of R has a complex structure, its description is given in [11, Proposition 2.12] when
R(S™Y) = {37'7|s € S,r € R} is a ring of left fractions. We identify the factor ring R with its
isomorphic copy in the ring R(S~!) via the monomorphism

G5:R— R(S™Y), r+4assp(S)—r+Is. (3)

Clearly, S := (S + assgr(S))/assr(S) C Cr(s—1). [12, corollary 2.2] shows that the rings R(S™')

and R(S ) are R-isomorphic. For S =0, R(0~!) := R and assg(0) := 0.

Definition 2.1. A subset S of a ring R is called a localizable set of R if R(S™!) # {0}. Let
L(R) be the set of localizable sets of R and
assL(R) := {assg(5)| S € L(R)}. (4)

For an ideal a of R, let L(R,a) := {S € L(R) | assg(S) = a}. Then

LR = [[ LR (5)

acass L(R)
is a disjoint union of non-empty sets. The set (L(R),C) is a partially ordered set (poset) w.r.t.

inclusion C, and (L(R, a), C) is a sub-poset of (L(R), C) for every a € assLL(R).
Proposition 2.2 is the universal property of localization.

Proposition 2.2. Let R be a ring, S € L(R), and 05 : R — R(S™Y), r — r + assg(S). Let f :
R — A be a ring homomorphism such that f(S) C A*. Then there is a unique R-homomorphism
f' i R(S™YY — A such f = f'os, i.e. the diagram below is commutative

R & R(S™YH
N
A



Every Ore set is a localizable set. Let S be an Ore set of the ring R. Theorem 2.3 states
that every Ore set is localizable, gives an explicit description of the ideal assg(S) and the ring

R(S~1). Theorem 2.3 also states that the ring R(S~1) is R-isomorphic to the localization SR
of the ring R at the denominator set S of R.

Theorem 2.3. Let R be a ring and S € Ore(R).
1. [5, Theorem 4.15] Every Ore set is a localizable set.

2. [11, Theorem 1.6.(1)] a := {r € R|srt =0 for some elements s,t € S} is an ideal of R such
that a # R.

3. [11, Theorem 1.6.(2)] Let 7 : R — R:= R/a, r — 7 =1 +a. Then S := n(S) € Den(R,0),
a = a(S) = assg(S), S € L(R,a), and S™'R ~ §71§’ an R-isomorphism. In particular,
every Ore set is localizable.

Equivalent conditions of the left Ore condition and applications. Let M be an R-
module and E,; be the set of essential submodules of M.

Lemma 2.4. Let M and M' be R-modules.
1. For all f € Homg(M,M"), f~YEn) :={f 2 (L)|L € Eppr} CEpy.
2. If M C M’ then Ey = {MQL/|L/ € EM/}.

Proof. 1. Suppose that f~Y(L') & Ej for some L' € Epr. Then we can choose a nonzero
submodule, say N, of M such that N N f~1(L’) # {0}. Hence, f(N) # {0} and f(N)N L' = {0},
a contradiction (since L' € Epr).

2. By statement 1, {M NL'|L' € Ep+} C Ep. Given L € Epy, we have to show that
L =MnNL for some L' € Ep. Let C be the complement of the submodule L C M’. Then the
direct sum L' := L @ C' is an essential submodule of M’ such that MNL' =L& (MNC) =1L, as
required (since L is an essential submodule of M). O

For a ring R, its left ideal L and an element r € R, the set (L : r) :=={r' € R|r'r € L} is a
left ideal of R.

Lemma 2.6 gives equivalent conditions to the left Ore condition. They are used in constructions
of (new large) classes of left Ore sets by strengthening some of them (Proposition 2.7).

Lemma 2.5. Suppose that S be a multiplicative subset of a ring R and a := assi(S) = {r €
R,|sr =0 for some element s € S}. Then the following statements are equivalent:

1. 8 € Ore(R)
2. The set a is an ideal of R, S := S + a € Ore;(R) where R := R/a.

3. The set a is an ideal of R, R5 is an essential left ideal of R for all5 € S, and SN(R5:7) # 0
for all3 € S and ¥ € R. Furthermore, for all7 € R and 5 € S, the left ideal (R3 : 7) is an
essential left ideal of R (Lemma 2.4.(1)).

4. For all left ideals L of R such that L € a and all s € S, LN Rs # {0}, and SN (Rs:r) #
for all s € S and r € R\a. Furthermore, for all r € R\a and s € S, the left ideal (Rs : 1) is
an essential left ideal of R (Lemma 2.4.(1)).

Proof. (1 = 2) The implication is well-known (and easy to prove).

(2 = 3) Suppose that 0 # 7 € R. Then 0 ¢ ST (since S C Cx). Hence the left Ore condition
for S € Ore;(R) implies that ST N Rs # {0} for all 5 € S. Hence RF N Rs # {0} for all 5 € S.
Therefore, R3 is an essential left ideal of R for all 3 € S and SN (R5:7) # (0 forall0 #7 € R
and 3 € S.

IfF7=0then SN(R5:0)=SNR=S#0forall5¢ 5.



(1 = 4) Suppose that » € R\a. Then 0 ¢ Sr. Hence the left Ore condition for S € Ore;(R)
implies that SN Rs # {0} for all s € S. Hence, RrN Rs # {0} for all s € S. Therefore, for all left
ideals L of R such that L Z a and all s € S, LN Rs # {0}, and SN (Rs :r) # 0 for all r € R\a.

(4= 1) If r € a then s'r = 0 for some element s € S, and so s'r = 0 = 0s for all elements
ses.

Ifr ¢ athen SN(Rs:r)#0forall s € S, and so s'r = r's for for some elements s’ € S and
r’ € R (that depend on the pair (s,r)). It follows that S € Ore;(R). O

Corollary 2.6. Suppose that S is a multiplicative subset of a ring R such that S C Cr. Then
S € Ore(R) iff Rs is an essential left ideal of R for all s € S, and SN (Rs: 1) # 0 for all s € S
and r € R. Furthermore, for allr € R and s € S, the left ideal (Rs : 1) is an essential left ideal
of R.

Proof. The corollary follows from the equivalence (1 < 3) of Lemma 2.5. O
We strengthen the second condition of Corollary 2.6 to obtain Proposition 2.7.
Proposition 2.7. Suppose that S is a multiplicative subset of a ring R such that
(A) For every s € S, the left ideal Rs of R is essential, and
(B) For all essential left ideals L of R, SN L # (.
Then S € Ore(R).

Proof. We have to show that the left Ore condition holds for the set S: Sr N Rs # () for all s € S
and r € R. By the statement (A), Rs is an essential left ideal of R (Lemma 2.4.(1)). Then (Rs: r)
is also an essential left ideal of R. By the statement (B), SN (Rs:r) # 0, i.e. s'r =1r's for some
elements s’ € S and ' € R, as required. O

Recall that a ring R is called a left Goldie ring if R has finite left uniform dimension and
satisfies the a.c.c. on left annihilators. The following example shows that Proposition 2.7 covers
a lot of ground.

Example 2.8. It is known that the conditions (A) and (B) of Proposition 2.7 hold for all
semiprime left Goldie rings R and S = Cr (the statement (A) follows at once from the fact that the
ring R has finite left uniform dimension and the statement (B) is [18, Proposition 2.3.5.(ii)]). By
Proposition 2.7, Cr € Deny(R,0). This fact is the crucial step in the proof of Goldie’s Theorem.

Corollary 2.9. Suppose that S is a multiplicative subset of a ring R such that the conditions (A)
and (B) of Proposition 2.7 and their right analogues hold. Then:

1. S € Ore(R).

2. a:={r €_R|srt = 0 for some elements s,t € S} is an ideal of R such that a # R. Let
m:R— R:=R/a,r - T =r+a. Then S := 7(S) € Den(R,0), a = a(S) = assr(95),
S € L(R,a), and R(S™1) ~ gilﬁ, an R-isomorphism.

Proof. 1. Statement 1 follows from Proposition 2.7.
2. Statement 2 follows from Theorem 2.3. O

The denominator sets ’Cﬁg, C," and C%. For a ring R, let R'* and R™ be the sets that
contain elements 7 € R such that the left ideal Rr and the ideal rR are essential, respectively. Let
R¢ := R'* N R"*. Each element r € R determines two maps 7 : R — R, 7’ + rr/ and -r : R — R,
"+ r'r. An element r € R is called a left (resp., right) regular if ker(-r) = 0 (resp., ker(r-) = 0).
The sets of all left and right regular elements of the ring R are denoted by 'Cr and Cj, respectively.
Let 'Cl¢ :='CrN R, C),"* := Cr N R"™ and C§, :="C¢ NCR" = Cr N R°.

Proposition 2.10. 1. The sets ’Cﬁs, Cr" and C% are multiplicative sets of R.



2. Suppose that the set'CL meets all the essential left ideals of the ring R. Then'C% € Den(R).

3. Suppose that the set Cy"° meets all the essential right ideals of the ring R. Then Cp"° €
Den,.(R).

4. Suppose that the set C% meets all the essential left ideals and essential right ideals of the ring
R. Then C§, € Den(R,0).

Proof. 1. Tt suffices to show that the set ' Cég is a multiplicative set since then by symmetry the
set Ci,"“ is also multiplicative. These two results imply that C% is a multiplicative set.

Clearly, 1 € 'C%. Let s,t € 'Cl. Then st € 'Cgr. It remain to show that st € R'. The left
ideal Rs of R is an essential ideal. Then the R-module Rst is an essential submodule of Rt (since
t €'C). The inclusions of essential left ideals of R, Rst C Rt C R, imply that the left ideal Rst of
R is essential, as required.

2. By statement 1, the set 'CY is a multiplicative set of R. Since 'CY C 'Cp, it remains to
show that 'C¥¢ € Ore;(R). This follows from Proposition 2.7 (since the conditions (A) and (B) of
Proposition 2.7 are satisfied).

3. Statement 3 follows from statement 2 when apply to the opposite ring of the ring R.

4. Statement 4 follows from statements 2 and 3. o

For two multiplicative sets S and T of R, let ST be a multiplicative submonoid of (R, ")
generated by S and T'. Clearly, the product is commutative, ST = T'S, associative and {1}S = S.
The product ST is a multiplicative set iff 0 & ST

Lemma 2.11. ([6, Lemma 2.4])
1. Let S,T € Ore;(R). If 0 € ST then ST € Ore(R).
2. Let S,T € Deny(R). If 0 ¢ ST then ST € Den;(R).
3. Statements 1 and 2 hold also for Ore sets and denominator sets, respectively.
Lemma 2.12. Let S be a multiplicative set of a ring R. Then:
1. The set S contains the largest left/right/left and right Ore set which is denoted by S'© /S™ /S©.

2. The set S contains the largest left/right/left and right denominator set which is denoted by
Sld/srd/sd'

3. In the set'Cg every left Ore set is a left denominator set, and vice versa.
4. In the set C, every right Ore set is a right denominator set, and vice versa.
5. In the set Cr every Ore set is a denominator set, and vice versa.

Proof. 1. Statement 1 follows from Lemma 2.11.(1) and the largest left/right/left and right Ore
set of S is a union of all left/right/left and right Ore sets in S.

2. Statement 2 follows from Lemma 2.11.(2) and the largest left/right/left and right denomi-
nator set of S is a union of all left/right/left and right denominator sets in S.

3-5. Statements 3-5 are obvious. (|

In view of Proposition 2.10.(1) and Lemma 2.12, we have the following definitions.

Definition 2.13. Let 'C© be the largest left Ore/denominator set in the multiplicative set 'C'S.
Let ’Cﬁse be the largest multiplicative subset of the multiplicative set 'Cﬁs that meets all the essential
left ideals of R. Let C%TEO be the largest right Ore/denominator set in the multiplicative set
CR". Let Cl"° be the largest multiplicative subset of the multiplicative set Cjy"° that meets all the
essential Tight ideals of R.

Lemma 2.14 describes the sets 'Ci©, C}%Teo, ‘Clee and Cp™°.



Lemma 2.14. 1. The set'C¥° (resp., C} TeO) is the union of all left (resp., right) Ore/denominator
sets in 'CLO (resp., Ci"®). In particular, 'C%° # () and Cy eO £,

2. Clse € {0,'Cle} and Ci™*° € {0,Ch7°}. IFICle = CI5 (resp., C*° = Ci™) then 'Clg® =
'Cl6 € Deny(R) (resp., C’ e =cp o € Den,(R)).

Proof. 1. By Proposition 2.10.(1), the sets 'Cl and C,"“ are multiplicative sets of R. Now,
statement 1 follows from Lemma 2.12.(1,2).

2. Suppose that 'Cls¢ # (). Notice that 'Cls® C 'ClS. Then clearly 'Ci¢ = 'Cl¢. Similarly,
suppose that Cp" # 0) Notice that Ci,"* C CR". Then Crp"“ = CR™. The equalities in
statements 2 follows from Proposition 2. 10 (2, 3) O

By Lemma 2.14, the sets 'Cleo and ’Clee are left denominator sets of the ring R such that
'Clee C 'ClO provided 'Cl¢ # (. By Lemma 2.14, the sets C}%TBO and Cj,"“ are right denominator
sets of the ring R such that C;,"*° C Cj, O provided 'Cree # 0.

Definition 2.15. Let 'Q(R)'<© = ('CkO) 'R, 'Q(R)!*c = ('Ck¢?) 'R, Q" := R(C}y"®)™"
and Q/ree — R(C/ ree) 1
Recall that ’S;(R) is the largest left denominator set in 'Cr and 'Q(R) := 'S;(R) 'R is the

left regular left quotient ring of R, 'a := assg('S;(R)) and ‘7 : R — R = R/'a,r =T :=r+"a.
If 'Clee =£ () and C,"““ # 0 then, by Proposition 2.10.(2,3),

R* C'Clee ='cle € '¢le© C'S)(R) C'Cr and R* C Cl™™ =C)" € Cl™° € S'(R) C Ch. (6)
Hence there are R-homomorphisms:
'Q(R)© = 'Q(R)"°, s'r— s7'r and Q’Teo Q" rt7t s ! (7)
with kernels ass;('C1¢C) /ass; ('Cle€) and ass, (C"C) /ass, (Cl, "), respectively.

The left /right /two-sided regular sets of a ring R and monomorphism of R-modules.
For a right R-module Mg, let 'Cps := {r € R|ker(-rps) = 0} where -rpy : M — M, m — mr.
Similarly, for a left R-module g M, let C}, := {r € R|ker(rp-) = 0} where rar-: M — M, m —
rm. For an R-bimodule M, let Cas :='Casr NCYy.

Lemma 2.16 makes connections between the sets ‘Cr, Ci and Cr and 'Cas, Cj; and Cayz, respec-
tively (under faithfulness condition).

Lemma 2.16. 1. If My is a faithful right R-module then 'Cy; C'Cp.
2. If gRM is a faithful left R-module then C; C Ch.
3. If RMp is an R-module which is faithful as a left and right R-module then Cpr C Cr.
4. If I is an ideal of the ring R which is faithful as a left and right R-module then C; C Cg.

Proof. 1. Suppose that ¢ € 'Cp; but ¢ € 'Cr. Then dc = 0 or some nonzero element d € R. By
the assumption, Mg is a faithful right R-module. Hence, m’ := md # 0 for some element m € M.
Then 0 # m/c = mdc = 0, a contradiction, and statement 1 follows.

2. By symmetry, statement 2 follows from statement 1.

3. Statement 3 follows from statements 1 and 2.

4. Statement 4 is a particular case of statement 3. o

Applying Lemma 2.16 for faithful (one-sided) ideals I of a ring R we obtain even tighter
connections between the sets 'Cgr, Ci; and Cg and 'Cy, C; and Cy, respectively.

Lemma 2.17. 1. If Iy is a faithful right ideal of R then 'Cr ='Cy.



2. If gl is a faithful left ideal of R then C = Cj.
3. If I is an ideal of R which is faithful as a left and right R-module then Cr = Cj.

Proof. 1. By Lemma 2.16.(1), 'Cr 2 ’'C;. The opposite inclusion follows from the inclusion I C R.
2. By symmetry, statement 2 follows from statement 1.
3. Statement 3 follows from statements 1 and 2. O

For a module M and its submodule N, Lemma 2.18 makes connections between the sets 'Cyy,
Cy; and Cps and 'Cy, Cjy and Cy, respectively (under essentiality condition).

Lemma 2.18. 1. If Mgr is a right R-module and Ng is an essential submodule of M then
"Cypr ='Cn.

2. If rRM is a left R-module and gN is an essential submodule of M then Cj; = Cl.

3. If RMp is an R-bimodule and gNg is an R-sub-bimodule such that gN and Ng are essential
submodules of RM and Mg, respectively. Then Cpr = Cn .

Proof. 1.

Suppose that ¢ € ‘Cps but ¢ € 'Cgr. Then de = 0 or some nonzero element d € R. By the
assumption, Mg is a faithful right R-module. Hence, m’ := md # 0 for some element m € M.
Then 0 # m/c = mdc = 0, a contradiction, and statement 1 follows.

2. By symmetry, statement 2 follows from statement 1.

3. Statement 3 follows from statements 1 and 2. O

Corollary 2.19 is a particular case of Lemma 2.18.
Corollary 2.19. 1. If Ig is an essential right ideal of R then 'Cr ='C;.
2. If rI is an essential left ideal of R then Cy = Cj.
3. If I is an ideal of R which is essential as a left and right R-module then Cr = Cj.

Proof. 1. By Lemma 2.16.(1), 'Cr 2 'C;. The opposite inclusion follows from the inclusion I C R.
2. By symmetry, statement 2 follows from statement 1.
3. Statement 3 follows from statements 1 and 2. O

Let ICS(rM) (resp., ICS(Mpg)) be the set of isomorphism classes of simple submodules of
a semisimple left (resp. right) R-module M. Every semisimple left (resp. right) R-module
M is a unigue direct sum of its isotypic components, M = @jercszm)Mv) (resp., M =
Sujercs(mr) Muy), where My, (resp., MU}) is the sum of all simple submodules of M that are
isomorphic to the module V (resp., U).

Corollary 2.20. 1. If Ir is an essential right ideal of R which is a semisimple right R-module
then "Cr = Nimjercs(1x) "Cu-

2. If r1 is an essential left ideal of R which is a semisimple left R-module then Cp, = m[V]GICS(RI) Cy.

3. If I is an ideal of R which is essential and semisimple as a left and right R-module and then
Cr = Nwyercs(rn),viercsan Cu NCy.

Proof. 1 and 2. Statements 1 and 2 follows from Statements 1 and 2 of Corollary 2.19, respectively.
3. Statement 3 follows from statements 1 and 2. O
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3 The rings 'Q(S,), 'Q(Z,), Q'(S,) and Q'(Z,)

In this section, Theorem 3.11 and Corollary 3.15.(1) describe the algebras 'Q(S,) and Q'(S,),
respectively. Similarly, Corollary 3.18 describes the algebras ‘Q(Z,,) and Q'(Z,). Theorem 3.16
and Theorem 3.17 describe the sets 'Cs, and Cg, .

The algebra S,, of one-sided inverses of a polynomial algebra. We collect some results
on the algebras S,, from [2] that are used in the proofs later.

Definition 3.1. (/2/) The algebra of one-sided inverses of P, = K[x1,...,2,], Sy, is an alge-

bra generated over a field K by 2n elements x1,...,Tn, Yn,-- -, Yn subject to the defining relations:
Y11 =+ = YnTpn = 17 [:Ezay]] = [JI“.’I]]] = [yzay]] =0 foralld 7& ju
where [a,b] := ab — ba, the commutator of elements a and b.

By the very definition, the algebra S,, is obtained from the polynomial algebra P, by adding
commuting, left (or right) inverses of its canonical generators. Clearly, S,, = S1(1)®---®S1(n) ~
S?" where $1(4) := K{x;,y; | yiz; = 1) =~ S; and

Sp = @ Kz®y’

a,BENT

where 2 1= 28" - 20 o = (ay,..., o), y? = yP - yPr and B = (B1,..., ). In particular,

the algebra S,, contains two polynomial subalgebras P, = K[x1,...,z,] and Y,, := K[y1,...,Yn)
and is equal, as a vector space, to their tensor product P, ® Y,,. Note that also the Weyl algebra
A, is a tensor product (as a vector space) P, ® K[d1, ..., 0] of two polynomial subalgebras.

When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion. So, $; =
K(z,ylyr=1) =D, ;5o Kz'y?. For each natural number d > 1, let My(K) := @lii,;—'io KE;; be
the algebra of d-dimensional matrices where {E;;} are the matrix units, and

Moo (K) :=lim My(K) = €D KEj
i,jEN
be the algebra (without 1) of infinite dimensional matrices. The algebra S; contains the ideal
F = @i,jEN KEij, where o . ‘
Eyj =aly? — 2™ yd T 45> 0. (8)
For all natural numbers i, j, k, and I, E;; Ey = 6, Ey where §;;, is the Kronecker delta function.

The ideal F' is an algebra (without 1) isomorphic to the algebra M. (K) via E;; — E;;. For all
i, 20,

2Eij = B, yEij=FEi—1; (E-1;:=0), 9)
Eijx = Eiyjfl, Elgy = Ei,j+1 (Ei7,1 = O) (10)

The algebra
S1 =K@zK[z]| DyKly|® F (11)

is the direct sum of vector spaces. Then
Si/F~Ly:=Klz,z7'], z—z, y—a (12)

since yr =1, xy =1 — Eyp and Eyy € F.
The algebra S,, = @', S1(i) contains the ideal

n
F, := F®" = @ KE.3, where E,5:= HEaiﬁi (1), Eaup (1) = xf‘yfl - xf‘iﬂyf”’l.
a,BeEN™ i=1
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Note that EogFE,, = 6gyEqa, for all elements o, 8,v,p € N* where 3, is the Kronecker delta
function; F,, = @;_; F(i) and F(i) := @, e K Est(4).
The involution 1 on S,,. The algebra S,, admits the involution
N:Sp = Sn, Ty, Vi xi, 1=1,...,n. (13)

It is a K-algebra anti-isomorphism (n(ab) = n(b)n(a) for all a,b € S,) such that n* = ids,, the
identity map on S,,. So, the algebra S,, is self-dual (i.e. it is isomorphic to its opposite algebra,
7 : Sy, =~ S%). The involution n acts on the ‘matrix’ ring F,, as the transposition,

N(Eap) = Ega- (14)

The canonical generators z;, y; (1 < 4,5 < n) determine the ascending filtration {S, <;}ien
on the algebra S, in the obvious way (i.e. by the total degree of the generators): S, <; :=
®|a\+|6\§inayﬂ where o] = a1 + -+ an (Sp,<iSn,<; C Sp<iyj for all 4,5 > 0). Then
dim(S,, <i) = (H'Q") for i > 0, and so the Gelfand-Kirillov dimension GK (S,,) of the algebra S,
is equal to 2n. It is not difficult to show that the algebra S,, is neither left nor right Noetherian.
Moreover, it contains infinite direct sums of left and right ideals (see [2]).
The set of height 1 primes of S,. Consider the ideals of the algebra S,,:
P1i=F®Su—1, 2 =S1 9 F®Sp—2,...,0n :=S—1 ®F.

Then S, /p; =~ Sp—1 @ (S1/F) ~ Sp1 ® Kz, z; '] and (1, pi = [[1o, p: = F®" = F,. Clearly,
p; € p; for all i # j.

o The set Hy of height one prime ideals of the algebra Sy, is {p1,...,pn}.
Let a, :=p1 + -+ + p,,. Then the factor algebra

S /an—(Sl/F NLn .—®KI1, 1 [1171,17117...756,,“(17;1] (15)
is a Laurent polynomial algebra in n variables, and so a,, is a prime ideal of height and co-height
n of the algebra S,.

Sy :={y“|a € N*} € Den(S,,a,) an Sy_lSn ~S,/a, = Ly.
The proof of the following statements can be found in [2].

o The algebra S,, is central, prime and catenary. Every nonzero ideal of Sy, is an essential left
and right submodule of S,.

o The ideals of S,, commute (IJ = JI); and the set of ideals of S, satisfy the a.c.c..
e The classical Krull dimension cl. Kdim(S,,) of S,, is 2n.
o Let I be an ideal of S,,. Then the factor algebra S,,/I is left (or right) Noetherian iff a,, C I.

Proposition 3.2. [2, Corollary 2.2] The polynomial algebra P, is the only (up to isomorphism)
simple faithful left S, -module.

In more detail, 5, P, ~ S, /(370 Sn¥i) = Bpenn K21, 1:= 143" | Suy;; and the action
of the canonical generators of the algebra Sy on the polynomial algebra P, is given by the rule:

@~ if a; >0,

0 if g, " Beyxat =0’ (16)

Ii*ZEQZZEQJrei, yi*iﬂa—{

where the set e; :=(1,0,...,0),...,e, :=(0,...,0,1) is the canonical basis for the free Z-module
Z"™. We identify the algebra S,, with its image in the algebra Endk (P,) of all the K-linear maps
from the vector space P, to itself, i.e. S,, C Endg(P,).

12



Corollary 3.3. The polynomial algebra P!, := n(P,) = Kly1,...,Yn] is the only (up to isomor-
phism) simple faithful right S, -module.

Proof. In view of the involution 7, the corollary follows from Proposition 3.2. O

In more detail, (P})s, ~Sn/(> 7 2iSn) = Baenn 1Ky*, 1:= 1+, #;Sy,; and the action
of the canonical generators of the algebra S,, on the polynomial algebra P/ is given by the rule:

_ a~e if q; >0,
Y ky; = Yot Y x ;= y 1 @ and y“ * Eg, = dagy”. (17)
0 if a; =0

Proposition 3.4. ([2, Proposition 3])
1. s F, ~ PN,
2. (Fp)s, ~ (P)®"),

Constructions of Ore and denominator sets. Below we collect and prove some useful
results that are used in the proofs. They also are of independent interest.

Lemma 3.5. ([10, Lemma 2.5]) Suppose that S,T € Den;(R) and S C T. Then the map ¢ :
STIR — S7IT, s7'r — s7r, is a ring homomorphism (where s € S and r € R).

1. ¢ is a monomorphism iff assp(S) = assr(T).
2. v is a epimorphism iff for eacht € T there exists an elementr € R such thatrt € S+assr(T).

3. @ is a isomorphism iff assr(S) = assr(T) and for each element t € T there exists an element
r € R such that rt € S.

4. 1If, in addition, T C'Cg, then ¢ is a isomorphism iff assr(S) = assr(T) and for each element
t € T there exists an element r € 'Cr such that rt € S.

Lemma 3.6. (10, Lemma 6.1]) Suppose that T € Den;(R) and S be a multiplicative set of R
such that S C T, assr(S) = assgr(T') and for each element t € T there exists an element r € R
such that rt € S + assg(T). Then S € Den;(R) and S™*R ~ T~ 'R.

Definition 3.7. The pair (S,T) that satisfies the conditions of Lemma 3.6 is called a left local-
ization pair of the ring R.

Lemma 3.8 provides sufficient conditions for the pre-image of a left Ore/denominator set being
a left Ore/denominator set.

Lemma 3.8. Let R be a ring, a be an ideal of R, mq : R — R:=R/a,r—~T=r+a, b bean
ideal of R, b =m1(b), S be a multiplicative subset of R and S = 7, *(S).

1. If S € Orey(R,b) and ass;(S) = b then S € Ore; (R, b).

If S € Den(R,b) and ass;(S) = b then S € Den;(R, b).

If S € Den(R,b) and ass;(S) = ass,(S) = b then S € Den(R, b).

If S € Ore;(R,b) and T C S for some T € Ore;(R,b) then S € Ore;(R,b).

SR

If S € Den;(R,b) and T C S for some T € Ore;(R,b) then S € Den;(R,b).
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Proof. Clearly, the set S is a multiplicative subset in R.

1. We have to show that the left Ore condition holds for the multiplicative subset S of the
ring R. For elements s € S and r € R, s'F = 1’5 for some elements s’ € S and 7’ € R (since
S € Orey(R,b)). Therefore, d := s'r —1's € b. By the assumption ass;(S) = b. So, there is an
element s’ € S, such that 0 = s”’d = s”s'r — s"'r’s, i.e. the left Ore condition holds for S.

2. By statement 1, S € Ore(R,b). It remains to show that ass,(S) C ass;(S) = b. Suppose
that r € ass,(9), i.e. rs = 0 for some element s € S. Then 75 = 0. It follows that 7 € b (since
S € Deny(R, b)), and so r € ;1 (b) = b = ass;(S). Hence, ass,(S) C ass;(S) = b.

3. Statement 3 follows from statement 2 and its right analogue.

4. Since S € Orey(R,b), ass;(S) C b. Since T'C S and T € Ore;(R,b), b = ass;(T) C ass;(S).
Hence, ass;(S) = b. Now, S € Ore;(R, b), by statement 1.

5. By statement 4, S € Ore(R,b). It remains to show that ass,(S) C ass;(S) = b. Suppose
that r € ass.(S), i.e. 7s = 0 for some element s € S. Then 78 = 0 and so 7 € b (since
S € Deny(R, b)), and so r € 7, 1(b) = b = ass;(S). Therefore, ass,(S) C ass;(S) = b. O

Now, we obtain a useful corollary.

Corollary 3.9. Let R be a ring, a be an ideal of R and 74 : R — R := R/a, r =T =1+ a.

1. If S € Ore)(R,a) then S+ a € Ore (R, a).
2. If S € Deny(R, a) then S+ a € Den;(R,a) and (S+a) 'R~ S™'R.
3. If S € Den(R,a) then S+ a € Den(R,a) and (S +a) 'R~ S™1R.

Proof. 1 and 2. We keep the notation of Lemma 3.8. Suppose that S € Ore;(R, a)/Den;(R, a).
Then S’ := S+ a = 7, 1(9) is a multiplicative subset of R that contains S. Therefore, a =
ass;(S) C assi(S’). Let r € assi(S’). Then (s + a)r = 0 for some elements s € S and a € qa,
and so st = —ar € a. There is an element ¢ € S such that tsr = 0, i.e. r € a. Therefore,
assi(S) = a = assy(9’). Clearly, S := 74(S5) € Ore;(R,0)/Den;(R,0). Now, by Lemma 3.8.(1,2),
S’ € Orey(R, a)/Deny(R, a). If §" € Deny(R, a) then §' 'R~ m(S") 'R = m4(S) 'R ~ SR,

3. Statement 3 follows from statement 2 and its right analogue. O

Lemma 3.10 provides sufficient conditions for a left Ore/denominator of a larger ring being a
left Ore/denominator set of a smaller ring which contains it.

Lemma 3.10. Let R be a subring of a ring R’ and S be a multiplicative subset of R such that the
left R-module R'/R is S-torsion (for each v € R’ there is an element s € S such that s’ € R).

1. If S € Ore)(R',d) then S € Ore)(R,RNd’).
2. If S € Deny(R',a) then S € Deny(R,RNa’) and ST'R~ S™'R'.

Proof. 1. (i) S € Ore;(R): For each element s € S and r € R, s'r = r's for some elements s’ € S
and ' € R’ (since S € Ore/(R’,a’)). By the assumption, the left R-module R'/R is S-torsion,
and so tr' € R for some element ¢t € S. Now, ts'r = tr's where ts’ € S and ¢’ € R, and the
S e Orel(R).

(ii) ass;, r(S) = RNa’: Since R C R’ and S € Ore;(R',a’), ass; r(S) = RNass; r/(S) = RNa'.

2. (i) S € Den;(R,RNa'): By statement 1, S € Ore; (R, RN a’). It remain to show that
ass,(S) € RNa'. Given an element r € R such that rs = 0 for some s € S. Then r € o’ (since
S € Deny(R',a’)), and so r € RN d’, as required.

(i) SR ~ S~!R’: By the statement (i), the map ¢ : ST'R — SR/, s71r s s71r is a ring
homomorphism. Suppose that a := s7'r € ker(¢). Then r € @/, and so r € RNda’, i.e. a = 0.
So, the map ¢ is a monomorphism. It remains to show that the map ¢ is an epimorphism. Given
element s~'r" € ST1R’ where s € S and r’ € R’. Since the R-module R'/R is S-torsion, there is
an element ¢ € S such that r := tr' € R. Then s~ 'r' = (ts)"'tr' = (ts)"'r € ST1R. Therefore,
the map ¢ is epimorphism and the statement (ii) follows. O
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The ring 'Q(S,). Recall that Y,, = K[y1,...,ys] is a polynomial algebra. Let Y? := Y,,\{0},
/Y% =Y, N'Cs,,

Y, =Y, N’'S(S,) and Y, = {ceY,|y*ce’S(S,) for some o € N"},

T =7 (Ln\{0}) = Sp\ap and S := 7 (Y, \{0}) = Y,,\{0} + a,, where ma, : S, = Sp/an = L,
r—T:=7+a,. Clearly, 'Y, C'Y? CY? and SC T.
Theorem 3.11 describes the algebra 'Q(S,,).

Theorem 3.11. 1. 'Q(S,) ~ K(Y1,---,Yn)-

2. 'Y, € Deny(Sp,an) and 'Y,'S, =~ 'Q(S,). Furthermore, the subset 'Y, of Y, is a left
denominator set of S, which is the largest left denominator set that is contained in the
multiplicative set Y, N'Cs,, .

3. 8, T € Den(Sp,a,) and 'Y 1S, ~ T71S, ~871S,, ~ K(y1,--.,Yn)-

Proof. 1. Statement 1 follows from statements 2 and 3.

2. (i) The pair ('Y,,’S(Sy)) is a left localization pair of the ring S,: By the definition, the set
"Y,, is a multiplicative subset of 'S(S,,) C S,,. It follows from the inclusions S, C 'Y, C 'S(S,)
that

an, = ass;(Sy) C ass;('Y,) C ass;("S(Sn)) = an,

and so ass;('Y,) = a, = ass;(’S(S,)). For each element s € 'S(S,,), there is an element o € N”
such that y*s € 'Y,,. Notice that y* € S, C'Y,,, and the statement (i) follows.

(ii) 'Y,, € Deny(S,,a,) and 'Y 'S, ~'Q(S,): The statement (i) follows from the statement
(i) and Lemma 3.6 where T ="5(S,,) € Den;(S,,a,) and S ='Y,,.

(iii) The subset 'Y, of Sy, is a left denominator set of S,, which is the largest left denominator
set that is contained in the multiplicative set Y,, N'Cs,: Let T be a left denominator set of S,
which is the largest left denominator set that is contained in the multiplicative set Y,, N'Cs,. By
the statement (ii), 'Y,, € Deny(S,, a,,). Clearly,

Y, = YnN'S(Sn) C Yan'Cs,,

and so 'Y,, C T. Since T C 'Cs,, and 'S(S,,) is a the largest left denominator set in ‘Cg,, we have
the inclusion T' C Y, N’S(S,) ='Y,,. Therefore, T ="Y,.

3. (i) T € Deny(Sy,a,) and TS, ~ K(y1,...,yn): Since S, € Den(S,,a,) and S, C T,
a, = ass;(Sy) C ass;(T). The opposite inclusion follows from the fact that the factor ring S, /a,, ~
K[y, ...,y is a domain. So, ass;(T) = a,. Notice that

o, (T) = K[yt ...y '1M0} € Demy(K[yi, ..,y '], 0).
By Lemma 3.9.(2), T € Den;(S,, a,) and
T 'S0 = 7a, (T) " (Sn/an) = ma, (T) " (Klyi -y 1) = K(yn,- -, ym)-

(ii) The pair ('Y, T) is a left localization pair of the ring S,: By statement 2, 'Y, €
Deny(S,,a,). For each element ¢ € T, there is an element o € N™ such that y*t € 'Y,,. No-
tice that y* € S, C'Y,,, and the statement (ii) follows.

(iii) 'Y 'S, ~ T!S,: The statement (iii) follows from the statement (ii) and Lemma 3.6
where T =T € Deny(S,,a,) and S ="'Y,,.

(iv) The pair (S,T) is a left localization pair of the ring S,: By the statement (i), 7 €
Deny(Sy, a,,). By the definition, the set S is a multiplicative subset of S,. The inclusions S, C
S C T imply that

an, = ass;(Sy) C ass;(S) C assy(T) = ap,
and so ass;(S) = a, = ass;(7). For each element ¢t € T, there is an element o € N™ such that
y*t € S. Notice that y* € S, C S, and the statement (iv) follows.

(v) 871S,, = TS, The statement (v) follows from the statement (iv) and Lemma 3.6 where
T =T € Den(S,,a,) and S = S.

Now, statement 3 follows. O
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Theorem 3.12. ([10, Theorem 4.3]) Let R be a ring. Then

1. 'Qi(R) is a left Artinian ring iff 'Qua(R) is a left Artinian ring. If one of the equivalent
conditions holds then 'S;(R) ='Cr and 'Qi(R) ="'Qi,a(R).

2. 'Qi(R) is a semisimple Artinian ring iff 'Qiq(R) is a semisimple Artinian ring. If one of
the equivalent conditions holds then 'S|(R) ='Cgr and 'Qi(R) ='Qra(R).

Corollary 3.13. 'Cs, ='S(Sy) and 'Qra(Sn) ='Q(Sn) =~ K(y1,---,Yn)-

Proof. By Theorem 3.11, the ring 'Q(S,) ~ K (y1,-..,yn) is a field. In particular, it is a semisimple
Artinian ring. Now, the corollary follows from Theorem 3.12.(2). O

Theorem 3.11 and Corollary 3.14 produce explicit left denominators sets S € Deny(S,,a,)
such that ST, ~ 'Q(S,,). By Theorem 3.11 and Corollary 3.14, there are inclusions in the set
Deny (S, a,,) apart from Sy:

Sy €'Y, C'S(Sn) C'S(Su) + a0 CT, 'Y €'Y €'Yy an C€'S(Yn) +n, 'Y+, CSCT.
(18)

Corollary 3.14. Let S = 'Y,,,’Y, + an,’S(Y,) + an. Then S € Deny(Sy,a,) an S~1S, ~
'Q(Sn) =~ K(y1,- s Yn)-

Proof. By Theorem 3.11.(2) and Corollary 3.9.(2), 'Y,, + a,,’S(Y,) + a, € Den;(Sp,a,). Now,
for S ="Y, + a,,’S(Y,) + a,, the corollary follows from Corollary 3.9.(2). It remains to consider
the case when S :/\’//Yvn

(i) The pair ('Y,,'Y, + a,) is a left localization pair of the ring S,: The inclusions 'Y,, C
Y, C'Yn + ay, yield

a, = ass;('Y,) C assl(@) Cassi ('Y, + a,) = ap.

Therefore, assl(fﬁ) = a, = ass;('Y, + a,). For each element s € 'Y,, + a,, there is an element
a € N” such that y®s € 'Y,, C @(—; Notice that y* € S, C'Y,, C @(—;, and the statement (i)
follows.N o

(ii) 'Y,, € Den;(Sp,a,) and 'Y,, S, ~ ('Y, + a,)" 'S, =~ K(y1,-..,yn): The statement (ii)

follows from the statement (i) and Lemma 3.6 where S ='Y,, and T = 'Y, +a,, € Den;(S,,,a,). O
Corollary 3.15. 1. Q'(S,) =2 n('Q(S,)) = K(x1,...,xy).
2. C§, = S'(Sn) and Q] ,4(Sp) = Q'(Sp) =~ K(x1,...,75).

Proof. 1. Since 7 is an involution of the algebra S,, Q'(S,) ~ n('Q(Sy)). Since n(y;) = z; for all
i=1,...,n,n(Q(Sy)) =n(K(Y1,...,yn) = K(x1,...,2y), by Theorem 3.11.(1).

2. By statement 1, the ring Q'(S,,) ~ K (z1,...,x,) is a field. In particular, it is a semisimple
Artinian ring, and so statement 2 follows from Theorem 3.12.(2). O

Descriptions of the sets 'Cs, and Cg,.

(i) 'Cs, € S1\F: It is obvious that every element of the ideal F' = @, jenKE;j >~ M (K) is a
left and right zero divisor of the algebra F' (without 1) and of S;.

(ii) Y € ’Cs,: The ideal F is an essential right ideal of the algebra S; such that Fs, ~ (P])®™
is a semisimple right S;-module (Proposition 3.4). By Corollary 2.20.(1), ‘Cs, = 'Cp; where
P| = K|y] is the only simple faithful right S;-module. Now, the statement (ii) follows from (17).

(iii) For each nonzero element d € $i\F, 8'd € YY for some i € N: The statement (iii) follows
(11).

(iv) For each nonzero element d € S$;\F, 8'd € 'Cs, for some i € N: The statement (iii) follows
from the statements (ii) and (iii).
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Then the well-defined map
d:SI\F =N, a+ d(a):=min{i € N|d'a € 'Cs,} (19)

is called the left reqularity degree function and the natural number d(a) is called the left reqularity
degree of a. For each element a € S;\F, d(a) can be found in finitely many steps. Now, Theorem
3.16.(1) follows. Then Theorem 3.16.(2) follows from Theorem 3.16.(1).

Theorem 3.16. 1. 'Cs, = {0%¥a|a € S;\F}.
2. Cg, =n('Cs,)-

By (11), each element a € S; is a unique sum a = Zé:o /\,Z—yi—l—z?:l /\jxj +ap where A\, € K,
!

k=—l,...,mand ap € F. Let ay :== ), , A_;y'. The integer
min{n € N|ap € @} ._, Ke;j} ifap #0,
s(ar) := i .
-1 ifap = 0.
is called the size of the element ap € F. The integer s(a) := s(ap) is called the size of the element
a. For each i € N, let P| ; := {a € P{| deg,(a) < i} where deg, is the degree of the polynomial
a € P| in the variable y.

Theorem 3.17. 1. 'Cs, = {a € Si\(zK[z] + F)| -a: P| _ ) = P

1,<s(a)+deg, (a,) P 7 P& 18

an injection}.

2. Cg, = n('Cs,) where 1 is the involution of the algebra Sy, see (13).

Proof. 1. (i) 'Cs, N (xK[z] + F) = 0: Suppose that a € zK[z]. Then 1 € ker(-a). Recall that

'Cs, € Si\F (see the statement (i) in the proof of Theorem 3.16). So, it remains to consider the

case when a € (zK[z] + F)\(2K[zr] U F). Then the map -a : P, <s(a)41 P <s(ayy PP pais a

well-defined map. Since - B
dimK(Pl/,Ss(a)—i-l) =s(a)+2>s(a)+1= dimK(Pl’és(a)),

ker(-a) # 0. Therefore, 'Cs, N (xK[z] + F) = 0.

(ii) For each element a € Si\(zK[z] + F), kerp(-a) € P _ ,: Since a € S;\(zK[z] + F),
ay = Zé:o A_iy® # 0 where A_; € K. Suppose that A_; # 0. Suppose that p € kerpl/(u)\Pl’)SS(a),
i.e. deg,(p) > s(a). Then

deg(pa) =1+ deg,(p),
a contradiction (since pa = 0).
Now, statement 1 follows from statements (i) and (ii).
2. Statement 2 follows from statement 1. O

The algebras 7,, of scalar integro-differential operators. In the next section, we will
see that the algebra I,, of polynomial integro-differential operators contains the algebra of scalar
integro-differential operators, [3]:

Z, ::K<81,...,8n,/1,...,/n>.

The algebra Z,, is canonically isomorphic to the algebra S,, [3, Eq. (9)], see (20) for an explicit
isomorphism.

Corollary 3.18. 1. 'Cz, ='S(Z,,) and 'Q1.a(Z,) ='Q(Z,) ~'Q(Spn) =~ K(y1,---,Yn)-
2. Cz, = S'(Z,) and Q;ycl(In) =Q'(Z,) ~Q'(Sp) ~ K(x1,...,2x).

Proof. 1. The algebras Z,, and S,, are isomorphic (see (20)) and statement 1 follows from Theorem
3.11 and Corollary 3.13.
2. Statement 2 follows from Corollary 3.15. O

Corollary 3.19. 'Cz, = £('Cs,) and C7, = &(Cy, )-
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4 The rings 'Q(I,) and Q'(I,)

The aim of the section is to prove Theorem 4.4, to obtain a description of the sets 'Cy, and Cﬁl
(Theorem 4.7), and to prove Theorem 4.6 which is a criterion for 'Q(L,) ~ Q(I,,).

The rings [, of integro-differential operators and the Jacobian algebras A,. In this
section the following notation is fixed: K is a field of characteristic zero and K* is its group of
units; P, := K[z, ...,x,] is a polynomial algebra over K; 9, := 8%1’ ceyOp = % are the partial
derivatives (K-linear derivations) of P,,; Endg (P,) is the algebra of all K-linear maps from P, to
P,; the subalgebra A,, ;== K(x1,...,2p,01,...,0,) of Endg (P,) is called the n’th Weyl algebra.

Definition 4.1. (/1]) The Jacobian algebra A,, is the subalgebra of Endg (P,,) generated by the
Weyl algebra A,, and the elements H; *,...  H ' € Endg(P,) where

H1 = (915[:1, .. .,Hn = 8n:vn

Clearly, A, = @i, A1(i) ~ AP™ where A1(i) := K(x;,0;, H ') ~ A;. The algebra A,
contains all the integrations [, : P, = P,, p — [ pdu;, ie.

/: a:l-Hi_l cax% e (o + 1) T e
i

The algebra A,, contains the algebra of polynomial integro-differential operators, [3]:

]In:=K<:101,...,xn,al,...,Bn,/l,...,/n>.

Notice that I,, = @, I1 (i) ~ [?™ where I; (i) := K (x;,9;, [;) ~ I1. The algebra I,, contains the
algebra of scalar integro-differential operators, [3]:

7, ::K<81,...,8n,/1,...,/n>.

The algebra Z,, is canonically isomorphic to the algebra S,, [3, Eq. (9)]:
£:S, =1, xw—)/, yi—> 0, 1=1,...,n. (20)

For the reader’s convenience we collect some known results on the algebras I,, and A,, from the
papers [1, 3] that are used later in the paper. The algebra I,, is a prime, central, catenary, non-
Noetherian algebra of classical Krull dimension n and of Gelfand-Kirillov dimension 2n, [3]. Since
T = fz H;, where H; := 0;x;, the algebra I, is generated by the elements {9;, H;, fz |i=1,...,n},
and I, = @, I (i) where

I, (i) := K<6i,HZ-,/> - K<6i,:vi,/> ~T,.

K3 2

When n = 1 we usually drop the subscript ‘1’ in 0y, fl, Hy, and z;. The algebral} = @ezlli
is a Z"™-graded algebra where
"Dy ifi>1,
I; =< Dy if i =0, (21)
D9~ ifi < 1,
where Dy := K[H] ® @,y Keii is a commutative, not Noetherian, not finitely generated algebra

and K[H] is a polynomial algebra in the variable H and H = 0z = 20 + 1.
The following elements of the algebra Iy = K(0, H, [),

1 ) 1+1 )
eij ;:/ aﬂ—/ L ij €N, (22)
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satisfy the relations: e;jer; = djies where 6;; is the Kronecker delta. The matrices of the linear
maps e;; € Endg (K([z]) with respect to the basis {zl*) := :”S—!S}SGN of the polynomial algebra K|[x]
are the elementary matrices, i.e.

€ij * 2l = - lf] o
0 if j # s.

The direct sum F := €P, ;o Keyj is the only proper (hence maximal) ideal of the algebra I;. As
an algebra without 1 it is isomorphic to the algebra without 1 of infinite dimensional matrices
My (K) := li_ngMd(K) = ®i,j€N KE;; via e;; — E;; where E;; are the matrix units. For all
i,j €N,

/ez‘j =e€it1j, €ij / =eij-1, Oeij=ei1j, €ij0=eij, (23)
where e_; ; :=0and ¢; _1 := 0.

=P K[HY & K[H ]@@K[H]/i@F (24)

i>1 ie>1

and K[H|0" = 0'K[H] and K[H f f K[H] for all i > 1. The algebra I; is generated by the
elements 9, [ and H subject to the followmg deﬁmng relations (Proposition 2.2, [3]):

a/=1, [H/]:/ [H,0] = -0, H(1—/3):(1—/8)H:1—/a.

The algebra I,, = @ 111 (i) = Bacznln,o is a Z"-graded algebra where L, o 1= @7_I1 o, (k)

for « = (a1, ..., ). The algebra I,, contains the ideal
s F = @) = @) K
a,BEN”
where eqp == [17-) €as; (i), €ars, (i) = [ 07 — [STH 0P and F(i) = @, ey Kesi (i)

Lemma 4.2. 1. ([3, Corollary 3.3.(2)]) The set of height one prime ideals of the algebra I, is
1 =FLi_1,p =L Q@F®I_2,...,pn =11 ® F}.

2. ([3, Corollary 3.3.(3)]) Each ideal of the algebra 1,, is an idempotent ideal (a* = a).

3. ([3, Lemma 5.2.(2)]) Fach nonzero ideal of the algebra 1, is an essential left and right
submodule of 1,.

4. ([3, Corollary 3.3.(8)]) The ideal a,, := p1 + -+ py, is the largest (i.e. the only mazimal)
ideal of I,, and F,, = F®" = N"_,p; is the smallest nonzero ideal of 1,,.

5. ([3, Proposition 3.8]) The polynomial algebra P, is the only (up to isomorphism) faithful
simple left 1,,-module and 1, P, ~1,,/1,,(01,...,0,) ([4, Proposition 3.4.(3)])).

6. ([3, Lemma 5.2.(1)]) For all nonzero ideals a of the algebra I,,, lLanny, (a) = r.anng, (a) = 0.

7. ([3, Lemma 5.2.(2)]) Each nonzero ideal of the algebra L, is an essential left and right
submodule of I,,.

The involution * on the algebra I[,,. The algebra I,, admits the involution:

*]In—)]ln, 81»—>/, /b—>81, Hl’—)Hl, Z:L,?’L, (25)
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ie. it is a K-algebra anti-isomorphism ((ab)* = b*a*) such that x o x = idy,. Therefore, the
algebra I, is self-dual, i.e. is isomorphic to its opposite algebra I%. As a result, the left and the
right properties of the algebra I,, are the same. For all elements o, 8 € N,

ehs = €pa- (26)
The involution * can be extended to an involution of the algebra A, by setting
v; = H;0;, O :/7 (HY) =H, i=1,...,n.
i

Note that y} = (H; '9;)* = [[H; ' = x;H;? A% ¢ Ay, but I} = T,, where

7, ;:K<81,...,8n/1,...,/n>

is the algebra of integro-differential operators with constant coefficients.

For a subset S of a ring R, the sets Lanng(S) := {r € R|rS = 0} and r.anng(S) := {r €
R | Sr =0} are called the left and the right annihilators of the set S in R. Using the fact that the
algebra [,, is a GWA and its Z"-grading, we see that

l.annﬂn(/i) = @Keko(i)®§ﬂl(j), r.annﬂn(/i) =0. (27)

keN

ranny, (0;) = @ Keor(i) Q) @) 11(5), Lanng, (9;) = 0. (28)

keN i#]

Let a be an ideal of the algebra I,. The factor algebra I,/a is a Noetherian algebra iff
a = a, (Proposition 4.1, [3]). The factor algebra B,, := I,,/a, is isomorphic to the skew Laurent
polynomial algebra

Q) K[Hi)[0:,0; 7] = Puldf, ..., 0 7, . 7l

=1

via 9; — 0;, [, — 0; ', Hy = H; (and x; — 0; 'H;) where P, := K[Hq,...,H,] and 7;(H;) =
H,; + 1. We identify these two algebras via this isomorphism. It is obvious that

» P

By = Q) K[Hillzi, 2 00 = Pulzi', .. 200, o,
i=1
where z; := 8;1 and o; = 7'[1 : H; — H; — 1. The algebra B, is also the left (but not right)
localization of the algebra I,, at the multiplicatively closed set
So = Sa,....0, == {07 ---0%" | () € N"}, and B, ~ S;'L,.
The algebra B,, contains the algebra A,, := P,[01,...,0;T1,- .., ] which is a skew polynomial

ring.

Using the involution on the algebra * on I,,, the polynomial algebra P,, can be seen as the right
I,,-module by the rule
pa:=a*p forall pe P, and a €1,.

By Lemma 4.2.(5), P, = KJz1,...,zy] is the only faithful, simple, right A,-module. Let P! :=
(P,)* = K|[b1,...,0,], a polynomial algebra in n variables. Clearly,

(Po)a, ~ I,/ (H1—1,...,H,—1,04,. .. ,871))* — Hn/(Hl—l, e ,Hn—l,/, e ,/ )]In ~ Pfﬁ ~ (P,’L)pé
1 n
where 1:=1 + (fl, ey fn )Hn. So, P! is the only faithful, simple, right I,,-module.
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Lemma 4.3. 1. 1, F, ~ P,SN") is a direct sum of N™ copies of the simple faithful left I,-module
P,.

2. (B, ~ (PN s a direct sum of N™ copies of the simple faithful right T,,-module P.
Proof. 1. 1, Fy = @a pern K Eap = ®penn ( Saenn KEap) ~ Gpenn By ~ P

2. Statement 2 follows from statement 1 by applying the involution * and using the fact that
Er=F,. O

n

The ring 'Q(L,,). Recall that A, = Pp,[01,...,0n;71,...,7a]. Let A2 := A, \{0}, 'AY =
A, N /C]]n,

"N, = A, N'S(I,) and N, = {ce A, |0% €’'S(1,) for some o€ N"}.

Notice that 'A,, C ’A% - A%. Theorem 4.4 produces explicit left denominators sets S €
Deny(I,,, a,,) such that S~11,, ~ ’Q(1,,). By Theorem 4.4, there are inclusions in the set Den;(I,,, a,)
apart from Sy:

Sy C'A, C'S(I,) C'S(I,) +a, and ‘A, C'A, C' A, +a, C'S(I,) + an. (29)

Theorem 4.4. 1. 'A,, € Deny(L,, a,) and 'A; M, ~ 'Q(L,). Furthermore, the subset 'A, of
I, is a left denominator set of I, which is the largest left denominator set that is contained
in the multiplicative set 'Cy, N A,,.

2. 'An +a,,'ST,) + a, € Deny(L,,a,) and

(An+ ) 'Ly~ (S(L) + an) " L ~'Q(I,).

3 A, ="An A, + a,,’S(L,) + a, € Deny(L,,0) and

‘A Lo =Ry 0 L= 78(I) +an Lo~ 'Q(Ly)

where S =7y, (S) and 7q, : 1, = Ly =1 /0n, 1= T =7+ a,.

—_— —_— — —— /'\_/71
4. 'A,, € Deny(L,, a,) and 'A, 111" ~'Q1,). 'A, € Deny(L,,0) and 'A,, L, ~'Q(L,).

5. 'Ap + a, € Deny(I,, a,) and (’ANn + an)fl]ln ~'Q(I,).
6. 'A, € Deny(A,,,0) and 'ATA, ~'Q(L,).
7. "Ny i="8{,) N (Ca, +a, + an) + ay € Deny (I, a,), "Ap €A, and "ALL, ~'Q(1,).

Proof. 1. (i) 'A,, € Deny(I,,a,) and ‘AL, ~ 'Q(L,): By the definition, the set ‘A, is a
multiplicative subset of 'S(I,,) C I,,. It follows from the inclusions Sy C'A,, C'S(L,) that

a, = ass;(Sg) Cass|('Ay) Cassi('S(L,)) = ay,

and so ass;('A,) = a, = ass;("S(L,)). For each element s € 'S(I,,), there is an element o € N
such that 0%s € 'A,. Notice that 9% € Sy C'A,,. Now, the statement (i) follows from Lemma
3.6 where T ="S(I,,) € Den;(I,,, a,,) and S ='A,,.

(ii) The subset 'A,, of I, is a left denominator set of 1,, which is the largest left denominator
set that is contained in the multiplicative set 'Cy, NA,: Let T be a left denominator set of I,, which
is the largest left denominator set that is contained in the multiplicative set 'Cy, N A,,. By the
statement (i), 'A,, € Den;(I,, a,). Clearly, ‘A, C'C;, N A, and so 'A,, CT. Since T C’'Cy, and
'S(L,) is a the largest left denominator set in 'Cy,, we have the inclusion T'C A, N'S(L,) ='A,,.
Therefore, T ='A,,.
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2. By statement 1, 'A,,,’S(I,) € Den;(I,,a,) and ‘AT, ~ 'S(L,)" 'L, = 'Q(L,). Now,
statement 2 follows from Corollary 3.9.(2).

3. Statement 3 follows at once from statement 2 (If S € Den;(R, a) then S := S+a € Den (R, 0)
and S~'R ~ S 'R where R := R/a).

4. By the definition, the set A, is a multiplicative set such that 'A, C A, C 'S(I,).
Therefore, a,, = ass;('A,) C ass; (’ANn) Cassi('S(1,)) = ap, and so assl(’ANn) = a,. Now, the first
part of statement 4 follows from the definition of the set El and Lemma 3.6 where S = ’Z; and
T ='S(L,).

The second part of statement 4 follows from the first one.

5. Statement 5 follows from statement 4.

6. By statement 3, 'A,, € Deny(Ly,0) and ‘A 'L, ~'Q(L,). Now, statement 6 follows from
Lemma 3.10.(2) where R = A,,, R’ = L, and S ='A,, (The R-module R’/R is Sp-torsion. Hence
it is also ‘A, -torsion as Sy C 'Ay,).

7. By the definition, the subset ”A,, of I,, is a multiplicative set such that ‘A, C "A, C
'S(L,), see statements 1 and 2. Hence, a,, = ass;('A,) C ass;("A,) C ass;('S(L,)) = a,, and so
ass;("Ay) = a, = ass;('S(I,,)). Notice that Ssp C’A,, C"”A,, and for each element s € "A,, there
is an element o € N" such that 9%s € 'A,, C "A,,. Now, statement 7 follows from Lemma 3.6
where S ="A,, and T ='5S(I,). O

In order to prove Theorem 4.6, we need the following lemma which is a characterization of the
set 'Cy,, .

Lemma 4.5. Let a € I,,. Then the following statements are equivalent:
1. a€’Cy,.
2. a€'Cp,.
3. a €'Cp, where P}, = K[0,...,0,] is the only simple, faithful, right I,-module.
4. a* € Cp where P, = K[x1,...,,] is the only simple, faithful, left 1,-module.

Proof. (1 < 2) The equivalence follows from Corollary 2.19.(1) and the fact that every nonzero
ideal is an essential right ideal of the algebra I,, (Lemma 4.2.(7)).

(2 & 3) The equivalence follows from Corollary 2.20.(1) and Lemma 4.3.(1).

(3 < 4) The equivalence follows from the fact that P, = P}, O

By applying the involution * to Lemma 4.5, we obtain a similar characterization of right reg-
ular elements of the ring I, (a € 'Cy, iff a* € Cf ).

Criterion for 'Q(I,) ~ Q(A,). The algebras A,, and B,, are Noetherian domains. By Goldie’s
Theorem, their quotient rings are division rings. It follows from the inclusions A,, C B,, C Q(A,)
and A,, C SglAn ~ B, C Q(A,) that

Q(An) = Q(Bn) = Q(An). (30)
Theorem 4.6. The following statements are equivalent:
1. 1Q(L,) ~ Q(Ay).
2. "Qualln) = Q(An).
3. The set 'S(I,,) is dense in B,\{0}.
4. The set 'Cy, is dense in B,\{0}.

5. The set'A,, is dense in B,\{0}.
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6. The set'A,, is left dense in AY.
7. For each element s € A2, there is an element s’ € A% such that s's € 'Cp,.

8. For each element s € A), there is an element s’ € AY such that s's € 'Cp; where P}, =
K[01,...,0,] is the unique simple faithful right I,,-module.

Proof. (1 < 2 < 3 < 4) The equivalence (1 < 2) follows from Theorem 3.12.(2). The equivalences
(1 & 3) and (2 & 4)follows from Theorem 1.1 and Theorem 3.12.(2) (since ass;('S(I,,)) = a, is a
prime ideal of I,,, the algebra I, /a,, = B,, is a domain and Q(I,/a,) = Q(B,,) is a division ring).

(1 & 5) By Theorem 4.4.(1), 'A,, € Den;(L,,a,) and 'A; 'L, ~'Q(L,). Since the set 'A,, is
dense in 'S(IL,), the equivalence (1 < 5) holds iff the equivalence (1 < 3) holds.

(5 < 6) Recall that 'A,,, A% € Den;(A,,0), ’A, € A2 and Q(A,) = Q(A,), see (30). By [10,
Lemma 3.5.(3)], A tA,, ~ (AY) A, = Q(A,) iff the set 'A,, is left dense in A%.

(6 & 7) By Lemma 4.5, the inclusion s’s € 'Cp, is equivalent to the inclusion s's € 'Cy,,.
Hence, statement 7 is equivalent to the statement that for each element s € AY, there is an
element s’ € A such that s's € 'Cy,, i.e. s's € A, N'Cy, ='A,, ie. it is equivalent to statement
6.

(7 < 8) The equivalence follows from Lemma 4.5. O

Description of the set 'C4,. By (24), each element a € I; is a unique sum a = Eé:o d_;0'+
Py [’ d;+ap where dy, € K[H], k= —I,...,mand ar € F. Let ap := Zé:o d_;0'. The integer

(ar) min{n € N|ar € @;,_( Keij} if ap #0,
s(ap) = *
" -1 if ap = 0.

is called the size of the element ap € F. The integer s(a) := s(ap) is called the size of the element
a. For each i € N, let P| _, := {a € P/ | deg,(a) < i} where deg, 0 is the degree of the polynomial
a € P{ = K[9)] in the variable 9.

For all polynomials p € K[H|, Op = 7(p)0 where 7 € Autg (K[H]) and 7(H) = H + 1. For
each nonzero polynomials p € K[H], let

p(p) := min{i € N|the polynomial 7%(p) € K[H] has no root in N, }.

Let O := @, [(K[H]®F. Ifa= Y d 0"+ X7 [7d; +ap € ;\V then ag # 0 and so
d_pn, # 0 where n = degy(ag). Let

wu(a) :== pu(d—p,) and v(a) := max{s(a), u(a)}.

— P!

Theorem 4.7. 1. 'Cp, ={aci\¥|-a:P| | <v(a)+deg, (ay

,<v(a) ), D= pa is an injection}.

2. Cj, ='Cy, where x is the involution of the algebra Iy, see (25).

Proof. 1. (i) 'C;, N ¥ = @: Suppose that a € ¥. Then the map -a : Pl’7<s(a)Jrl — P1’7<S(a), P pa
is a well-defined map. Since B B

dimK(Pl/,Ss(a)—i-l) =s(a)+2>s(a)+1= dimK(Pl’és(a)),

ker(-a) # 0, a & 'Cy,. Therefore, 'Cr, N¥ = ().

(ii) For each element a € I;\V, kerp;(-a) C P _,,): Since a € 1\¥, a, := Eé:o d_;0" #0
where d_; € K[H]. Suppose that d_; # 0. Suppose that p € kerp{(-a)\Pl’éu(a), ie. deg,(p) >
v(a). Then

deg(pa) =1+ deg, (p),
a contradiction (since pa = 0).
Now, statement 1 follows from statements (i) and (ii).
2. Statement 2 follows from statement 1. O
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Lemma 4.8 provides examples of rings R such that 'Ci¢ =0, C'y“ = 0 and C¥ = 0.
Lemma 4.8. Let R be either I,, or S,,. Then:

1. 'CrRNF,=0,ChNF,=0and CRNF =0.

2. 'Clee =0, C'° =0 and C¥ = 0.

Proof. 1. Clearly, every element of the ideal F' is a left and right zero-divisor, and statement 1
follows.

2. The ideal F,, is a left and right essential ideal of R, and so statement 2 follows from statement
1. O

5 The rings 'Q(A,) and Q'(A,)

The aim of the section is to prove Theorem 5.1 and Theorem 5.5. Theorem 5.4 a criterion for
'Q(A,) ~ Q(A,). As a corollary we obtain that 'Q(A1) ~ Q(A4;1) (Theorem 5.5). Theorem 5.8
and Theorem 5.7 describe the set 'Ca,. At the beginning of the section, we recall necessary facts
about the Jacobian algebras A,, that are used in the proofs. The details can found in [1].

The Weyl algebra A,, = A, (K) is a simple, Noetherian domain of Gelfand-Kirillov dimension
GK (Ay) = 2n. The Jacobian algebra A, is neither left nor right Noetherian, it contains infinite
direct sums of nonzero left and right ideals. This means that adding the inverses of the commuting
regular elements Hi, ..., H, to the Weyl algebra A,, is neither a left nor right Ore localization of
the algebra Weyl A,,. This fact is a prime reason why the properties of the Jacobian algebras are
almost opposite to the ones of the Weyl algebras.

The algebra A,, is a central, prime algebra of Gelfand-Kirillov dimension 3n ([1, Corollary
2.7]). The canonical involution 6 of the Weyl algebra A,, can be uniquely extended to the algebra
A, (see (32)). So, the algebra A, is self-dual (A,, ~ A%) and its left and right algebraic properties
are the same. Note that the Fourier transform on the Weyl algebra A, cannot be lifted to A,,.
Many properties of the algebra A, = A‘?" are determined by properties of A;. When n = 1 we
usually drop the subscript ‘1’ in xy, 01, Hi, etc. The algebra A; contains the only proper ideal
F = @i,jENKEij where

i—j( g 1 aj i1 1 i+1 e
F.. = xt I (2 ajzjaj — a2/t aj+1xj+1aj+ ) if i > g,
ij 1 aVi—i(oj 1 Aj i+1 1 i1\ e g
(7z0) (@) grm 0¥ — 277 g 1Y) i <

As a ring without 1, the ring F' is canonically isomorphic to the ring My, (K) := lim My(K) =
®i,jenK E;; of infinite-dimensional matrices where E;; are the matrix units (F — M (K), E;; —
E;;). This is a very important fact as we can apply concepts of finite-dimensional linear algebra
(like trace, determinant, etc) to integro-differential operators which is not obvious from the outset.
This fact is crucial in finding an inversion formula for elements of A7.

Notice that A, = ®7_;A; (i) ~ A?" where A () := K(x;, 0;, Hlﬂ) and H; = 0;z;. The algebra
A, = ®BaecznAp o is a Z"-graded algebra where A, o := Q}_;A1 4, (k) for = (,...,a,). For
n =1, ([1, Theorem 2.3)),

2Dy if i > 1,
A =4¢D ifi =0, (31)
D0~ ifi < —1,

where Dy := L & (¢, j>1 K2 H79") is a commutative, non-Noetherian algebra and
L:=K[H* (H+1)"Y(H+2)"%..] and H=0z=20+1.

This gives a ‘compact’ K-basis for the algebra A; (and A,). This basis ‘behaves badly’ under
multiplication. A more conceptual (‘multiplicatively friendly’) basis is given in [1, Theorem 2.5],
see also [1, Corollary 2.4] below.

24



([1, Corollary 2.4]) Dy = L & (®i>1,5>0K pji) where pj; := 2’ 550"

e Foralli>1and j >0, dpj; = 770" (a direct computation).

([1, Corollary 2.7.(10)]) P, = K|x1,...,xy] is the only faithful, simple A,-module.

([1, Corollary 3.5]) p1 := FQA,,_1,p2 = A1 QF QA _o,...,pn :=A,_1 ®F, are precisely
the prime ideals of height 1 of A,,.

([1, Corollary 3.15]) a,, := p1 + - -+ + py, is the only prime ideal of A, which is completely
prime; a, is the only ideal a of A,, such that a # A, and A, /a is a Noetherian (resp. left
Noetherian, resp. right Noetherian) ring.

1, Theorem 3.1.(2)]) Each ideal I of A,, is an idempotent ideal (I =1I).
[

(
([1, Corollary 2.7.(4)]) The ideal F,, := F®" is the smallest nonzero ideal of the algebra A,,.
(

[1, Corollary 2.7.(8)]) a, F®" =~ PN s a faithful, semi-simple, left A, -module; FE;” o~

PﬁNn)An 1s a faithful, semi-simple, right A,,-module; FISL" is a faithful, simple A,,-bimodule.

Recall that P,, is a polynomial algebra K[Hj, ..., H,] in n indeterminates and o = (o071, ...,04,)
is an n-tuple of commuting automorphisms of P,, where o;(H;) = H; — 1 and o;(H;) = Hj, for
i # j. By [4, Theorem 2.2], a,, is the only maximal ideal of the Jacobian algebra A,,. The factor
algebra A,, := A,,/a,, is the skew Laurent polynomial algebra

+1 +1 +1 +1
Ap = L0700 T, T = Lafrr X 01, e, Ol

L, = K[H,(H +1) ™ (H £2)7 . HE (H,£1)7 (H, £2)7 ..,
where 7,(H;) = Hj + 6;j, 6;; is the Kronecker delta, z; = 9; ! and o; = 7, '. The algebra B, is a
subalgebra of A,. Let S, be a multiplicative submonoid of P,, generated by the elements H; + j,

i=1,...,n,and j € Z. Then S,, is an Ore set for the Weyl algebra A,,, the algebras B,, and the
polynomial algebra P, such that A, := S, 14, ~ S, !B, and

SoAP, = KIHE  (Hy+ 1) (Hy£2)7 . HE (H, + 1) (H, £2)78 0
We identify the Weyl algebra A,, with a subalgebra of A,, via the monomorphism
An —)An, T — Ty, 81|—>HZI;1, 1= 1,...,71.

The Weyl algebra A,, is a Noetherian domain. So, by Goldie’s Theorem, the (left and right)
quotient ring of A,, Q(A,), is a division ring. Then the algebra A, is a K-subalgebra of Q(A4,,)
generated by the elements z;, 3:;1, H; and H;l, 1=1,...,n since

(Hi+j) ‘=27 H 'z i=1,...,n and jeN.
Clearly, A, ~ A",
The involution 6 on A,. The Weyl algebra A,, admits the involution
0:A, — A, x,—0, O0i—uz;, i=1,...,n.
The involution 6 is uniquely extended to an involution of A,, by the rule
0:A, = Ay, x50, divray, O(H)=H"' i=1,...,n. (32)

Uniqueness is obvious: 0(H;) = 0(d;x;) = 0(x;)0(9;) = d;x; = H; and so (H; ') = H; *. So, the
algebra A,, is self-dual and left and right algebraic properties of the algebra A,, are the same.
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The polynomial algebra P, is a left A,-module where 0; * f := é?_m]: for alli = 1,...,n and
f € P,. The left A,-module P, is isomorphic to the A,-module

Ap/An(01,...,0,) ~ P, 1~ p P, where 1:=1+ A,(01,...,0,).

The maps H; : P, — P, are invertible for all i = 1,...,n since H;z*1 = (o; + 1)z® for all
a=(a1,...,a,) € N* where 2 := [["_, 7", Therefore, the polynomial algebra P, is also a left
A, -module which is isomoprphic to

An/An(Hl—1,...,Hn—1,61,...,6n)ZPnT, where 1 := 1+An(H1—1,...,Hn—1,81,...,8n),

by [1, Theorem 2.3]. Using the involution 6 on A,,, the polynomial algebra P,, can be seen as the
right A,-module by the rule

pa :=6(a)p forall pe€ P, and a € A,.

By [1, Corollary 2.7.(10)]), P, = K|[x1,...,x,] is the only faithful, simple, right A,-module. Let
P! :=0(P,) = K[01,...,0y], a polynomial algebra in n variables. Clearly,

(Po)a, =0(P, 1) =10(P,) = 1P, ~ Ay /(Hy — 1,...,Hy — Lz, ....20)A, =~ (P))pr

where 1:=1+ (Hy —1,...,H, —1,01,...,0,)An.
For n = 1, the set F is the only proper ideal of A;, hence (F) = F. Moreover,
1!
0(Eij) = 71 B (33)
where 0! := 1. The ring F' = @; jenKE;; is equal to the matrix ring Mo (K) = Ug>1Mg(K)
where My(K) := ®o<i j<d—1KE;;. The ring F' = Mo (K) admits the canonical involution which
is the transposition (-)' : E;; — Ej;;. Let Dy be the infinite diagonal matrix diag(0!,1!,2!,...).
Then, for u € F = M (K),
0(u) = Dy 'u'Dy. (34)

Note that Dy ¢ Mo (K). For n > 1, F,, :== F®" = @4 genn KEqp = Moo (K)®" where Enp 1=

®?21Eaiﬁi' By (33)7
«

!
0(Eap) = E Ejsq, (35)
O(F®™) = FO", (36)
Let Dy, := D?". Then, for u € F®",
0(u) = D, ju' D, (37)

where (1) 1 Moo (K)®" — Moo (K)®", Eap — Egq, is the transposition map.
Consider the bilinear, symmetric, nondegenerate form (-,-) : P, x P, — K given by the rule
(%, %) := ald4p for all a, 3 € N”. Then, for all p,q € P, and a € A,

(p,aq) = (6(a)p, q). (38)

The Weyl algebra A,, admits, the so-called, Fourier transform, which is the K-algebra auto-
morphism
F:A, > A, x;—0;, O~ —x; for i=1,...,n.

Since F(H;) = —(H; — 1), H; is a unit of A,, and H; — 1 is not, one cannot extend the Fourier
transform to A,,.

Foralli=1,...,n, 0; € 'Cy,. Recall that if n = 1 then Bipji = %81' foralli>1and j > 0.
It follows that
o, = {00 0% | (o) € N"} € Deny(Ay,,a,), Sp C'Ca, and Sy'A, ~ A,.

.....
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The ring 'Q(A,,). The ring

A, = LF[01,...,00;71,...,7a], Where
L K[HEY (Hy+ 1) (Hy +2)7 . B (H, + 1) 7 (H, +2)71 . = L2,

is a skew polynomial ring where 7;(H;) = H; + &;5, A2 := A, \{0}, 'A% := A, N'Cy,,,
'A, = A, N'S(A,) and N, = {ce A, |0% €’'S(A,) for some o € N"}.

Notice that ‘A, C ’Arol - A?l. Theorem 5.1 produces explicit left denominators sets S €
Den;(A,,a,) such that S7*A, ~ 'Q(A,). By Theorem 5.1, there are inclusions in the set
Den;(A,, a,) apart from Sp:

So C'Ap C'S(Ay) C'S(Ay) +a, and ‘A, C/A, € Ay +an C/S(AL) +an. (39)

Theorem 5.1. 1. 'A,, € Deny(A,,, a,) and 'AA, ~'Q(A,). Furthermore, the subset’A,, of
A, is a left denominator set of A, which is the largest left denominator set that is contained
in the multiplicative set 'Cy, N A,,.
2. 'A, +ap,’S(A,) + a, € Deng (A, a,) and

(A +an)  Ap 2 (S(An) +a0) " Ap 2 'Q(An).

3. 'A, ="An A, + an,’S(A,) + a, € Deny(L,,0) and

AL TR F L =TS T an Lo = Q(A)

where S 1= m,, (S) and 7, 1 Ay — L, = Ap/a,, 7T =17+ a,.

—_— —_— — — /‘\_/_1
A, € Deny(An, ap) and Ay A = 'Q(An). Ay € Deny(Ln,0) and Ay L ='Q(An).

4.
5. ’ZZ +a, € Den;(A,,a,) and (EL + an)_lAn ~'Q(A,).
6. 'A, € Deny(A,,0) and 'ATA, ~'Q(A,).

7.

Ay i="S(An) N (Ca, 4a, + n) + @ € Deny(An, ), "Ap € "Ay and "A; 1A, =~ 'Q(Ay).

Proof. 1. (i) A, € Deny(A,,a,) and 'A;tA, ~ 'Q(A,): By the definition, the set 'A,, is a
multiplicative subset of 'S(A,,) C A,,. Tt follows from the inclusions Sy C 'A,, C’S(A,,) that

a, = ass;(Sp) C ass;('Ay) Cassi('S(A)) = ap,

and so ass;('A,) = a, = ass;("S(A,)). For each element s € 'S(A,,), there is an element v € N”
such that 9%s € 'A,,. Notice that 9% € Ssp C’A,,. Now, the statement (i) follows from Lemma
3.6 where T'="5(A,,) € Den;(A,,a,) and S ='A,,.

(ii) The subset'A,, of A, is a left denominator set of A, which is the largest left denominator
set that is contained in the multiplicative set'Cp, NA,: Let T be a left denominator set of A,, which
is the largest left denominator set that is contained in the multiplicative set ‘Cy, N A,,. By the
statement (i), 'A,, € Den;(A,,,a,). Clearly, 'A,, C’'Ca, NA, and so’A,, CT. Since T' C 'Cy, and
'S(A,,) is a the largest left denominator set in 'Ca,, , we have the inclusion T'C A, N'S(A,) ='A,,.
Therefore, T ="'A,,.

2. By statement 1, 'A,,’S(A,) € Den;(A,,a,) and 'A A, ~'S(A,)" 1A, ='Q(A,). Now,
statement 2 follows from Corollary 3.9.(2).

3. Statement 3 follows at once from statement 2 (If S € Den;(R, a) then S := S+a € Den;(R,0)

and ST'R~ S 'R where R := R/a).
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4. By the definition, the set ’ZZ is a multiplicative set such that ‘A, C ’ZZ C 'S(A,).
Therefore, a,, = ass;('A,,) C assl(’ANn) Cass;(S(Ay)) = a,, and so assl(’/A\;) = a,. Now, the first
part of statement 4 follows from the definition of the set ’ANn and Lemma 3.6 where S = ’/A\; and
T ="S(A,).

The second part of statement 4 follows from the first one.

5. Statement 5 follows from statement 4.

6. By statement 3, 'A,, € Den;(L,,,0) and 'A; 1L, ~'Q(A,,). Now, statement 6 follows from
Lemma 3.10.(2) where R = A,, R’ = L,, and S =’'A,, (The R-module R’'/R is Sy-torsion. Hence
it is also ‘A, -torsion as Sy C 'Ay,).

7. By the definition, the subset ”A,, of A, is a multiplicative set such that 'A,, C "A,, C
'S(A,), see statements 1 and 2. Hence, a,, = ass;('A,) C assi("A,) C ass;('S(A,)) = a,, and so
ass;("Ay,) = a, = ass;i('S(A,)). Notice that Sy C’A,, C”A,, and for each element s € "A,, there
is an element o € N™ such that 9%s € 'A,, C "A,,. Now, statement 7 follows from Lemma 3.6
where S ="A,, and T ='S(A,). O

In order to prove Theorem 5.4, we need the following two lemmas that are also interesting on
their own.

Lemma 5.2. 1. Every nonzero ideal of the algebra A, has zero left and right annihilator.
2. Every nonzero ideal of the algebra A, is an essential left and right ideal of A,,.

Proof. The ideal F), is the smallest nonzero ideal of the algebra A,. So, it suffices to prove
statements 1 and 2 for the ideal F,,. Suppose that the left or right annihilator of F;, is a nonzero
ideal of A,,. Hence, it contains the idempotent ideal F;,, and so their product, which is the zero
ideal, contains F2 = F,, # 0, a contradiction.

Let I and J be left and right ideals of A,,, respectively. By statement 1, I O F,,I # 0 and
J O JF, # 0, and statement 2 follows. O

Lemma 5.3 gives a characterization of left regular elements of the ring A,. By applying the
involution @, we obtain a similar characterization of right regular elements of the ring A,, (a € 'Ca,,
iff 0(a) €C} ).

Lemma 5.3. Let a € A,,. Then the following statements are equivalent:
1. a €'Cy,.
2. a€'Cp,.
3. a €'Cp; where P, = K[01,...,0,] is the only simple, faithful, right A, -module.
4. 0(a) € Cp where P, = K|x1,...,2,] is the only simple, faithful, left Ay,-module.

Proof. (1 < 2) The equivalence follows from Corollary 2.19.(1) and Lemma 5.2.(2).

(2 & 3) The equivalence follows from Corollary 2.20.(1) and the fact that (F,)s, =~ (P,)®")
([1, Corollary 2.7.(8)]).

(3 < 4) The equivalence follows from the fact that P, = 6(P,). O

Criterion for 'Q(A,) ~ Q(A,). The algebras A,,, B,, and A,, are Noetherian domains. By
Goldie’s Theorem, their quotient rings are division rings. It follows from the inclusions A4, C
B, C A, CQ(A,) and A, C S;'A, ~ A, € Q(A,) that

Q(An) = Q(By) = Q(An) = Q(An). (40)
Theorem 5.4. The following statements are equivalent:
1.7Q(An) ~ Q(An).
2. 'Quei(An) ~ Q(An).
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The set 'S(A,,) is left dense in A, \{0}.
The set 'Cy., is left dense in A,\{0}.
The set 'A,, is left dense in A,\{0}.
The set ' A, is left dense in AY.

For each element s € AU, there is an element s’ € A such that s's € 'Cr, .

S S N S

For each element s € A), there is an element s' € AY such that s's € 'Cpr where P, =
K[d1,...,0,] is the unique simple faithful right A,-module.

Proof. (1< 2 < 3 < 4) The equivalence (1 < 2) follows from Theorem 3.12.(2). The equivalences
(1 & 3) and (2 < 4) follows from Theorem 1.1 and Theorem 3.12.(2) (since ass;('S(A,)) = a, is
a prime ideal of A,,, the algebra A, /a, = A, is a domain and Q(A,/a,) = Q(A,) is a division
ring).

(1 & 5) By Theorem 5.1.(1), 'A,, € Denj(A,, a,) and 'A A, ~'Q(A,). Since the set 'A,, is
dense in 'S(A,,), the equivalence (1 < 5) holds iff the equivalence (1 < 3) holds.

(5 < 6) Recall that 'A,,, A% € Den;(A,,0), 'A, € A2 and Q(A,) = Q(A,), see (40). By [10,
Lemma 3.5.(3)], A 1A, ~ (AY)7TA,, = Q(A,) iff the set 'A,, is left dense in A%.

(6 & 7) By Lemma 5.3, the inclusion s’s € ‘Cp, is equivalent to the inclusion s's € 'Cy, .
Hence, statement 7 is equivalent to the statement that for each element s € AY, there is an
element s’ € AY such that s's € 'Cy, , i.e. s's € A, N'Cy, ='A,, i.e. it is equivalent to statement
6.

(7 < 8) The equivalence follows from Lemma 5.3. O

The ring ‘Q(A;). As an application of Theorem 5.4 we obtain Theorem 5.5.
Theorem 5.5. 'Q(A1) ~ Q(A4y).

Proof. (i) A monzero rational function ¢ € L1 belongs to the set 'Ca, iff it has no root in the set
N, ={1,2,...}: The right A;-module F' is an essential right ideal of the algebra A; ([1, Corollary
2.7.(6)]). Therefore, ¢ € ‘Cp, iff the map ¢ : F — F, f — f¢ is an injection. The right

Ai-module F = ®jenFigA; ~ (EOOAl)(N) is a direct sum of countably many copies of the right
Aj-module

EOQAl = EOQF ~ EooK[a] ~ K[a]K[a] and EooaiH = Eooai(l. + 1) for all i Z O,

and the statement (i) follows.

(ii) For each nonzero rational function ¢ € Ly, 7¢(¢) € 'Ca, for all i > 1 where 7(H) = H + 1:
The statement (ii) follows from the statement (i).

(iii) For each nonzero element d € A,,, d'd € 'A,, for all i > 1: The element d is a unique sum
GnO™ + 10"+ + $,,0™ where ¢; € L1 and ¢, # 0. By the statement (ii), 7(¢,) € 'Ca,
for some i > 0. Therefore, the map -7(¢,) : F — F, f — f7%(¢,) is an injections. Hence, the
map -0'd: F — F, f — f0'd is also an injections since

0'd = 7(pn) 0" 4 -+ () 0™ and T(¢y,) 0" €/Ch,.

Therefore, 9'd € 'Ca, .

(iv) The set’Aq is left dense in A;\{0}: Clearly, the set "A;\{0} is left dense in .A4;\{0}. Now,
the statement (iv) follows from the statement (iii).

The theorem follows from Theorem 5.4 and the fact that the set 'A; is left dense in A;\{0},
the statement (iv). O

Corollary 5.6. Q'(A1) ~ Q(A4,).
Proof. The result follows from Theorem 5.5: Q'(A;) = 0(Q(A1)) ~ 0(Q(A1) = Q(0(Ay)) =
Q(A1). 0
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Descriptions of the sets 'Cy, and Cj .

(i) 'Ca, € A1\ F: It is obvious that every element of the ideal F' = @; jenK E;; ~ M (K) is a
left and right zero divisor of the algebra F' (without 1) and of A;.

(ii) For each nonzero element d € A\ F, 9'd € AY for some i € N: The statement (ii) follows
(31) and the equality D1 = L & (®; j>1 Kx'H79%).

(iii) For each nonzero element d € Aj\F, 0'd € 'Ca, for some i € N: The statement (iii)
follows from the statement (ii) and the statement (iii) of the proof of Theorem 5.5.

Then the well-defined map

d:A\F =N, a+w d(a):=min{i € N|d'a € 'Ca,} (41)

is called the left regularity degree function and the natural number d(a) is called the left reqularity
degree of a. For each element a € A1\ F, d(a) can be found in finitely many steps, see the proof of
Theorem 5.5. Now, Theorem 5.7.(1) follows. Then Theorem 5.7.(2) follows from Theorem 5.7.(1).

Theorem 5.7. 1. 'Cy, = {0%a|a € A\F}.
2. Cy =0(Ca,).
By (31), each element a € A; is a unique sum a = Eé:o d_iai+237;1 2Id;+ar where dj, € Dy,
k=-l,...,mand ar € F. Let ag := Zli:o d_;0". The integer
s(ar) = min{n € N|ar € @;,_; Keij} %f ap # 0,
—1 if ap = 0.

is called the size of the element ap € F. The integer s(a) := s(ap) is called the size of the element
a. For each i € N, let P| _, := {a € P/ | deg,(a) < i} where deg, 0 is the degree of the polynomial
a € P = K[J] in the variable 0. Let

Lt = @ Ka' B0 and 2= (P10 0 @a'Di) | (Pa'mr+F).
i>0 i>1 i>1

3,j2>1

Then Dy = L @ L*. For a nonzero element [+ = Zij>1 Nijz' HI9" € Lt let

p(I) =D Ny (H _i)(H(};f;)i"'(H i) §(I1) == max{i > 1| A\ij # 0 for some j > 1}
i,j>1

and §(0) := 0. Then for all k > §(I1),
Ot = 7(p(11))0* and 7(o(It)) € L

where 7(H) = H + 1. For each nonzero element d = [ + 1+ € D; = L @ D+, where | € A and
It e Lt let

p(d) := min{i > §(I*) | the rational function 7°(I + ¢(I*)) € L has no root in N, }.

Ifa=3"gd 0+ 2/dj +ar € A)\E then ap # 0 and so d_,, # 0 where n = degy(aa).
Let

w(a) := p(d—,) and v(a):= max{s(a),p(a)}.

Theorem 5.8. 1. 'Cy, = {a € AJ\E| -a : P/ — P/

1,<v(a) 1,<v(a)+deg,(a,)’ P 7 PO 1S an

injection}.

2. Cy, = 0('Ca,) where 0 is the involution of the algebra Ay, see (32).
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Proof. 1. (i) 'Cay NE = P: Let a € E. We have to show that a & 'Cs,. Suppose that a €
Dioo L0 & P, 2'D1. Then 1 € ker(-a), and so a € 'Cy, .
Suppose that a € @,-, z'Dy + F. Then the map -a : P|

1,<s(a)+1 - Pl/,Ss(a)’ p — pa is a
well-defined map. Since

dimK(P{)SS(a)_H) =s(a)+2>s(a)+1= dimK(Pl’Ss(a)),

ker(-a) # 0, a & 'Ca,. Therefore, 'Cy, NZ = ().

(ii) For each element a € A1\E, kerp;(-a) C P{,Su(a): Since a € A1\E, ay = 22:0 d_;0" # 0
where d_; € D;. Suppose that d_; # 0. Suppose that p € kerp;(-a)\P| ), L.e. deg,(p) > v(a).
Then

deg(pa) =1+ deg,(p),

a contradiction (since pa = 0).
Now, statement 1 follows from statements (i) and (ii).
2. Statement 2 follows from statement 1. O

Theorem 5.9. 1. (1—0)%(¢) = d!\g where (1 — o) :=T[_, (1 —0;)% and d! = dy!---d,!.
2. ZaEHd ,PnO'a((b) = Pn? i.e. maEHd V(Ua(¢)) = (Z)
1

3. For every automorphism T € Aut i (Py,), the automorphisms oy = To177Y,... o), = To,7 ! €
Autg (P,) commute and Eael‘ld Prno'*(1($)) = Pp, i.e. maEHd V(e (r(¢))) = 0.

Proof. 1. Since P, = Pr_1 @ K[H,], ¢ = ¢p_1HI¥ + Y1 HI»~1 + ... where ¢p,_1,0n_1,... €
Pr—_1. Then
(1 - Uﬂ)dn (¢) = dn!(bnfl € Prn-1

and the leading term of the polynomial d,!¢,_1 € Pp_1 is dn)\dHfl ---Hgi’ll. Now, the result
follows by induction on n (or by repeating the above computation n — 1 more times).
2. By statement 1, K* > d\g = (1 —0)%(¢) € > wem, Prno®(¢), and statement 2 follows.

3. Clearly, the automorphisms o1, ..., 0], commute and

Po=1(Pa) =7( D Puc®(9)) = 3 Puc™(7(@)).

a€clly a€clly
O

Corollary 5.10. Let P,, = K[H, ..., H,] be a polynomial algebra over a field K of characteristic
zero and o; € Autyg (Py) where 0;(H;) = Hj — pidi; for i,5 =1,...,n, p; € K* and &;; is the
Kronecker delta. Let ¢ € P,\{0} and \gH? be the leading term of the polynomial ¢ with respect
to the lexicographic ordering Hy < --- < H,, where \¢q € K* and d = (d1,...,d,) € N*. Then:

1. (1=0)*(¢) = dipu®Aq where (1—0)" := [[;;(1—05)", d! = di!- - d! and p® := " - i
2 Zael‘[d Pnga((b) = P"’ i.e. maEHd V(Ua(d))) = 0

Proof. Repeat the proofs of statement 1 and 2 of Theorem 5.9 and making an obvious adjustments.
O
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