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Abstract. We construct efficient topological cobordisms between
torus links and large connected sums of trefoil knots. As an ap-
plication, we show that the signature invariant σω at ω = ζ6 takes
essentially minimal values on torus links among all concordance
homomorphisms with the same normalisation on the trefoil knot.

1. Introduction

The topic of this note is motivated by the following question, al-
ready studied by Lefschetz [7]: how many simple cusps can a complex
plane curve of degree d have? Here a simple cusp is locally described
by the equation y2 = x3. The answer is of order about αd2, with a
constant α known to lie in the interval ( 29

100
, 31
100

), as explained in the
beautiful overview by Greuel and Shustin [6]. Generically, a complex
plane curve of degree d with N simple cusps gives rise to a smooth
cobordism between the link at infinity - a torus link of type T (d, d) -
and the connected sum of N trefoil knots 31, the knot associated with
the simple cusp. We study the following topological analogue of the
above question: what is the locally flat topological cobordism of lowest
complexity between a torus link of type T (m,n) and the connected
sum of N trefoil knots, denoted by 3N1 ? We consider the topological
cobordism distance dχ(L,L

′) between two links L,L′ ⊂ S3, defined as
the minimal number of 1-handles of a locally flat topological cobordism
C ⊂ S3 × [0, 1] between L and L′, consisting of connected components
intersecting both L and L′ (not to be confused with the smooth ver-
sion of the cobordism distance introduced in [1]). In order to state our
main result, we introduce the following variant of the Levine-Tristram
signature function σω(L) of a link L (see [8, 11]) at ω = e

2πi
6 :

σ6(L) = lim
ϵ→0+

σ
e
2πi
6 +ϵ(L).

Unlike σ
e
2πi
6
(L), σ6(L) provides a lower bound on the topological 4-

genus of L, even if the Alexander polynomial of L vanishes at t = e
2πi
6 .

In particular, we have σ6(31) = 2, an important fact for our purpose.
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Theorem 1. There exist constants a, b, c > 0 with the following prop-
erty. For all m,n,N ∈ N with N ≥ 7

24
mn:

|dχ(T (m,n), 3N1 ) + σ6(T (m,n))− σ6(3
N
1 )| ≤ am+ bn+ c.

The value of σ6(T (m,n)) is easy to extract from the work of Gam-
baudo and Ghys on the signature function on braid groups. Indeed,
Proposition 5.2 in [5] implies that the function n 7→ σ6(T (m,n)) is a
quasimorphism of slope 5

18
, provided m is divisible by 6. This implies

σ6(T (m,n)) ≈ 5
18
mn, up to an affine error in m and n, for all m,n ∈ N.

This fact has an important consequence concerning a large class of con-
cordance invariants. We define a clover invariant to be an additive link
invariant ρ with the following two properties:

(i) ρ(31) = 2,
(ii) |ρ(L1)− ρ(L2)| ≤ dχ(L1, L2), for all links L1, L2.

The second item implies |ρ(K)| ≤ 2g4(K) for all knots K, where
g4(K) = 1

2
dχ(K,O) denotes the (locally flat) topological 4-genus of K,

i.e. half the cobordism distance between K and the trivial knot O.
As a consequence, ρ vanishes on topologically slice knots. Moreover,
additivity implies that ρ is a topological concordance invariant. An
important family of clover invariants is given by the Levine-Tristram
signature invariants σe2πiθ associated with θ ∈ (1

6
, 1
2
], and the limit

invariant σ6 defined above.

Corollary 1. There exist constants A,B,C > 0, so that the following
inequality holds for all clover invariants ρ, and for all m,n ∈ N:

ρ(T (m,n)) ≥ 5

18
mn− Am−Bn− C.

The discussion after Theorem 1 shows that the quadratic part of
the lower bound, 5

18
mn, is sharp, since ρ = σ6 is a clover invariant.

In summary, the restriction of the invariant ρ = σ6 to torus links is
essentially dominated by every clover invariant.

It is easy to extract explicit values for the constants appearing in
Theorem 1 and Corollary 1. A careful inspection of the proofs shows
that the constants a, b and A,B can be chosen to be about 20, while c
and C can be chosen to be about 200.

The proof of Theorem 1 consists of two major steps, which we present
in the following two sections. First, a rather involved construction of
minimal cobordisms between 6-strand torus links and large connected
sums of trefoil knots. This is motivated by a result on the cobordism
distance between closed positive 3-braids and connected sums of trefoil
knots [3]. Second, a cabling construction which yields almost minimal
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cobordisms between general torus links and large connected sums of
trefoil knots. The second step makes essential use of McCoy’s twisting
method [9]. The proof of Corollary 1 is short and simple; we present it
in the last section.
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2. Torus links with 6 strands

In this section we derive an almost precise expression for the topo-
logical cobordism distance between 6-strand torus links and large con-
nected sums of trefoil knots. Here and throughout this paper, we make
use of the fact that the cobordism distance dχ(L1, L2) is bounded below
by the difference |σ6(L1) − σ6(L2)|. This is true, since σ6 is a limit of
Levine-Tristram signature invariants σω, and the lower bound holds for
all σω associated with non-algebraic numbers ω ∈ S1 [10].

Proposition 1. For all m,n ∈ N with n ≥ 5
3
m:

dχ(T (6,m), 3n1 ) = σ6(3
n
1 )− σ6(T (6,m)) + E(m,n),

where E(m,n) is a globally bounded error term.

A direct application of Proposition 5.2 (for θ = 1
6
) and Remark 1

in [5] shows σ6(T (6,m)) = 5
3
m + E(m), where E(m) ≤ 12. Therefore,

in order to prove Proposition 1, we need to construct a connected
cobordism with Euler characteristic of absolute value about 2n − 5

3
m

between the two links T (6,m) and 3n1 . This cobordism will in fact be
a sequence of smooth saddle moves and smooth concordances, so that
Proposition 1 remains true in the smooth category.

As a preparation, we derive an algebraic statement about the third
power of the central element (abc)4 in the braid group B4. Here, for
simplicity, we denote the standard generators of B4 by a, b, c instead
of the commonly used σ1, σ2, σ3. Let α, β ∈ B4 be braids represented
by words in the generators a, b, c. We say that β is related to α by a
negative t3-move, if α is obtained from β by removing the third power
of any of the standard generators, anywhere in the braid word β. As
observed in [3] (Lemma 1), the link β̂ and the connected sum of links
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α̂#31 are then related by a single saddle move, in particular

dχ(β̂, α̂#31) = 1.

Lemma 1. The braid β = a−3c−3(abc)12 ∈ B4 can be transformed into
the trivial braid by a sequence of 10 negative t3-moves.

The proof just below also implies the following, more natural, state-
ment, which was already known to Coxeter [4]: the braid (abc)12 ∈ B4

can be transformed into the trivial braid by a sequence of 12 nega-
tive t3-moves. However, we will need the more specific formulation of
Lemma 1 in the proof of Proposition 1.

Proof of Lemma 1. We use the following algebraic identity, which is
a variation of the well-known equality (abc)12 = (a2cb)9 in B4 stated
in [4]:

(abc)12 = (a2cba3cb)4 = γ.

Figure 1 shows an isotopy between the braid (a2cba3cb)4 and a 4-braid
which is easy to identify as the third power of a full twist on four
strands, i.e. (abc)12. After applying 4 negative t3-moves to γ, we

Figure 1. (a2cba3cb)4 = (abc)12

obtain the braid
(a2(cb)2)4 = c2(a2bc3)3a2bc.

Another 3 negative t3-moves transform the latter into

c2(a2b)3a2bc = c2(a3b)3c = δ.

Here we use the identity (a2b)4 = (a3b)3. Another 3 negative t3-moves
(removing the second and third instance of a3, then b3) transform δ into
c2a3c = c3a3. We have just seen that the positive braid (abc)12 can be
transformed into the positive braid c3a3 by a sequence of 4+3+3 = 10
negative t3-moves. Therefore, the braid β = a−3c−3(abc)12 ∈ B4 can
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be transformed into the trivial braid by a sequence of 10 negative t3-
moves. □

Proof of Proposition 1. We may assume m = 6k, since every positive
6-strand torus link is related to T (6, 6k) by a sequence of at most 15
saddle moves, thus by a smooth cobordism of Euler characteristic at
most 15. This operation does not change the value σ6(T (6,m)) by more
than 15. Furthermore, we need only consider the case n = 10k, for the
following reason: for all n′ > n,

dχ(3
n′

1 , 3
n
1 ) = 2(n′ − n) = σ6(3

n′

1 )− σ6(3
n
1 ).

Indeed, the two knots 3n1 , 3
n′
1 are related by n′−n crossing changes, thus

by a smooth cobordism of Euler characteristic 2(n′ − n). In the first
step, we construct a smooth cobordism of small Euler characteristic
between the link T (6, 6k) and the closure of the braid

(dced(bacb)5a3c3)k−3,

where a, b, c, d, e denote the standard generators of the braid group B6.
For this, we view T (6, 6k) as a 2-cable of T (3, 3k). In [2], a special
positive braid representing the link T (3, 3k) is derived, which depends
on the parity of k. We only present the odd case k = 2l + 1 here; the
even one is virtually the same. The link T (3, 6l + 3) is isotopic to the
closure of the 3-braid

(ba4ba3(ba5)l−1)2.

By replacing a, b ∈ B3 by bacb, dced ∈ B6, respectively, and introducing
the correct framing of the 2-cable in front, we obtain the following 6-
braid representing the link T (6, 6k) = T (6, 12l + 6):

(ace)4l+2(dced(bacb)4dced(bacb)3(dced(bacb)5)l−1)2.

The easiest way to check that the framing (ace)4l+2 is indeed correct is
by computing the total number of crossings, which should coincide with
the crossing number c(T (6, 12l + 6)) = 60l + 30. The precise location
of the framing is not relevant; in particular, we may slide it along the
core link T (3, 6l + 3) and distribute it right after the brackets (bacb)5.
As a result, after smoothing a bounded number of crossings by saddle
moves (90, to be precise), the above braid can be transformed into the
braid

β = (dced(bacb)5a3c3)2l−2.

Now comes the second step: The braid β is easily identified as

(dced(bacb)−1(bacb)6a3c3)2l−2 = (dced(bacb)−1a−3c−3(abc)12)2l−2,

since the 4-braid (bacb)6 is a 2-cable of the 2-braid a6.



6 SEBASTIAN BAADER AND MASAHARU ISHIKAWA

Thanks to Lemma 1, the braid β can be reduced to the braid

α = (dced(bacb)−1)2l−2

by a sequence of 10 · (2l − 2) negative t3-moves. As stated just before

Lemma 1, the two links β̂ and α̂#320l−20
1 are thus related by a sequence

of 20l−20 saddle moves. Moreover, the link α̂ can be transformed into
the a smoothly slice knot by a constant number of saddle moves, about
ten in number. Indeed, after five suitable saddle moves, the link α̂
turns into the connected sum of links L#L, where L is the closure of
the braid (dced(bacb)−1)l−1, see Figure 2. The latter is isotopic to its
mirror image, so L#L is smoothly concordant to the trivial link with
six components. Another five saddle moves transform the latter into
the trivial knot. As a consequence, the original link T (6, 12l+6) can be

L L

L L

Figure 2. Five saddle moves

transformed into the connected sum of trefoil knots 320l1 by a sequence
of about 20l saddle moves and link concordances, up to a bounded
error. Keeping in mind m = 6k = 12l + 6 and n = 10k = 20l + 10, we
get indeed

dχ(T (6,m), 3n1 ) = 20l + C(m,n)

= 2n− 5

3
m+ 10 + C(m,n)

= σ6(3
n
1 )− σ6(T (6,m)) + E(m,n),

with globally bounded error terms C(m,n), E(m,n). □

The above proof produces an explicit upper bound smaller than 200
on the error term E(n,m); this is far from optimal since we tried to
keep the argument short.
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3. Twisting torus links

The proof of Theorem 1 relies on McCoy’s twisting method [9]. A
null-homologous twist is an operation on oriented links that takes place
around a disc that intersects an even number of strands of a link trans-
versely, with equally many strands going in either direction. A positive
(resp. negative) twist inserts a positive (resp. negative) full twist into
these strands. As an example, the torus link T (2k, 2k) is related to the
disjoint union of two torus links of type T (k, 2k) by a single negative
twist. A special case of Theorem 1 in [9] states that if an oriented
knot K can be transformed into the trivial knot by a sequence of t
positive and t negative null-homologous twists, then g4(K) ≤ t. It is
the combination of the positive and negative twists that allows us to
prove the following lemma, which is the second key ingredient in the
proof of Theorem 1.

Lemma 2. For all k, l ∈ N coprime and t ≥ 1
2
(k − 1)(l − 1):

dχ(T (6k, 6l), T (6, 6kl)#3t1) ≤ 2t+ 10.

There is an ambiguity in the meaning of the direct sum T (6, 6kl)#3t1
in the above statement; we use the convention where all the trefoil
summands are attached to the same component of the link T (6, 6kl).

Proof of Lemma 2. We start by observing that the link T (6k, 6l) is a 6-
cable of the torus knot T (k, l) with framing kl. Indeed, all components
of T (6k, 6l) have pairwise linking number kl. The knot T (k, l) can be
transformed into the trivial knot by a sequence of t = 1

2
(k − 1)(l − 1)

negative crossing changes. As a consequence, the link T (6k, 6l) can be
transformed into the kl-framed (6, 0)-cable of the trivial knot, i.e. into
the torus link T (6, 6kl), by a sequence of t negative null-homologous
twists (compare Section 5 in [9]). In order to apply McCoy’s 4-genus
bound, we need to consider knots rather than links. Let K be the
0-framed (6, 1)-cable of the knot T (k, l). By definition, the knot K is
represented by the braid

(abcde)−1−6klδ ∈ B6k,

where δ ∈ B6k is the standard braid representing the torus link T (6k, 6l),
and a, b, c, d, e denote the first five standard generators of the braid
group B6k. Moreover, the knot K can be transformed into the trivial
knot by a sequence of t negative null-homologous twists. In turn, the
knot K#3−t

1 can be transformed into the trivial knot by a sequence of t
negative and t positive null-homologous twists, since we can remove one
negative trefoil summand with each positive twist. As a consequence
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g4(K#3−t
1 ) ≤ t, hence

dχ(K, 3t1) ≤ 2t.

We are nearly done, since the link T (6k, 6l) and the link T (6, 6kl)#K
are related by a sequence of just 10 saddle moves:

dχ(T (6k, 6l), T (6, 6kl)#3t1) ≤ dχ(T (6, 6kl)#K,T (6, 6kl)#3t1) + 10

= dχ(K, 3t1) + 10

≤ 2t+ 10. □

Before we prove Theorem 1, we invoke again the formula of Gam-
baudo and Ghys for σ6(T (m,n)) (Proposition 5.2 in [5]). Their formula
holds in fact for a homogenised version of the Levine-Tristram invariant
denoted by Sign

e
2πi
6
. By Remark 1 in [5], the restriction of the latter to

the braid group Bm differs from the invariant σ
e
2πi
6
, and thus from our

limit invariant σ6, by a bounded error of size at most 2m (two times
the braid index). We obtain the following estimate from their formula,
valid for all m divisible by six:

|σ6(T (m,n))− 5

18
mn| ≤ 2m.

Since we allow for an affine error in m and n, we may use the approx-
imate formula σ6(T (m,n)) ≈ 5

18
mn for all m,n ∈ N.

Proof of Theorem 1. Let m,n ∈ N. We may replace the link T (m,n)
by a link of the form T (6k, 6l) with |m − 6k| ≤ 3, |n − 6l| ≤ 3. This
changes the value of σ6(T (m,n)) and dχ(T (m,n), 3N1 ) by 3(m+ n), at
most. Therefore, in order to prove Theorem 1, we need to construct a
connected cobordism with Euler characteristic of absolute value about
2N − 5

18
mn = 2N − 10kl between the two links T (6k, 6l) and 3N1 ,

for all N ≥ 7
24
mn = 21

2
kl. For simplicity, we assume that k, l are

coprime. The general case is just a variation on this: if k, l are not
coprime, we can transform the link T (k, l) into a positive braid knot
by smoothing at most k crossings. As a consequence, the link T (6k, 6l)
can be transformed into a 6-cable of a positive braid knot by a sequence
of at most 36k saddle moves.

We are finally in the position to put together the two main steps of
the argument. First, by Lemma 2,

dχ(T (6k, 6l), T (6, 6kl)#3t1) ≤ 2t+ 10,

for all t ≥ 1
2
(k − 1)(l − 1). Second, by Proposition 1,

dχ(T (6, 6kl), 3
n
1 ) ≈ σ6(3

n
1 )− σ6(T (6, 6kl)) ≈ 2n− 10kl,
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up to a globally bounded error term, for all n ≥ 10kl. Putting these
two bounds together, and setting N = t+n with t ≥ 1

2
kl and n ≥ 10kl,

we obtain

dχ(T (6k, 6l), 3
N
1 ) ≤ dχ(T (6k, 6l), T (6, 6kl)#3t1) + dχ(T (6, 6kl)#3t1, 3

N
1 )

= dχ(T (6k, 6l), T (6, 6kl)#3t1) + dχ(T (6, 6kl), 3
n
1 )

≤ 2t+ 10 + 2n− 10kl ≈ 2N − 10kl,

up to a globally bounded error term, for all N ≥ 21
2
kl, as required. □

4. A lower bound on clover invariants

We consider a clover invariant, i.e. an additive link invariant ρ sat-
isfying ρ(31) = 2 and |ρ(L1)− ρ(L2)| ≤ dχ(L1, L2), for all links L1, L2.
The second property together with Theorem 1 implies for all N ≥
7
24
mn:

|ρ(T (m,n))− ρ(3N1 )| ≤ dχ(T (m,n), 3N1 )

≤ 2N − σ6(T (m,n)) + am+ bn+ c

≤ 2N − 5

18
mn+ Am+Bn+ C,

for suitable constants A,B,C > 0. The last inequality holds thanks
to the formula by Gambaudo and Ghys discussed in the paragraph
after Theorem 1. This concludes the proof of Corollary 1, since the
normalisation ρ(3N1 ) = 2N implies

ρ(T (m,n)) ≥ 5

18
mn− Am−Bn− C.
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