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Abstract Knowledge Tracing (KT) aims to trace changes in students’ knowledge states throughout their

entire learning process by analyzing their historical learning data and predicting their future learning perfor-

mance. Existing forgetting curve theory based knowledge tracing models only consider the general forgetting

caused by time intervals, ignoring the individualization of students and the causal relationship of the forget-

ting process. To address these problems, we propose a Concept-driven Personalized Forgetting knowledge

tracing model (CPF) which integrates hierarchical relationships between knowledge concepts and incorpo-

rates students’ personalized cognitive abilities. First, we integrate the students’ personalized capabilities

into both the learning and forgetting processes to explicitly distinguish students’ individual learning gains

and forgetting rates according to their cognitive abilities. Second, we take into account the hierarchical rela-

tionships between knowledge points and design a precursor-successor knowledge concept matrix to simulate

the causal relationship in the forgetting process, while also integrating the potential impact of forgetting

prior knowledge points on subsequent ones. The proposed personalized forgetting mechanism can not only

be applied to the learning of specifc knowledge concepts but also the life-long learning process. Extensive

experimental results on three public datasets show that our CPF outperforms current forgetting curve the-

ory based methods in predicting student performance, demonstrating CPF can better simulate changes in

students’ knowledge status through the personalized forgetting mechanism.

Keywords knowledge tracing, concept-driven matrix , forgetting mechanism, ability personalization, cog-

nitive modeling
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1 Introduction

With the rapid development of online education, it has become increasingly important to accurately
assess students’ knowledge status. Knowledge Tracing (KT) plays a vital role in online learning, which
is the task of modelling student knowledge over time so that we can accurately predict the student’s
performance on future interactions. Knowledge tracing [36, 39] models not only help educators better
understand students’ academic abilities [34] but also provide targeted educational resources and person-
alized learning strategies. By analyzing students’ historical learning data, i.e., learning behaviors and
performance [8], they can accurately predict their performance and knowledge level on future learning
tasks [5]. Considering the high cost and importance of data collection in online education, the use of
knowledge tracing models is expected to grow in prevalence and importance within the field of education.

Existing knowledge tracing (KT) models [16, 22] have achieved tremendous success in predicting stu-
dents’ performance. For example, Deep Knowledge Tracing (DKT) [1, 4] utilizes Recurrent Neural Net-
works (RNN) and Long Short-Term Memory (LSTM) networks [16, 19, 20] to predict correct answers.
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During the practice process, once a student answers incorrectly, DKT argues that the student’s corre-
sponding knowledge status will decline. Dynamic Key-Value Memory Network (DKVMN) [35] introduces
a dynamic key-value memory matrix based on DKT to capture changes in students’ knowledge state more
efficiently. Context-aware Knowledge Tracing (AKT) [17] is an attention-based model that connects a
learner’s future responses to assess questions with their past responses. It calculates attention weights
using exponential decay and context-aware relative distance metrics, alongside question similarity. Learn-
ing Process-consistent Knowledge Tracing (LPKT) [6] monitors students’ knowledge status by directly
modeling the student’s learning process, calculates learning gain through the difference between learning
units, and simulates the forgetting process through time intervals [46]. Considering that progress rates
are student-specific, extending LPKT to LPKT-S [26] differentiates individual progress rates for each
student. Although the aforementioned methods have successfully modeled the forgetting process, there is
still a significant limitation that they fail to consider the personalized cognitive processes of students and
the causal relationships of the forgetting process. As a result, this limitation weakens the interpretability
[44] of these methods, making it difficult for educators to gain deep insights and limits a comprehensive
understanding of students’ learning and forgetting processes. Therefore, there is a need to meticulously
and comprehensively consider the cognitive structure and knowledge structure of students in the KT task.
As shown in Fig. 1, the different cognitive structures of students will not only lead to different learning
outcomes, but also different forgetting rates. Generally, students with stronger learning abilities can
acquire knowledge more effectively in the learning process and have lower forgetting rates in the forget-
ting process. Conversely, students with weaker learning abilities tend to have poorer grasp of knowledge
and also exhibit higher rates of forgetting. Additionally, the different knowledge structures can affect
the students’ mastery of the knowledge because there is a hierarchical relationship between knowledge
concepts. Specifically, if one knowledge point is forgotten by the student, the related knowledge points
may also be forgotten to some extent.
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Figure 1 Examples of three learners answer a series of exercises on an online learning system. (a) indicates that the forgetting

rate of various students is different. (b) represents different forgetting patterns: the traditional model considers correct answers

as mastering the knowledge point, while incorrect answers indicate no impression of the knowledge point; the time decay model

believes that memory of knowledge points weakens over time; and the causal forgetting model integrates the intrinsic relationship

between time and knowledge points, balancing long-term and short-term memory.

To better understand the causal relationship between personalized learning and the forgetting process
of students, in this paper, we propose a Concept-driven Personalized Forgetting knowledge tracing (CPF)
model. Firstly, to accommodate the individual differences among students, we incorporate students’ prior
abilities into the modeling of both the learning and forgetting processes. Guided by cognitive theory [10]
and learning efficacy theory [12], we measure students’ abilities [3] through answer time, answer accuracy
and question difficulty in this study. Secondly, to explore the causal relationship between knowledge
concepts in the forgetting process, we design a novel causal forgetting mechanism that explicitly quan-
tify the hierarchy of different knowledge concepts. Specifically, inspired by educational theories [28, 48],
we construct a precursor-successor matrix (P-matrix) to capture the directed relations between differ-
ent knowledge concepts and calculate causal forgetting weights by searching for the closest prerequisite
knowledge concepts to the current exercise according to this P-matrix. Subsequently, to simulate the
forgetting-review mechanism presented by students when facing the exercise with related knowledge con-
cepts, we compute the similarity of adjacent knowledge states and adopt this similarity to update the
forgetting gate, thereby modeling the forgetting process more accurately [21,40] in the real-world scenar-
ios. We conduct on three public datasets used in KT task. The state-of-the-art performance demonstrates
the effectiveness of our CPF.

The main contributions of our paper are as follows:
• We incorporate students’ personalized cognitive abilities into both the learning and forgetting pro-
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cesses in the knowledge tracing, which can explicitly distinguish students’ individual learning gains and
forgetting rates according to their cognitive abilities.

• We design a precursor-successor knowledge concept matrix and introduce a forgetting-review mech-
anism, aiming to comprehensively capture the causal relationships between knowledge concepts during
the forgetting process of knowledge tracing.

• By integrating the personalized cognitive processes and the causal relationships of concepts in the
forgetting process, a novel Concept-driven Personalized Forgetting knowledge tracing (CPF) model is
materialized in this paper. Extensive experimental results on three public datasets demonstrate the
effectiveness of our CFP.

2 Related Works

2.1 Knowledge Tracing

Knowledge tracing (KT) [7] is an important task in online learning systems, aiming to dynamically track
the learner’s knowledge status. Existing methods can be divided into two categories: (1) Traditional
methods, such as Bayesian Knowledge Tracing (BKT) [18,25,30], which use binary variables to describe
students’ knowledge status. The Item Response Theory model (IRT) [2, 43] uses student abilities and
problem characteristics to analyze student performance. Traditional KT models ignore the forgetting pro-
cess. (2) Based on deep learning methods, Deep Knowledge Tracing (DKT) introduces recurrent neural
networks such as RNN and LSTM for the first time. Self-Attentive Knowledge Tracing (SAKT) [59] adds
an attention mechanism to the KT model for the first time [29, 31]. Context-aware attentive knowledge
tracing (AKT) [17] model utilizes contextualized representations of practice and knowledge acquisition
and combines attentional mechanisms with cognitive and psychometric models. Reconciling Cognitive
Modeling with Knowledge Forgetting: A Continuous Time-aware Neural Network Approach (CT-NCM)
[9] realistically integrates the dynamics and continuity of knowledge forgetting into the modeling of stu-
dent learning processes. Learning Process-consistent Knowledge Tracing (LPKT) aims to assess the
student’s knowledge status by modeling the student’s learning process, and considers the impact of the
answer time interval and answer time on the learner’s knowledge status during the learning process.
Monitoring Student Progress for Learning Process-consistent Knowledge Tracing (LPKT-S) is an exten-
sion of LPKT that clearly distinguishes the individual progress rate of each student. However, the above
models ignore the impact of individual differences among students on the forgetting process, and lacks
exploration of the causal forgetting caused by the correlation and hierarchy between knowledge concepts.

2.2 Forgetting Curve

In pedagogy, forgetting is a complex and universal phenomenon [45], and with time, students’ knowledge
proficiency may decline due to forgetting factors [11]. The Ebbinghaus forgetting curve proposes [50,56,57]
that students forget most quickly shortly after learning new knowledge or skills, and then the rate of
forgetting gradually slows down. This also shows that when students’ knowledge state tends to be stable,
the proportion of forgotten knowledge will decrease [13], but this is not only due to the influence of
time factor but also related to knowledge structure. Trace decay theory emphasizes [37, 49]that the
knowledge students learn will gradually decay with time, and emphasizes the need for regular review and
consolidation in the learning process. By actively reviewing and consolidating the learned knowledge,
students can significantly delay the rate of forgetting, so that they can remember knowledge for a long
time. This shows that, if there is a certain correlation between knowledge, then forgetting some knowledge
will also lead to the forgetting of its related knowledge. However, based on this theory, through continuous
review and consolidation, the knowledge will gradually transform into a stable knowledge state based on
knowledge correlation when it reappears after forgetting.

3 Preliminaries

3.1 Relation Definition

Let E and C be the set of all different exercises and knowledge concepts respectively, where E = {e1,
e2, . . . , eN} and C = {c1, c2, . . . , cK}. Then problem sets and knowledge concept relation matrix can
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Figure 2 The main network structure of CPF model is mainly composed of learning, forgetting and prediction modules. The

learning module uses the learning gate to get the personalized learning gain, uses the directed relationship of knowledge concepts

to capture the causality of forgetting process, and finally predicts the future performance of students.

be expressed as Qij = {qeicj}N×K . If the exercise ei contains the knowledge concept cj , qeicj is set
to 1; otherwise, qeicj = 0. In addition, inspired by cognitive diagnosis and based on the directed and
undirected relations between knowledge concepts, we construct a knowledge concept prerequisite relation
matrix similar to Q-matrix [47], that is P-matrix, representing the directed relations between different
knowledge concepts. This can be expressed as Pij = {pcicj}K×K . If there is a leading relation between
the knowledge concepts ci and cj , then pcicj = 1; otherwise, pcicj = 0.

3.2 Problem Statement

For students, the learning process for each time step is expressed as an interaction process, which is
represented by (et, at), where et represents the index of the exercise undertaken at time step t, and at
= 1 indicates a correct response, while at= 0 indicates an incorrect response. Knowledge tracing (KT)
aims to forecast a student’s response to a given exercise based on their interaction history. In a formal
sense, given the interaction record in the previous T time steps denoted by R=(e1, a1),..., (et, at),..., (eT ,
aT ), the KT model seeks to assess the mastery level of the knowledge concept and predict the student’s
response to the exercise at time step T+1 (eT+1).

4 Methodology

In this section, we introduce the proposed Concept-driven Personalized Forgetting knowledge tracing
method (CPF) in detail. First, we briefly review the baseline,i.e., LPKT, of our CPF. Then, we present
the framework of our CPF model in detail. As shown in Fig. 2, CPF utilizes personalized knowledge
acquisition and forgetting mechanisms to effectively update students’ knowledge status. Simultaneously,
by modeling the hierarchical relationship between knowledge concepts, it reveals the causal relationship
of the forgetting process.

4.1 Overview of LPKT

LPKT consists of three modules at each learning step, including learning module, forgetting module and
prediction module. Specifically, the learning phase mainly calculates the positive impact of learning gain
by calculating the difference between the current interaction and an adjacent interaction, and models the
student’s knowledge status. In response to the negative impact of forgetting, the forgetting stage uses a
forgetting gate to determine the degree of decay of the knowledge state over time. Then the knowledge
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mastery level in the learning stage and forgetting stage is used to update the knowledge status, and
finally the proposed prediction module is used to predict the student’s performance in the next exercise.

In the learning stage, LPKT can model the learning gains by connecting the students’ previous learning
embedding lt−1 and the current learning embedding lt as the basic input element of LPKT. The current
learning embedding lt consists of exercise et, answer at, and answer time att. LPKT considers two factors
impacting learning outcomes: the interval time and the student’s prior knowledge. To focus on the state
of the knowledge concept related to the current exercise, LPKT multiplies the knowledge state ht−1 with

the knowledge concept vector qet of the current exercise to get the related knowledge state h̃t−1.

lt = WT
1 [et ⊕ at ⊕ att] + b1, (1)

h̃t−1 = qet · ht−1, (2)

Considering that not all learning gains directly contribute to the increasing of students’ knowledge, the
learning gate is designed to control students’ ability to absorb knowledge and ensure a positive learning
gain through linear transform.

lgt = tanh(WT
2 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b2), (3)

Γl
t = σ(WT

3 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b3), (4)

LGt = Γl
t · ((lgt + 1)/2), (5)

According to the forgetting curve theory, the memory of learned material declines exponentially over
time. LPKT employs a forgetting gate to simulate the forgetting effect, primarily determined by the
students’ prior knowledge, learning intervals, and learning gains. Then, the output of the forgetting gate
Γf
t is multiplied by ht−1 to eliminate the influence of forgetting, which can obtain the required updated

knowledge state ht of students following the t-th learning interaction.

Γf
t = σ(WT

4 [ht−1 ⊕ LGt ⊕ itt] + b4), (6)

ht = L̃Gt + Γf
t · ht−1. (7)

4.2 Proposed Method

4.2.1 Personalized Learning Module

In LPKT, there is no clear distinction between students’ individual abilities, but the learning process of
each student is different. LPKT only distinguishes different students’ responses to the same exercises
through the answer time, ignoring the modeling of students’ abilities. In order to address this limitation,
we explicitly introduce a personalized student ability st in our methods. Specifically, as show in Eq.8, we
derive this personalized student ability st ∈ Rdk by combining the problem difficulty dft ∈ Rdk , answer
time att ∈ Rdk , correct accuracy act ∈ Rdk . Simultaneously, we combine the exercise embedding et with
knowledge concepts to get the concept-perceived exercise embedding ẽt. Then we concatenate the ẽt, at,
st together and apply a perceptron to extract the personalized learning emdedding l̃t.

st = α⊗ df t + β ⊗ act + µ⊗ att, (8)

ẽt = et ⊕ ct, (9)

l̃t = WT
1 [ẽt ⊕ at ⊕ st] + b1, (10)

where W1 ∈ R(de+dk+da)×dk and b1 ∈ Rdk denote the weight matrix and its corresponding bias term. α,
β, µ are hyper-parameters. ⊗ and ⊕ denote the element-wise multiplication and concatenation operation.
dk represents the dimension.

Considering the learning gain in LPKT requires combining the learning unit of the previous moment
and the time interval for answering the exercise, we simplify this steps and further combine the student’s
ability to achieve personalized learning gain as follows:

l̃gt = tanh(WT
2 [l̃t ⊕ h̃t−1] + b2), (11)
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where W2 ∈ R(2dk)×dk denotes the weight matrix, b2 ∈ Rdk denotes the bias term, tanh denotes the
non-linear activation function. Then we apply a perceptron to generate a personalized learning gain gate
as:

Γ̃l
t = σ(WT

3 [l̃t ⊕ h̃t−1] + b3) (12)

where W3 ∈ R(2dk)×dk denotes the weight matrix, b3 ∈ Rdk is the bias term, σ denotes the non-linear
sigmoid activation function.

Furthermore, we think that the mastery of the knowledge concepts contained in a certain exercise may
have a positive impact on the mastery of their related knowledge concepts in the learning process. In
order to capture this impact between the relevant knowledge concepts, we directly concat the knowledge
state ht−1 with the relevant knowledge concept vector pet to obtain the degree of mastery of relevant
knowledge concepts h̃c

t−1 as:

h̃c
t−1 = pet ⊕ ht−1, (13)

pet ∈ Rdk represents the relevant knowledge concept vector, which is obtained by matching the related
knowledge concepts of the current knowledge concept in P-matrix defined in section 3.1. By embed-
ding the relevant knowledge concepts h̃c

t−1 into the learning interaction, we can get the final knowledge

acquisition L̃G
c

t as follows:

LGc
t = Γ̃l

t · [(l̃gt + 1)/2] + ||σ(h̃c
t)||2 (14)

L̃G
c

t = qet · LG
c
t (15)

4.2.2 Causal Forgetting Module

The student forgetting process is similar to the learning process. In the learning process, mastering a
specifc knowledge point may have a positive impact on related knowledge concepts and different students
always get personalized knowledge gain in each interaction. Conversely, in the forgetting process, forget-
ting a knowledge point can negatively influence related knowledge points. Simultaneously, students with
different cognitive abilities may also represent individual forgetting rate. Therefore, we design a per-
sonalized and causal forgetting module to capture this influence and monitor the personalized forgetting
situation in this section.

Causal forgetting mechanism. In order to capture the causal relationship between the knowledge
concept contained in the current exercise and its related knowledge concept in the forgetting process.
we design a causal forgetting mechanism in this study. Specifically, we first obtain the response time
att and the interval time itt for the current exercise, and identify the knowledge concept contained in
the current exercise at the same time. Then, we use the P-matrix defined in section 3.1 to match all
prerequisite knowledge concepts corresponding to this knowledge concept, and further obtain the response
time att and interval time itt for exercises corresponding to these prerequisite knowledge concepts. It
should be noted that there is a one-to-one correspondence between exercises and knowledge concepts,
and a one-to-many relationship between knowledge concepts. So we determine the closest prerequisite
knowledge concept to the current knowledge concept by considering the time step intervals between the
exercises corresponding to these prerequisite knowledge concepts and the current exercise. For example,
if the exercise em contains the prerequisite knowledge concept cj of the knowledge concept ci in current
exercise et and the exercise em is closest to the current exercise et, we will select knowledge concepts in
the exercise em as the closest prerequisite knowledge concept to the current knowledge concept. Finally,
as defined in Eq.16 and Eq.17, we construct a forgetting weight by calculating the time difference between
the exercises corresponding to the nearest prerequisite knowledge concept and the current exercise:

△ttm = |(att + itt)− (atm + itm)| where t > m, 0 ⩽ t,m ⩽ T − 1 (16)

wtm = δ (1 + (exp(△ttm + λ)))
−1

(17)

The hyperparameter λ is used to adjust the offset of the forgetting weight. If the knowledge concept
ci in the current exercise successfully matches a prerequisite knowledge concept cj in the P-matrix, then
pij ̸= 0; otherwise, pij = 0. Furthermore, we believe that forgetting a knowledge concept not only affects
the mastery of that specifc concept but also impacts the mastery of its related concepts. Therefore,
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we multiply the forgetting weight calculated based on the hierarchical relationship between knowledge
concepts by the learning gain to obtain the final overall knowledge gain LGl

t:

wf =

{
1 if pij = 0

wtm if pij ̸= 0
(18)

LGl
t = wf · L̃G

c

t (19)

Given that students’ memory of learning materials tends to decline over time. However, when students
encounter exercises similar to those they have previously encountered, they may undergo a process of
knowledge reactivation, known as the review process, which aligns with the phenomena of long-term
forgetting and short-term memory. We call it the forgetting-review mechanism of the learning process.
We simulate this mechanism and analyze the changes in short-term knowledge mastery by computing
the similarity of k adjacent knowledge states, as shown in Eq.20. And then, we apply this similarity
to generate a related knowledge state hk, as defined in Eq.21, at the current moment. This related
knowledge state hk will be further applied in the Eq.22 to updata the forgetting gate.

mk = sim(h̃t−k, ht−1) (20)

hk =

T∑
k=1

softmax(mk) · ht−1 (21)

Personalized forgetting mechanism. Individual differences can lead to variations in students’
knowledge acquisition and forgetting rates when facing the same sequence of exercises. In order to
calculate students’ knowledge states more accurately, we incorporate students’ personalized capabilities
into the modeling of the forgetting process. By introducing the dynamic mechanism of the forgetting
gate Γ̃f

t , we integrate students’ personalized capabilities st, their previous knowledge state ht−1, their
knowledge mastery LGl

t, the time interval between exercises itt, and their short-term memory degree hk

to simulate knowledge forgetting, thereby enhancing our ability to predict knowledge states.

Γ̃f
t = σ(WT

4 [ht−1 ⊕ LGl
t ⊕ itt ⊕ st ⊕ hk] + b4) (22)

Where W4 ∈ R(5dk×dk) denotes the weight matrix, b4 ∈ Rdk denotes the bias term, σ denotes the non-
linear sigmoid activation function. Similar to LPKT, we multiply the forgetting factor Γ̃f

t by the previous
state of knowledge ht−1 to eliminate the effect of forgetting. Therefore, after completing the t-th learning
interaction, the student’s knowledge status ht is updated as follows:

ht = L̃G
c

t + Γ̃f
t · ht−1 (23)

4.2.3 Predicting Module

The prediction layer combines the temporal characteristics of the KT model and makes full use of students’
learning history and interaction sequences to predict their performance in the next exercise. Specifically,
we predict their performance in the next exercise et+1 based on their knowledge state h̃t after the t-th

learning interaction. We first concatenate the knowledge state embedding h̃t with the concept-perceived
exercise embedding ẽt+1, and then project them onto the output layer through a fully connected network
with sigmoid activation:

yt+1 = σ(WT
5 [ẽt+1 ⊕ h̃t] + b5) (24)

Where W5 ∈ R(2dk×dk) denotes the weight matrix, and b5 ∈ Rdk represents the bias term. The output
yt+1 serves to predict the student’s performance in the next exercise et+1. Additionally, we set a threshold
to determine whether the student can answer et+1 correctly. Specifically, if yt+1 surpasses the threshold,
the answer is a correct response; otherwise, the answer is deemed incorrect.



8

4.2.4 Objective Function

To optimize all parameters in CPF, we employ the cross-entropy log loss between the predicted values y
and the actual answers a as the objective function:

L(θ) = −
T∑

t=1

(at log(yt) + (1− at) log(1− yt)) + λθ∥θ∥2 (25)

Where θ represents all parameters in CPF model and λθ serves as the regularization hyper-parameter.
We employ the Adam optimizer to minimize the objective function on mini-batches. More detailed
information regarding the experimental settings are provided in the subsequent sections.

5 EXPERIMENTS

5.1 Experimental Setup

In this section, we provide the detailed information of the evaluation datasets, training details and other
competitive methods for comparison.

5.1.1 Dataset Description

In our experiments, we utilize three real-world public datasets to assess the performance of CPF, i.e.,
ASSISTments 2012, ASSISTments Challenge, EdNet-KT1. The basic statistics for these datasets are
summarized in Table 1.

• ASSISTments 2012 (ASSIST2012) 1 is the largest version of the dataset, collects between
September 2012 and October 2013. It includes 17,999 exercises answered by 46,674 students, with a total
of 6,123,270 interactions [24]. To focus on the 265 knowledge points, we filter the dataset to include only
relevant exercises.

• ASSISTments Challenge (ASSISTChall) 2 is a competition organized by the Assistants online
Tutoring System to promote data mining and machine learning research in the field of education. The
dataset contains the learning behavior and performance data of the students in the assistments system.

• EdNet-KT1 3 dataset contains all student system interactions collected over two years with more
than 780,000 users in South Korea [27]. Each student generates an average of 441.20 interactions. It offers
large-scale real-world Intelligent Assisted Instruction system (ITS) data and includes 13,169 exercises,
1,021 lectures, and labels for 293 concepts. When dealing with a problem with multiple associated
knowledge concepts, only the first one is chosen.

Table 1 Statistics of all datasets.

Statistics
Datasets

ASSIST2012 ASSISTchall EdNet-KT1

Students 29,018 1,709 784,309

Exercises 53,091 3,162 12,372

Concepts 265 102 141

Answer Time 26,747 1,326 9,292

Interval Time 29,748 2,839 41,830

Avg. Length 93.45 551.68 125.45

1) https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-withaffect

2) https://sites.google.com/view/assistmentsdatamining/dataset

3) http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/
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5.1.2 Training Details

First, we sort students’ learning records according to the timestamp of their answers. We then set all
input sequences to a fixed length based on the average sequence length of the dataset. Specifically, in the
ASSIST2012 and EdNet-KT1 datasets, we set the fixed length of the input sequence to 100, while in the
ASSISTchall dataset, the fixed length of the input sequence is set to 500. For sequences longer than a
fixed length, we cut them into multiple unique subsequences, each of which is a fixed length. For shorter
sequences of fixed length, we pad them with zero vectors so that they reach fixed length.

We perform standard 5-fold cross-validation on all datasets. In each fold, 80% of the students are
divided into the training set (80%) and the verification set (20%), the rest 20% are used as the testing
set. During the training process, we randomly initialize all parameters, using uniform distribution [51].
All hyper-parameters are learned on the training set, and the model that performs best on the validation
set is selected for testing set evaluation. In CPF, we added a dropout layer with a dropout rate of 0.2 to
avoid overfitting. In our implementation, the parameters dk and de are set to 128 and da to 50. For the
small positive γ in the enhanced Q matrix, we set it to 0.03, and the relationship strength coefficient ρ
in the P-matrix is set to 0.03, the learning rate is set to 3× 10−3, and the batch-size is set to 128. For a
fair comparison, all models are trained on a cluster of Linux servers with NVIDIA 3090 GPUs.

5.1.3 Other Competitive Methods

To verify the effectiveness of CPF, we compare our model with several previous methods.

• DKT applies deep learning to KT for the first time. It takes the learning sequence as input to the
RNN or its variant LSTM [32,62] and represents the student’s state of knowledge through hidden states.

• DKT+ is an extended and improved version of DKT that aims to solve two major problems in DKT.
First, DKT cannot efficiently reconstruct unobserved input data. Second, the prediction performance
of DKT is inconsistent between different time steps [38]. By enhancing the original DKT loss function
with two additional regularization terms, DKT+ attempts to overcome these limitations and improve the
performance and application range of the model.

• DKVMN is a model that introduces memory-enhancing neural networks into knowledge tracing.
The model uses the learning mechanism of key-value pair memory to capture the knowledge state of
students [35] and is applied to the student knowledge model and prediction model.

• SAKT models the student’s knowledge state and learning progress by taking the student’s learning
interaction sequence [41] as input and using self-attention mechanisms [64].

• AKT is a context-aware attentive knowledge tracing model [17], utilizes dual self-attentive encoders
for exercises and responses. The knowledge retriever employs attention to retrieve past knowledge relevant
to the current exercise.

• DTransformer establishes an architecture [15] from the problem level to the knowledge level,
explicitly diagnosing learners’ proficiency based on the mastery of each problem. It utilizes contrastive
learning to maintain the stability of diagnosing knowledge states.

• CT-NCM integrates dynamic forgetting [9] into students’ learning process, effectively models knowl-
edge learning and forgetting, and distinguishes positive and negative reactions.

• LPKT displays the modeling user’s knowledge state and uses the embedding of exercises. The
knowledge points contained in exercises are used to select the corresponding exercise records [6]. It
reflects the consistency of students’ changing knowledge state and learning process.

• LPKT-S considers that students generally have different progress rates [26], a student embed con-
taining student-specific progress rates is introduced, extending LPKT to LPKT-S.

5.2 Experimental Results

In this section, we conducted several experiments to illustrate the interpretability of the model from
different perspectives. Firstly, our model outperforms other competitive methods in predicting student
performance. Secondly, we effectively consider students’ personalized abilities, which align better with
real-world application scenarios. Finally, we model the causal relationship of the forgetting process by
considering the predecessor and successor relationships of knowledge concepts, and incorporate students’
abilities to update knowledge states.
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Table 2 Results of comparison methods on students’ performance prediction.

Method
ASSIST2012 ASSISTchall EdNet-KT1

RMSE AUC ACC r2 RMSE AUC ACC r2 RMSE AUC ACC r2

DKT [1] 0.4241 0.7289 0.7360 0.1468 0.4471 0.7213 0.6907 0.1425 0.4508 0.6836 0.6889 0.1008

DKT+ [38] 0.4239 0.7295 0.7254 0.1497 0.4502 0.7101 0.6842 0.1308 0.4601 0.6429 0.6733 0.0635

DKVMN [35] 0.4261 0.7228 0.7329 0.1398 0.4503 0.7108 0.6842 0.1302 0.4538 0.6741 0.6843 0.0913

SAKT [41] 0.4258 0.7233 0.7339 0.1403 0.4626 0.6605 0.6694 0.0822 0.4524 0.6794 0.6862 0.0964

DTransformer [15] 0.4118 0.7698 0.7509 0.2004 0.4371 0.7506 0.7078 0.1791 0.4291 0.7553 0.7089 0.1837

AKT [17] 0.4121 0.7706 0.7515 0.2004 0.4364 0.7501 0.7080 0.1801 0.4297 0.7557 0.7083 0.1842

LPKT [6] 0.4089 0.7740 0.7551 0.2145 0.4179 0.7939 0.7385 0.2491 0.4290 0.7721 0.7106 0.2195

LPKT-S [26] 0.4065 0.7803 0.7584 0.2004 0.4160 0.7979 0.7420 0.2558 0.4263 0.7801 0.7158 0.2230

CT-NCM [9] 0.4013 0.7945 0.7609 0.2386 0.4096 0.8166 0.7430 0.2893 0.4293 0.7691 0.7271 0.2183

CPF 0.3990 0.8026 0.7665 0.2524 0.4075 0.8206 0.7495 0.2921 0.4230 0.7980 0.7295 0.2640

5.2.1 Main results

As shown in Table 2, CPF shows varying degrees of improvement on the three datasets compared with
other models, indicating that the learning and forgetting behaviors emphasized by CPF are effective in
knowledge tracing modeling.

DKT uses the latent vector of the LSTM model to model the overall knowledge status of students. It
does not establish the connection between questions and knowledge concepts and explore the potential
relationships between knowledge concepts, and cannot capture each student’s mastery of knowledge
concepts. Therefore, the predictive performance of DKT is lower than CPF on all three datasets. Both
DKVMN and CPF can simulate students’ mastery of various knowledge concepts, but DKVMN ignores
the forgetting behavior during the learning process. Therefore, CPF outperforms DKVMN in predictive
performance. This also shows that modeling knowledge concepts can better capture changes in knowledge
status and more accurately calculate students’ mastery of knowledge concepts. SAKT and AKT both
consider the decay of memory over time but do not account for individual student differences and other
factors that may influence the forgetting process. Compared with other models, the LPKT and LPKT-S
methods comprehensively model learning and forgetting behaviors in the learning process, but LPKT
does not emphasize the individual differences of students. Although LPKT-S distinguishes individual
learning progress rates, it does not capture the causal relationships present in the forgetting process.
CPF emphasizes the impact of students’ cognitive abilities in the learning and forgetting process, deeply
explores the causal forgetting caused by the relationship between knowledge concepts, it can be observed
that CPF significantly outperforms the baseline model LPKT on the EdNet-KT1 dataset (i.e., improves
the AUC by 2.59%), indicating a more comprehensive modeling of both the learning and forgetting
processes. CT-NCM, similar to CPF, is designed for modeling the forgetting process. CT-NCM adeptly
incorporates the continuous and dynamic forgetting behavior into the modeling of students’ learning
processes, discerning the influence of both positive and negative responses on their knowledge states.
However, it omits the analysis of hierarchical relationships among knowledge concepts and neglects the
impact of individual differences on knowledge states. We observed that CPF outperforms the CT-NCM
method on the EdNet-KT1 dataset (i.e., improves the AUC by 2.89%), indicating that our modeling
approach to the forgetting process is closer to real-world scenarios.

5.2.2 Students’ mastery of knowledge points

The personalized abilities of students play a crucial role in both the learning and forgetting stages.
Traditional models rely on the random initialization of student abilities. As shown in Figure 3 (a) and
(b), Student2 (S2) and Student3 (S3) exhibit similar initial mastery levels of the knowledge concept c5,
demonstrating relatively consistent abilities. After completing the same sequence of exercises, there is
no difference in the final mastery level of the knowledge concept c5. However, for Student1 (S1) and
Student4 (S4), due to different initial mastery levels of the knowledge concept c4, there are differences in
their abilities. Consequently, there are differences in the mastery levels after learning. This indicates that
despite making similar responses to the same exercises, students with different levels of ability obtain
different learning outcomes, leading to differences in the final mastery level of knowledge.
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Figure 3 Illustration of the mastery level of student knowledge points. On the left side are the individual differences in students’

abilities, while on the right side are the mastery levels of knowledge points after students undergo a consistent answering process.

(a) and (b) represent the initial ability distribution of students and the degree of mastery of knowledge concepts after the same

answering sequence respectively.

5.2.3 Visualization of Causal Forgetting

In CPF, we employ a novel forgetting strategy by using a matrix to represent the relationships between
knowledge concepts and their prerequisites. During the modeling of the forgetting process, we determine
the forgetting weight by calculating the closest prerequisite knowledge concept to the current one. Si-
multaneously, we also observe the phenomenon of memory enhancement, whereby students may forget
certain knowledge concepts, but upon encountering similar exercises shortly thereafter, they reinforce
their memory of these concepts through the review process. Fig. 4 illustrates the changes in knowledge
states for CPF and LPKT. In the learning stage, the acquisition of prerequisite knowledge concepts con-
tributes to subsequent knowledge concepts, while in the forgetting stage, the forgetting of subsequent
knowledge concepts will have an impact on the mastery of prerequisite knowledge concepts. For instance,
c1 and c2, serving as prerequisites for c3, result in a higher knowledge state in the answer e5 compared
to the baseline. In the forgetting process, when a knowledge concept that has already forgotten another
encounters a similar type of exercise, the forgetting degree for subsequent knowledge concepts may exceed
simple time decay. c5 and c6 as prerequisites for c7 exhibit a weaker improvement in knowledge state
when answering e12 due to a certain level of forgetting of prerequisite knowledge concepts.

010111Answers
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0.41 0.47 0.81 0.86 0.44 0.57 0.73 0.47 0.63 0.46 0.53 0.81
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Figure 4 The evolution of students’ knowledge state. The left side represents the students’ answer order and results, and the

right side describes the updating of the knowledge state due to the knowledge concept relationship.

5.2.4 Ablation Study

In this section, we conduct ablation experiments to demonstrate the efficacy of each module and the
effect of parameter in CPF.

• CPF (P) does not consider forgetting at the conceptual level of knowledge.
• CPF (FP) does not consider the impact of forgetting on learning throughout the interaction.
• CPF (L) does not consider the learning process of students for specific knowledge concepts and

overall knowledge.
• CPF (I) does not take into account individualized differences in students’ abilities during the

learning process.

Table 3 Ablation experimental results on ASSIST2012.

Model P-matrix Personalization AUC ACC

CPF (P) ✗ ✓ 0.7821 0.7562

CPF (I) ✓ ✗ 0.8008 0.7658

CPF ✓ ✓ 0.8026 0.7665

Model Learning Forgetting AUC ACC

CPF (L) ✗ ✓ 0.7905 0.7593

CPF (FP) ✗ ✗ 0.7725 0.7538

CPF ✓ ✓ 0.8026 0.7665

Apart from the settings mentioned above, the remaining components and experimental configurations
of the model remain unchanged. The results in Table 3 reveal some interesting findings. Firstly, the
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commonly observed phenomenon of forgetting plays a crucial role in the learning process, and ignoring
the relationships between knowledge concepts when modeling the forgetting process can result in poorer
predictive outcomes. Secondly, because our model explores the causal relationships of the forgetting
process in more detail, ignoring the entire forgetting process would greatly diminish predictive results.
This also indicates that our designed forgetting process more comprehensively considers factors influencing
forgetting, better simulating real-world application scenarios. Thirdly, if the importance of knowledge
concepts is not considered in modeling the learning process, there will also be a certain degree of decline
in predictive results. Fourthly, neglecting student personalization would also decrease the predictive
accuracy of the model.

5.3 Experimental Analysis

In this section, we analyze the distribution of relationships between knowledge concepts in the dataset,
discuss the reasons for selecting directed relationships, and explore parameter sensitivity.

5.3.1 Construction of Knowledge Concept Relation

Inspired by Relation Map Driven Cognitive Diagnosis (RCD), we introduce the following matrix to build
dependencies between concepts [53,61]. The first is the Answer Matrix, denoted by A. From the exercise
record, we calculate the matrix A, where Aij represents the number of times the concept j is answered
correctly immediately after the concept i is answered correctly, and Ai,j =

ni,j∑
k ni,k

( if i ̸= j), else, it

is 0. In addition, we have a Transition Matrix, denoted by T , which is a binary matrix [23, 60]. Where
Ti,j = 1 indicates that there is an edge from concept i to concept j. To obtain the transfer matrix T ,

we first calculate the normalized matrix of matrix A, denoted as T̃ . Specifically, T̃ij =
Aij−min(A)

max(A)−min(A)

represents the probability that some educational relationship exists between concept i and concept j.
Then, we determine the relations by Ti,j = 1 if T̃ij > threshold. we set threshold as third power of the
average value of matrix T . If Ti,j = 1 but Tj,i ̸= 1, then the concept j is a successor to the concept i. The
transition matrix T calculated in this way can represent the hierarchical relationship between concepts.
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Figure 5 Comparison of exercise-concept correlation study

5.3.2 Knowledge Concept Relationship Analysis

Fig.5 depicts three types of relationships between knowledge concepts in three datasets: (1) the ci concept
is similar to the cj concept; (2) The concept of ci is the prerequisite knowledge concept of cj ; (3) There
is no clear relationship between the ci concept and the cj concept. The distribution trends of the three
datasets are similar, with the lowest proportion of prerequisite relationships, and the higher proportions
of similar relationships and no clear relationships. We rely on these relationships to measure the degree of
forgetting of relevant knowledge concepts. Due to the large proportion of similar relationships, choosing
to use similar relationships for weighting may have an impact on many exercises in the datasets, which
will cause the weighting effect to be insignificant. Therefore, we decided to use prerequisite relationships
to weight the forgetting process. From the results in Table 2, it can also be observed that the experimental
results of ASSISTchall show relatively minor improvements, which reinforces the validity of our choice of
prerequisite relationships as the weighting method.

5.3.3 Parameter Sensitivity

Additionally, we conducted experiments to assess the impact of γ on the LPKT and CPF enhanced
Q matrix. We tried five different γ values: 0, 0.01, 0.03, 0.05 and 0.1. The experimental results are
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Figure 6 The influence of the small positive value γ in the enhanced Q-matrix on the performance of LPKT and CPF on

ASSIST2012.

shown in Fig. 6. It can be observed that setting γ to a small positive value enhances the performance of
LPKT and CPF, with the maximum gain achieved when γ is set to 0.03. When γ approaches zero, it
becomes challenging for γ to bridge the potential correlation between different knowledge concepts. On
the other hand, if γ increases, more errors may occur in the enhanced Q matrix, which would impair
the performance of LPKT and CPF. From the graph, it is evident that CPF and LPKT exhibit distinct
slopes. In the CPF model, we first use the Q matrix to match the knowledge concepts present in the
current exercise and then utilize the predecessor-successor knowledge concept matrix to identify the
prerequisite knowledge concepts of the current one. This step emphasizes that our model relies more on
the relationships between knowledge concepts when computing the forgetting process, further validating
the effectiveness of the concept-driven forgetting mechanism proposed in our work.
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Figure 7 Experimental results with different K values on ASSISTchall.

Fig. 7 illustrates the impact of different values of k on the prediction results when considering the
preceding k neighboring knowledge states. Due to the presence of numerous knowledge concepts in
practical applications, considering the similarity between all knowledge concepts in the sequence may
lead to an increase in computational complexity. Therefore, we experimented with five different values
of k: 0, 10, 30, 50, and 100. When k is small, it is equivalent to disregarding the memory enhancement
process described above. As k increases, the complexity of the relationships between knowledge concepts
grows, potentially involving a large number of knowledge concepts in the enhancement process, which
could destabilize the model.

6 Conclusion

In this paper, we propose a novel concept-driven personalized forgetting knowledge tracking model (CPF)
aimed at addressing personalized learning and forgetting processes in real-world applications. CPF in-
tegrates students’ personalized capabilities into both the learning and forgetting processes and models
the causal relationships of forgetting processes through the hierarchical relationships between knowledge
concepts. Extensive experiments on three public datasets demonstrate the superiority of CPF over ex-
isting methods. Future research directions include further strengthening the CPF model, considering the
multi-concept effects, more comprehensively characterizing the intrinsic relationships between knowledge
concepts, and delving deeper into the impact of knowledge concepts on the model.
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