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Abstract: Web caching is essential for the World Wide Web, saving processing power, bandwidth, and reducing latency.
Many proxy caching solutions focus on buffering data from the main server, neglecting cacheable information
meant for server writes. Existing systems addressing this issue are often intrusive, requiring modifications
to the main application for integration. We identify opportunities for enhancement in conventional caching
proxies. This paper explores, designs, and implements a potential prototype for such an application. Our
focus is on harnessing a faster bulk-data-write approach compared to single-data-write within the context of
relational databases. If a (upload) request matches a specified cacheable URL, then the data will be extracted
and buffered on the local disk for later bulk-write. In contrast with already existing caching proxies, Squid
for example, in a similar uploading scenario, the request would simply get redirected, leaving out potentially
gains such us minimized processing power, lower server load and bandwidth. After prototyping and testing the
suggested application against Squid, concerning data uploads with 1,100,1.000, . . . ,100.000 requests, we con-
sistently observed query execution improvements ranging from 5 to 9 times. This enhancement was achieved
through buffering and bulk-writing the data, the extent of which depended on the specific test conditions.

1 Introduction

The wide use of the internet by people around the
world has posed scalability challenges for many busi-
nesses and service providers (Datta et al., 2003).
Long response times or even inaccessibility is a factor
that affects the revenues of web-centric companies,
leading to lower earnings (Wessels, 2001), (Datta
et al., 2003). Web caches have been shown to solve
some of the scalability problems. They helped bring
down latencies, bandwidth usage and save processing
power (Barish and Obraczka, 2000), (Wessels, 2001),
(Datta et al., 2003).

There are generally a few widely used approaches
to caching the data: browser cache, proxy cache and
server cache (Barish and Obraczka, 2000), (Wessels,
2001), (Ali et al., 2011), (Zulfa et al., 2020). The
browser cache is the closest one to the user. It can
save, in the memory of the local computer, static data
like images, videos, CSS and JS code, etc. (Datta
et al., 2003). A proxy cache is a dedicated server
that sits between one or more clients and one or more
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servers. Compared to the browser cache, which is
tied to a single machine, a proxy cache can be placed
anywhere on the web, at different levels: ISP (lo-
cal, regional, national) or right in front of the primary
server (Datta et al., 2003). Lastly, there is the option
to cache your data on the computer that is running
the web server/database, either by using your own/a
third-party solution or indirectly through the caching
system of your operating system or database.

Research in the field primarily targets cache re-
placement algorithms and prefetching. Crucially,
caching solutions must decide what objects to re-
tain and which to evict due to limited memory space.
Managing the resources incorrectly and keeping un-
used objects cached for long enough, results in what’s
known as cache pollution (Ali et al., 2011), (Mertz
and Nunes, 2017). Some of the most popular caching
policies include: LFU (least frequently used), LRU
(least recently used), GDS (greedy dual size), GDS-
Frequency and many more (Ali et al., 2011), (Zulfa
et al., 2020), (Ioannou and Weber, 2016), some of
them also using machine learning to enhance the al-
ready used ones (Ali et al., 2012).
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The effectiveness of caching is typically measured
in hit rate or byte hit rate. Hit rates are determined as
the percent of requests that could be satisfied directly
by the cache, while byte hit rate represents the per-
cent of the data (numbered in bytes) that were already
cached before answering the request (Nanda et al.,
2015), (Dilley et al., 1999).

Cache prefetching is a technique that aims to re-
quest and cache objects before they are needed. Al-
though useful, the solution must be carefully imple-
mented to avoid polluting the cache in an excessive
way (Ali et al., 2011), (Mertz and Nunes, 2017), (Se-
shadri et al., 2015). In their studies, (Ali et al., 2011)
showed that based on surveys, web caching along
prefetching can reduce the latency of responses by up
to 60%, compared to web caching along, yielding an
improvement of only 26% in latency. Likewise, (Bar-
ish and Obraczka, 2000) published a survey where we
can find similar results, incorporating prefetching re-
sulting in a 41% or even 57% latency improvement.

The majority of the developed solutions for web
caching are dedicated towards storing data generated
by a server. Few of them offer a solution for buffering
the incoming information that is meant to be stored
by the SQL/NoSQL database. Indeed, Redis, Mem-
cached, Apache Kafka, RabbitMQ and others offer
the possibility to achieve this goal, but it is done intru-
sively, meaning that the underlying main server needs
to suffer modifications to accommodate these solu-
tions. In the following sections, we will introduce
a system and architecture specifically engineered to
cache incoming (uploaded) and fetched data, requir-
ing minimal to no modifications to the core applica-
tion.

2 Materials and Methods

Prior to delving into the construction and testing of
the proposed solution, it is imperative to provide an
overview of its counterpart. This would be Squid
(Squid-Cache, 2024), a proxy server solution that is
most often used as a caching proxy. It is a popular ap-
plication used for caching and managing both static
and dynamic content generated as response by a web
server for a user’s request, supporting protocols such
as HTTP, HTTPS, FTP and more.

In order to save bandwidth, speed up load times,
and conserve computing power, hundreds of Inter-
net providers employ Squid in addition to thousands
of standalone websites, as stated in (Squid-Cache,
2024).

Squid is a battle-hardened application. It pro-
vides a powerful configuration file with the ability

to create very complex distributed caching infrastruc-
tures. It can deploy on multiple computers and create
a caching hierarchy consisting of Parents, Kids and
Coordinators, all communicating with each other for
better buffering and cache management to save band-
width, processing power and lower latencies. Besides
that, Squid also offers administrators the possibility
to configure both Memory and Disk caches indepen-
dently, each with its own replacement policy like:
LRU, heap GDSF, heap LFUDA, heap LRU.

Trying to match the power that Squid provides
would be a very tedious and long process. Thus, we
will try to optimize only a small chunk of it. Our fo-
cus falls on how Squid handles requests that upload
data. As of now, Squid will simply redirect those to
the main server. This approach may be improved. In-
stead of redirecting the request, we could extract the
data (if its URL is marked as cacheable in the config-
uration file) and store it locally into a buffer till the
caching time expires, sending it all at once afterward.
This way, if the data is meant to be written in a re-
lational database, the time it takes to execute for a
single, multiple rows insertion query is far lower than
overall multiple single rows insertions. The following
sections will explore the concept further and present
a viable solution.

3 The Proposed System Architecture

The proposed application, referred to as RcSys (Re-
source Caching System), functions as a caching proxy
for handling both user upload and download requests.
Prior to a detailed technical examination of the sys-
tem’s architecture, a general schematic overview of
its operational flow will be presented.

The diagram 1 illustrates three primary actors:
clients, the RcSys server, and the main server. All
communication between these components occurs
through HTTP(S).

The interaction commences as a client initiates a
request over the internet, either for uploading (e.g.,
sending emails, creating posts) or downloading (e.g.,
reading messages, shopping). Upon reaching Rc-
Sys, a rapid evaluation occurs to determine if the re-
quested resource should be cached. This decision re-
lies on details outlined in a configuration file created
by the administrator, specifying the paths designated
for caching.

If the requested URL is not known, then it gets
redirected to the main server. In case it is known and
is of type upload, it will be stored in a buffer and later,
when the specified amount of caching time expires,
it will be written to the main server (along with the



Figure 1: RcSys flow.

other data that share the same URL). If the accessed
resource is of type download, the system first checks
whether it exists or is expired (if so, it makes a call
for the updated version to the main server) and then
replies to the client.

3.1 Multi-Thread Request Processing

Regarding the architecture of RcSys, a notable tech-
nical aspect involves request processing. It em-
ploys a dedicated Server thread for managing the web
server and accepting connections, along with a pool of
Worker threads controlled by a master thread. Upon a
new connection, it becomes a task in a shared queue
between Server and Worker. The master thread re-
trieves and assigns tasks to workers. Simultaneously,
new connections can be established and added to the
queue.

The Figure 2 offers a more detailed view of the
system’s functionality. Upon the application’s initi-
ation, a configuration file undergoes processing, and
its supplied information is stored within an IConfigu-
ration object for convenient access. This file encom-
passes various details, including the desired thread
pool size. Concurrently, the creation of the Worker
results in the instantiation of X threads, as dictated by
the configuration.

This architectural decision is predicated on a chal-
lenge encountered during the design phase of the
proxy caching system. To illustrate, consider a sce-
nario where a singular Worker thread manages user
requests. In a context where numerous resources are
cached, each with its specific expiration time ranging
from seconds to hours, and a substantial number of
these resources total in the hundreds. For instance,
if there are 1000 requests awaiting processing, some
requiring the update of cached data, the consequence
is that over 900 requests must wait for the arrival of
new information, irrespective of whether it pertains

to their specific data or not. In contrast, utilizing a
thread pool, the proposed architecture enables con-
current processing of new requests by the CPU while
the operating system monitors the arrival of necessary
resources from the main server to fulfill other pending
tasks.

The requests are distributed for processing among
the worker threads in a Round-robin fashion (Bal-
harith and Alhaidari, 2019). An index of the thread
that is next for receiving a new task is kept in the Mas-
ter Worker state. If a new request arrives, the thread
that is pointed at by the index will be assigned to serve
it and the index is incremented, therefor the next one
will be handled by a different worker.

A second solution for solving the earlier men-
tioned problem would be to build an event-loop based
architecture. However, such a resolve imposes new
challenges and a harder to comprehend implementa-
tion, even if it is used a library like libev(libev, 2024).
The more natural way is to use threads, performing
as good as event-loop programming and easier to ex-
ecute (von Behren et al., 2003).

3.2 One-Tiered Cache Replacement
Policy

The main mean by which RcSys stores the cached
data is disk, be it HDD or SSD. Although it may not
be an option as faster to access and retrieve informa-
tion as RAM, it has its own advantages and the fact
that it is “disk-only” is not entirely true.

Caching data into RAM comes with a lot of care-
ful managing and designing. If your process ends
up leaking memory or not allocating/deallocating it
efficiently, it can use all computer’s memory and
slow the entire system performance or even crash.
RAM is also a much smaller sized resource on com-
modity computers that can be used as servers, be-
ing significantly more expensive than the disk. A



Figure 2: RcSys thread pool.

16−32−64−128 . . .GB of RAM machine could also
store way less cached data compared to a 2-4TB non-
volatile memory option.

Despite its inherent drawbacks, the decision to uti-
lize the disk as a storage medium is justified by the
support provided by the operating system in man-
aging file access. Therefore, the characterization of
it being a ”disk-only solution” is not entirely accu-
rate. In order to facilitate access to memory for soft-
ware applications, the OS allocates pages of memory.
Those pages represent virtual memory addresses that
are later translated to physical addresses when a re-
quest to the memory controller is made to get the
stored data. The OS also uses the main memory of
a computer to load accessed disk files into and min-
imize the IO operations that would be performed. It
maps the file opened for reading and writing from the
disk to the RAM and takes care of evicting them if
the memory is full. This way, the user can manipulate
the file’s data and the system does not have to issue a
write to disk every time a new letter is typed. Instead,
it marks the memory pages as “dirty” and updates the
file later. Managing resources this way increases the
machines’ general performance (The kernel develop-
ment community. Sphinx 5.0.1 & Alabaster 0.7.12 ,
).

RcSys’s architecture takes advantage of the OS
file caching behavior to simplify the proposed solu-
tion and to also benefit from the performance gains
that come along writing and reading from RAM.
A similar approach is implemented by Nginx for
caching, as detailed by one of their Senior Director
here (Garrett, 2016).

Disk’s higher memory availability does not mean
that it is infinite. It might as well get full if enough
data requires caching. To deal with this problem, a
simple cache eviction policy was implemented, that
would delete files from disk according to LRU. The
least recently accessed file for either reading or writ-
ing will be erased to make space for a new one. The

configuration file also specifies the maximum size of
disk memory that can be used for caching. The ar-
chitecture, however, does not guarantee that the quan-
tum won’t be exceeded. Instead, when a new request
comes in, before processing it, we evaluate whether
the maximum cache size was exceeded. If so, cached
resources from the disk will get deleted in a LRU
manner until the used space is below the maximum
one. This means that if the incoming request has to
write new files on disk, the memory limit could be
again surpassed, till another request arrives and the
cycle repeats. The OS also implements a variation of
the LRU for deleting unused pages (Linux Kernel Or-
ganization, ).

3.3 Use Cases

As a caching proxy, RcSys aligns with established use
cases observed in existing solutions. Its deployment
serves purposes such as conserving processing power
and bandwidth for a web server. By caching non-
real-time critical content, RcSys alleviates the prox-
ied server’s burden, including items like blog posts,
images, messages, entire web pages, etc. Moreover,
it enhances the user experience by positioning itself
in proximity to the user, handling requests that do
not necessitate database queries or data regeneration,
thereby minimizing overhead.

An additional advantage that sets it apart from
alternative solutions is its capability to temporarily
store data intended for server writes and subsequently
perform bulk writes. This feature substantially re-
duces the processing load on the main server and
database, further enhancing efficiency.

3.4 A Final Overview of System’s Flow

For providing a comprehensive overview and con-
necting all the components comprising the architec-
ture, a sequence diagram has been crafted, see Figure



3. In this diagram, we explain some of the most im-
portant objects’ states and their role in RcSys, as well
as showing the path that a user’s request takes once in
the system.

If we delve into the details, particularly in the con-
text of caching incoming data, the process unfolds as
follows in 4.

4 Strengths and Shortcomings of the
Solution

In order to compare the overall performance of the
proposed application, we chose to test it against
Squid-Cache (Squid-Cache, 2024), both being a
caching proxy. Before going forward, we must make
a big disclaimer. RcSys is nowhere near as power-
ful and well-rounded as squid, nor is it production
ready. It is just an experimental application built
to explore new architectures and capabilities that a
caching proxy can bring.

The proxied application utilized in our research
serves as a conceptual, abstract representation—a pat-
tern mirroring the structure typical of a conventional
web server. Developed in Golang, the choice of this
language stems from our desire for a swift prototype
creation process, minimizing unnecessary code ver-
bosity.

Golang’s net/http (Golang, v122) handles the re-
quests along Gorm (Gorm, 1257) for interacting with
a PostgreSQL database. The database’s schema is
modest, consisting of four entities (4c0fk, 4c2fk,
10c0fk, 10c2fk), modeled in such a way as to cover
some real-world operations. The names are self-
explanatory, each entity consisting of several string
fields equal to the digits previous to the ”c” character
and some foreign keys equal to the digit previous to
“fk”. For example, entity 4c0fk has 4 string columns
and 0 foreign keys, while entity 10c2fk has 10 string
columns and 2 foreign keys (mapped to entity 4c0fk
and entity 10c0fk, same as for entity 4c2fk).

We aimed to explore fundamental database use
cases by conducting tests for different results on ta-
bles of various sizes, ranging from small to large, and
considering scenarios with and without foreign keys.
Foreign keys play an important role in a relational
database, impacting a query’s performance. For each
foreign key that the database must insert, it has to per-
form a look up in the referenced table to make sure
that the new created row is valid and does not point to
a non-existing record.

The application that simulates clients sending re-
quests to the web server was also built with Golang
for the same fast-prototyping reason. It defines basic

functions for getting as well as posting data for sev-
eral times in order to create metrics and compare the
proxies.

For the first set of tests, we simulated basic
POST operations, with the requests being proxied
by both RcSys and Squid. As already mentioned,
Squid does not possess the ability to cache the up-
loaded data in order to send it later to the prox-
ied server all at once. Therefore, every such opera-
tion was redirected to the main server. Both appli-
cations went through the same tests, with the same
data (different strings with the same size). For each
entity (4c0fk, 4c2fk, 10c0fk, 10c2fk), a client sent
1,100,1000,5000,10000,25000,50000 and 100000
POST HTTP requests to create a new record in the
database. The data was collected and analyzed for
each batch of tests (1,100, . . .). In order to obtain ac-
curate results of the execution time, PostgreSQL pro-
vides us with a query prefix EXPLAIN ANALYZE
(PostgreSQL Global Dev Group, v16b), (PostgreSQL
Global Dev Group, v16a), (PostgreSQL Global Dev
Group, v16c). Running a simple query like ”INSERT
INTO ... VALUES ...” and prefixing it with ”EX-
PLAIN ANALYZE =>EXPLAIN ANALYZE IN-
SERT INTO ... VALUES ... ” results in both exe-
cuting the query and outputting different real infor-
mation about the execution process. From among the
returned data, we extracted two performance metrics,
namely the ”Execution time” (the actual time that it
took to execute the query) and ”Planning time” (the
actual time that it took to plan the query execution),
expressed in milliseconds. The information that EX-
PLAIN ANALYZE provides differs for each type of
query. For example, if the inserted data links through
foreign keys to other tables, a trigger will be executed
to check if the referenced row exists. This ”Trigger
time” is summed up in the ”Execution time” parame-
ter.

Figures 5 compare the execution and
planning time data for all mentioned enti-
ties, the X axis being the number of requests
1,100,1.000,5.000, . . .100.000 and the Y axis being
the execution time corresponding to the X number
of requests. Observing these results, it becomes
evident that RcSys outperforms Squid significantly
in handling upload requests. Saving multiple rows of
data is faster than saving only one at a time (one per
query, as Squid did) and significantly mitigates the
overall inserting cost. Although RcSys could buffer
all the incoming upload requests in a span as long
as the caching expiration time, we chose to limit
the amount of data to as much as 10.000 requests,
after which the buffer would be emptied. MySQL’s
documentation (Oracle, v8) breaks down the cost of



Figure 3: RcSys flow chart.

an INSERT statement in proportions as follows:

• Connecting (3)

• Sending query to server (2)

• Parsing query (2)

• Inserting row (1 x size row)

• Inserting indexes (1 x number of indexes)

• Closing (1)

. Inserting multiple rows at once allowed avoiding the
costs associated with multiple connections, sending
queries to the server, and closures. Examination of

the underlying data used in generating the four charts
reveals the corresponding tables, see Tables 1 and 2.

Extracting additional information about the gains
is possible from the raw data, such as the average
time improvement for each test, as indicated in Table
3. Besides its advantage in caching upload requests,
RcSys lacks many features and critical functionalities
that Squid has, see Table 4.



Figure 4: RcSys flow chart zoomed in on POST cache.

Figure 5: Overall performance gains RcSys vs Squid.

Table 1: Raw execution tests data RcSys vs Squid in ms.
Entity 1 100 1.000 10.000 50.000 100.000

4c0fk RcSys 0.055 1.831 9.64 48.106 254.99 514.69
Squid 0.055 8.249 65.345 633.505 3174.3 6413.4

4c2fk RcSys 0.313 2.348 20.379 198.445 984.092 1956.51
Squid 0.313 11.431 131.999 1314.13 6791.7 13395.5

10c0fk RcSys 0.299 0.758 6.368 59.859 296.108 578.355
Squid 0.299 6.11 57.113 730.357 3446.2 6458.6

10c2fk RcSys 0.281 2.781 45.473 211.247 1058.82 2121.50
Squid 0.281 13.23 142.361 1396.49 6979.6 13692.9

Table 2: Raw planning tests data RcSys vs Squid in ms.
Entity 1 100 1.000 10.000 50.000 100.000

4c0fk RcSys 0.019 0.101 0.318 4.621 17.75 41.99
Squid 0.019 2.988 25.141 225.035 1112.1 2265.0

4c2fk RcSys 0.024 0.124 1.095 17.235 70.487 150.85
Squid 0.024 2.639 30.298 311.137 1611.1 3182.5

10c0fk RcSys 0.026 0.052 0.32 7.581 26.919 52.237
Squid 0.026 2.365 21.413 272.29 1280.3 2427.8

10c2fk RcSys 0.022 0.464 4.161 20.39 79.134 165.84
Squid 0.022 3.134 33.755 335.182 1679.7 3310.1

5 Conclusions

The paper has proposed an innovative enhancement
designed to bring added value to conventional caching



Table 3: RcSys vs Squid performance gains.
Average query speedups Test 4c0fk Test 10c0fk Test 4c2fk Test 10c2fk

Execution Speedup x9.12 x9.48 x5.93 x5.20
Planning Speedup x52.11 x40.18 x19.13 x14.17

Table 4: RcSys vs Squid features comparison.
Feature RcSys Squid
Security No HTTPS (SSL/TLS) or Authentication HTTPS and Authentication

Protocols supported Only HTTP HTTP, HTTPS, FTP and more

Distributed cache No
Yes, with complex hierarchy of
parents, kids and coordinators

Cache replacement policies LRU
LRU, heap GDSF,

heap LFUDA, heap LRU
Caching options Only disk Disk and Memory
Configuration Minimal Very robust

proxy solutions. Through the implementation and
testing of the proposed architecture, it was evident
that there is a significant improvement opportunity
in reducing bandwidth consumption and optimizing
data upload speeds, especially in contexts utilizing
relational databases. The strategy of locally extract-
ing and storing data from upload-type requests on
the caching server’s disk or memory, followed by
later bulk-write, showcased marked enhancements in
overall database write performance. While typical
web caching proxies would redirect those types of
requests, RcSys obtained by buffering them between
5.20 and 9.12 times SQL query execution speedups
and between 14.17 and 52.11 times SQL query plan-
ning speedups.
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