
Data reconstruction of the
dynamical connection function in
f(Q) cosmology

Yuhang Yang,a,b,c Xin Ren,a,b,c,d Bo Wang,a,b,c Yi-Fu Cai,a,b,c
Emmanuel N. Saridakise,b,f

aDepartment of Astronomy, School of Physical Sciences, University of Science and Technology
of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

bCAS Key Laboratory for Research in Galaxies and Cosmology, School of Astronomy and
Space Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China

cDeep Space Exploration Laboratory, Hefei 230088, China
dDepartment of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo
152-8551, Japan

eNational Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece
fDepartamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610,
Casilla 1280 Antofagasta, Chile

E-mail: yyh1024@mail.ustc.edu.cn, rx76@ustc.edu.cn, ymwangbo@ustc.edu.cn,
yifucai@ustc.edu.cn, msaridak@noa.gr

Abstract. We employ Hubble data and Gaussian Processes in order to reconstruct the dy-
namical connection function in f(Q) cosmology beyond the coincident gauge. In particular,
there exist three branches of connections that satisfy the torsionless and curvatureless condi-
tions, parameterized by a new dynamical function γ. We express the redshift dependence of γ
in terms of the H(z) function and the f(Q) form and parameters, and then we reconstruct it
using 55 H(z) observation data. Firstly, we investigate the case where ordinary conservation
law holds, and we reconstruct the f(Q) function, which is very well described by a quadratic
correction on top of Symmetric Teleparallel Equivalent of General Relativity. Proceeding to
the general case, we consider two of the most studied f(Q) models of the literature, namely
the square-root and the exponential one. In both cases we reconstruct γ(z), and we show
that according to AIC and BIC information criteria its inclusion is favoured compared to
both ΛCDM paradigm, as well as to the same f(Q) models under the coincident gauge. This
feature acts as an indication that f(Q) cosmology should be studied beyond the coincident
gauge.

Keywords: Modified gravity, f(Q) gravity, Hubble data, Gaussian Processes, Coincident
gauge
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1 Introduction

Since the discovery of the acceleration of the universe expansion in the late 1990’s [1, 2], the
concept of dark energy (DE) was introduced to explain such an unexpected phenomenon.
Although the simplest scenario is just a cosmological constant Λ [3], resulting to the ΛCDM
paradigm, the nature of DE remains puzzling. Hence, the existence of dark sector along with
potential observational cosmological tensions [4–10], opens the way towards modifications and
extensions of the concordance model.

General Relativity (GR) is the standard gravitational theory, and it is based on cur-
vature and the Einstein-Hilbert action [11]. Nevertheless, it is known that gravity can be
equivalently described through the torsional and non-metricity formulations, namely with
Teleparallel Equivalent of General Relativity (TEGR) [12] and Symmetric Teleparallel Equiv-
alent of General Relativity (STEGR) [13, 14], respectively. Together, these three equivalent
formulations constitute the geometric trinity of gravity [15]. Modifications of curvature-based
General Relativity directly lead to the well-known f(R) gravity [16, 17], to f(G) gravity [18],
to Lovelock gravity [19], etc. Furthermore, the extension of TEGR, known as f(T ) gravity,
has been well discussed and studied in cosmology [10, 20–25]. Finally, modifications based on
the non-metricity scalar Q, i.e. extensions of the STEGR, lead to f(Q) gravity [14, 26]. The
cosmological applications of f(Q) gravity prove to be very interesting, and thus they have
recently attracted a large amount of research [27–67].

While the coincident gauge is commonly used in f(Q) cosmology, exploring the general
covariant formulation provides additional forms of affine connections [37, 68]. Generally,
there are three possible branches of connections satisfying the torsionless and curvatureless
conditions, introducing a free dynamical function γ(t), which affects the solutions of the
theory [45, 59, 69–72]. One of the three branches is equivalent to the coincident gauge
in cartesian Friedmannn-Robertson-Walker metric metric [37], while the other two exhibit
distinct dynamical behavior when γ(t) is non-vanishing.

In this work, we are interesting in investigating the dynamical connection function γ(t)
of the covariant f(Q) cosmology, from the data perspective. In particular, we desire to recon-
struct it from the data without any assumption of its functional form, in contrast to previous
studies [73, 74]. For this shake, we employ Gaussian Processes (GP) for data reconstruction,
a technique widely used in cosmology, allowing us to directly obtain reconstruction functions
from observational Hubble parameter data [75–83]. Subsequently, we analyze the evolution
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characteristics of the connection function and its influence on the dynamics of the universe
in different branches.

This article is structured as follows. In Section 2 we present a concise introduction to
covariant f(Q) gravity and cosmology. Then, in Section 3 we reconstruct the connection
function γ(t) from the data. In particular, in subsection 3.1 we display the data list that we
use, and we describe the Gaussian Process that we apply. Then, in subsection 3.2 we perform
the reconstruction procedure assuming the ordinary conservation law for the matter sector,
while in subsection 3.3 we present the reconstruction results in the general case, considering
two specific f(Q) models that are the most well studied in the literature. Finally we draw
the conclusions and provide some discussion in Section 4.

2 f(Q) gravity and cosmology

In this section we briefly review f(Q) gravity and its application in cosmology. In f(Q)
gravity, metric and connection are treated on equal footing, necessitating the use of the
Palatini formalism to describe gravitational interaction [84]. In this formalism, a general
affine connection Γα

µν is introduced and defined as

Γα
µν = Γ̊α

µν + Lα
µν , (2.1)

where Γ̊α
µν is the Levi-Civita connection, and the disformation tensor Lα

µν characterizes the
deviation of the full affine connection from the Levi-Civita one. In the following, we use
the upper ring to represent that the geometric quantity is calculated under the Levi-Civita
connection. Note that we do not consider the anti-symmetry part of the connection, since the
theory encompasses a torsion-free geometry. The affine connection Γα

µν establishes the affine
structure, governing how tensors should be transformed, and defining the covariant derivative
∇α.

Utilizing this general affine connection, we define the basic object in this theory, the non-
metricity tensor, as Qαµν = ∇αgµν , which characterizes the geometry of spacetime. Moreover,
the disformation tensor Lα

µν can be expressed as:

Lα
µν =

1

2
(Qα

µν −Q α
µ ν −Q α

ν µ). (2.2)

By imposing the condition of vanishing curvature, the non-metricity scalar can be extracted
as

Q =
1

4
QαQα − 1

2
Q̃αQα − 1

4
QαµνQ

αµν +
1

2
QαµνQ

νµα, (2.3)

where Qα = gµνQαµν and Q̃α = gµνQµαν represent the two independent traces of the non-
metricity tensor. It is convenient to introduce the non-metricity conjugate tensor Pα

µν as

Pα
µν =

1

4

(
−2Lα

µν +Qαgµν − Q̃αgµν −
1

2
δαµQν −

1

2
δανQµ

)
, (2.4)

which allows the non-metricity scalar to be simplified as Q = QαµνP
αµν .

We can now use the non-metricity scalar Q to construct f(Q) gravity, introducing the
action

S =

∫
d4x

√
−g

[
1

2
f(Q) + Lm

]
, (2.5)
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whwre g is the determinant of the metric, f(Q) is an arbitrary function of Q, Lm is the
matter Lagrangian density, and where we have set the gravitational constant 8πG = 1. It is
worth noting that STEGR, and therefore GR, is recovered for f(Q) = Q. Finally, as usual,
we define the energy-momentum tensor of matter as

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
. (2.6)

Variation of the above action with respect to the metric leads to the metric field equation:
2√
−g

∇λ

(√
−gfQP

λ
µν

)
− 1

2
fgµν + fQ(PνρσQ

ρσ
µ − 2PρσµQ

ρσ
ν) = Tµν , (2.7)

where fQ = df/dQ, fQQ = d2f/dQ2. Alternatively, it can be expressed in a covariant formu-
lation to highlight the distinction from GR more clearly, namely [68, 74, 85]:

fQG̊µν +
1

2
gµν(fQQ− f) + 2fQQP

λ
µν∇̊λQ = Tµν , (2.8)

where G̊µν = R̊µν − 1
2gµνR̊ is the standard the Einstein tensor and ∇̊λ is the covariant

derivative corresponding to Levi-Civita connection. From this formula we can easily see that
in more general cases where f(Q) is not a linear function of Q, the affine connection will enter
the dynamics of the metric, ultimately affecting the solutions.

Variation of action (2.5) with respect to the connection gives

4∇µ∇ν(
√
−gfQP

µν
α) = −∇µ∇ν(

√
−gH µν

α ), (2.9)

where we have introduced the hypermomentum tensor density

H µν
α = − 2√

−g

δ(
√
−gLm)

δΓα
µν

. (2.10)

Finally, using the Bianchi identities, the above connection field equation leads to the energy-
momentum-hypermomentum conservation law, namely [37, 86–88]

√
−g∇̊νT

ν
µ = −1

2
∇̊ν∇̊ρ(

√
−gH νρ

µ ). (2.11)

We proceed to the application of f(Q) gravity at a cosmological framework. Thus, we
consider the isotropic and homogeneous flat Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2(dr2 + r2dθ2 + r2 sin2 θdϕ2), (2.12)

with a(t) the scale factor. As we mentioned in the Introduction, most studies in f(Q) cos-
mology were conducted within the coincident gauge choice, where all connection coefficients
vanish, namely Γα

µν = 0. Nevertheless, this is not the only choice [37], and therefore there
are some recent studies which use different connections in f(Q) cosmology [37, 45, 59, 69–
71, 73, 74].

In general, the nonzero components of a torsionless connection in flat FRW universe are
[89]:

Γt
tt = C1, Γt

rr = C2, Γt
θθ = C2r

2 Γt
ϕϕ = C2r

2 sin2 θ,

Γr
tr = C3, Γr

rr = 0, Γr
θθ = −r, Γr

ϕϕ = −r sin2 θ,

Γθ
tθ = C3, Γθ

rθ =
1

r
, Γθ

ϕϕ = − cos θ sin θ,

Γϕ
tϕ = C3, Γϕ

rϕ =
1

r
, Γϕ

θϕ = cot θ,

(2.13)
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where C1, C2, C3 are purely temporal functions. As one can show, in total there are three
possible branches of such connections that satisfy additionally the curvatureless requirement,
which are presented in Table 1, where γ is a non-vanishing function on t.

Case C1 C2 C3

Connection I γ 0 0

Connection II γ + γ̇
γ 0 γ

Connection III − γ̇
γ γ 0

Table 1. Three different branches of time-dependent functions C1, C2 and C3 with vanishing curvature
and torsion, where γ(t) is a non-vanishing dynamical function, and with dots denoting time derivatives.

In the case of FRW metric, with the above general connection parameterization, one can
calculate the non-metricity scalar from (2.3) as

Q(t) = 3

[
−2H2 + 3C3H +

C2

a2
H − (C1 + C3)

C2

a2
+ (C1 − C3)C3

]
, (2.14)

where H = ȧ
a is the Hubble function. Note that when one goes back to the case of zero

connection, the above expression yields the standard result Q(t) = −6H2, while for our three
connections of Table 1 we obtain

Q(t) = −6H2 for Connection I, (2.15)
Q(t) = 3

(
−2H2 + 3γH + γ̇

)
for Connection II, (2.16)

Q(t) = 3

(
−2H2 +

γ

a2
H +

γ̇

a2

)
for Connection III. (2.17)

Substituting the above general connection into the field equations (2.7), and introducing
for convenience the ansatz f(Q) = Q + F (Q), we obtain the modified Friedmann equations
as

3H2 = ρm − 1

2
F + (

1

2
Q− 3H2)FQ − 3

2
Q̇(C3 −

C2

a2
)FQQ, (2.18)

−2Ḣ − 3H2 = pm +
1

2
F + (2Ḣ + 3H2 − 1

2
Q)FQ − 1

2
Q̇(−4H + 3C3 +

C2

a2
)FQQ, (2.19)

where a subscript Q denotes differentiation with respect to Q. In the above equations, ρm and
pm are the energy density and pressure of the (baryonic plus cold dark matter) matter sector,
assuming it to correspond to a perfect fluid. Note that we do not consider the radiation sector
since we focus on late-time universe. Comparing the above Friedmann equations with the
standard ones, we can see that in the scenario at hand we obtain an effective dark energy
sector with energy density and pressure respectively given by

ρde = −1

2
F + (

1

2
Q− 3H2)FQ − 3

2
Q̇(C3 −

C2

a2
)FQQ, (2.20)

pde =
1

2
F + (2Ḣ + 3H2 − 1

2
Q)FQ − 1

2
Q̇(−4H + 3C3 +

C2

a2
)FQQ, (2.21)

and thus with and effective equation-of-state parameter written as

wde =
pde
ρde

=
1
2F + (2Ḣ + 3H2 − 1

2Q)FQ − 1
2Q̇(−4H + 3C3 +

C2
a2
)FQQ

−1
2F + (12Q− 3H2)FQ − 3

2Q̇(C3 − C2
a2
)FQQ

. (2.22)
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Lastly, let us make some comments on the the conservation law in f(Q) gravity. As one
can see from equation (2.11), this relation remains independent of the gravitational part, de-
pending only on the matter terms. The left hand side in the case of FRW metric gives as usual
∇̊νT

ν
µ = [ρ̇m+3H(ρm+pm)]uµ. In the case of zero connection, where the hypermomentum is

absent, the right hand side disappears, and thus equation (2.11) gives ρ̇m+3H(ρm+pm) = 0
as expected. However, for the general connection choices given in Table 1 the hypermomen-
tum is not always vanish, and thus the dynamical function γ(t) will enter the right hand side
leading to a non-conservation of the matter sector. In other words we obtain an effective
interaction between the connection structure of the geometry and the matter sector, which is
typical in more complicated geometries [90–93].

Under Connection I of Table 1, the scenario is consistent with the standard approach
in f(Q) cosmology, where the coincident gauge with vanishing affine connections is used. As
a result, the unknown dynamical function γ does not play any role in the evolution of the
universe at the background level, and this is the aspect which previous studies have focused on.
However, the situation changes when one considers the remaining two types of connections.
From the modified Friedmann equations (2.18),(2.19), it is evident that γ enters as a new
dynamical field, and thus its evolution will affect the universe dynamics at the background
level. Furthermore, as we mentioned above, from equation (2.11) we deduce that γ will play
a role in the matter equation, too. In the next section we will investigate these particular
effects in detail, and we will perform a confrontation with observational data.

3 Reconstructing the dynamical connection function γ(t) from the data

In this section we desire to explore the effect of Connection II and Connection III on the
background evolution, and in particular to use observational data in order to reconstruct
γ(t). In order to achieve that we will apply Gaussian Processes, since this procedure ensures
model-independence and thus it will provide insights into the characteristics of γ and its
impact on the cosmological evolution within the framework of general covariant symmetric
teleparallel theory.

3.1 Hubble data set

Since in the following we will apply a reconstruction procedure based on H(z), in this work
we will use H(z) data from the observational Hubble data (OHD) list, gathered from several
studies [83, 94–96]. The H(z) data in this list are primarily derived from cosmic chronometer
(CC) and radial baryon acoustic oscillations (BAO) observations. Cosmic chronometer yields
H(z) information by measuring age differences between two galaxies at distinct redshifts,
evolving independently of any specific model [97]. On the other hand, radial BAO observations
involve pinpointing the BAO peak position in galaxy clustering, relying on the sound horizon
in the early universe [98, 99]. In summary, the data list is composed of 31 CC data points
and 23 radial BAO data points, as documented in [100]. Finally, for the current value of
the Hubble function H0 we adopt the most recent SH0ES observation of 73.04 ± 1.04 km
s−1Mpc−1 [101].

However, the discontinuity in data points with error bars, in general affects the smooth-
ness of the reconstructed functions. To address this issue we employ Gaussian Processes in
Python (GAPP), and thus we result to a continuous H(z) function that best fits our discrete
data. GP have been widely used for the parameter or function reconstruction in various
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studies [75–83]. Concerning the covariance function in GAPP, for the kernel choice in our
analysis we select the exponential form, namely:

k(x, x′) = σ2
fe

− (x−x′)2

2l2 , (3.1)

where σf and l are the hyperparameters.
We apply the GAPP steps, and we obtain a reconstructed H(z) function, which is

depicted in Fig. 1. The orange curve represents the mean value, while the light yellow shaded
zones indicate the allowed regions at 1σ confidence level. Lastly, the χ2 of the data points is
calculated as:

χ2
H(z) =

55∑
i=1

(Hda,i −Hre,i)
2

σ2
Hi

= 25.6 . (3.2)

0.0 0.5 1.0 1.5 2.0
z

50

100

150

200

250

H(
z)

 k
m

/(s
·M

pc
)

H(z)
OHD data

Figure 1. The reconstructed H(z) function arising from the 55 data points through Gaussian Pro-
cesses, imposing H0 = 73.04 ± 1.04 km s−1Mpc−1. The orange curve denotes the mean value, while
the light yellow shaded zones indicate the allowed regions at 1σ confidence level.

3.2 Reconstruction for the matter conservation case

We will start our analysis for the case where there is no interaction between the geometry
and matter, and thus matter is conserved, namely we will focus on the case where the general
conservation equation (2.11) gives the ordinary conservation law (OCL)

ρ̇m + 3H(ρm + pm) = 0. (3.3)

Manipulating the Friedmann equations (2.18),(2.19) we find

ρ̇m + 3H(ρm + pm) = Q̇

[
−3H2 − 1

2
Q+

3

2

˙
(C3 −

C2

a2
) + 9C3H − 3C2

a2
H

]
(3.4)

+
3

2
Q̇Q̈

(
C3 −

C2

a2

)
FQQ +

3

2
Q̇2

(
C3 −

C2

a2

)
FQQQ. (3.5)

Connection I will lead to trivial results, since γ disappears from the equations. Let us
consider connection II of Table 1. In this case, enforcing the OCL condition, i.e. enforcing
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the right-hand-side of the above equation to be zero, and using (2.16), we obtain (92γHQ̇ +
3
2Q̈γ)FQQ+

3
2Q̇

2γFQQQ = 0. Thus, applying the chain rules ḞQ = FQQQ̇ and F̈Q = FQQQQ̇
2+

FQQQ̈, we finally acquire [102]
F̈Q + 3HḞQ = 0. (3.6)

In the following it is more convenient to use the redshift z as the independent variable, through
dz/dt = −(1 + z)H(z). Hence, one can easily obtain the general solution for equation (3.6)
as

FQ = A

∫
a−3dt+B = −A

∫
(1 + z)2

H(z)
dz +B, (3.7)

where A and B are constants. Lastly, note that in the case of Connection III the equations
are too complicated to accept analytical solutions, and hence we will not consider it further.

Equation (3.7) is our first dynamical equation. The second one will arise from the
Friedmann equations (2.18),(2.19), which yield

−2H ′dz

dt
− ρm − pm = 2H ′FQ

dz

dt
− (3γ − 2H)F

′
Q

dz

dt
, (3.8)

where primes denote derivatives with respect to z. Finally, the third dynamical equation is the
OCL (3.3). These three dynamical equations for the three unknown functions, namely H(z),
ρm(z) and γ(z) can be easily solved in the case of dust matter, namely imposing pm = 0. In
this case we obtain

γ(z) =
2HH ′

[
A
∫ z
0

(1+z′)2

H(z′) dz′ −B − 1
]

3A(1 + z)2
+

2

3
H(z) +

Ωm0H
2
0

A
, (3.9)

where Ωm0 is the present value of the matter density parameter Ωm ≡ ρm/(3H2). Note that in
the case A = 0 the presence of γ has no impact on the background evolution, and moreover in
such a case (3.7) leads to a linear f(Q) form, which is consistent with our previous discussion
that in the standard STEGR case (where f(Q) is simply linear in Q) OCL condition holds
naturally. In the following we focus on the general case where A ̸= 0.

Since FQ is dimensionless, it proves convenient to parameterize A as A = ϵH0, with ϵ a
dimensionless parameter and H0 the current value of the Hubble function. Additionally, the
integration constant B in (3.7) yields a linear term in f(Q), which can always be absorbed in
a redefinition of the gravitational constant, and hence it can be set arbitrarily. Without loss
of generality, for calculation convenience, in the following we set it to B = −5.

Let us now proceed to the reconstruction procedure. In (3.9) we extracted γ(z) in terms
of H(z), while in the previous subsection, and in particular in Fig. 1, we reconstructed
H(z) from the data. Thus, we can easily reconstruct γ(z) itself. In Fig. 2 we present the
reconstruction results of γ(z) for different values of ϵ. As we observe, with the increase of ϵ
values, the reconstruction results converge to a certain curve, while the value of γ at current
time is 8H ′

0/3ϵ+ 2H0/3 + Ωm0H0/ϵ.
In the same lines, using (3.7) we can reconstruct FQ(z), while from (2.16) we can recon-

struct Q(z), thus obtaining in the end the reconstruction of F (Q), which is depicted in Fig.
3. Interestingly enough, this function deviates from the linear form, hence we deduce that
the data favour a deviation from standard STEGR, i.e. from standard General Relativity. In
particular, taking ϵ = 2 as an example, we find that the best fit function is the one with a
quadratic correction, namely

F (Q) = a1 + a2
Q

Q0
+ a3

Q2

Q2
0

, (3.10)
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0.0 0.5 1.0 1.5 2.0 2.5
z

50

75

100

125

150

175

200

225
= 2
= 3
= 4
= 5

+

Figure 2. The reconstructed γ(z) for different value of ϵ under the assumption of ordinary matter
stress-energy tensor conservation law, for the case of Connection II. We have used the mean values of
H(z) presented in Fig. 1, and without loss of generality for numerical calculation we have set B = −5.

with a1 = −34614, a2 = 65317, and a3 = 724, and where the current value of Q is Q0 =
−8009, in H2

0 units. The fact that the quadratic correction fits the data very efficiently, and
is favoured comparing to standard General Relativity, is one of the main results of the present
work.

40 30 20 10 0
Q/Q0

0

100

200

300

400

500

F(
Q

)/Q
0

exact numerical solution
best fit
linear function

Figure 3. The reconstructed F (Q) under the assumption of ordinary matter stress-energy tensor
conservation law, for the case of Connection II, for ϵ = 2 and B = −5. Th blue solid curve is
the exact numerical solution, the red dashed curve represents the best-fit curve given by F (Q) =
a1+a2Q/Q0+a3Q

2/Q2
0, while the orange line depicts the best-fit linear function F (Q) = b1+b2Q/Q0,

namely the STEGR case. The corresponding fitting parameters are Q0 = −8009, a1 = −34614,
a2 = 65317, a3 = 724, b1 = 78923, and b2 = 96826, in H2

0 units.

3.3 Reconstruction in the general case

Let us now proceed to the general case, in which the general conservation law (2.11) implies
an interaction between matter and geometry. In this case it is necessary to impose an ansatz
for the f(Q) function, and thus in the following we will focus on the two most studied models
of the literature.
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The first model is abbreviated as Sqrt-f(Q) model, and has the form [103]

F (Q) = M
√
−Q+ 2Λ, (3.11)

where M,Λ are free parameters. To render this expression dimensionless, we introduce a
parameter α = M/H0, yielding the form F (Q) = (αH0)

√
−Q+ 2Λ. In the coincident gauge,

this model reproduces the same background evolution with ΛCDM scenario. However, the
distinctive effects of varying α become discernible by analyzing the evolution of perturbations
in the coincident gauge [29, 103–105]. It remains an open question whether these conclusions
hold in more general connections, as explored in [74], where the authors investigate the energy
conditions under different assumptions on the form of γ.

The second model is abbreviated Exp-f(Q) model, and has the form [106]

F (Q) = Qe
β

Q0
Q −Q, (3.12)

where β is a dimensionless free parameter, and Q0 the value of Q at current time. This model
exhibits a remarkable capability to effectively align with observations, and in some cases it is
favoured comparing to ΛCDM scenario, although it does not contain an explicit cosmological
constant [33, 54, 106, 107]. Moreover, it effortlessly satisfies Big Bang Nucleosynthesis (BBN)
constraints [108], since at early times, where Q ≫ Q0, it coincides with General Relativity.
Once again we mention that these results stem from analyses conducted in the coincident
gauge, prompting further investigation into their applicability in more general connections.

Let us proceed to the reconstruction of the connection function γ(z). From the Fried-
mann equations (2.18),(2.19) we find that

Q̇ =
F + 2(2Ḣ + 3H2)(FQ + 1)−QFQ

(−4H + 3C3 +
C2
a2
)FQQ

. (3.13)

Similarly to the previous subsection, we will not consider Connection I, since in this case γ
does not affect the equations. For the other two connections, taking the time derivative of
(2.16),(2.17) yields:

Q̇ = −12HḢ + 9γ̇H + 9γḢ + 3γ̈ for Connection II, (3.14)

Q̇ = −12HḢ +
3γ̈ + 3γḢ − 3γ̇H − 6γH2

a2
for Connection III. (3.15)

Comparing eq. (3.13) with (3.14) and (3.15), leads to

γ̈ =
F + 2(2Ḣ + 3H2)(FQ + 1)−QFQ

3(−4H + 3γ)FQQ
+ 4HḢ − 3γ̇H − 3γḢ for Connection II, (3.16)

γ̈ = a2

[
F+2(2Ḣ+3H2)(FQ+1)−QFQ

3
( γ
a2

− 4H
)
FQQ

+ 4HḢ

]
+2γH2+γ̇H−γḢ for Connection III. (3.17)

Hence, changing the cosmic time t to redshift z through dz/dt = −(1 + z)H(z), we are now
able to reconstruct the evolution γ(z) using the observationally reconstructed H(z) of Fig.
1. We mention here that in the literature one can find the observational constraints for Sqrt-
f(Q) model and Exp-f(Q) model, however only for the case of zero connection (coincident
gauge). Therefore, since in the present work we focus on non-zero γ, the model parameters

– 9 –



0.0 0.5 1.0 1.5 2.0 2.5
z

0

5

10

15

20

25

30

35

40

45

(a) Sqrt-f(Q) model

0.0 0.5 1.0 1.5 2.0 2.5
z

40

20

0

20

40

60

(b) Sqrt-f(Q) model with Λ = 0

0.0 0.5 1.0 1.5 2.0 2.5
z

3000

2500

2000

1500

1000

500

0

(c) Exp-f(Q) model

0.0 0.5 1.0 1.5 2.0 2.5
z

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

w
de

(d) Sqrt-f(Q) model

0.0 0.5 1.0 1.5 2.0 2.5
z

4

2

0

2

4

w
de

(e) Sqrt-f(Q) model with Λ = 0
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Figure 4. The reconstructed γ(z) (upper panels) and the corresponding dark-energy equation-of-state
parameter wde(z) (lower panels), for the case of Connection II. The left panels correspond to the
Sqrt-f(Q) model with M = −1500 (i.e. α = −68) and Λ = 0.7× 3H2

0 (the ΛCDM value), the middle
panels correspond to the Sqrt-f(Q) model with M = −5000 (i.e. α = −21) and Λ = 0, while the right
panels correspond to the Exp-f(Q) model with β = 0.2, where M is in H0 units. The bold curves
represent the mean values, while the shaded areas indicate the 1σ confidence level.

(namely α,Λ for the first model and β for the second model respectively) should be considered
as free parameters from scratch.

We start from the case of Connection II. In the upper panels of Fig. 4 we present the
reconstruction results of γ(z), for Sqrt-f(Q) model with and without an explicit cosmological
constant, and for Exp-f(Q) model. Additionally, in the lower panels of Fig. 4 we depict
the corresponding reconstructed dark-energy equation-of-state parameter wde(z). Similarly,
for Connection III, the results are displayed in Fig. 5. We mention here that in Gaussian
Processes at each specific redshift z the value of H(z) exists in the form of a distribution,
hence there may be H(z) values that can cause divergence in the denominator of some terms
in the numerical steps, leading to divergences in the reconstructed wde(z) is some cases.

A first and straightforward observation is that the data-driven reconstructed γ deviate
from zero, indicating a deviation from the coincident gauge. Secondly, as we can see the
reconstruction results have significantly smaller errors in the case of connection III. Thirdly,
we mention that although the Sqrt-f(Q) model in coincident gauge exhibits a degeneracy at
the background level for the different model parameter values, and one needs to go at the
perturbative level to see distinctive effects, in the case of Connections II and III with a non-
zero γ, different α values lead to different results even at the background level. Interestingly
enough, the Sqrt-f(Q) model can fit the data even in the case where Λ = 0, which shows the
capabilities in considering non-trivial connections. Finally, concerning wde, as we observe it
has a tendency to slight phantom values at late times.
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(e) Sqrt-f(Q) model with Λ = 0
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Figure 5. The reconstructed γ(z) (upper panels) and the corresponding dark-energy equation-of-state
parameter wde(z) (lower panels), for the case of Connection III. The left panels correspond to the
Sqrt-f(Q) model with M = −1500 (i.e. α = −68) and Λ = 0.7× 3H2

0 (the ΛCDM value), the middle
panels correspond to the Sqrt-f(Q) model with M = −5000 (i.e. α = −21) and Λ = 0, while the right
panels correspond to the Exp-f(Q) model with β = 1.2, where M is in H0 units. The bold curves
represent the mean values, while the shaded areas indicate the 1σ confidence level.

Model ΛCDM Coincident gauge Connection II Connection III
Exp-f(Q) Sqrt-f(Q) Exp-f(Q) Sqrt-f(Q) Exp-f(Q)

χ2 139.9 51.6 27.3 27.2 26.2 26.5
AIC 141.9 53.6 31.3 31.2 30.2 30.5
BIC 143.9 55.6 35.3 35.2 34.2 34.5
∆AIC 0 -88.3 -110.6 -110.7 -111.7 -111.4
∆BIC 0 -88.3 -108.6 -108.7 -109.7 -109.4

Table 2. The value of χ2, and the information criteria AIC and BIC alongside the corresponding
differences ∆IC ≡ IC− ICΛCDM , for different models. Note that for coincident gauge the Sqrt-f(Q)
model coincides with ΛCDM scenario at the background level. The Sqrt-f(Q) models with Connection
II and III have been taken without an explicit cosmological constant, i.e. Λ =0.

We close this section by examining the quality of the fittings. In Table 2 we present the
χ2 values, alongside the values of the Akaike Information Criterion (AIC), and the Bayesian
Information Criterion (BIC). The AIC criterion provides an estimator of the Kullback-Leibler
information and it exhibits the property of asymptotic unbiasedness, while and BIC criterion
provides an estimator of the Bayesian evidence [109, 110]. Specifically, we have

χ2
model =

55∑
i=1

[
(Hmod,i −Hobs,i)

2

σ2
Hi

]
, (3.18)
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while

AIC = −2 lnLmax + 2ptot (3.19)
BIC = −2 lnLmax + ptot lnNtot, (3.20)

where lnLmax represents the maximum likelihood of the model, ptot represents the total
number of free parameters and Ntot = 55 is the number of samples. As we can see, our
results indicate that the inclusion of γ improves the quality of the fittings to observations,
compared to both ΛCDM paradigm, as well as to Sqrt-f(Q) and Exp-f(Q) models under the
coincident gauge. This is one of the main results of the present work. Lastly, for completeness
we mention that Connection III seems to confront with the data in a slightly better way than
Connection II.

4 Discussion and conclusions

Recently, f(Q) gravity has garnered significant attention and has been the subject of extensive
research, since its cosmological applications proves to be very interesting. Although the theory
has been confronted with observations in order to extract information on the possible forms
of the unknown function f(Q), almost all the corresponding analyses have been performed
under the coincident gauge. Hence, investigating f(Q) cosmology under different connection
choices is a subject both interesting and necessary. In particular, since for general connections
that satisfy the torsionless and curvatureless conditions a new dynamical function appears,
namely γ, one should study the physical implications and evolutionary characteristics of γ,
and try to reconstruct it from the observational data themselves.

In this work we used 55 H(z) observation data to reconstruct the evolution of the
dynamical function γ(z) of different connections. In particular, we first applied Gaussian
Processes in order to reconstruct H(z), and then we expressed γ(z) in terms of H(z) and
the f(Q) form and parameters. We studied three different connections beyond the coincident
gauge, and we were able to reconstruct γ(z) for various cases.

Since in f(Q) cosmology in general one obtains an effective interaction between geometry
and matter, we started our analysis from the case where the ordinary conservation law holds.
In this case we extracted a general solution for the derivative of f(Q), and utilizing this
solution we successfully reconstructed the redshift dependence of γ(z), revealing a convergence
tendency in terms of the model parameter. Additionally, we reconstructed the corresponding
f(Q) function, which is very well described by a quadratic correction on top of Symmetric
Teleparallel Equivalent of General Relativity (STEGR).

Proceeding to the general case, we considered two of the most studied f(Q) models of
the literature, namely the square-root (Sqrt-f(Q)) one and the exponential (Exp-f(Q)) one.
In both cases we reconstructed γ(z), and as we showed, the data reveal that γ(z) is not zero.
However, the most interesting result is that the quality of the fitting after the inclusion of
γ is improved, compared to both ΛCDM paradigm, as well as to Sqrt-f(Q) and Exp-f(Q)
models under the coincident gauge. This feature acts as an indication that f(Q) cosmology
should be studied beyond the coincident gauge.

It would be interesting to confront f(Q) cosmology with non-trivial connections with
different observational datasets, such as Supernovae type Ia (SNIa), Cosmic Microwave Back-
ground (CMB), Redshift Space Distortion (RSD) etc, and moreover examine the perturbation
evolution. Such analysis lies beyond the scope of the present work and it is left for a future
project.
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