
Faster Optimization Through Genetic Drift

Cella Florescu, Marc Kaufmann, Johannes Lengler, and Ulysse Schaller

Department of Computer Science, ETH Zürich, Zürich, Switzerland.
{cella.florescu, marc.kaufmann, johannes.lengler,

ulysse.schaller}@inf.ethz.ch

Abstract. The compact Genetic Algorithm (cGA), parameterized by
its hypothetical population size K, offers a low-memory alternative to
evolving a large offspring population of solutions. It evolves a probabil-
ity distribution, biasing it towards promising samples. For the classical
benchmark OneMax, the cGA has to two different modes of opera-
tion: a conservative one with small step sizes Θ(1/(

√
n logn)), which is

slow but prevents genetic drift, and an aggressive one with large step
sizes Θ(1/ logn), in which genetic drift leads to wrong decisions, but
those are corrected efficiently. On OneMax, an easy hill-climbing prob-
lem, both modes lead to optimization times of Θ(n logn) and are thus
equally efficient.
In this paper we study how both regimes change when we replace One-
Max by the harder hill-climbing problem Dynamic BinVal. It turns
out that the aggressive mode is not affected and still yields quasi-linear
runtime O(npolylogn). However, the conservative mode becomes sub-
stantially slower, yielding a runtime of Ω(n2), since genetic drift can
only be avoided with smaller step sizes of O(1/n). We complement our
theoretical results with simulations.

Keywords: compact Genetic Algorithm · Genetic Drift · Estimation-
of-Distribution Algorithm · Dynamic Binary Value

1 Introduction

Estimation-of-distribution algorithms (EDAs) are a family of randomized op-
timization heuristics in which the algorithm evolves a probability distribution
over the search space. In each iteration, it samples solutions from this distri-
bution, evaluates their quality (also called fitness), and updates the probabil-
ity distribution accordingly. Examples in discrete domains include the cGA,
UMDA, PBIL, ant colony systems like the MMAS, and multivariate systems
like hBOA [26] or MIMIC [3], see [15] for a survey. EDAs turn out to be a
powerful alternative to population-based heuristics like evolutionary and genetic
algorithms. They have the advantage that they often sample from a wider region
of the search space than their population-based alternatives, which makes them
less susceptible to local deviations like (frozen or non-frozen) noise and local
optima [6,11,12,17,30].

ar
X

iv
:2

40
4.

12
14

7v
1

 [
cs

.N
E

]
 1

8
A

pr
 2

02
4

2 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

EDAs have been used for several decades, but theoretical investigations of
EDAs have only started to gain momentum a few years ago. While for some
aspects a clear picture has emerged, like that EDAs are able to cope with large
amounts of noise [11], there is one aspect for which researchers have found a
complex and ambiguous pattern: genetic drift. Genetic drift is the tendency
of an algorithm to move through the fitness landscape even in absence of a
clear signal-to-noise ratio.1 While it is possible to avoid genetic drift by tracking
the signal-to-noise ratio [8, 10], this conservative attempt of avoiding mistakes
could potentially make the algorithm slow and inflexible. An alternative ap-
proach might be to embrace genetic drift, allow the algorithm to swiftly move
through the search space, and let it correct mistakes as they appear.

Indeed, these two alternatives are exemplified by the behaviour of the com-
pact Genetic Algorithm cGA on the pseudo-Boolean function OneMax [23].
The OneMax function assigns to a bit string x ∈ {0, 1}n the number of one-bits
in x. It is one of the simplest and most classical hill-climbing benchmarks. The
cGA maintains for each of the n coordinates a frequency pi, which encodes the
probability that the i-th bit is set to one in the distribution. In each iteration, it
samples two solutions, and for each component i it shifts the frequency pi by 1/K
towards the value of the fitter of the two solutions, see Section 2 for full details.
The step size 1/K determines how aggressively or conservatively the algorithm
updates. It is well understood that the size of K determines whether genetic
drift happens to a relevant extent on OneMax or not. If K = ω(

√
n log n) then

the frequencies move so slowly that the signal exceeds the noise, and all frequen-
cies move slowly but steadily towards the upper boundary. This corresponds to
the regime where genetic drift is avoided, and we refer to this as conservative
regime. On the other hand, if K = o(

√
n log n) then the signal is weaker than

the noise, and some bits move to the wrong boundary due to genetic drift. In
the subsequent optimization process, these mistakes are then slowly corrected.
We call this the aggressive regime.

It turns out that both regimes are equally efficient on OneMax. For suitable
K = C log n with a large constant C, errors are corrected so quickly that the op-
timum is sampled in O(n log n) iterations.2 On the other hand, if K = C

√
n log n

with a large constant C, then the algorithm moves more slowly, but does not
make any errors, which yields the same asymptotic runtime O(n log n). Both
parameter settings are brittle with respect to smaller K: if either K = C log n
or K = C

√
n log n are decreased only slightly, this results in a sudden loss of

performance. On the other hand, if the parameter K is increased from either
K = C log n or K = C

√
n log n, then the performance deteriorates slowly but

steadily. Hence, there are two optimal parameter settings for the cGA on One-

1 The term drift is also used in the context of drift analysis, where it means the
expected change, which is almost the opposite concept. The term “genetic drift”
should not be confused with this other meaning of the term “drift”.

2 This was only shown formally for the UMDA in [30] and [2], not for the cGA.
However, [23] contains an informal argument why the results should also apply to
the cGA.

Dynamic BinVal with the cGA 3

Max, a conservative one which avoids genetic drift and an aggressive one which
embraces genetic drift.

Since the mentioned analysis was limited to OneMax, it remained open
whether both modes of the algorithm also show comparable performance for
other hill-climbing tasks. In this paper, we give a negative answer and show that
for the harder hill-climbing problem Dynamic BinVal, the aggressive mode
still finds the optimum in quasi-linear time, while the conservative mode needs
time Ω(n2).

1.1 Our results

We investigate the cGA on the function Dynamic BinVal, or DynBV for
short. This function, introduced in [20], builds on the classical linear test function
Binary Value that assigns to each binary string the integer that is represented
by it in the binary number system. DynBV is obtained by drawing at each
iteration a random permutation of the weights and then evaluating all solutions
with the permuted Binary Value function, see Section 2 for a formal definition.
Binary Value is conjectured to be the hardest linear function3, and DynBV
is known to be the hardest dynamic linear function4 [20, 21]. This makes it
the perfect benchmark for a hard hill-climbing task. For more discussion of the
benchmark, see Section 1.2.

The conservative regime is slow. Our first main result is the following lower
runtime bound, which holds for all K = O(poly(n)). In this range the runtime
will at first increase quadratically in K, until K reaches the dimension of the
search space - at which point the runtime dependency becomes Ω(K · n).

Theorem 1. Let p̄ ∈ (0, 1
2) be arbitrary and consider the cGA with param-

eter K = O(poly(n)) and boundaries at p̄ and 1 − p̄ on DynBV. Then with
high probability, the optimum is not sampled during the first Ω(K ·min{K,n})
iterations.

The reason for this is captured in Lemma 14, which states that in this period,
there are always a linear number of bits which stay in some constant interval
around their initialization value, so that it is exponentially unlikely to sample
the optimum.

If we want to avoid genetic drift, we have to choose a rather large K (small
step sizes) to overcome the small signal-to-noise ratio that is inherent in DynBV.
The following theorem states that any K = O(n) will lead to substantial genetic
drift and hence belongs to the aggressive regime. This agrees with the guidelines
from [6] on how to avoid genetic drift.

3 For example for the (1 + 1)-EA. It is a famous open problem to prove this formally.
4 It is not formally a dynamic linear function in the sense of [22], but can be obtained

as a limit of such functions [20].

4 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Theorem 2. For every ρ > 0 and β ∈ (p̄, 1
2) there is δ > 0 such that the

following holds. Consider the cGA with parameter K ≤ ρn on DynBV. Then
with high probability as K → ∞ at least δn frequencies drop below β during
optimization.

Theorem 2 shows that indeed the only possibility to avoid substantial genetic
drift is to set K = ω(n), which leads to a runtime of ω(n2) by Theorem 1. Hence,
DynBV can not be optimized in quadratic time by any parameter setting of
the cGA that avoids genetic drift. As we will see below, aggressive parameter
settings that allow genetic drift are much more efficient. Before we come to this
other regime, we complement Theorem 1 with a matching upper bound that
holds when we are safely in the conservative regime with K = Ω(n log n). To
simplify the proof, we require a slight adjustment of the boundary values.5

Theorem 3. Consider the cGA with parameter K = poly(n) and boundaries
at 1

cn and 1− 1
cn on DynBV. If K ≥ c′ · n log n, and the constants c, c′ > 0 are

large enough, then the expected optimization time is O(Kn).

The main ingredient for this proof is to show that in the first polynomially
many rounds, all frequencies will stay bounded away from the lower boundary
(Proposition 18). Hence, the proof of Theorem 3 is similar to other proofs of
upper runtime bounds in conservative regimes [10,29].

Together, Theorems 1 and 3 give tight runtime bounds of Θ(Kn) in the
conservative regime. This implies in particular that the runtime in this regime is
much larger for DynBV than for OneMax, where the runtime is O(K

√
n) [28].

We remark that the different transition points between conservative and ag-
gressive regime (K = ω(n) in Theorem 3 and K = Ω(n log n) in Theorem 3)
are natural because there are different possible definitions of the conservative
regime: that no frequency drops below 1/3 (or any other fixed constant be-
low 1/2), that no frequency reaches the lower boundary, or that the number of
frequencies hitting the lower boundary is sublinear. All these variants lead to
different transition points between the conservative and aggressive regime.

The aggressive regime is fast. Our second result shows that in contrast, the
optimization time of the cGA remains quasi-linear for small K, i.e. linear up to
a poly-logarithmic factor. This corresponds to the aggressive regime where many
frequencies reach the wrong boundary, but those errors are corrected efficiently.
To make the analysis simpler, similar as for Theorem 3, we do not set the two
boundary values at their standard values 1/n and 1 − 1/n, but this time we
even set them to 1/(n polylog n) and 1 − 1/(n polylog n). Moreover, we do not
use the smallest possible (most aggressive) parameter choice K = C log n for
the aggressive regime, but rather choose the slightly more conservative K =
Θ(log2 n). Then we prove the following result.
5 More precisely, we set them to 1

cn
, 1− 1

cn
for a large enough constant c > 0. As our

simulations, which are all conducted with boundaries 1
n
, 1 − 1

n
, show, this choice

does not affect the asymptotic behaviour.

Dynamic BinVal with the cGA 5

Theorem 4. Consider the cGA with parameter K = Θ(log2 n) and boundaries
1/(n log7 n) and 1 − 1/(n log7 n) on DynBV. Then the optimum is sampled in
O(n · polylog(n))6 iterations with probability 1− o(1).

We note that we made no effort to optimize the exponent 7 of the poly-
logarithmic factor in the boundaries. We conjecture that the true runtime for
optimal parameters is O(n log n), and that this is achieved with the standard
boundaries 1/n and 1−1/n. Notably, this would mean that there is no substantial
runtime difference in the aggressive regime with optimal parameters between
OneMax and DynBV, in stark contrast to the conservative regime. We do not
quite show this statement, but we show it up to poly-logarithmic factors.

Compared to this conjecture, our analysis is likely not tight in several ways.
Firstly, even for the given parameters we believe that the poly-logarithmic ex-
ponent of our runtime bound could be reduced at the cost of a more techni-
cal analysis. Secondly, both the conservative choice of K and the non-standard
choice of the threshold likely bring us away from the optimal parameter. This
simplifies the proof, but costs us performance, even though only logarithmic fac-
tors. We suspect that the optimal parameter setup is indeed the standard setup
of K = C log n for a large constant C and boundaries 1/n and 1− 1/n. This is
supported by the experiments presented in Section 7.

1.2 Discussion of the setup and related work

Signal steps and DynBV. In order to understand genetic drift, a key question is
how often each frequency receives a signal step. We call an iteration a signal step
for frequency pi if both solutions differ in this position i and the two values of this
position are necessary to decide which of the two solution is fitter. When both
solutions differ, but their values are irrelevant for identifying the fitter solution,
then we call the iteration a random walk step for frequency pi. In the initial
phase of the cGA on OneMax, the probability of a signal step is Θ(1/

√
n). For

DynBV, the signal probability is considerably weaker, namely of order Θ(1/n).
In fact, in each iteration exactly one frequency receives a signal step, except
when the two offspring sampled by the algorithm agree in every single bit.

As mentioned, DynBV is the hardest dynamic linear function. This also
holds in terms of the signal strength: when comparing two non-equal solutions,
then exactly one frequency gets a signal, while all other frequencies perform a
random walk step. This is the weakest signal strength among all dynamic linear
functions, and even the hardest among all dynamic monotone functions [13],
since every monotone function, static or dynamic, will always provide a signal
step to at least one frequency when comparing two solutions.

Although it is a dynamic function, DynBV provides a hill-climbing task
in the sense that in each iteration and at any position, a one-bit gives a higher
fitness than a zero-bit. Thus, pure hill-climbing heuristics such as Random Local

6 Our derived bound yields O(n log16 n) but this is not tight with regard to log-factors
in various places, so we did not optimize for the exponent of the logarithm.

6 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Search (RLS) can be highly efficient on this function. Moreover, DynBV is
more symmetric than the classical Binary Value function, which makes the
analysis simpler. All these properties make DynBV the perfect benchmark for
a theoretical runtime analysis of a hard hill-climbing task.

Related work. It has been shown that Dynamic BinVal is harder to optimize
by evolutionary algorithms than static monotone functions in various ways. The
(1, λ)-EA with self-adapting offspring population size fails on Dynamic BinVal
while succeeding on OneMax if the hyperparameters are not set correctly [14].
Furthermore, a “switching” variant of Dynamic BinVal minimizes drift in the
number of zeros at every search point for the (1 + 1)-EA for any mutation rate
at every search point, making it harder to optimize than any static monotone
function [13].

We do not claim that the aggressive mode of the cGA is generally superior
to the conservative mode. However, our results show that the other extreme
position of avoiding genetic drift at all costs, does cost performance for Dynamic
BinVal. On the other hand, the conservative mode was shown to be superior on
the function DeceptiveLeadingBlocks for some parameter settings [9, 16],
though a discussion at a Dagstuhl seminar shows that opinions are split about
the implications of these results [7]. We hope that further research will give a
clearer and more nuanced picture on the benefits and drawbacks of genetic drift.

1.3 Overview of the paper

In Section 2 we describe the cGA and our benchmark Dynamic BinVal, fol-
lowed by important terminology and technical tools which we will use through-
out the paper. Section 3 characterizes the dynamics of the marginal probabilities
which are used in the generation of offspring. In Section 4, we prove the lower
runtime bound, Theorem 1, and Theorem 2, thus establishing that any K = O(n)
will lead to genetic drift. In the subsequent Section 5, we prove Theorem 3, the
upper runtime bound for the conservative regime. Section 6 establishes an upper
runtime bound for the aggressive regime, culminating in Theorem 4. The paper
concludes with the simulations in Section 7.

2 Setting

Our search space is always {0, 1}n. We say that an event E = E(n) holds with
high probability or whp if Pr[E] → 1 as n → ∞. We may for simplicity omit the
parameter t indicating the iteration when it is clear from context.

2.1 The Algorithm: the cGA with hypothetical population size K

We begin with an intuitive description of the cGA. Before the start of the
algorithm, we fix a capping probability p̄ < 1

2 and a hypothetical population
size K, which we may think of as an inverse update strength. At every iteration,

Dynamic BinVal with the cGA 7

the algorithm generates two offspring x and y independently of each other by
the same sampling procedure. At iteration t, the i-th bit of the offspring to be
sampled is set (independently of all other bits and of all previous iterations) to
1 with probability pi,t and set to 0 otherwise. The probabilities are initialized to
1
2 for all bits and evolve according to the following procedure: At each iteration,
the fitness of x and y are compared according to the fitness function f - in
our case this will be Dynamic BinVal. If the fitter offspring contains a 1 at
position i, we increase the probability of sampling a 1 bit, pi, by 1

K for the next
iteration, otherwise we decrease it by the same amount. If there is no strictly
fitter offspring, i.e. f(x) = f(y), all probabilities pi,t remain unchanged in the
next iteration. To ensure the algorithm does not get stuck by fixing one of the
bits, i.e. sampling a 1 with probability 1 or sampling a 0 with probability 1, we
restrict the possible values for probabilities pi,t to the interval [p̄, 1 − p̄]. If an
update step would make a pi,t exceed these bounds, we set it to the boundary
value instead. The algorithm stops when the optimum has been sampled (as one
of the two offspring in a given iteration). The full pseudocode is provided in
Algorithm 1.

Algorithm 1 cGA(f,K, p̄)

t← 0
p1,t ← p2,t ← · · · ← pn,t ← 1

2

while optimum has not been sampled do
for i ∈ {1, 2, . . . , n} do

xi ← 1 with probability pi,t and 0 otherwise
yi ← 1 with probability pi,t and 0 otherwise

end for
if f(x) = f(y) then

t← t+ 1
continue

else if f(x) < f(y) then
swap x and y

end if
for i ∈ {1, 2, . . . , n} do

if xi > yi then
p′i,t+1 ← pi,t +

1
K

else if xi < yi then
p′i,t+1 ← pi,t − 1

K

else
p′i,t+1 ← pi,t

end if
pi,t+1 ← min

{
max

{
p̄, p′i,t+1

}
, 1− p̄

}
end for
t← t+ 1

end while

8 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

2.2 The Benchmark: Dynamic BinVal

The benchmark we consider is the Dynamic BinVal function.
In Dynamic BinVal, at each iteration t, we draw uniformly at random (and

independently of everything else) from the set of bijections from {1, . . . , n} onto
itself an element πt : {1, 2, . . . , n} → {1, 2, . . . , n}. Note that this can be seen as
a permutation of the bits of the search point. The fitness function for iteration
t is then given by

ft(x) =

n∑
i=1

2n−i · xπt(i).

Intuitively, the offspring which has a 1 bit at the most significant position (given
by the permutation πt) at which the two offspring differ is considered fitter.

2.3 Terminology

Below, we introduce some useful concepts and terminology that will be used
throughout the paper.

Signal step. A signal step of a bit i ∈ {1, 2, . . . , n} is the increase in the marginal
probability of bit i during an iteration t where the value of this bit in the two
offspring was decisive. In other words, bit i performs a signal step at iteration t
if and only if the two offspring differ at bit i and are equal at any other bit i′

for which πt(i
′) < πt(i).

Random step. A random step of a bit i ∈ {1, 2, . . . , n} is the change in the
marginal probability of bit i during an iteration where the value of this bit in the
two offspring was not decisive. Thus, all changes in a bit’s marginal probability
that are not signal steps are random steps.

Sampling variance. The sampling variance at time t is the variance of the bi-
nomial distribution induced by the probabilities pi,t, i = 1, . . . n. We denote it
by Vt :=

∑n
i=1 pi,t(1− pi,t). Intuitively, it is the sum at time t of the variances

contributed by the probability of each frequency in the generating distribution.

Lower/Upper boundary. Recall from subsection 2.1 that the possible values for
the probabilities pi,t are restricted to an interval [p̄, 1− p̄] ⊊ [0, 1] for some value
p̄ = O(1n) to ensure that the algorithm does not get stuck. The values p̄ and
1− p̄ are going to be referred to as lower and upper boundary respectively. For
example, we say a frequency pi,t is at its upper boundary if pi,t = 1 − p̄. Note
that the distances of the lower and upper boundaries from 0 and 1 is always the
same, respectively. p̄ is fixed for the entire execution of the algorithm. It will
always either be 1

cn or 1
n logc n for constant c > 0, and it will usually be clear

from context which value of p̄ is assumed.

Dynamic BinVal with the cGA 9

2.4 Drift analysis and concentration inequalities

The analysis of evolutionary algorithms relies heavily on drift theorems. These
allow to transform statements about the expected one-iteration change of a po-
tential function, a proxy for the function to be optimized, into runtime bounds.
For an overview see [19]. We will need in particular the following negative drift
theorem.

Theorem 5 (Theorem 2 in [25]). Let (Xt)t∈N be a stochastic process over
some space S ⊆ R+

0 , adapted to a filtration (Ft)t∈N. Suppose there exist an
interval [a, b] ⊆ R and, possibly depending on l := b − a, a drift bound ε :=
ε(l) > 0 as well as a scaling factor r := r(l) such that for all t ≥ 0 the following
three conditions hold:

1. E[Xt+1 −Xt | Ft ; a < Xt < b] ≥ ε;
2. Pr[|Xt+1 −Xt| ≥ jr | Ft ; a < Xt] ≤ e−j for all j ∈ N;
3. 1 ≤ r2 ≤ εl

132 log (r/ε) .

Then, for the first hitting time T ∗ := min {t ≥ 0 : Xt ≤ a | X0 ≥ b} it holds that
Pr
[
T ∗ ≤ eεl/(132r

2)
]
= O

(
e−εl/(132r2)

)
.

We will further use the variable drift theorem.

Theorem 6 (Theorem 15 in [18]). Let (Xt)t∈N be a stochastic process over
some state space S ⊆ {0} ∪ [xmin, xmax], adapted to a filtration (Ft)t∈N, where
xmin > 0. Let h(x) : [xmin, xmax] → R+ be a monotone increasing function such
that 1/h is integrable on [xmin, xmax] and E[Xt −Xt+1 | Ft] ≥ h(Xt) if Xt ≥
xmin. Then it holds for the first hitting time T := min {t : Xt = 0} that

E[T | X0] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx.

We will also need the next theorem in our proof of Lemma 19.

Theorem 7 (Theorem 1 in [24]). Consider a Markov process {Xt}t≥0 with
state space S and a function g : S → R+

0 . Let T := inf{t ≥ 0 : g(Xt) = 0}.
If there exists δ > 0 such that for every time t ≥ 0 and every state Xt with
g(Xt) > 0 the condition E[g(xt)− g(Xt+1) | Xt] ≥ δ holds, then

E[T | X0] ≥
g(X0)

δ
and E[T] ≥ E[g(X0)]

δ
. (1)

The same statements hold if T is redefined to T := inf{t ≥ 0 : g(Xt) ≤ κ} for
some κ > 0 and the condition is relaxed to E[g(Xt)− g(Xt+1) | Xt ≥ κ] ≥ δ for
all t ≥ 0 and all Xt.

In addition, we require the following tail bounds for hypergeometric random
variables. More explicitly, we consider a random variable X with cumulative dis-

tribution function hX(M,N, n, i) = Pr[X = i | M,N, n] =
(Mi)(

N−M
n−i)

(Nn)
. Here we

10 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

denote the population size by N , the number of success states in the population
by M , the number of draws by n, and the number of observed successes by i.
Then the following tail estimates hold.

Lemma 8 ([27, Section 5]). Let X be a hypergeometric random variable with
cumulative distribution function as described above. Let further t > 0. Then

Pr[X ≥ E[X] + tn] ≤ e−2t2n and Pr[X ≤ E[X]− tn] ≤ e−2t2n.

Finally, we make use of the classical Chernoff bound.

Theorem 9 (Chernoff Bound [5, Section 1.10]). Let X1, . . . , Xn be in-
dependent random variables taking values in [0, 1]. Let X =

∑n
i=1 Xi and let

δ ∈ [0, 1]. Then

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
− δ2E[X]

3

)
.

3 Dynamics of the marginal probabilities

We start by analyzing how the cGA behaves on the Dynamic BinVal at the
level of a single iteration. The first proposition computes the probability that
a bit i at which the two offspring differ gets a signal step (in some iteration
t). This proposition captures the main difference between DynBV and One-
Max. For OneMax, a position which differs in the two offspring has probability
1/max{

√
Vt, 1} to perform a signal step [29], and performs a random step other-

wise. For DynBV, the probability is 1/max{Vt, 1}, so the term
√
Vt is replaced

by Vt. Hence, signal steps are more likely for OneMax, and the signal-to-noise
ratio of OneMax is larger than for DynBV. This corresponds to the fact that
OneMax is a particularly easy function to optimize.

Proposition 10. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the al-

gorithm cGA(K, p̄) on DynBV and some bit i ∈ [n] and iteration t. For the
permutation πt drawn at iteration t, we denote by Si,t the event that all bits
i′ ∈ [n] that appear before i in the permutation, i.e. such that πt(i

′) < πt(i), are
equal in the two offspring. Then it holds that

Pr[Si,t] = Θ

(
1

max{Vt, 1}

)
.

Proof. To compute this probability, consider the random variable Di,t, which
denotes the number of bits i′ ̸= i that are different in the two offspring. If we
denote by V ̸=i

t =
∑

j ̸=i pj,t(1− pj,t) the variance of the bits i′ ̸= i, we can
observe that E[Di,t] =

∑
j ̸=i 2pj,t(1− pj,t) = 2V ̸=i

t .
The main observation that will now allow us to find asymptotic bounds for

Pr[Si,t] is the following: Once we have fixed the number Di,t = k ∈ {0, 1, . . . , n−
1} of bits i′ ̸= i that differ in the two offspring, the probability of drawing a

Dynamic BinVal with the cGA 11

permutation πt such that bit i receives the signal is 1
k+1 . This is because bit i only

receives the signal if πt(i) < πt(i
′) for all bits i′ ̸= i that differ in the offspring.

Since the permutation πt is drawn uniformly at random, the probability that
πt(i) assumes the smallest value from a set of k + 1 numbers is 1

k+1 .

To reach the desired conclusion, we will first show that Pr[Si,t] = Θ
(

1

max{V ̸=i
t ,1}

)
.

Intuitively, this holds because the number Di,t of bits i′ ̸= i that differ in the
offspring is concentrated around its expected value (since it is a sum of inde-
pendent Bernoulli-distributed random variables), and E[Di,t] = 2V ̸=i

t . Formally,
this can be shown via Chernoff bounds after conditioning on the value of Di,t.

For the lower bound we obtain:

Pr[Si,t] =

n−1∑
k=0

Pr[Si,t | Di,t = k] · Pr[Di,t = k]

=

n−1∑
k=0

1

k + 1
· Pr[Di,t = k]

≥
⌊ 3

2E[Di,t]⌋−1∑
k=0

1

k + 1
· Pr[Di,t = k].

Following this truncation of the sum, we can use the fact that for the first factors
in the sum is holds that 1

k+1 ≥ 1

⌊ 3
2E[Di,t]⌋ :

Pr[Si,t] ≥
1⌊

3
2E[Di,t]

⌋ · ⌊ 3
2E[Di,t]⌋−1∑

k=0

Pr[Di,t = k]

≥ 1
3
2E[Di,t]

·
(
1− Pr

[
Di,t >

⌊
3

2
E[Di,t]

⌋])
=

1
3
2E[Di,t]

·
(
1− Pr

[
Di,t ≥

⌊
3

2
E[Di,t]

⌋
+ 1

])
≥ 1

3
2E[Di,t]

·
(
1− Pr

[
Di,t ≥

3

2
E[Di,t]

])
.

The last equality is due to the fact that Di,t only assumes values in N.
Since Di,t is a random variable that is the sum of independent Bernoulli-

distributed random variables with E[Di,t] = 2V ̸=i
t , we can apply the Chernoff

bounds to further get:

Pr[Si,t] ≥
1

3
2E[Di,t]

·
(
1− e−

1
12E[Di,t]

)
=

1

3V ̸=i
t

·
(
1− e−

1
6V

̸=i
t

)
= Ω

(
1

max{V ̸=i
t , 1}

)
,

(2)

12 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

where the last step holds for V ̸=i
t ≥ 1 because then 1 − e−

1
6V

̸=i
t ≥ 1 − e−1/6 =

Ω(1), and it holds for V ̸=i
t < 1 because then 1− e−

1
6V

̸=i
t = Θ(V ̸=i

t).
The upper bound can be computed in a very similar manner, again by con-

ditioning on the value of Di,t.

Pr[Si,t] =

n−1∑
k=0

Pr[Si,t | Di,t = k] · Pr[Di,t = k]

=

n−1∑
k=0

1

k + 1
· Pr[Di,t = k]

=

n−1∑
k=⌈ 1

2E[Di,t]⌉−1

1

k + 1
· Pr[Di,t = k] +

⌈ 1
2E[Di,t]⌉−2∑

k=0

1

k + 1
· Pr[Di,t = k]

≤ 1⌈
1
2E[Di,t]

⌉ · n−1∑
k=⌈ 1

2E[Di,t]⌉−1

Pr[Di,t = k] +

⌈ 1
2E[Di,t]⌉−2∑

k=0

1 · Pr[Di,t = k].

Since, we are dealing with probabilities of disjoint events, we know that
n−1∑

k=⌈ 1
2E[Di,t]⌉−1

Pr[Di,t = k] ≤ 1.

We can employ Chernoff bounds again to obtain:

Pr[Si,t] ≤
1

1
2E[Di,t]

+ Pr

[
Di,t ≤

⌈
1

2
E[Di,t]

⌉
− 2

]
≤ 1

1
2E[Di,t]

+ Pr

[
Di,t ≤

1

2
E[Di,t]

]
(since Di,t only assumes values in N)

≤ 1
1
2E[Di,t]

+ e−
1
8E[Di,t] (Chernoff bounds)

=
1

V ̸=i
t

+ e−
1
4V

̸=i
t = O

(
1

V ̸=i
t

)
.

Since Pr[Si,t] is a probability, we clearly also have Pr[Si,t] = O(1), and hence
Pr[Si,t] = O

(
1

max{V ̸=i
t ,1}

)
.

We have shown that Pr[Si,t] = Θ
(

1

max{V ̸=i
t ,1}

)
, so in order to conclude the

proof it remains to show that max{V ̸=i
t , 1} = Θ(max{Vt, 1}). Clearly max{V ̸=i

t , 1} ≤
max{Vt, 1} since V ̸=i

t ≤ Vt. On the other hand, Vt − V ̸=i
t = pi,t(1 − pi,t) ≤ 1

4 ,
and hence

Vt = V ̸=i
t + (Vt − V ̸=i

t) ≤ V ̸=i
t +

1

4
= O(max{V ̸=i

t , 1}),

Dynamic BinVal with the cGA 13

which concludes the proof. ⊓⊔

Using Proposition 10, one can describe the transition matrix of the marginal
probabilities, which then allows to compute the drift of these marginal proba-
bilities. As for Proposition 10, the same formulas would hold for OneMax with
Vt replaced by

√
Vt.

Proposition 11. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the

algorithm cGA(K, p̄) on DynBV. Then for all i ∈ [n] and t ∈ N we have
pi,t+1 = min

{
max

{
p̄, p′i,t+1

}
, 1− p̄

}
where

p′i,t+1 =


pi,t, with probability 1− 2pi,t(1− pi,t)

pi,t +
1
K , with probability

(
1
2 +Θ

(
1

max{Vt,1}

))
2pi,t(1− pi,t)

pi,t − 1
K , with probability

(
1
2 −Θ

(
1

max{Vt,1}

))
2pi,t(1− pi,t)

.

This implies E[pi,t+1 − pi,t | pi,t] = Θ
(pi,t(1−pi,t)
K·max{Vt,1}

)
, where the lower bound re-

quires pi,t < 1− p̄ and the upper bound requires pi,t > p̄.

Proof. This proof follows the idea of Lemma 2 in [23]. The main idea is simply to
use that the two offspring differ at bit i in iteration t with probability 2pi,t(1−
pi,t), and that this probability does not change if we condition on Si,t since this
event only influences the offspring value at some bits i′ different from i.

First note that p′i,t+1 ̸= pi,t if and only if the two bits at position i in the
offspring are sampled differently. This implies that the event p′i,t+1 = pi,t happens
with probability 1− pi,t(1− pi,t)− (1− pi,t)pi,t = 1− 2pi,t(1− pi,t). We will now
derive asymptotically tight bounds for the probability that p′i,t+1 = pi,t +

1
K , as

the bounds for p′i,t+1 = pi,t − 1
K follow analogously by symmetry.

Note that during one iteration, at most one bit in the offspring takes a signal
step, and all other bits take random steps. To be more precise, there exists a
signal step if and only if the two offspring have a bit in which they differ.

Consider therefore an arbitrary iteration t. Let Si,t be the event defined in
Proposition 10, and let S̄i,t be its complement, namely that bit i did not receive
the signal for sure (which implies that bit i will do a random step). Conditioning
on these events, we can rewrite the probability of p′i,t = pi,t +

1
K as:

Pr

[
p′i,t+1 = pi,t +

1

K

]
= Pr

[
p′i,t+1 = pi,t +

1

K

∣∣∣ Si,t

]
· Pr[Si,t]

+ Pr

[
p′i,t+1 = pi,t +

1

K

∣∣∣ S̄i,t

]
· Pr
[
S̄i,t

]
.

(3)

Let us now analyze the factors in the formula above. If bit i has the chance of
receiving the signal, then it has the possibility to determine whether the update
with respect to the first or second offspring. Therefore, in order to observe an
increase in its frequency, it only needs to happen that the two offspring differ at
bit i. Thus, the first conditional probability is

Pr

[
p′i,t+1 = pi,t +

1

K

∣∣∣ Si,t

]
= 2pi,t(1− pi,t). (4)

14 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

On the other hand, if bit S̄i,t takes place, then bit i does not contribute to the
decision whether to update with respect to the first or second offspring. Thus,
we observe an increase in its marginal frequency only if bit i is set to 1 in the
fitter individual and to 0 in the other. This leads to the conditional probability

Pr

[
p′i,t+1 = pi,t +

1

K

∣∣∣ S̄i,t

]
= pi,t(1− pi,t). (5)

As already mentioned in Proposition 10, the probability of the event Si,t

taking place is nothing but the probability that all the bits i′ ̸= i for which
πt(i

′) < πt(i) are equal in the two offspring, and it holds that

Pr[Si,t] = Θ

(
1

max{Vt, 1}

)
.

Combining this result with equations (3), (4) and (5) yields:

Pr

[
p′i,t+1 = pi,t +

1

K

]
= 2pi,t(1− pi,t) · Pr[Si,t] + pi,t(1− pi,t) · (1− Pr[Si,t])

= pi,t(1− pi,t) · (1 + Pr[Si,t])

= pi,t(1− pi,t) ·
(
1 +Θ

(
1

max{Vt, 1}

))
(6)

The final statement of the lemma on the expectation follows easily from the
aforementioned probability bounds and the way the cGA caps the probabilities
at the boundaries. ⊓⊔

4 Lower bound on the runtime

In this section, we prove lower bounds for the runtime of the compact Genetic
Algorithm on Dynamic BinVal when K is polynomial in the number of bits.
The idea is to bound the number of signal steps that a given bit makes over a
certain number of iterations, and use this bound to show that a linear number
of frequencies stay a constant distance away from the boundaries for Ω(K ·
min{K,n}) iterations. As long as this is the case, the probability to sample the
optimum in any given iteration is exponentially small, and hence a union bound
over the iterations gives us a high probability lower bound on the runtime.
We further prove Theorem 2, which states that genetic drift occurs whenever
K = O(n).

We start by upper bounding the probability that a fixed frequency gets a sig-
nal step in a given iteration, under the condition that enough bits have marginal
probabilities far away from the boundaries.

Corollary 12. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algo-

rithm cGA(K, p̄) on DynBV. Assume that at iteration t there are at least γn
bits whose marginal probabilities are within [16 ,

5
6], for some constant γ > 0. Then

the probability of having a signal step on any fixed bit is O
(
1
n

)
.

Dynamic BinVal with the cGA 15

Proof. Because there are at least γn bits whose marginal probabilities are within
the interval [16 ,

5
6], and for each of these we can lower bound the product pi,t(1−

pi,t) ≥ 1
6 · 5

6 = 5
36 , we have

Vt =

n∑
i=1

pi,t(1− pi,t) ≥
5γ

36
n = Ω(n).

Now fix a bit i at iteration t, and recall the event Si,t from Proposition 10.
This event is a necessary condition for bit i to have a signal step in iteration t,
and hence (using Proposition 10 and the bound on the sampling variance) the
probability that this happens is at most

Pr[Si,t] = Θ

(
1

max{Vt, 1}

)
= O

(
1

n

)
.

⊓⊔

Next, we prove a lemma that guarantees that the displacement of the marginal
probabilities caused by O(K2) random steps is bounded in absolute value by 1

6
for a linear number of bits. The approach is similar to the proof of Lemma 13
in [28].

Lemma 13. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algorithm

cGA(K, p̄) on DynBV. Consider a fixed frequency i ∈ [n] and let t ≤ αK2,
where α > 0 is a small enough constant. With probability Θ(1), the first t random
steps of frequency i lead to a total change of the bit’s marginal probability that
is within

[
− 1

6 ,
1
6

]
.

Moreover, for a small enough constant γ > 0, the probability that the above
holds for less than γn bits among the first n

2 bits is 2−Ω(n), regardless of the
decisions made on the last n

2 bits.

Proof. Fix an arbitrary bit i. Define the random variables Zk = K ·(pi,k+1−pi,k)
to be the scaled change of the bit’s marginal probability at an iteration k where
bit i does a random step. Note that these variables take values in {−1, 0, 1}.
The proof consists in bounding the maximum value that the (partial) sums of
the Zk’s can take over the first t random steps, using a "maximal" version of
Chernoff’s bound.

We thus define Yj :=
∑j

k=1 Zk as the total progress in the first j ∈ {1, 2, . . . , t}
random steps. Due to the symmetry and the fact that we start with the marginal
probability equal to 1

2 , we can conclude E[Yj] = 0. Since the change in the prob-
abilities is bounded by 1

K , we need Yj ≥ K
6 in order to have a total change that

exceeds 1
6 . Using the Chernoff-Hoeffding bounds from Theorems 1.11 and 1.13

in [4], we can bound the probability of this event happening during the first t
random steps:

Pr

[
max

j∈{1,...,t}
Yj ≥

K

6

]
≤ exp

(
−2 ·

(
K
6

)2∑t
j=1 2

2

)
= exp

(
−K2

72t

)
≤ exp

(
− 1

72α

)
.

16 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Leveraging the symmetry of this process, we can obtain the same bound for the
probability of the total change going below − 1

6

Pr

[
min

j∈{1,...,t}
Yj ≤ −K

6

]
= Pr

[
max

j∈{1,...,t}
−Yj ≥

K

6

]
≤ exp

(
− 1

72α

)
.

Now using the union bound, we can bound the probability that the total change
stays within

[
− 1

6 ,
1
6

]
the first t random steps, denoted by the P≤t:

P≤t = 1− Pr

[(
max

j∈{1,...,t}
Yj >

K

6

)
∪
(

min
j∈{1,...,t}

Yj < −K

6

)]
≥ 1− Pr

[
max

j∈{1,...,t}
Yj >

K

6

]
− Pr

[
min

j∈{1,...,t}
Yj < −K

6

]
≥ 1− Pr

[
max

j∈{1,...,t}
Yj ≥

K

6

]
− Pr

[
min

j∈{1,...,t}
Yj ≤ −K

6

]
≥ 1− 2 exp

(
− 1

72α

)
.

Choosing α < 1
72 ln 4 we get P≤t ≥ 1

2 = Ω(1), which proves the first part of the
lemma.

Since by definition the random steps of different frequencies behave indepen-
dently of each other, the second part of the lemma follows directly using Chernoff
bounds. ⊓⊔

In the next lemma, we put things together and show that there is a con-
stant fraction of bits whose marginal probabilities stay bounded away from the
boundaries (and hence receive few signal steps). The proof structure follows that
of Lemma 15 in [28], and the idea is to bound the accumulated effect of signal
steps using Chernoff bounds.

Lemma 14. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algorithm

cGA(K, p̄) on DynBV. There exist constants α, γ > 0, such that the following
holds with high probability, regardless of the last n

2 bits (i.e., an adversary may
choose the value of those bits in the offspring). There is a subset S of γn bits
among the first n

2 bits such that during the first t := αK2 iterations:

i) the marginal probabilities of all bits in S always lie in the interval
[
1
6 ,

5
6

]
;

ii) the total number of signal steps for each bit in S is bounded by K
6 , leading

to a displacement of at most 1
6 .

Proof. Note that the first part holds at initialization. In order to prove the
first part for all iterations, we will look at the probability that the property we
want to prove gets violated. We will show that in each iteration, the property
gets violated only if an event of probability exponentially small in K occurs.
Taking the union bound over t iterations then shows that the property must
hold throughout all of the t iterations.

Dynamic BinVal with the cGA 17

If γ > 0 is a sufficiently small constant, it follows from the second part of
Lemma 13 that with probability 1− 2−Ω(n) at least 2γn bits among the first n

2
ones experience a displacement from the random steps that lies within [− 1

6 ,
1
6]

during the first t ≤ αK2 iterations. For the remainder of the proof, we will
assume that this event takes place, and we will consider S′ to be a set of 2γn
such bits.

To complete the proof, we distinguish two cases. Either K ≤ log2 n. Then
t = o(n). Since at most one bit per iteration takes a signal step, the total number
of bits in S′ which ever take a signal step is at most t ≤ γn, for n sufficiently
large. Hence, at least γn bits in S′ never take a signal step, which completes this
case.

For K ≥ log2 n we will show that for all bits in the set S′, with high proba-
bility, the total displacement caused by the signal steps is at most 1

6 , so we may
take S := S′. According to Corollary 12, for every bit in S′, the probability of it
taking a signal step in an iteration is bounded by c

n , where c > 0 is the constant
from the lemma’s O-notation. As long as the conditions for Corollary 12 hold,
the expected number of signal steps of a fixed bit in t iterations will be at most
t · c

n ≤ αK ·min {K,n} · c
n ≤ αcK.

We know that each signal step changes the marginal probability of a bit by
1
K , so a necessary condition for increasing a bit’s marginal probability by an
additional 1

6 would be to take at least K
6 signal steps during the t iterations.

By choosing the constant α > 0 so small enough that αcK ≤ 1
2 · K

6 , Chernoff’s
bound ensures that the probability of getting at least K

6 signal steps in the first
t iterations is at most e−Ω(K). Thus, to violate the first property, an event of
probability e−Ω(K) has to take place for any bit in S′ and any length of time,
otherwise all properties hold.

Finally, we can take a union bound over all 2γn bits in the set S′, as well as all
t iterations, and obtain that the desired property gets violated with probability
t · 2γn · e−Ω(K) ≤ αK2 · 2γn · e−Ω(K). Since K ≥ log2 n, this failure probability
is o(1), and since the other property is a direct implication of Lemma 13, the
proof is complete.

⊓⊔

The main result of this section is then a direct consequence of the above
lemma.

Theorem 15. Let K = O(poly(n)) and p̄ ∈ (0, 1
2) be arbitrary, and consider

the algorithm cGA(K, p̄) on DynBV. Then with high probability the optimum
is not sampled during the first Ω(K ·min{K,n}) iterations.

Proof. Let α > 0 be the constant from Lemma 14. By this lemma, the probability
of sampling the optimum in one given iteration among the first αK ·min{K,n}
iterations is at most 2·

(
5
6

)γn
= e−Ω(n), since all γn bits with marginal probability

in the interval [16 ,
5
6] have to be set to 1 (and there are two offspring in each

iteration). Taking a union bound over these Ω(K · min{K,n}) iterations and
adding the error probability from Lemma 14 concludes the proof. ⊓⊔

18 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

We are also in a position to show the existence of genetic drift. For the
convenience of the reader, we restate Theorem 2 below before finishing its proof.

Theorem 16. Let K = ω(1) and p̄ ∈ (0, 1
2) be arbitrary, and consider the

algorithm cGA(K, p̄) on DynBV. For every ρ > 0 and β ∈ (p̄, 1
2) there is δ > 0

such that the following holds. Assuming that K ≤ ρn, then with high probability
at least δn frequencies drop below β during optimization.

Proof. We begin by establishing that the sample variance Vt remains of linear
order for our period of interest. This is again due to a linear number of bits
which stay in middle interval around their initialization values. Concretely, by
Lemma 14, for some small constants α, γ > 0, with high probability there exists
a subset of γn bits from the first n

2 such that the marginal probabilities of these
bits remain in the interval

[
1
6 ,

5
6

]
for the first αK2 iterations. In particular, this

implies that Vt = Ω(n) for all t ≤ αK2.
Consider now the other n

2 bits, denoting them by D0 ⊆ [n]. By Corollary 12,
each of them has probability of O(1n) to take a signal step during these αK2

iterations. This implies that the expected number of signal steps taken by one
of these bits during this timespan is αK2 · O(1n) ≤ O(K), where the inequality
holds since K ≤ ρn. Hence the number of signal steps taken by a given bit in D0

is stochastically dominated by a binomial random variable Bin
(
αK2, O(1n)

)
.

Chernoff bounds therefore imply the existence of a constant η > 0 such that
a bit in D0 takes at most ηK signal steps during the first αK2 iterations with
constant probability.

Let us now focus on the subset D1 ⊆ D0 of bits that have taken at most ηK
signal steps throughout the first αK2 iterations. Since the probability that a bit
in D0 is also in D1 is constant, we get by a similar argument (involving Chernoff
bounds and stochastic dominance), that |D1| = Ω(n) with high probability.
Note that all the bits in D1 make at most ηK signal steps during the αK2

iterations, and as long as their marginal probabilities are in the interval [β, 1−β],
the probability that a given iteration is a random step is lower bounded by a
constant. Therefore, since K = ω(1) (and hence K = o(K2)), we can again
use Chernoff bounds to deduce that the number of random steps they make is
at least εK2 with constant probability for some small constant ε > 0. Now
let D2 ⊆ D1 denote the set of bits from D1 that have taken at least εK2

random steps throughout the first αK2 iterations. By Chernoff, we know that
|D2| = Ω(n) with high probability.

Consider now the effect these random steps will have on the marginal prob-
ability of a bit in D2. To this effect, we will inspect some properties of unbiased
random walks with step size 1. Let XN denote the endpoint of such an unbiased
random walk with N steps. Then, by the Central Limit Theorem, for every c ∈ R
it holds that

Pr[XN ≤ c
√
N] → Φ(c), as N → ∞,

where Φ is the cumulative distribution function of the standard normal distri-
bution. Let us instantiate N := εK2 and c := −1/2+β−η√

ε
. Observe that N → ∞

Dynamic BinVal with the cGA 19

is equivalent to K → ∞, hence for K large enough

Pr[XN ≤ (− 1
2 + β − η)K] = Pr[XN ≤ c

√
N] ≥ Φ(c)

2
.

We return now to our setting of εK2 random steps of size 1
K . Until this

random walk reaches distance 1
2 − β + η from its starting point, it behaves

exactly like a rescaled version of the unbiased random walk.
Moreover, by symmetry both endpoints (namely 1

2 − β + η and − 1
2 + β − η)

have the same probability of having been reached first, i.e. the probability to
end at − 1

2 + β − η is 1
2 .

Hence, the probability that these εK2 random steps will cause a total (neg-
ative) displacement of at least 1

2 − β + η from the starting point is at least
Φ(c)
4 .

Thus, for any bit in D2, we have that the cumulative effect of the random and
signal steps results in a marginal probability of at most 1

2 + η− (12 − β + η) = β
with constant probability. Consider D3 ⊆ D2 to be the set of bits for which
this holds true. We deduce that |D3| ≥ δn with high probability using Chernoff
bounds, for some constant δ > 0 chosen small enough, which concludes the proof.

⊓⊔

5 Upper bound on the runtime for the conservative
regime

This section is dedicated to showing an upper bound on the runtime for popula-
tion sizes K = Ω(n log n) that matches Theorem 15. To facilitate the proof, we
slightly adjust the boundaries by setting p̄ = 1

cn for c large enough. Precisely,
our goal will be to show the following result.

Theorem 17. Let K = poly(n) and let c, c′ > 0 be sufficiently large con-
stants. If K ≥ c′ · n log n, then the expected optimization time of the algorithm
cGA(K, 1

cn) on DynBV is O(Kn).

We begin with a proposition that is the analogue of Lemma 4 in [28]. In-
tuitively, it states that for K = Ω(n log n), the marginal probability of any bit
above at least some constant threshold β will not drop below a fixed constant
0 < α < β in the next polynomially many iterations. Even more succinctly, even
moderately high marginal probabilities do not drop by much for a while.

Proposition 18. Let p̄ ∈ (0, 1
2) be arbitrary and let K ≥ 1, and consider the

algorithm cGA(K, p̄) on DynBV. Let p̄ < α < β < 1−p̄ and γ > 0 be constants.
There exists a constant c′ > 0 (possibly depending on α, β, and γ) such that for
a specific bit the following holds: If the bit has marginal probability at least β and
K ≥ c′ · n log n, then the probability that during the following nγ iterations the
marginal probability decreases below α is at most O(n−γ).

20 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Proof. The goal of this proof is to apply the negative drift theorem, Theorem 5,
so it will be rather technical, with the bulk of the task consisting of setting the
parameters and verifying the three conditions of the negative drift theorem. To
this extent, we first fix an arbitrary frequency i and consider the scaled stochastic
process Xt := Kpi,t.

To apply Theorem 5, we choose the interval bounds a := Kα and b := Kβ,
which yields l := b − a = K(β − α). To establish the first condition of the
theorem, we scale the result from Proposition 11 by K and obtain the following
bound on the drift (thus, also fixing ε := 4ξα(1− β)/n in the meantime

E[Xt+1 −Xt | Ft ; a < Xt < b] ≥ K · ξ · pi,t(1− pi,t)

KVt

≥ ξ
4α(1− β)

n
,

where ξ > 0 is the constant from the Θ-notation in Proposition 11, and the final
bound was obtained by observing that Vt =

∑n
j=1 pj,t(1− pj,t) ≤

∑n
j=1

1
4 = n

4 .
The second condition of the theorem can be trivially fulfilled by choosing

r := 2. We note that for j = 0, the condition holds because e−0 = 1 by definition
and the left-hand side is a probability, hence again by definition upper-bounded
by 1 - and for j ≥ 1 we have that Pr[|Xt+1 −Xt| ≥ 2j] = 0 ≤ e−j , because
|Xt+1 −Xt| ≤ 1 in the scaled process, as the marginal frequencies change by at
most 1

K .
We verify the last condition of the theorem using the fact that K ≥ c ·n log n:

εl

132 log (r/ε)
=

4ξα(1− β)

n
·K(β − α) · 1

132
(log n− log (2ξα(1− β)))

−1

≥ ξα(1− β)(β − α)

33
· c · log n

log n− log (2ξα(1− β))
.

As all ξ, α, β > 0 are constants and (1 − β)(β − α) is positive since 1 >
β > α, the term above is positive for large enough n. From the limiting value
limn→∞

logn
logn−log (2ξα(1−β)) = 1, we can conclude that there exists a constant

c > 0 for which the term above is greater or equal to 4 = r2.
Furthermore, note that the constant c > 0 in K ≥ c · n log n can further be

increased to ensure that the following inequality holds

εl

132r2
=

4ξα(1− β) ·K(β − α)

132 · 4 · n

≥ ξα(1− β)(β − α)

132
· c · log n

≥ γ lnn,

for an arbitrarily large constant γ. This is possible because all other quantities,
that is, ξ, β, α do not depend on n and have been fixed beforehand.
Now we are ready to conclude. Since, by assumption, we started with X0 ≥ b, we
can establish via the negative drift theorem that Pr[T ≤ nγ] = O (n−γ), where
T is the first time when the fixed marginal frequency drops below α. ⊓⊔

Dynamic BinVal with the cGA 21

The next lemma, which is modeled after Lemma 2 in [24], gives an upper
bound on the time until the marginal probability reaches any threshold τ , ir-
respective of where the marginal probability starts. In the proof of the main
theorem of this section, this lemma will allow us to upper-bound the "recovery
time" needed for bits whose marginal probabilities travel to the lower boundary.

Lemma 19. Let c > 0 be a constant and let K ≥ 1. Let τ ∈
[

1
cn , 1−

1
cn

]
and

consider some fixed bit i in the cGA(K, 1
cn) on DynBV with an arbitrary value

for the initial marginal probability. Then the expected time until the marginal
probability pi of this bit reaches at least pi = τ is O(Kn2).

Proof. Let us inspect the expected change in probability for the marginal fre-
quency of bit i at an arbitrary iteration t for which pi,t < τ . From Proposition
11 we can fix ξ > 0 as the constant in the Θ-notation and write:

E[pi,t+1 | pi,t] ≥ pi,t + ξ · pi,t(1− pi,t)

KVt

≥ pi,t + ξ · 1

cn

(
1− 1

cn

)
· 1

K
· 4
n

= pi,t +Ω

(
1

Kn2

)
,

where the second inequality stems from the fact that the marginal frequencies
are capped at 1

cn and 1 − 1
cn at the boundaries, and Vt =

∑n
j=1 pj,t(1− pj,t) ≤∑n

j=1
1
4 = n

4 .
The claim now follows by applying Theorem 7 with drift bound δ = Ω

(
1

Kn2

)
,

threshold κ = 1− τ , and distance function g with g(x) = 1− x. ⊓⊔

We are now ready to prove the main theorem of this section. Its proof follows
the structure of the proof of Theorem 2 in [28].

Proof (of Theorem 17). Recall that we assumed without loss of generality that
1
K “divides” 1

2 − 1
cn , which implies that the marginal frequencies are restricted

to the set {
1

cn
,
1

cn
+

1

K
, . . . ,

1

2
, . . . , 1− 1

cn
− 1

K
, 1− 1

cn

}
.

The structure of this proof will follow the one of Theorem 2 in [28]. We will
show that starting with a state where all frequencies are at least 1

2 at the same
time, with probability Ω(1), after O(Kn) iterations either the global optimum
has been found, which we call success, or at least one of the frequencies has
dropped below some arbitrary constant η < 1

2 , which we call failure. We do not
instantiate the constant η. Concretely, if a failure occurred, then we will prove
that one can recover from it - without too big of an overhead in expectation.
Recovering means that we return to a state where all marginal frequencies are
at least 1

2 . The expected time until either a success or a failure takes place is
O(Kn). Then, if no failure occurs during O(Kn) iterations, we show that with
probability Ω(1) the optimum has been found.

22 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Firstly, let us prove that recovering from a failure is not too costly. Choose
a constant γ > 0 such that nγ ≥ K · n5 (such a constant exists since K =
poly(n)). By Proposition 18, instantiated with α = η < 1

2 and β = 1
2 , the

probability of a failure in nγ iterations is at most O(n−γ), provided the constant
c in K ≥ c · n log n is large enough. From Lemma 19 we can conclude that the
expected time for the marginal probability of a specific bit to reach the upper
boundary is always bounded by O(Kn2), regardless of the initial state. We note
that the expected time until all probabilities have reached the upper boundary
at least once is in O(Kn3 log n), as it is stochastically dominated by a simple
modification of the coupon collector problem: We split the time into phases of
length κ · Kn2 for some constant κ > 0 that is large enough. In each of these
phases, by Markov’s inequality and Lemma 19, each marginal probability travels
to the upper boundary with probability at least p > 0, where p is a constant.
Therefore, by the coupon collector problem, we need in expectation O(n log n)
such phases for all bits to reach the upper boundary at least once. Once a bit
reaches the upper boundary, we apply Proposition 18 with α = 1

2 and β = 2
3

to get that the probability of a marginal frequency decreasing below 1
2 in time

nγ is at most O(n−γ). By the union bound, the probability that there is a bit
for which this happens is at most O(n−γ+1). If this does not happen, all bits
assume values of at least 1

2 simultaneously, and we can say that we successfully
recovered from a failure.

As the probability of a bit falling below 1
2 during the recovery phase is at

most n−γ+1, the expected number of restarts of this recovery phase is O(n−γ+1).
Therefore, considering the expected time until all bits recover to values that are
at least 1

2 only adds an additional term of O(n−γ+1 · Kn3 log n) = o(1) to the
expectation (recall that nγ ≥ Kn5).

All that remains to show now is that after O(Kn) iterations without failure
the probability of having found the optimum is in Ω(1). To this end we will
consider a suitable potential function, and apply the variable drift theorem (see
[19]). We will apply the variable drift theorem as long as the sampling variance
stays above an arbitrary constant threshold. Since the variance will be a lower
bound on the potential, this will imply that the potential also assumes values
above a certain threshold. In the subsequent, we will show that once the variance
drops below a certain constant threshold, the potential will as well (as we are in
the case where all marginal probabilities are at least η), and we will sample the
optimum with at least constant probability.

The potential function we consider is φt := n− 1
c −
∑n

i=1 pi,t, which measures
the distance to the ideal setting where all frequencies lie at the upper boundary.
Recall here that we are inspecting the modified version of the cGA where the
upper boundary is at 1− 1

cn .
Assume for now that Vt ≥ 1 holds for the sampling variance Vt. This assump-

tion is helpful, as it will allow us to get asymptotic bounds on the drift whose
constants do not depend on c (see Proposition 11).

We will now inspect the drift of a fixed bit i ∈ {1, . . . , n} by distinguishing
two cases based on whether the frequency is at the upper boundary or not:

Dynamic BinVal with the cGA 23

I. pi,t > 1− 1
cn − 1

K : By our assumption that 1
K “divides” 1

2 −
1
cn , we conclude

that pi,t = 1 − 1
cn , therefore the frequency of bit i can only decrease. A

decrease by 1
K happens with probability at most 1

cn : We have to sample a
0 on bit i in the “losing” offspring, and a 1 in the “winning” one. 7 This
happens with probability pi,t(1− pi,t) ≤ 1

cn . Thus:

E
[
1− 1

cn
− pi,t+1

∣∣∣ pi,t] ≤ (1− 1

cn
− pi,t

)
+

1

Kcn

=
1

Kcn
.

II. pi,t ≤ 1 − 1
cn − 1

K : In this case, Proposition 11 becomes applicable and we
obtain:

E
[
1− 1

cn
− pi,t+1

∣∣∣ pi,t] ≤ (1− 1

cn
− pi,t

)
− ξ · pi,t(1− pi,t)

KVt
,

where ξ > 0 is the constant from Proposition 11 hidden by the Θ-notation
and does not depend on c′.

The sampling variance Vt can be bounded from above by:

Vt =

n∑
j=1

pj,t(1− pj,t) ≤
n∑

j=1

(1− pj,t) = φt +
1

c
.

Given that we assumed to be in the situation where no failure occurred, we
may assume that pi,t ≥ η and 1−pi,t ≥ 1− 1

cn−pi,t. This yields the following
bound on the drift:

E
[
1− 1

cn
− pi,t+1

∣∣∣ pi,t] ≤ (1− 1

cn
− pi,t

)
− ξ · η(1− pi,t)

K(φt + 1/c)

≤
(
1− 1

cn
− pi,t

)
·
(
1− ξη

K(φt + 1/c)

)
.

This case distinction now allows us to write the expression for the total drift.
Let therefore Bt ⊆ {1, 2, . . . , n} be the set of the indices of the bits that are at

7 I.e. the less fit respectively fitter offspring.

24 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

the upper boundary at iteration t. The expected change in potential is:

E
[
φt+1

∣∣∣ φt

]
=
∑
i∈Bt

E
[
1− 1

cn
− pi,t+1

∣∣∣ pi,t]+ ∑
i̸∈Bt

E
[
1− 1

cn
− pi,t+1

∣∣∣ pi,t]

≤
∑
i∈Bt

1

Kcn
+
∑
i̸∈Bt

(
1− 1

cn
− pi,t

)
·
(
1− ξη

K(φt + 1/c)

)

=
|Bt|
Kcn

+

(
1− ξη

K(φt + 1/c)

)
·
∑
i̸∈Bt

(
1− 1

cn
− pi,t

)

≤ 1

Kc
+

(
1− ξη

K(φt + 1/c)

)
·
∑
i̸∈Bt

(
1− 1

cn
− pi,t

)

≤ 1

Kc
+

(
1− ξη

K(φt + 1/c)

)
·

n∑
i=1

(
1− 1

cn
− pi,t

)
=

1

Kc
+

(
1− ξη

K(φt + 1/c)

)
· φt

= φt +
1

K
·
(
1

c
− ξη · φt

φt + 1/c

)
,

(7)
where the second inequality holds because |Bt| ≤ n, and the third one holds
due to the fact that the frequencies are capped at 1 − 1

cn , and, thus, we have
1− 1

cn − pi,t = 0 for i ∈ Bt.
We will now prove that for any given ε > 0, we can fix the constant c > 0 in

such a way that ξηφt

φt+1/c ≥ (1 + ε) · 1
c holds for all large enough φt. Intuitively,

this should hold, because once ε > 0 is fixed, limφt→∞
φt

φt+1/c = 1, both ξ and η

are constants that are already fixed, and then c′ can be adapted appropriately.

In particular, we may choose c = max
{
1, 2(1+ε)

ξη

}
. Then, for all φt ≥ Vt ≥ 1

we obtain

(1 + ε) · 1
c
= min

{
(1 + ε)ξη

2(1 + ε)
, 1 + ε

}
≤ ξη · 1

2

≤ ξη · φt

φt + 1

≤ ξη · φt

φt + 1/c
,

where in the second inequality we used that f(x) = x
x+1 is increasing on [1,∞)

and lower-bounded by f(1) = 1
2 and in the last inequality our choice of c.

Let us now fix an arbitrary ε > 0, and take c = max
{
1, 2(1+ε)

ξη

}
. We know

from our previous derivation that for φt ≥ 1 it holds that ξηφt

φt+1/c ≥ (1 + ε) · 1
c .

Dynamic BinVal with the cGA 25

Thus, we can continue bounding Equation (7) for φt ≥ 1 by:

E[φt+1 | φt] ≤ φt +
1

K
·
(
1

c
− ξη · φt

φt + 1/c

)
≤ φt +

1

K
·
(
1

c
− (1 + ε) · 1

c

)
= φt −

1

K
· ε
c
.

In other words, we have obtained that E[φt − φt+1 | φt] ≥ ε
c ·

1
K , if φt ≥ 1.

Recall that for the previous bounds on the drift we have assumed Vt ≥ 1
(which also implied φt ≥ 1). If, however, we are in the case that Vt < 1, we can
leverage the fact that we are in a series of iterations without failure. In particular,
this means that all the frequencies are at least equal to the constant η, which
also implies that there is a constant upper bound C ≥ 1 on the potential. To see
the latter, recall that Vt =

∑n
j=1 pj,t(1− pj,t). Using pi,t ≥ η and Vt < 1, we get

1 > Vt =

n∑
j=1

pj,t(1− pj,t) ≥
n∑

j=1

η(1− pj,t) = η(φt +
1

c
).

Therefore any constant C > 1
η − 1

c works.
We now apply the variable drift theorem, Theorem 6, to bound the expected

time for the potential φ to decrease from any initial value φ ≤ n to a value
φ ≤ C. For this, we will use the (constant) drift function h(φ) = ε

Kc , since we
have established in the paragraphs above that it represents a lower bound on
the expected change if the potential is at least C ≥ 1.

While the variable drift theorem only considers the hitting time of 0, we
note that it is still acceptable to use this theorem in our case: The process we
consider instead is one where all the states with potential φ ∈ [0, C) are merged
into a single “state 0”. In this modified process, the smallest state larger than
0 is xmin = C. This modification can only increase the drift (all iterations that
previously reduced a potential above C to one below C now reduce the potential
directly to 0 instead), so the drift of this process is still bounded below by h(φ)
for all states with φ ≥ C.

Thus, by the variable drift theorem, the expected time until we hit a state
with potential 0 in our modified process is:

C

h(C)
+

∫ n

C

1

h(x)
dx =

Kc

ε
+

∫ n

C

Kc

ε
dx = O(Kn).

In order to end our proof, consider an iteration where φ ≤ C. Given that
we assumed we are not in a failure scenario, all the marginal frequencies of the
bits attain values that are at least η, (recall that η < 1

2 was a fixed constant).
The probability of sampling a value of 1 on all bits simultaneously in this case is
minimal in the extreme setting where a maximal number of bits have marginal
probabilities equal to η, and all other bits (except at most one) have marginal

26 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

probabilities at their upper boundaries. Then, the probability of sampling the
optimum in one iteration is at least

(
1− 1

cn

)n · η⌈
C

1−η ⌉ = Ω(1). Therefore, in a
successful phase the the optimum is found with at least constant probability. ⊓⊔

6 Upper bound on the runtime for the aggressive regime

In this section, we analyze the cGA when K = Θ(log2 n) and prove Theorem
4. Throughout the whole section we will consider a capping probability of p̄ :=

1
n logc n for some constant c > 0, but our simulations indicate that the result
should also hold for the classical 1

n capping probability. We prove our main
theorem in this regime for c = 7, and the proof would go through for any c ≥ 7.
It would be possible to reduce this constant, but we aimed for simpler proofs
and have not tried to optimize it.

As in the previous section, we assume that K · (12 − 1
n logc n) is an integer, so

that the marginal frequencies are always in the set{
1

n logc n
,

1

n logc n
+

1

K
, . . . ,

1

2
, . . . , 1− 1

n logc n
− 1

K
, 1− 1

n logc n

}
.

The proof of Theorem 4 proceeds in four main steps.
First, we will show that due to the high genetic drift, the frequencies essen-

tially start by executing random walks until they reach one of the boundaries.
As a consequence, the sampling variance Vt drops from Θ(n) to O(log n) during
the first O(polylog(n)) iterations, and then stays below O(log n) for the remain-
der of the optimization time with high probability. We call this initial phase the
burn-in phase.

Then, given this bound on the sampling variance Vt = O(log n), we prove that
it is unlikely to have frequencies at the upper boundary drop below a constant.
This basically ensures that, while frequencies from the lower boundary may reach
the upper boundary, the converse does not happen.

Using standard arguments on random walks and geometric distributions, we
then argue that indeed all the frequencies starting from the lower boundary
after the burn-in phase reach the upper boundary (at least once) within O(n ·
polylog(n)) iterations.

This puts us in a situation where n−O(polylog(n)) frequencies are at the up-
per boundary, and the remaining O(polylog(n)) frequencies are lower bounded by
a constant. We refine the analysis for this situation to show that with high proba-
bility all O(polylog(n)) frequencies reach the upper boundary while no frequency
detaches from the upper boundary, and this process only takes O(polylog(n))
iterations. Hence we finally reach a state where pi,t = 1− 1

n logc n for all positions
i, from which the optimum is then sampled with high probability in a single
iteration, and that terminates the algorithm.

The first proposition covers the initial burn-in phase, and shows that af-
terwards the sampling variance stays low for at least a quadratic number of

Dynamic BinVal with the cGA 27

iterations (which suffices for our purposes since we will prove that whp the al-
gorithm terminates in quasi-linear time). We first require a lemma that bounds
the time until a given frequency reaches one of the boundaries.

Lemma 20 (adapted from Lemma 6 in [23]). Let c > 0 be a constant
and K = ω(1), and consider the frequency pi,t of a bit i of the algorithm
cGA(K, 1

n logc n) on DynBV. Let T denote the first time that pi,t reaches one
of the boundaries. Then for every initial value pi,0 and all r ≥ 8, E[T | pi,0] ≤
4K2 lnK and Pr[T ≥ rK2 lnK | pi,0] ≤ 2−⌊r/8⌋.

Proof. This was proven in [23, Lemma 6]. Note that even though the lemma is
stated for the case of the OneMax function, the proof does not employ any
properties of the function to optimize, but rather gives a general statement for
any random walk that has a certain probability of being stationary in each
state. This result thus also applies to the Dynamic BinVal function, since by
Proposition 11 the first display equation in the proof of Lemma 6 in [23] is
satisfied in our case as well. ⊓⊔

Proposition 21. For K = Θ
(
log2 n

)
consider the algorithm cGA(K, 1

n log7 n
)

on DynBV. After the first O
(
K3 log n

)
iterations, with high probability the sam-

pling variance Vt will stay below O(log n) for at least n2 consecutive iterations.

Proof. Let us divide the optimization time into phases of length κ · K3 log n,
where κ > 0 is a constant that will be fixed later. The idea of the proof is to
show that with high probability, during a single such phase, all the frequencies
that were not at the boundaries at the start of the phase will return to one of
the boundaries, and the number of frequencies that detach from the boundaries
during that same phase is in O(log n). Then, this means that with the exception
of the first phase, all other phases will have at most O(log n) frequencies that are
not at any boundary, which implies that the variance will stay within O(log n) for
the rest of the optimization time. This follows from the fact that the variance
of any frequency at the boundary is 1

n log7 n

(
1− 1

n log7 n

)
< 1

n log7 n
, and the

variance of a frequency not at a boundary is at most 1
2 ·
(
1− 1

2

)
= 1

4 . Thus, an
upper bound on the variance is n · 1

n log7 n
+O(log n) · 1

4 = O(log n).
Consider an arbitrary phase. Our goal is to show that all the bits that are

not at a boundary at the start of the phase will eventually reach one of the
boundaries by the end of the κ ·K3 log n iterations with high probability. Then,
we can conclude the proof by showing that the number of frequencies that detach
from a boundary during this same phase is within C · log n, where C > 0 is a
constant that will be fixed later.

To prove the first part, let us fix an arbitrary i ∈ {1, 2, . . . , n} and assume
that the current phase we are interested in has started at some iteration t > 0.
Then, it follows from Lemma 20 that with probability at least 1

2 , there will be an

iteration t′ ∈ [t, t+8·K3] for which pi,t′ ∈
{

1
n log7 n

, 1− 1
n log7 n

}
. By segmenting

our phase of κ ·K3 log n iterations into intervals of length 8 ·K3, we obtain that

28 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

the probability frequency i never reaching one of the boundaries within the
phase is at most

(
1− 1

2

)⌊κ·K3 logn/(8·K3)⌋
=
(
1
2

)⌊κ logn/8⌋. By choosing κ := 40
this number is at most n−3.4 for sufficiently large n,

and via a union bound over the first n2 phases and n frequencies, with high
probability all bits that start any phase off-boundary will return to one of the
boundaries within κ ·K3 log n iterations .

What is now left to show is that there exists a constant C > 0 such that
at most C · log n frequencies detach from the boundaries during any phase of
κ ·K3 log n iterations with high probability.

Let the random variable N denote the number of bits that detach from
any of the two boundaries during the κK3 log n iterations of the phase. N is
then stochastically dominated by a sum of n · κK3 log n independent Bernoulli-
distributed random variables with parameter 2

n log7 n
. This is because in each of

the iterations, at most n bits can detach, and the probability of detaching from
a boundary is bounded by 2

n log7 n
: A frequency can only detach if the two bits

in the offspring differ, and for a frequency at a boundary, this happens with
probability at most 2 · 1

n log7 n
·
(
1− 1

n log7 n

)
< 2

n log7 n
.

Hence, in expectation at most E[N] ≤ 2 · n·κK3 logn
n log7 n

= 2κ · K3

log6 n
= O(1)

frequencies detach during the phase, where we used K = Θ
(
log2 n

)
. Since N is

stochastically dominated by a binomial distribution Bin
(
n · κK3 log n, 2

n log7 n

)
,

we can employ Chernoff bounds to get Pr[N ≥ C log n] = e−C·Ω(logn). As in the
first part of this proof, we can now choose a suitable C that will allow us to
perform a union bound over all phases. Hence, with high probability, no phase
has more than C · log n = O(log n) bits detaching from any boundary during the
entire optimization time. ⊓⊔

In the next lemma, we show that frequencies that reach the upper boundary
stay above a constant for the following nγ iterations with high probability, where
γ is a constant that we are free to choose (we will later pick γ = 2). The proof is
a fairly straightforward application of the negative drift theorem (Theorem 5).

Lemma 22. Let p̄ ∈ (0, 1
2) be arbitrary and let K ≥ 1, and consider the algo-

rithm cGA(K, p̄) on DynBV. Let p̄ < α < β < 1 − p̄ and γ > 0 be constants.
Assume that Vt = O(log n) holds for the variance all throughout the optimization
time. Then there exists a constant c′ > 0 (possibly depending on α, β, and γ)
such that for a specific bit the following holds: If the bit has marginal probability
at least β and K ≥ c′ · log2 n, then the probability that during the following nγ

iterations the marginal probability decreases below α is at most O(n−γ).

Proof. The proof of this lemma follows very closely that of Proposition 18. The
only difference is in the lower bound on the drift, where we here use our stronger
bound Vt = O(log n), while the proof of Proposition 18 uses the general bound
Vt ≤ n

4 .
We first fix an arbitrary frequency i and look at the scaled stochastic process

Xt := Kpi,t.

Dynamic BinVal with the cGA 29

In order to apply Theorem 5, we choose the interval bounds a := Kα and
b := Kβ, and therefore also get l := b − a = K(β − α). To establish the first
condition of the theorem, we scale the result from Proposition 11 by K and
obtain the following bound on the drift (thus, also fixing ε := ξα(1 − β) in the
meantime):

E[Xt+1 −Xt | Ft ; a < Xt < b] ≥ K · ξ · pi,t(1− pi,t)

K ·max {1, Vt}

≥ ξα(1− β)

C log n
,

where ξ > 0 is the constant from the Θ-notation in Proposition 11, and the last
inequality uses the fact that by assumption Vt ≤ C · log n for some constant
C > 0.

The second condition of the theorem can be trivially fulfilled by choosing
r := 2. We note that for j = 0 the condition obviously holds, and for j ≥ 1 we
have that Pr[|Xt+1 −Xt| ≥ 2j] = 0 ≤ e−j , because |Xt+1−Xt| ≤ 1 in the scaled
process, as the marginal frequencies change by at most 1

K .
We now move on to verifying the last condition of the theorem using the fact

that K ≥ c′ · log2 n:

εl

132 log (r/ε)
=

ξα(1− β)

C log n
·K(β − α) · 1

132 · log ((2C log n)/(ξα(1− β)))

≥ ξα(1− β)(β − α)

132C · log ((2C log n)/(ξα(1− β)))
· c′ · log n.

Note that ξ > 0 can be chosen small enough such that the term above is positive
for any choice of α and β. As all ξ, α, β > 0 are constants, the term above is
greater or equal to 4 = r2 for large enough n, since logn

log logn = ω(1).
Furthermore, note that the constant c′ > 0 in K ≥ c′ · log2 n can further be

adapted to fulfill the following inequality:

εl

132r2
=

ξα(1− β) ·K(β − α)

132 · 4 · C log n

≥ ξα(1− β)(β − α)

528C
· c′ · log n

≥ γ lnn,

because all other quantities which do not depend on n are fixed constants.
Since, by assumption, we started with X0 ≥ b, we can establish via the

negative drift theorem that Pr[T ≤ nγ] = O (n−γ), where T is first time the
fixed marginal frequency goes below α. ⊓⊔

The next proposition bounds the expected time until a given frequency, start-
ing from the lower boundary, reaches the upper boundary.

30 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

Proposition 23. Let c > 0 be a constant and K ≥ 1, and consider the algorithm
cGA(K, 1

n logc n) on DynBV. Let i ∈ {1, . . . , n} be an arbitrary bit at the lower
boundary, and assume that Vt = O(log n) for the rest of the optimization. Then,
the expected number of iterations until the frequency of bit i reaches the upper
boundary is in O(K4n logc n).

Proof. Fix a frequency i and assume that it is at the lower boundary. The proof
proceeds in three steps. In the first step, we lower bound the probability that
frequency i leaves the lower boundary in a given iteration. In the second step,
we couple the random walk pi,t of this frequency to the fair coin gambler ruin’s
random walk with self-loops, which allows us to leverage the classical bounds on
this problem. Finally, we use Lemma 20 to deal with the self-loops and bound the
number of iterations needed for the gambler’s ruin random walk to terminate.

Let Di,t be the event that frequency i detaches from the lower boundary at
iteration t, and Ui,t be the event that, assuming pi,t = 1

K , the next boundary
it reaches (after an arbitrary number of iterations) is the upper boundary. As a
first step of the proof, we will be interested in showing that for any t:

Pr[Di,t ∩ Ui,t+1] = Ω

(
1

Kn logc n

)
.

This can be shown by writing Pr[Di,t ∩ Ui,t+1] = Pr[Di,t] · Pr[Ui,t+1 | Di,t] and
inspecting the two factors separately.

A simple lower bound for Pr[Di,t] can be obtained as follows: Since frequency
i is at a lower boundary, its value can only increase. This happens exactly when
different values for bit i are sampled in the two offspring, and the winning off-
spring is the one that sampled bit i valued at 1. Moreover, the probability that
the winning offspring is the one which has sampled the 1 is at least 1

2 . This yields
the lower bound

Pr[Di,t] ≥ 2 · 1

n logc n

(
1− 1

n logc n

)
· 1
2
= Ω

(
1

n logc n

)
.

For the factor Pr[Ui,t+1 | Di,t] we will inspect the following process that domi-
nates ours stochastically. Let us consider the gambler’s ruin problem, where the
probability of transitioning to the adjacent states is 1

2 each. This is a pessimistic
scenario, as we have already shown in Proposition 11 that there is a (possibly
small) positive drift towards higher values of the marginal frequencies: by that
proposition, Pr[pi,t′+1 = p+ 1/K | pi,t′ = p] ≥ Pr[pi,t′+1 = p− 1/K | pi,t′ = p]
for all p < 1 − 1/(n logc n) and all t′ ≥ t. But in this gambler’s ruin process,
we reach the upper boundary with probability 1

K [1], therefore we can conclude
that Pr[Ui,t+1 | Di,t] = Ω

(
1
K

)
. Note that since we are only interested in the

probability of reaching the upper boundary (and not in the number of iterations
within this happens), ignoring self-loops in our random walk is admissible.

We will now inspect the frequency of bit i, that is at the lower boundary,
and split the iterations until it reaches the upper boundary into phases. A phase
starts at the iteration t′ when pi,t′ is at the lower boundary, and ends at the first

Dynamic BinVal with the cGA 31

iteration t′′ > t′ for which pi,t′′ ∈
{

1
n logc n , 1−

1
n logc n

}
. Thus, a phase contains

all iterations t ∈ (t′, t′′) in which the frequency of bit i is at neither of the two
boundaries. We call a phase successful if at its end the frequency of bit i is at
the upper boundary, otherwise we deem it unsuccessful.

Above, we have shown that the probability of a phase being successful is in
Ω
(

1
Kn logc n

)
. We therefore expect to go through O(Kn logc n) phases until a

success is encountered.
All that is left to show for us to reach our desired conclusion, is that the

expected duration of a phase is O(K3) iterations. But this follows immediately
from Lemma 20, since

4K2 lnK = O(K3).

⊓⊔

We are now ready to prove Theorem 4. The proof first consists of putting
Proposition 21, Lemma 22 and Proposition 23 together, in order to reach a situ-
ation where almost all frequencies are at the upper boundary, and the remaining
frequencies are lower bounded by a constant. From there, we just use a union
bound over a series of high probability events that together imply the termina-
tion of the algorithm within an additional polylog(n) iterations. For convenience,
we restate the main theorem before starting the proof.

Theorem 24. For K = Θ(log2 n) consider the algorithm cGA(K, 1
n log7 n

) on
DynBV. Then there exists a constant c′ such that if K ≥ c′ log2 n, then the
optimum is sampled in O(n · polylog(n)) iterations with high probability.

Proof. From Proposition 21 we know that for this chosen configuration of bound-
aries, with high probability we will have Vt = O(log n) for the next n2 iterations
after a burn-in phase that lasts O(K3 log n) = O(log7 n) iterations.

We want to now show that, eventually, all frequencies will reach the upper
boundary and not drop below a constant. By applying Lemma 22 with γ = 2
and taking a union bound over all n frequencies, we know that by choosing c′

large enough then with high probability no frequency that ever reaches the upper
boundary will drop below α = 3

4 (this value for α is just an arbitrary constant)
during the following n2 iterations.

Now, we can use Markov’s inequality and Proposition 23 to claim that there is
a constant probability for one specific bit i, which started at the lower boundary,
to reach the upper boundary within O(K4n log7 n) iterations (note that the proof
of Proposition 21 implies that every bit will reach either of the boundaries after
the burn-in phase, as all of them start out in the middle). Thus, by using argu-
ments similar to the ones in the proof of Proposition 21, with high probability bit
i will have reached the upper boundary after O(K4n log7 n·log n) = O(n log16 n).
Moreover, the O-notation again allows us to pick suitable constants such that
a union bound over all n frequencies will still yield that all of them will have
reached the upper boundary after O(n log16 n) iterations with high probability.

Once all the frequencies have reached the upper boundary at least at some
point, then the variance bound Vt = O(log n) implies that all but O(log3 n) of

32 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

the frequencies are at the upper boundary. Indeed, any frequency pi,t that is not
at the upper boundary must be in the interval [3/4, 1− 1/K], and in particular
contributes at least pi,t(1 − pi,t) ≥ Ω(1/K) to the variance Vt. Hence, there
can be at most O(K log n) = O(log3 n) such frequencies. Let C ≥ 0 be such
that the number of frequencies that are not at the upper boundary is C log3 n,
and without loss of generality assume that these frequencies are indexed by
i = 1, 2, . . . , C log3 n. Since we are in a situation where none of the frequencies
will drop below 3/4, we know that if the frequencies return to a boundary, they
will return to the upper one.

We claim that from this point on, with high probability the optimum is
sampled during the next log6 n iterations. Consider the following events: for
i ∈

{
1, 2, . . . , C log3 n

}
, let Ri denote the event that frequency i reaches the

upper boundary during this phase of log6 n iterations. Additionally, consider the
event D that no frequency that is currently at the upper boundary or reaches
the upper boundary detaches from it during this phase.

By Lemma 20, we know that Pr[Ri] ≥ 1− 1
n , since log6 n = ω(log n ·K2 lnK)

and hence we can take r20 = A log n for an arbitrarily large constant A. Hence,
by a union bound over the C log3 n bits that are not at the upper boundary, we
have

Pr

C log3 n⋂
i=1

Ri

 ≥ 1−O

(
log3 n

n

)
.

On the other hand, by a union bound over all n frequencies and all log6 n iter-
ations, Pr[D] ≥ 1− n log6 n · O

(
1

n log7 n

)
= 1− O

(
1

logn

)
, since the probability

that one given bit detaches from the upper boundary during one given iterations
is O

(
1

n log7 n

)
.

Hence Pr
[
D ∩

⋂C log3 n
i=1 Ri

]
≥ 1− o(1), and on the event D ∩

⋂C log3 n
i=1 Ri we

have at least one iteration where all the frequencies are at the upper boundary.
When all frequencies are at the upper boundary, then the probability of sampling
the optimum in that iteration is at least (since we are sampling two offspring)

(
1− 1

n log7 n

)n

=

((
1− 1

n log7 n

)−n log7 n
)−1/ log7 n

= 1− o(1).

The RHS tends to 1 as n → ∞, because limn→∞

(
1− 1

n log7 n

)−n log7 n

= e and

limn→∞
1

log7 n
= 0. ⊓⊔

7 Simulations

In this section, we provide simulations that complement our theoretical analy-
sis. All figures depict the optimization of DynBV but for varying hypothetical

Dynamic BinVal with the cGA 33

population size K. 8 The dimension of the search space is always n = 300. The
probabilities pi, i = 1, . . . , n are initialized with 1

2 as in the pseudocode of the
algorithm. The lower and upper boundary are set at 1

n and at 1− 1
n respectively.

The algorithm stops when the optimum has been sampled, or after 200′000 it-
erations if the optimum has not been sampled at that point. The code for the
simulations is provided on request.

Fig. 1: Number of iterations for the optimization of Dynamic BinVal with the
cGA when 6 ≤ K ≤ 10000. The right plot shows the subinterval 18 ≤ K ≤ 90.
The median over 50 runs is plotted.

The regime of small population sizes is shown in the right plot of Figure 1.
Even at a small search space dimension of n = 300, the asymptotic speed-up
of small K is clearly visible. For K = 6, 7, the optimum is not reached before
the number of iterations are capped. This is in line with the observation that
even for OneMax, when K = o(log(n)), the runtime of the cGA becomes
exponential. However, for 10 ≤ K ≤ 20 we observe a phase transition, with the
minimal runtime attained for hypothetical population sizes K around 30. Due
to the small problem dimension, it is difficult to tell if the threshold is located
at K = Θ(log n), at K = Θ(polylog(n)), or even K = Θ(nc) for some small
c < 1. But the data is consistent with the theoretical result that the optimum is
obtained for the sublinear K regime of genetic drift.

For K = Ω(n log n), Theorems 14 and 3 show an asymptotically tight run-
time bound of Θ(Kn). Figure 1 covers a range of K = 6 up to K = 10000,
exceeding the search space dimension of n = 300 by 2-3 orders of magnitude.
We see indeed that the runtime increases proportionally to K, thus confirming
our theoretical findings. In particular we see that, contrary to the optimization
of OneMax, there are no local minima after the transition from the exponen-

8 For 6 ≤ K ≤ 420 all integer values of K are simulated, for 421 ≤ K ≤ 1000 all integer
multiples of 5, for 1001 ≤ K ≤ 6000 integer multiples of 20, for 6001 ≤ K ≤ 10000
integer multiples of 500.

34 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

tial to the polynomial regime. Furthermore, the plot indicates that the runtime
scales linearly with K in practice much earlier than our theoretical bound from
Theorem 3.

Fig. 2: Number of bits that reach the lower boundary 1 − 1
n for the range 5 ≤

K ≤ 800. The median over 20 runs is plotted.

In Figure 2, we see that after an initial exponential decrease, which is similar
to the initial exponential runtime decrease in Figure 1, the number of frequencies
ever reaching the lower boundary tapers off only slowly. In particular, for the
empirically optimal value K ≈ 30 from Figure 1 still many frequencies reach the
lower boundary, confirming that this is in the aggressive regime of strong genetic
drift. Until K = n, there is still a double-digit number of bits which reach the
lower boundary. Only after approximately K = 500 = 5

3n the median drops to
zero.

Acknowledgments. M.K. and U.S. were supported by the Swiss National Science
Foundation [grant number 200021_192079]. The Dagstuhl seminar 22182 “Estimation-
of-Distribution Algorithms: Theory and Applications” gave inspiration for this work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Coolidge, J.L.: The gambler’s ruin. The Annals of Mathematics 10(4), 181–192
(1909)

Dynamic BinVal with the cGA 35

2. Dang, D.C., Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the univariate
marginal distribution algorithm. Algorithmica 81 (02 2019)

3. De Bonet, J., Isbell, C., Viola, P.: Mimic: Finding optima by estimating probability
densities. Advances in neural information processing systems 9 (1996)

4. Doerr, B.: Analyzing randomized search heuristics: Tools from probability theory.
In: Theory of Randomized Search Heuristics: Foundations and Recent Develop-
ments, pp. 1–20. World Scientific (2011)

5. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Theory of evolutionary computation, pp. 1–87. Springer (2020)

6. Doerr, B.: The runtime of the compact genetic algorithm on jump functions. Al-
gorithmica 83, 3059–3107 (2021)

7. Doerr, B., Krejca, M., Lehre, P.K.: Estimation-of-distribution algorithms: Theory
and applications. Penal discussion (2022). https://doi.org/10.4230/DagRep.12.
5.17

8. Doerr, B., Krejca, M.S.: Significance-based estimation-of-distribution algorithms.
In: Proceedings of the Genetic and Evolutionary Computation Conference. pp.
1483–1490 (2018)

9. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well
with deception and epistasis. Evolutionary Computation 29(4), 543–563 (2021)

10. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation of distribution
algorithms. IEEE Transactions on Evolutionary Computation 24(6), 1140–1149
(2020)

11. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme gaussian noise. IEEE Transactions on Evolutionary
Computation 21(3), 477–490 (2016)

12. Friedrich, T., Kötzing, T., Neumann, F., Radhakrishnan, A.: Theoretical study of
optimizing rugged landscapes with the cga. In: International Conference on Parallel
Problem Solving from Nature. pp. 586–599. Springer (2022)

13. Kaufmann, M., Larcher, M., Lengler, J., Sieberling, O.: Hardest monotone func-
tions for evolutionary algorithms (2023)

14. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Onemax is not the easiest func-
tion for fitness improvements. In: Evolutionary Computation in Combinatorial Op-
timization: 23rd European Conference, EvoCOP 2023, Held as Part of EvoStar
2023, Brno, Czech Republic, April 12–14, 2023, Proceedings. p. 162–178. Springer-
Verlag, Berlin, Heidelberg (2023)

15. Krejca, M., Witt, C.: Theory of Estimation-of-Distribution Algorithms, pp. 405–
442 (01 2020). https://doi.org/10.1007/978-3-030-29414-4_9

16. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distri-
bution algorithm to deception and where bivariate edas might help. In: Proceedings
of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. pp.
154–168 (2019)

17. Lehre, P.K., Nguyen, P.T.H.: Runtime analysis of the univariate marginal distri-
bution algorithm under low selective pressure and prior noise. In: Proceedings of
the genetic and evolutionary computation conference. pp. 1497–1505 (2019)

18. Lehre, P.K., Witt, C.: General drift analysis with tail bounds. arXiv preprint
arXiv:1307.2559 (2013)

19. Lengler, J.: Drift analysis. Theory of evolutionary computation: Recent develop-
ments in discrete optimization pp. 89–131 (2020)

20. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. Natural Computing pp. 1–15 (2022)

https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.1007/978-3-030-29414-4_9
https://doi.org/10.1007/978-3-030-29414-4_9

36 C. Florescu, M. Kaufmann, J. Lengler, and U. Schaller

21. Lengler, J., Riedi, S.: Runtime analysis of the (µ+ 1)-ea on the dynamic binval
function. Evolutionary Computation in Combinatorial Optimization 12692, 84–99
(2021)

22. Lengler, J., Schaller, U.: The (1+ 1)-ea on noisy linear functions with random
positive weights. In: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI). pp. 712–719. IEEE (2018)

23. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83, 1096–1137 (2021)

24. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: Aco with iteration-best
update. In: Proceedings of the 12th annual conference on Genetic and evolutionary
computation. pp. 63–70 (2010)

25. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoretical Computer Science 605, 21–41 (2015)

26. Pelikan, M., Lin, T.K.: Parameter-less hierarchical boa. In: Genetic and Evolution-
ary Computation Conference. pp. 24–35. Springer (2004)

27. Skala, M.: Hypergeometric tail inequalities: ending the insanity. arXiv preprint
arXiv:1311.5939 (2013)

28. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81, 1450–1489
(2019)

29. Witt, C.: Upper bounds on the running time of the univariate marginal distribution
algorithm on onemax. Algorithmica 81, 632–667 (2019)

30. Witt, C.: How majority-vote crossover and estimation-of-distribution algorithms
cope with fitness valleys. Theoretical Computer Science 940, 18–42 (2023)

	Faster Optimization Through Genetic Drift

