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Abstract Several systems may display an equilibrium condensation transi-
tion, where a finite fraction of a conserved quantity is spatially localized. The
presence of two conservation laws may induce the emergence of such transition
in an out-of-equilibrium setup, where boundaries are attached to two different
and subcritical heat baths. We study this phenomenon in a class of stochastic
lattice models, where the local energy is a general convex function of the local
mass, mass and energy being both globally conserved in the isolated system.
We obtain exact results for the nonequilibrium steady state (spatial profiles,
mass and energy currents, Onsager coefficients) and we highlight important
differences between equilibrium and out-of-equilibrium condensation.

1 Introduction

Condensation transitions have been extensively studied in the last decades and
they can correspond to rather different processes: they can be understood as
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localization processes where a macroscopic fraction of a conserved quantity is
concentrated in a finite region of space, but they might also indicate a large
deviation phenomenon where a single random variable gives a finite contribu-
tion to the sum of many variables. From a physical point of view, they can be
related to phenomena ranging from aggregation/fragmentation processes [1,2]
to localized modes in propagating light [3, 4], from discrete solitons in Bose-
Einstein condensate [5] to the formation of jamming in driven flows [6, 7],
from wealth condensation in social economy [8] to localization phenomena in
networks [9, 10].

The existence of equilibrium condensation transitions in one dimensional
systems is not in contradiction with the Landau-Peierls argument [11] or with
the Perron-Frobenius theorem [12]: in fact, it turns out that lattice models
displaying condensation require the use of a transfer matrix of divergent size,
which may reveal the existence of effective long-range interactions; a feature,
this, which is well known to allow for one-dimensional phase transitions and
also to be at the origin of inequivalence between statistical ensembles [13].

Conservation laws are known to play a crucial role for equilibrium conden-
sation transitions. As an example, a class of condensation models which has
played a relevant role in the advancement of this field is that of mass-transfer
models with a factorized steady state.1 Let us suppose that a conserved quan-
tity X =

∑N
i=1 xi is shared among N sites i, each xi being distributed ac-

cording to some function f(x). If f(x) decays slower than exponentially, a
condensation process occurs as a cooperative effect above a certain critical
value X/N > xc. In [14] it was shown that the presence of additional con-
servation laws can enforce condensation even with light-tailed distributions,
exhibiting exponentially or faster decays. The opposite outcome can occur
with fat-tailed distributions, i.e. the suppression of a condensed phase that
was originally present with a smaller number of conservation laws.

A much less explored field concerns the study of the interplay between
conservation laws and condensation phenomena in steady out-of-equilibrium
conditions. Specifically, we refer to the typical transport setup in which two
external reservoirs with thermodynamic parameters RL and RR are in con-
tact at the left and right boundaries of the system, respectively (see Fig. 1).
The bulk dynamics is assumed to be reversible and constrained by a certain
number ν ≥ 1 of independent conservation laws, while irreversibility is in-
duced solely by boundary forces when RL ̸= RR. In this case, the resulting
nonequilibrium stationary state (NESS) breaks time reversal and ν stationary
conserved currents flow through the system. The occurrence of condensation
in these conditions displays interesting features that crucially depend on the
number of conservation laws. In systems with ν = 1, condensation appears
only if a boundary reservoir imposes overcritical conditions [15]. Conversely,
for ν = 2 recent studies [16, 17] showed that a condensed state may arise in
the bulk of the system even in the presence of subcritical boundary conditions,

1 In many cases the system is at/out-of equilibrium according to the symme-
try/asymmetry of the transfer process, but the factorized state, therefore the nature of
the phase transition, does not change.
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Fig. 1 The non equilibrium setup: a chain of N sites attached at its ends with two external
reservoirs with thermodynamic parameters RL and RR. Each reservoir exchanges mass (a)

and energy (h) with the chain, whose corresponding fluxes are denoted by j
(L,R)
a,h , see Sec.

3.

provided that RL ̸= RR. Previously, this possibility had appeared in a differ-
ent out-of-equilibrium setup, where one of the two subcritical reservoirs was
replaced by a dissipator [18].

The origin of this peculiar behavior is a phenomenon of coupled transport,
i.e. the coupling between two or more stationary currents for ν ≥ 2. For
example, the local production of heat from the flowing of an electric or particle
current (Joule heating), can impose local overcritical conditions in the bulk
while the boundaries are maintained below the condensation threshold. The
nature of the resulting nonequilibrium state was also found to depend on the
mobility of the condensate [16]. Specifically, a steady state was attained if
condensation peaks are allowed to diffuse in space until they are absorbed at
the subcritical boundaries. On the other hand, pinned condensates do not stop
growing and forbid the realization of a genuine stationary state.

In Ref. [16] the occurrence of nonequilibrium steady states (NESS) with
some degree of localization was investigated only numerically and for a specific
model. In this paper we make notable progresses for a broad class of conden-
sation models with ν = 2, providing an analytical solution for the spatially
dependent steady state. Specifically, we will consider one-dimensional lattices
with positive-definite continuous variables ci and a stochastic local dynamics
preserving the total mass A =

∑
i ci, and the total energy H =

∑
i ϵi, where

ϵi = F (ci). Our results are applicable or can easily be extended to any convex
function F (c); analytic calculations requiring F (c) to be made explicit will be
performed for the class of power-law energy functions F (c) = cα, with α > 1;
numerics will be limited to the case F (c) = c2, because it is the only easily
treatable case (and one of the most interesting, see below).

It is worth noting that our class of models is of interest both in itself and as
a limit of more complicated models. In fact, the Discrete Nonlinear Schrödinger
(DNLS) equation [19] (a Hamiltonian model ubiquitous in physics) displays
a non-Gibbsian phase where there is the spontaneous formation of localized
excitations. This model has two conserved quantities, the total energy H and
the total mass A =

∑
i ci (also called norm in such a context), where ci is the

square modulus of a complex wave amplitude. In proximity of the transition
line between the homogeneous and the localized phase, local energies are well
approximated by a function of local masses, thereby H =

∑
i F (ci) [20]. In

particular, the most studied model, the cubic DNLS equation [18,20–24], cor-
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responds to F (c) = c2 and it is of interest for different domains, ranging from
optics to cold atoms [19]. However, also the DNLS equations corresponding
to F (c) = cα (nonlinearity of arbitrary order [25]) and to F (c) = − ln(1 + c)
(saturable nonlinearity [26]) have been studied. The models F (c) = cα have
been studied in [14] and they are also related to the dynamics of polydisperse
hard spheres [27] and to the distribution of entanglement entropy in a random
pure state [28]. Finally, these models (at equilibrium) are also related to the
wide class of the Zero Range Processes [29], where a single conservation law
is present, but a fraction of the mass ci is transferred from a site i to another
site j with a rate depending on ci.

As discussed with greater detail in the next Section, defining the mass and
energy densities, a = A/N and h = H/N , the microcanonical (equilibrium)
phase diagram (a, h) is characterized by three curves: i) hGS(a) corresponds
to a perfectly homogeneous state, ci = a ∀i; ii) hC(a) corresponds to a state
where mass is exponentially distributed; iii) hM(a) corresponds to a state where
mass is concentrated in a single site k, ci = Aδik. These curves divide the
phase diagram in four regions, see Fig. 2: two forbidden regions, h < hGS(a)
and h > hM(a); a homogeneous phase, hGS(a) ≤ h ≤ hC(a); and a condensed
phase, hC(a) < h ≤ hM(a).

Our approach allows us to derive the general expressions for the nonequi-
librium stationary profiles of mass, ai ≡ ⟨ci⟩, and energy, hi ≡ ⟨ϵi⟩, where the
symbol ⟨·⟩ is an average over the nonequilibrium measure determined by the
boundary conditions RL ̸= RR. It is remarkable that ai and hi are indepen-
dent of F (c). Moreover, we show that the parametric profile hi(ai), a useful
and direct way to represent the NESS in the equilibrium phase diagram, is ex-
actly linear. This result provides a straightforward criterion for the observation
of nonequilibrium condensation: in fact, given that the critical curve hC(a) is
convex (see Sec. 2), one can find generic conditions for locally overpassing the
critical energy, hi(ai) > hC(ai), and entering the condensed phase.

To study in detail the dynamics and the steady state properties of the
nonequilibrium setup, we will use critical heat baths, i.e. reservoirs imposing
critical conditions at the chain ends, hC(aL) and hC(aR), with aL ̸= aR. This
setup allows to obtain a NESS which is entirely contained in the condensed
phase. We will argue that a decomposition in terms of localized diffusing peaks
superposed to an inhomogeneous critical background provides a useful repre-
sentation of the stationary state. In practice, localized states arise because
the critical background cannot steadily fulfill the local conservation of energy
and mass. Peaks diffuse while their energy increases in time until they attain
a chain boundary, where they are absorbed by the reservoirs. The NESS is
therefore the outcome of a process where peaks are continuously created and
destroyed. Moreover, we show that a non-homogeneous diffusion equation for
the extra energy carried by localized states is in quantitative agreement with
analytical and numerical results.

We also determine the mass and energy currents in the steady state and
their dependence on the thermodynamic forces, therefore allowing to find an-
alytically the Onsager coefficients Lij of the models. It is worth stressing that
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the local currents will be seen to have a “universal” dependence on the mass
and energy gradients, but the Onsager coefficients are related to the gradi-
ents of the grandcanonical parameters, temperature and chemical potential,
and this makes Lij dependent on the specific model. We also find an explicit
expression for the Seebeck coefficient S close to the critical line and we show
that S ≠ 0, thereby indicating the presence of thermodiffusive coupling in the
sense of linear irreversible thermodynamics [30].

The overall picture makes out-of-equilibrium condensation qualitatively
different from the equilibrium one. The latter requires to be in the micro-
canonical ensemble, i.e. to have a perfect conservation of mass and energy. For
h > hC(a) and large N , the system can be depicted as a background at critical
energy density with the addition of one or more peaks collecting a constant
extra-energy, equal to (h− hC(a))N . This feature is reflected in the marginal
energy distribution p(ϵ) on a single site, which displays a high-energy bump
as a characteristic signature of the condensed state. In the out-of-equilibrium
condensation, the energy of peaks increases in time (because energy is pumped
in the system) until peaks disappear at the system’s boundaries. Therefore a
lattice site i experiences peaks of all energies, so that there is no bump in p(ϵ),
as clearly attested by its numerical determination.

The paper is organized as follows. In Sec. 2 we present a summary of the
main equilibrium properties of the class of models studied in this paper, with
particular attention to the phase diagrams. In Sec. 3 we discuss the out-of-
equilibrium setup and the different types of reservoirs that can be employed.
In Sec. 4 we present our new results and in Sec. 5 we discuss the differences
with the equilibrium condensation. In Sec. 6 we present a final discussion about
nonequilibrium condensation and the role of a possible pinning of energy peaks.

2 Equilibrium properties

The class of lattice models we are going to study is defined on a one-dimensional
lattice of sites labeled by i = 1, · · · , N , where N is the system size. On each
site it is defined a non-negative real variable ci ≥ 0, here called “local mass”
and subject to a stochastic evolution. Another observable called “local energy”
is defined through the relation ϵi = F (ci), where F (c) is a convex function.
The total mass A =

∑
i ci ≡ Na and the total energy H =

∑
i ϵi ≡ Nh are

exactly conserved. We can assume without loss of generality that F (0) = 0.

The equilibrium properties arising from the above constraints are rather
rich and they motivated a series of studies employing both analytical and nu-
merical approaches [14,28]. Because of the convexity of F (c), if yi are positive
quantities such that

∑
i yi = 1, it must be

F

(∑
i

yici

)
≤
∑
i

yiF (ci). (1)



6 M. Giusfredi, S. Iubini, P. Politi

0

50

100

h

0 1 2 3 4 5 6

a

-2

-1

0

h

CONDENSED

HOMOGENEOUS

CONDENSED

HOMOGENEOUS

Fig. 2 Equilibrium phase diagrams for F (c) = c2 (top panel) and for F (c) = − ln(1 + c)
(bottom panel). The grey regions are forbidden: h < hGS(a) = F (a) and h > hM(a) =
N−1F (Na) (for N = 81). The dashed lines, hC(a) =

∫∞
0 dxF (ax)e−x (see the main text),

separate the homogeneous (white) phase from the condensed (dotted) phase. The latter
cannot be described in the grandcanonical ensemble.

Choosing yi = 1/N , we obtain F (a) ≤ h. Therefore, the region below hGS(a) =
F (a) is forbidden. The curve h = F (a) corresponds to masses ci that are all
the same and it is the ground state (zero-temperature) curve.

Similarly, using the superadditivity property of a convex function vanishing
at the origin, ∑

i

F (ci) ≤ F

(∑
i

ci

)
, (2)

we find that H ≤ F (A), i.e., h ≤ hM(a) ≡ 1
N F (Na). For F (c) = cα, this means

hM(a) = Nα−1hGS(a), a curve which flattens to the vertical axis in the limit
N → ∞. For F (c) = − ln(1 + c), hM(a) = −N−1 ln(1 + Na), which flattens
to the horizontal axis. The curve hM(a) corresponds to all mass localized in a
single site k, ci = Aδi,k.

In the region between the curves hGS(a) and hM(a) there exists a third
curve hC(a) separating the homogeneous from the condensed phase and cor-
responding to an infinite, positive temperature. Here we limit to derive it in



Localization in boundary-driven lattice models 7

a simple and non-formal way, putting the details of the calculations in Ap-
pendix A. In the grandcanonical ensemble the weight of the configuration
{ci} is proportional to e−β[H(ci)−µA(ci)], where β is the inverse temperature
and µ the chemical potential. Moreover, the equilibrium measure factorizes
in the product of single-particle distributions ρ(c) = z(µ, β)−1e−β[F (c)−µc],
where z(µ, β) =

∫∞
0

dc e−β[F (c)−µc] is the (single particle) partition function.
The infinite-temperature limit is consistently obtained letting β → 0+ with
βµ finite in order to enforce finite mass densities [21]. In this limit, impos-
ing ⟨c⟩ρ = a, where ⟨·⟩ρ is the average over the distribution ρ, implies that
the equilibrium distribution decays exponentially, ρ(c) = (1/a)e−c/a and that
βµ = −1/a. The corresponding average value of the energy is

hC(a) = ⟨F (c)⟩ =
∫ ∞

0

dcF (c)ρ(c) =

∫ ∞

0

dxF (ax)e−x. (3)

It is straightforward to prove that

hC

(
ya1 + (1− y)a2

)
≤ yhC(a1) + (1− y)hc(a2), (4)

therefore proving that hC(a) is convex as well. For F (c) = cα, we obtain
hC(a) = Γ (α+1)aα; for F (c) = − ln(1+ c), we obtain hC(a) = −e1/aE1(1/a),
where E1(x) =

∫∞
x

du e−u/u is the exponential integral function. In Fig. 2 we
plot the phase diagrams: in the top panel that for F (c) = c2, the model used
for simulations presented in this paper; in the lower panel that for F (c) =
− ln(1+ c). The critical curves hC(a) are plotted as dashed lines. In the rest of
the article we will focus on a positive F (c), with special emphasis on F (c) = cα.

A rigorous treatment of the grandcanonical ensemble, via Laplace trans-
form and saddle point method, see Appendix A, shows that a solution for
equations (44) exists only for real positive β values, i.e. for energy densities
below the critical line hC(a). For h > hC the saddle-point solution breaks down,
implying that the grand-canonical ensemble is not defined in this region. The
microcanonical partition function Ω(a, h) can instead be estimated by means
of large-deviations techniques [31–33], which account for the fact that typical
configurations are here characterized by a macroscopic fraction of the total en-
ergy h concentrated on a single lattice site. In fact, the value h = hC identifies
a phase transition from a homogeneous to a localized phase. More precisely, for
h > hC a localized phase is developed, with a macroscopic amount of energy
(h− hC)N condensed on few (eventually one) lattice sites. A perfect localiza-
tion is attained only in the thermodynamic limit, where the equilibrium state
consists of a single peak superposed to an extensive background lying on the
critical line h = hC and whose mass is distributed exponentially.

Estimates of the microcanonical entropy S(a, h) = ln[Ω(a, h)] in the con-
densed region [23] (from now on we limit to F (c) = cα, see Eq. 40) show that
for finite excess energies h− hC,

S(a, h) ≃ S0(a)− [(h− hC)N ]1/α . (5)
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Here S0(a) is the contribution of the critical background, while the second
term is the effect of the condensate. Thermodynamically, the condensed phase
is therefore characterized by a negative microcanonical inverse temperature

βm =
∂S(a, h)

∂(Nh)
≃ − 1

α
[(h− hC)N ]

1
α−1 , (6)

which vanishes in the thermodynamic limit (let us remind that α > 1). For
α = 2, the most studied case, the fact that for finite N , above hC the entropy
decreases with increasing the energy can be understood in terms of the ef-
fective number K(h,N) of sites hosting the condensate [34]. Upon increasing
h, the extra energy is more and more localized, K(h,N) decreases and the
entropy decreases as well, leading to a negative derivative ∂S/∂h. In the ther-
modynamic limit, however, K(h,N) = 1 as soon as h > hC and adding energy
simply adds energy to the single peak, keeping unchanged the entropy. This
heuristically justifies the result that βm = 0 in the whole condensed phase for
N → ∞.

A finite N also affects the condensation scenario, as the “true” localization
transition is shifted above the critical line by an amount δN ∼ N (1−α)/(2α−1)

for large N .2 In the corresponding intermediate range of energies, hC < h <
hC+δN , usually referred to as “pseudo-condensate” region, spatial localization
is practically suppressed by finite-size fluctuations and the resulting density
profiles are effectively delocalized.

This scenario is also visible through the proper order parameter of the
transition, the so called energy participation ratio,

Y2(N) =

〈∑
i ϵ

2
i

〉
(hN)2

, (7)

where ⟨·⟩ represents an ensemble average. For homogeneous states (h < hC),
all sites carry an energy contribution ϵi ∼ h, therefore Y2 vanishes in the
thermodynamic limit asN−1. In the fully localized region, the numerator in (7)
is dominated by the site k hosting the whole extra energy, ϵk = (h − hC)N .
As a result, in the thermodynamic limit Y2 converges to a constant: Y2 =
(h−hC)

2/h2. Finally, in the pseudo-condensate region, the participation ratio
is expected to vanish again as 1/N due to the delocalized nature of this region.
We will come back to this when discussing the nonequilibrium localization.

3 Microscopic dynamics, nonequilibrium setup, heat baths

Studying dynamics, either at global equilibrium or in an out-of-equilibrium
setup, requires to define some kinetic conservative rules which satisfy detailed
balance in the bulk and which are properly modified at boundaries to take
into account the possible coupling with heat baths.

2 This result originates from a matching condition between the usual Gaussian scaling of
the microcanonical entropy at the critical point hC, S(a, h) ∼ (h − hC)2N and the large-
deviation scaling of S(a, h) in Eq. (5), see [23].
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The simplest way to satisfy the two conservation rules and the detailed
balance condition is to consider a local, stochastic update algorithm: we choose
randomly a triplet of consecutive sites (i− 1, i, i+ 1) with local masses (ci−1,
ci, ci+1), and we update it to a new triplet (c′i−1, c

′
i, c

′
i+1) such that (i) the

sum of the three masses and the sum of the local energies are conserved;
(ii) the probability of the transition {c} → {c′} is the same of the inverse
transition {c′} → {c}. The case where the local energy is the square of the
local mass, F (c) = c2, is particularly simple to simulate because the two
constraints ci−1 + ci + ci+1 = M = c′i−1 + c′i + c′i+1 and c2i−1 + c2i + c2i+1 =
E = (c′i−1)

2 + (c′i)
2 + (c′i+1)

2 define respectively a plane and a sphere in a
three-dimensional space, whose intersection lies on a circle [22,28,35,36]. The
accessible mass triplet (c′i−1, c

′
i, c

′
i+1) is therefore parameterized by an angle,

and the detailed balance condition is easily ensured by picking a random angle
extracted from a uniform probability distribution.

Depending on the initial masses of the triplet, since ci ≥ 0, the physically
accessible states can form either a full circle or the union of three disjoint
arcs [35]. In the latter case, occurring when the mass of a site in the chosen
triplet is significantly larger than the other ones, the final state is chosen in
any of the three available arcs. This update allows peaks to freely diffuse in
the lattice [16]. For F (c) ̸= c2 the solution of the two constraints equations no
longer lies on a circle and a uniform sampling of the microcanonical manifold
would require the explicit parametrization of the intersection curve. In this
manuscript we limit numerical simulations to the case F (c) = c2.

Let us now discuss how to couple the system to two heat baths imposing
thermodynamic parameters RL = (βL, µL) and RR = (βR, µR) at the left
and right chain ends, respectively. If RL = RR, the system attains an equi-
librium state, while for RL ̸= RR, the system eventually relaxes to an out-of-
equilibrium steady state, whose main features will be found analytically in the
next Section. We will employ models of reservoirs allowing to thermalize the
system in any point (a, h) of the homogeneous phase, hGS(a) ≤ h ≤ hC(a).

3

Evolution proceeds as follows. We choose at random a site j = 1, . . . , N .
If an inner site is chosen, j = 2, . . . , N − 1, then the triplet centered in j,
(cj−1, cj , cj+1) is updated with the dynamic rule defined above. Conversely,
if an outer site j = 1, N is chosen, then we only update the local mass
cj of that site to a new one c′j dependent on the thermodynamic parame-
ters chosen as boundary conditions. Boundary updates can be implemented
according to a Metropolis grand-canonical rule applied to random pertur-
bations of the initial state cj [16]. In this paper we consider a more effec-
tive strategy that consists in directly imposing the equilibrium mass dis-
tribution at the chain ends. In the following we will make explicit refer-
ence to the left end, where the imposed distribution on the lattice site c1 is
ρL(c1) = z(µL, βL)

−1 exp [−βL(F (c1)− µLc1)]. Analogous procedure and def-
initions hold for the site j = N and are readily obtained by replacing c1 → cN

3 This corresponds to βL, βR ≥ 0 and ensures that the chain edges are always in the
homogeneous region. Accordingly, localized states can emerge only in the bulk as a genuine
nonequilibrium effect [16].
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and L → R. This method allows for efficient numerical simulations and it is
also useful for the analytical treatment of the nonequilibrium state.

We remark that, for each boundary site, reservoir updates occur on average
once everyN random updates of the whole lattice, which implies that the reser-
voir efficiency is finite. As a result, usual boundary discontinuities (Kapitza
resistance) [37] manifest themselves at the chain ends in steady nonequilib-
rium conditions. In practice, the actual distributions of c1 and cN are found
to be slightly different from ρL(c1) and ρR(cN ), respectively. We have veri-
fied that this effect has negligible impact on the macroscopic steady state and
that it vanishes in the thermodynamic limit. Boundary discontinuities can be
eliminated by adding the constraint that every time c1, cN change with the
triplet update they are immediately replaced by new values extracted from
the bath distributions. We will refer to this boundary rule as heat baths with
“infinite efficiency”, since the ends of the chain are immediately thermalized
every time they are moved away from the equilibrium distribution. Finally,
as usual for Monte Carlo simulations, time is measured in Monte Carlo units,
that corresponds to N evolutionary elementary steps.

We can quantify the rate of exchange of mass and energy from the reservoirs
to the chain with the appropriate definitions of mass and energy fluxes. For
the left boundary, we define4

j(L)
a =

1

τ

∑
tk≤τ

δc1(tk)

j
(L)
h =

1

τ

∑
tk≤τ

δϵ1(tk),

(8)

where δc1(tk) and δϵ1(tk) = δF (c1(tk)) represent respectively the variations
of the mass and energy on the first site produced by a reservoir update occur-
ring at time tk. Analogous definitions hold for the right boundary and steady

transport conditions are attained when j
(L)
a = −j

(R)
a and j

(L)
h = −j

(R)
h .

The time τ appearing in Eqs. (8) must formally diverge to obtain steady
state currents and the formalism of next Section explains how time averages
can be replaced by ensemble averages. If we are interested to the relaxation
process towards the steady state, the currents are determined numerically
using a large but finite τ .

4 The Nonequilibrium Steady State: exact spatial profiles and
currents

In this Section we derive analytical results for some relevant observables char-
acterizing the NESS, namely average spatial profiles of mass and energies (ai
and hi) and their corresponding parametric profiles (hi(ai)), mass and energy
currents (ja and jh), and Onsager coefficients.

4 The quantities appearing in the summations are evaluated every time that site i = 1 is
chosen. On average, this happens every Monte Carlo step.
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Let us consider the evolution of the triplet of neighbouring sites centered
in i, Ti = (i − 1, i, i + 1), with local masses (ci−1, ci, ci+1). The mass triplet
after the update, T ′

i = (c′i−1, c
′
i, c

′
i+1), is chosen with the constraint that

c′i−1 + c′i + c′i+1 = M = ci−1 + ci + ci+1 (9a)

ϵ′i−1 + ϵ′i + ϵ′i+1 = E = ϵi−1 + ϵi + ϵi+1, (9b)

where ϵi = F (ci). Solutions of Eqs. (9) are a one-parameter family of states
T ′
i (θ) = G(Ti, θ), where G(·, θ) is a suitable one-to-one transformation mapping

Ti to T ′
i and θ is a real parameter. For F (c) = c2, θ is an angle [35].

Total variations of mass and energy of site i, δci = (c′i − ci) and δϵi =
(ϵ′i − ϵi), involve the dynamics of three different triplets, namely Ti and Ti±1.
In addition, two different kinds of averages must be taken into account: first
the average over θ for a fixed Ti, indicated with the symbol (· · · ), and second
the average over the distribution of initial ci, indicated with ⟨(· · · )⟩.

Since Eqs. (9) are invariant under any permutation of the final masses or
energies of the triplet, the average over θ is the same for the three sites:

c′i = c′i−1 = c′i+1 =
M

3
, (10a)

ϵ′i = ϵ′i−1 = ϵ′i+1 =
E

3
, (10b)

therefore giving, for local masses in triplet Ti(
δci
)
Ti

= 1
3 (ci−1 + ci + ci+1)− ci =

1
3 (ci−1 − 2ci + ci+1). (11)

If the system is in a steady state, the average over the initial distribution
implies that average masses ⟨ci⟩ appearing in the right-hand side of Eq. (11)
can be replaced by their stationary values ai. Finally, summing over all triplets
involving site i, we obtain

⟨δci⟩tot =
1

3
(ai−2 + 2ai−1 − 6ai + 2ai+1 + ai+2) (3 ≤ i ≤ N − 2). (12)

For sites i = 2 and i = N − 1, each of which contained in only two triplets,
the total average mass variation is instead given by

⟨δc2⟩tot =
1

3
(a1 − 4a2 + 2a3 + a4)

⟨δcN−1⟩tot =
1

3
(aN − 4aN−1 + 2aN−2 + aN−3).

(13)

Clearly, Eqs. (12) and (13) are also valid for the energy profiles, provided that
ci is replaced by ϵi and ai by hi.

The hypothesis of stationarity implies that total average variations of mass
and energy vanish, ⟨δci⟩tot = ⟨δϵi⟩tot = 0, therefore from Eqs. (12) and (13) we
obtain a system of N − 2 linear coupled equations for the spatial mass profile,

a1 − 4a2 + 2a3 + a4 = 0

ai−2 + 2ai−1 − 6ai + 2ai+1 + ai+2 = 0 (3 ≤ i ≤ N − 2)

aN − 4aN−1 + 2aN−2 + aN−3 = 0. (14)
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An identical (and independent) system of equations is valid for the energies
hi.

The missing two equations depend on the coupling with heat baths, see
Sec. 3. If they have “infinite efficiency” (IE), mass boundary conditions are

a1 = aL, aN = aR (IE baths) , (15)

where the mass parameters aL and aR are completely defined through equi-
librium grand-canonical relations respectively by (µL, βL) and (µR, βR), see
Eq. (44) in Appendix A. In the presence of heat baths with “finite efficiency”
(FE), additional equations obtained from the average mass variation on sites
i = 1, N must be considered, explicitly ⟨δc1,N ⟩tot = ⟨δc1,N ⟩T2,N−1

+ (aL,R −
a1,N ) = 0, from which we get

3aL − 5a1 + a2 + a3 = 0

3aR − 5aN + aN−1 + aN−2 = 0
(FE baths). (16)

Again, analogous equations for the energy hold replacing aL,R by hL,R and ai
by hi.

Once the boundary conditions have been chosen, average spatial profiles of
mass ai and energy hi of the stationary state can be obtained by solving the
two systems of equations, whose solutions can be expressed in the following
form

ai = aL +Ai(aR − aL) (17a)

hi = hL +Ai(hR − hL). (17b)

The real coefficients Ai, which take values between 0 and 1, are the same
for mass and energy because aL,R and hL,R do not explicitly appear in the
equations: coefficients Ai depend only on the position i and the size N of the
system. Furthermore, since the systems of equations are invariant under the
exchange L → R and i → N + 1− i, we have that Ai = 1−AN+1−i. Explicit
expressions for Ai are derived in Appendix B.

A first implication of Eqs. (17) is that parametric profiles are perfectly
linear independently on the boundary parameters and on the system size. In
fact, we obtain that points (ai, hi) are arranged along the straight line

h(a) = hL +
hR − hL

aR − aL
(a− aL), (18)

as shown in Fig. 3, where we plot the parametric curves for three different
nonequilibrium setups. We remark that the spatial and parametric profiles
do not depend on the choice of F (c), but only on the location of the baths
parameters in the (a, h) plane, on the finite/infinite efficiency of the baths
themselves, and on the size N .

While parametric profiles are linear for any N , spatial profiles are affected
by boundary resistance effects, so that ai and hi are linear only for large N .
However, as shown in Fig. 4 it is apparent that even for a value of N as small
as 16, heat baths modify very weakly the linear profile.
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sizes Ni, see the legend. The dotted line and the dashed red line are, respectively, the ground
state line and the critical line, for F (c) = c2. The first setup (i = 1) corresponds to IE baths,
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baths, both located on the ground-state curve. Data have been obtained numerically and
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Let us now determine the mass and energy currents in the NESS. Using
Eqs. (8), (17), and (49), currents for FE baths read

j(L)
a = ⟨δc1⟩ = aL − a1 = −A1(aR − aL) (19)

j
(L)
h = ⟨δϵ1⟩ = hL − h1 = −A1(hR − hL) (20)

j(R)
a = ⟨δcN ⟩ = aR − aN = A1(aR − aL) = −j(L)

a (21)

j
(R)
h = ⟨δϵN ⟩ = hR − hN = A1(hR − hL) = −j

(L)
h . (22)

Similar calculations for IE reservoirs give

j(L)
a = −1

3
(A2 +A3)(aR − aL) (23)

j
(L)
h = −1

3
(A2 +A3)(hR − hL). (24)
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and energy (top panel), for N = 16 and boundary conditions on the critical line hC = 2a2.
“Finite efficiency” (FE) reservoirs are employed with aL = 1 and aR = 5.

In the limit of large N , for FE baths, A1 ∼ 2/N , and for IE baths, (A2 +
A3)/3 ∼ 2/N , so that ja,h do not depend on the efficiency of the reservoirs
and we obtain

ja = j(L)
a = −j(R)

a ≃ − 2

N
(aR − aL) ≃ −2∂xa (25)

jh = j
(L)
h = −j

(R)
h ≃ − 2

N
(hR − hL) ≃ −2∂xh. (26)

The 1/N dependence of stationary currents on boundary imbalances of mass
and energy in Eqs. (25) and (26) shows that transport is always diffusive,
irrespective of possible condensation processes occurring in the lattice. This
result is less straightforward than one can imagine [18].

Numerical simulations confirm the above predictions. As a first test, we
verified the convergence to a NESS for a system driven in the localized region
of parameters. In Fig. 5 we plot the evolution of the relative asymmetry of the
left/right currents of mass and energy, namely

∆Ja,h(τ) =
(|j(R)

a,h (τ)| − |j(L)
a,h (τ)|)

(|j(R)
a,h (τ)|+ |j(L)

a,h (τ)|)
, (27)
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which must vanish in a NESS. The figure shows that the asymmetry of the
energy current ∆Jh (main panel) vanishes much more slowly than the corre-
sponding mass asymmetry ∆Ja (inset). This is due to the fact that when the
parametric curve overpasses the critical line and enters the condensed region,
emerging peaks localize energy, not mass.5 A more detailed discussion of the
localization properties in the NESS is contained in Sec. 5.

In Fig. 6 we show the behavior of energy currents for different system
sizes N in the long-time limit τ ≫ 1. The good agreement between numerics
(symbols) and the stationary analytical expression (full lines) attests that a
NESS has always been attained in simulations, while the comparison with
the asymptotic expressions for large N (dashed lines) shows that as for the
currents the thermodynamic limit is attained already for relatively small sizes.

Finally, the knowledge of explicit expressions relating stationary currents
to macroscopic mass and energy gradients, see Eqs. (25) and (26), allows us
to derive complete information on transport coefficients in the linear-response
regime, which can be expressed in terms of Onsager coefficients [38]. More
precisely, we can rewrite Eqs. (25,26) in the form

ja = Caa∂xa+ Cah∂xh

jh = Cha∂xa+ Chh∂xh,
(28)

with constant coefficients

Caa = Chh = −2

Cah = Cha = 0 .
(29)

5 This is true for a positive F (c), see the last Section for a comment on this when F (c) is
negative.
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We recall that Onsager coefficients are properly defined in terms of gradients
of β and m = βµ [17]

ja = −Laa ∂xm+ Lah∂xβ (30)

jh = −Lha ∂xm+ Lhh∂xβ . (31)

Therefore, passing from (a, h) to (m,β) we obtain

Laa = 2∂ma Lah = −2∂βa, (32)

Lha = 2∂mh Lhh = −2∂βh,

where the derivatives appearing in Lij can be derived from equilibrium rela-
tions a = a(m,β) and h = h(m,β), see Eq. (44). As expected, the Onsager
coefficients in Eq. (32) satisfy the celebrated Onsager reciprocity relations,
Lah = Lha. Indeed, recalling the grand-canonical relations a = ∂m log z and
h = −∂β log z, see Appendix A, the equality of off-diagonal coefficients follows
from ∂m∂β log z = ∂β∂m log z and from the regularity of the partition function
z(m,β) in the homogeneous region. In this respect, it is worth noticing that
the above derivation of transport coefficients is necessarily restricted to the
homogeneous region β ≥ 0, as it requires the existence of the grand-canonical
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ensemble. Although the problem of energy transport at negative absolute tem-
peratures was recently explored in [39, 40], we do not expect straightforward
generalizations for β < 0 for the class of condensation models here studied.
The main reason is that such a program would require to connect the system
to negative-temperature reservoirs, thereby typically resulting in condensation
instabilities and absence of stationary conditions.

It is interesting to work out the limit of vanishing β of Lij in Eq. (32) for the
class of models F (c) = cα. In this case the critical curve is hC(a) = Γ (1+α)aα

and we obtain (see Appendix C)

Laa = 2a2 Lah = 2αΓ (α+ 1)aα+1,

Lha = 2αΓ (α+ 1)aα+1 Lhh = 2
[
Γ (2α+ 1)− Γ 2(α+ 1)

]
a2α . (33)

Therefore, all Onsager coefficients are well defined and positive even on the
critical line. Moreover, from the definition of the Seebeck coefficient [30]

S ≡ β
Lah

Laa
−m, (34)

we obtain that on the critical line, S = −m = 1/a. Since S ≠ 0, we can
conclude that mass and energy currents in α-models are coupled in the usual
sense of irreversible thermodynamics. These results generalize the study of
Ref. [17] on Onsager coefficients, which was restricted to the case α = 2.

5 Statistical and dynamical properties of nonequilibrium
condensation

In this section we discuss in more detail the out-of-equilibrium condensation
process and we compare it with the analog phenomenon occurring at equilib-
rium. For simplicity we refer to the class F (c) = cα.

Equilibrium condensation can only appear in the microcanonical statistical
ensemble, because the region above the critical line, h > hC(a), cannot be
described in terms of the grand canonical ensemble. The equilibrium condensed
phase is therefore characterized by the exact conservation of the energy density
h, which can be decomposed as the sum of the critical energy density hC plus
an extra energy density ∆ = h − hC. The former is uniformly distributed in
the whole system, according to an exponential distribution of the mass; the
latter is localized on a not-extensive number of sites, K(N,∆) [34]. In the
thermodynamic limit, K(N → ∞, ∆) → 1 independently on ∆: only one site
hosts the entire extra-energy, giving rise to a Dirac-delta peak in the energy
distribution p(ϵ), for ϵ = ∆N : p(ϵ) = pc(ϵ)+

1
N δ(ϵ−∆N). The critical energy

density pc(ϵ) is explicitly found from the relation pc(ϵ)dϵ = ρc(c)dc, where
ϵ = F (c) and ρc(c) = (1/a)e−c/a. For F (c) = cα,

pc(ϵ) =
exp

(
− ϵ1/α/a

)
aαϵ1−1/α

. (35)
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Fig. 7 Top panel: Evolution of the main peak’s position x∗(t), after a transient τ0 = 108,
on a system with size N = 8192. The two horizontal dashed lines indicate the borders of the
system, which interacts with two critical heat baths imposing aL = 1 and aR = 5. Bottom
panel: the energy E∗(t) of the main peak (lower curve) and the energy of the second highest
peak, vertically translated to make it evident. In the inset we plot the mean lifetime tp of
peaks as a function of the system size N . The power-law fit, tp ≃ 0.025N2.01, reveals the
diffusive character of their motion.

For finite N , the condensate contribution to pc(ϵ) broadens to a finite-
height bump, see the inset of Fig. 8, where we show the numerical equilibrium
energy distributions in the condensed region for α = 2 and different sizes N .
More generally, finite-size effects were found to deeply modify the equilibrium
localization scenario expected in the thermodynamic limit [14,23,34]. Among
the most important effects, there is the emergence of a “pseudo-localized” re-
gion above the critical line hC(a) in which the system is effectively delocalized.

Coming now to the out-of-equilibrium setup with critical heat baths, we
can argue that dynamical evolution proceeds repeatedly through the onset of
travelling peaks that are eventually destroyed at the chain ends, as their pres-
ence is not compatible with heat baths at positive or infinite temperature. This
is clearly shown in Fig. 7, where we plot the time dependence of position (up-
per panel) and energy (lower panel) of the highest peak detected in the chain
at various times during a long evolution. The steady state thereby manifests
itself as a balance of the creation and death processes of such peaks. Therefore,
if tp(N) is the typical lifetime of a peak, a NESS establishes only on timescales
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t ≫ tp(N). On timescales shorter or of the order of tp(N) the system is not
stationary: there is an unbalance of left and right currents which induces the
growth of the travelling peaks, which appears to be linear in time. From Fig. 7
we have also clear numerical evidence that tp(N) increases as N2, see the inset
of the bottom panel: this result signals a symmetric spatial diffusion process
of peaks. In fact, we have not found evidence of drifts towards a specific side
of the chain. Nevertheless, we expect that such unbiased diffusion is not uni-
versal, as it eventually depends on the underlying microscopic dynamical rule:
an example showing biased diffusion of peaks in out-of-equilibrium conditions
was found in [18] for the deterministic DNLS equation.

At first glance, the emerging picture of an out-of-equilibrium condensed
phase originated by traveling peaks superposed to a delocalized background
might appears comparable to the equilibrium one. On the other hand, a closer
inspection reveals an important difference, because in the NESS peaks are re-
peatedly created in the bulk and destroyed at the system’s boundaries and
their energy increases in time until they disappear, while in equilibrium con-
ditions their energy simply fluctuates around an average value. Therefore, in
nonequilibrium conditions a single site experiences the passage of peaks of
variable heights, even if the number of peaks which are present in the sys-
tem at a given time is of order one. The above picture of peaks diffusing and
carrying extra energy with respect to the average local critical energy can
be quantitatively supported, firstly, by a numerical evaluation of the average
energy transported by peaks; secondly, by an alternative derivation, within a
continuum approximation, of the parametric curve of the NESS.

The global extra energy is the sum Eex =
∑

i(hi − hC(i)), where hi is the
average energy of site i and hC(i) = hC(ai) is the critical energy corresponding
to the average mass of site i. We claim that Eex corresponds to the time
average of the energy of traveling peaks. As a numerical test, we can refer to
the setup of Fig. 7 and limit ourselves to the two highest peaks shown in the
bottom panel. Remembering that for large N , ai and hi are linear profiles and
that hc(i) = 2a2i , we obtain

Eex ≃
∫ N

0

dx 2(aR − a(x))(a(x)− aL) ≃ 4.37× 105, (36)

where a(x) = aL + x
N (aR − aL), aL = 1, aR = 5, and N = 8192. On the other

hand, the time-average energies of the main and second peak are respectively
3.94 × 105 and 0.38 × 105. Their sum is 4.32 × 105, in fairly good agreement
with the value of Eex found in Eq. (36).

Passing to a continuum description, it is also possible to evaluate the spatial
density of the extra energy, ∆(x) = h(x)−hC(x), which is supposed to satisfy
a stationary, diffusion equation of the following form,

D
d2∆(x)

dx2
+ I(x) = 0, (37)

where D = 2 is the diffusion coefficient of peaks, derived in Appendix D, and
I(x) is a source term accounting for energy injection, determined assuming a
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“critical” background. If a(x) is the average mass density at site x, the energy
background is hC(a(x)), and I(x) is determined through the total variation of
energy at the site i located in x, once we average over all moves involving site
i,6

⟨δϵi⟩tot =
1

3
(hi−2 + 2hi−1 − 6hi + 2hi+1 + hi+2). (38)

In the steady state the left hand side vanishes, which imposes the equation
determining the spatial profile hi. Here instead we suppose that hi is the local,
critical energy, so that the right-hand side does not vanish and the left-hand
side is exactly the source term I(x). Passing from discrete to continuous, we
obtain I(x) = 2d2hC(x)/dx

2, and Eq. (37) reads

2
d2

dx2
[∆(x) + hC(x)] = 0, (39)

which must be solved with absorbing boundary conditions ∆(0) = ∆(L) =
0. We therefore obtain that ∆(x) + hC(x) has a linear profile passing from
the values imposed by critical baths, in agreement with the exact, discrete
microscopic description discussed in Sec. 4.

The different dynamical behavior of equilibrium and out-of-equilibrium
condensation manifests itself also in the stationary energy distribution, p(ϵ)
on a single site. A comparison of the two regimes is shown in Fig. 8, where we
plot the equilibrium (inset) and out-of-equilibrium (main panel) energy distri-
butions corresponding to the same values of mass and energy densities. The
equilibrium distribution has the expected N−dependent form: for ϵ ≪ N∆,
p(ϵ) ≃ pc(ϵ), with pc(ϵ) given in Eq. (35), while, for larger energies, p(ϵ) dis-
plays a bump around ϵ = N∆. The width of the bump progressively decreases
upon increasing N . On the other hand, the nonequilibrium distribution does
not display any bump: it is a monotonically decreasing function, which however
extends over increasingly larger energies for increasing N .

The lack of the condensation bump in the NESS energy distribution affects
also the behavior of the participation ratio Y2(N) defined in Eq. (7), which
is the usual order parameter for the condensation transition. In equilibrium
conditions and for finite sizes, Y2(N) displays a minimum when plotted versus
N , for sufficiently small values of ∆ = h − hc. Such a minimum originates
essentially from the fact that the condensate is localized on a small number of
sites and that the extra energy is constant in time, apart from statistical fluc-
tuations [34]. The regime of nonequilibirum condensation is shown in Fig. 9,
where we plot Y2(N) for different nonequilibrium critical boundary conditions
with fixed aL = 1 and different aR. We always find that Y2 decreases monoton-
ically with N and we attribute this feature to the peculiar dynamics of growth
and absorption of travelling peaks. Although we explored the phenomenon for
relatively large sizes and times, numerics by itself is not conclusive and fur-
ther efforts would be in order to clarify asymptotic behaviors, in particular
to understand how Y2(N → ∞) depends on aL,R when (aR − aL) → 0, the
nonequilibrium equivalent of ∆ → 0 for equilibrium systems.

6 See Eq. (12), replacing ci with ϵi and ai with hi.
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Fig. 8 Main: Nonequilibrium setup with critical baths imposing aL = 1 and aR = 5. We
plot the stationary energy distribution p(ϵ) for the central site of systems with increasing size
N . The size is chosen so that its average mass is a = 3 and its average energy is h = 26. The
NESS state has been sampled for times much larger than the typical peak’s lifetime tp(N).
For comparison, in the inset we plot the equilibrium energy distribution for the same values
of a and h. The full black line is the critical distribution Eq. (35) for α = 2 and a = 3. The
vertical dotted lines locate the expected energy of the condensate, equal to (h− hC(a))N .

6 A critical summary

We have analyzed the phenomenon of nonequilibrium condensation in a class
of open lattice models with two conservation laws steadily driven by bound-
ary reservoirs. Qualitatively new features were found with respect to the usual
condensation transition occurring in equilibrium conditions. The most impor-
tant one is that nonequilibrium condensation can appear even if reservoirs, by
themselves, would locally keep the system in the homogeneous phase. This fea-
ture is due to the existence of two independent conserved quantities (mass and
energy) which determine two macroscopic currents, whose coupling produces
a sort of extreme Joule effect [17].

The nonequilibrium condensation mechanism does not manifest itself with
a lower number of conserved quantities. In fact, if only one conservation law
is present and both reservoirs are (sub)critical, then the whole system lies
in the homogeneous phase. As a simple argument, let us consider an energy-
conserving system in contact with heat baths at inverse temperatures βL and
βR, with βL,R > βc. We assume here that βc is the critical value separating
the homogeneous phase (for β ≥ βc) from the localized one (for β < βc). If
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transport is diffusive, the positivity of heat conductivity κ and the Fourier law
κdβ(x)/dx = const imply that steady temperature profiles β(x) are always
monotonic. Therefore β(x) ≥ βc in the whole system. The same conclusion
remains valid even in the presence of space-dependent conductivity κ(x).

It is worthy of note that the out-of-equilibrium condensate is qualitatively
different from the equilibrium one: the fact that energy is not globally con-
served implies that the NESS is the result of the rising of peaks that diffuse
until they reach one boundary, where they are absorbed by subcritical or even
critical heat baths. This mechanism implies that the extra-energy carried by
peaks strongly depends on time, which has two important consequences. First,
the single-particle stationary energy distribution is monotonously decreasing,
reflecting the fact that there is no concentration of high-energy fluctuations
around a specific energy value. Second, the order parameter Y2(N) (partici-
pation ratio) is expected not to have a minimum with respect to N . In this
regard, we recall that the non-monotonic behavior of Y2(N) in equilibrium
conditions provides a practical and unambiguous criterion for distinguishing
finite-size localized states from delocalized ones, the separation point being
precisely the minimum value of Y2(N) [34]. The monotonic trend of Y2(N)
observed in nonequilibrium conditions prevents such a clear separation.
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The above scenario is valid for a wide class of lattice models where masses
ci are continuous, positive variables and local energies are ϵi = F (ci). Many
of our results have been found analytically and they apply to any convex
function F (c). Among the main results, we have provided a complete charac-
terization of nonequilibrium profiles and stationary currents which are valid
both in the homogeneous region and in the localized one. Moreover, we have
derived Onsager coefficients and shown that the Seebeck coefficient is finite
and nonvanishing on the critical line.

At the macroscopic level, localized NESS are profitably described in terms
of a non-homogeneous diffusion equation for the excess energy field ∆(x) with
respect to the local critical energy density hC(x), Eq. (37). In particular, we
obtain that ∆(x) is such that ∆(x) − hC(x) is a linear function in x, see
Eq. (39), which implies that the profiles of ∆(x) and hC(x) have opposite
curvatures. Phenomenologically, the concave shape of ∆(x) for convex F (c)
could be interpreted as a manifestation of a Joule heating effect, whereby the
lattice is “hotter” in the bulk than at the boundaries.

The class of models F (c) = cα, with α > 1, plays a special role because
its equilibrium properties have been studied in some details. In particular it
has been shown [14, 23] they are equivalent to models where only the mass
A =

∑
i ci is conserved, but variables ci are distributed according to f(c) ∼

exp(−c1/α). If such models are driven out-of-equilibrium, they do not show
any nonequilibrium condensation, as argued here above.

Models where F (c) can be negative have not been discussed in detail. We
limit to observe that a negative, strictly convex function F (c) requires that
limc→∞ |F (c)|/c = 0, which means that the localization process involves the
mass, not the energy. We remark that this is precisely what happens in the
case of the DNLS equation with a saturable nonlinearity [26], a model which
can be traced back to the case F (c) = − ln(1 + c).

Finally, it is interesting to discuss the role of peak diffusion, a key element to
obtain parametric linear profiles and to obtain a NESS even when the critical
line hC(a) is crossed. Let us consider the limiting case in which peak diffusion
is suppressed: this scenario can be obtained by constraining the search of the
solutions of Eqs. (9). Let us discuss explicitly the model F (c) = c2, in which
case the new triplet must be chosen in the intersection between a plane and a
sphere. The condition of positive masses, ci ≥ 0, implies that such intersection
may not be a full circle, but the union of three disconnected arcs of circle: this
occurs if one of the three masses is much larger than the other two, which is
the typical scenario in the condensed region, when the triplet includes a peak.
In these cases we may suppress peak diffusion imposing the search of the new
triplet in the same arc of circle, a constraint which does not break detailed
balance. In fact, equilibrium properties in the presence or in the absence of
such additional constraint are the same [35].

When the system is out-of-equilibrium, driven by boundaries, the above
constraint is relevant because enforcing it makes Eqs. (10) no more valid.
However, the relevance of the constraint depends on temperature, because at
β → +∞ the system is perfectly homogeneous and the constraint does not ap-
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ply: we expect its effects are more and more visible with decreasing β. In fact,
the most striking effect of suppressed diffusion occurs in nonequilibrium con-
densation, hence β(x) < 0, where immobile peaks are unable to discharge their
energy, which therefore continues to grow indefinitely: this process prevents a
steady state from being reached [34].

We conclude by observing that our approach to determine the NESS pro-
files (spatial and parametric profiles) can be easily extended to a stripe or
to a two-dimensional system. In this case we have local masses cij and local
energies ϵij = F (cij), where i = 1, . . . , N and j = 1, . . . , L. If sites (1, j) are
attached to the reservoir RL and sites (N, j) are attached to the reservoir RR,
we can apply the same method. We expect to find an analytical solution for
the spatial profiles either for small L or for periodic boundary conditions in
the direction perpendicular to the currents.

A Equilibrium properties: microcanonical and grand-canonical
descriptions

In the context of equilibrium statistical mechanics, the condensation phenomenon in models
with two conservation laws has been understood from the properties of the microcanonical
partition function (we assume a convex and positive F (c)),

Ω(A,H) =

∫ ∞

0

∏
i

dci δ

(
H −

∑
i

F (ci)

)
δ

(
A−

∑
i

ci

)
. (40)

It was shown [14, 23] that Ω(A,H) can be conveniently obtained by computing its Laplace
transform Z(m,β) with respect to A = Na and H = Nh, followed by an inverse Laplace
transform. Here m and β are real variables conjugate to A and H, respectively. Explicitly,
we write the function Z(m,β) as

Z(m,β) =

∫ ∞

0
dA

∫ ∞

0
dH Ω(A,H)e−βH+mA . (41)

Remarkably, Z(m,β) takes the factorized form

Z(m,β) =

[∫ ∞

0
dc e−βF (c)+mc

]N
≡ [z(m,β)]N , (42)

with β > 0. The Laplace inversion formula thereby writes

Ω(A,H) =

∫ m0+i∞

m0−i∞

dm

2πi

∫ β0+i∞

β0−i∞

dβ

2πi
e(−mNa+βNh)Z(m,β) , (43)

where the parameters m0 and β0 define an integration contour free from singularities. In
the large N limit, the integral in Eq. (43) can be finally evaluated using the saddle-point
approximation, solving the following equations

a =
∂ ln [z(m,β)]

∂m
=

∫∞
0 dc c e(−βF (c)+mc)

z(m,β)

h = −
∂ ln [z(m,β)]

∂β
=

∫∞
0 dc F (c) e(−βF (c)+mc)

z(m,β)
(44)

From a physical point of view, the above procedure defines the standard grand-canonical
approach, where Z(m,β) is the grand-canonical partition function, β > 0 is the inverse
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temperature and m = βµ defines implicitly the chemical potential µ. From the analytic
properties of Z(m,β) and from Eq. (43), it follows that a solution for saddle-point equa-
tions (44) exists only for real positive β values, or equivalently for h < hC, see Appendix A.2.
This solution provides a one-to-one mapping between parameters (β > 0, µ) and (a, h). The
following two subsections show the explicit solution for the two relevant limits β → +∞ and
β → 0. For h > hC (condensed region) Eq. (44) has no solutions and the estimation of the
microcanonical partition function Ω(a, h) requires large-deviations techniques [14].

A.1 Limit β → +∞ (ground state)

In order to obtain a non vanishing partition function, it is necessary to assume µ > 0, in
which case

z(µ, β) →
∫ c∗

0
dceβ(µc−F (c)), (45)

where µc∗ = F (c∗). The maximum of the exponent is in cM , defined by µ = F ′(cM ), and
a(β → +∞, µ) → cM , h(β → +∞, µ) → F (cM ). Therefore, the line h = F (a) is the ground
state of the system, as anticipated in the main text by the consideration that it corresponds
to a perfectly homogeneous state, ci ≡ a. The above treatment also implies that the chemical
potential on the ground state is µ = F ′(a).

A.2 Limit β → 0

In this case the grand-canonical weight is proportional to eβµc, which requires βµ ≡ m →
−γ, with γ > 0. We then get z(β → 0, µ) = γ−1, a(β → 0, µ) = γ−1, and h(β → 0, µ) =
γ
∫∞
0 dc F (c)e−γc. Therefore, the critical line is

hC(a) =

∫ ∞

0
dxF (ax)e−x. (46)

On this line, the chemical potential diverges according to the relation µ→ −1/(aβ).

B Calculation of the Ai coefficients

Let us consider the system of equations

a1 = aL (47a)

a1 − 4a2 + 2a3 + a4 = 0 (47b)

ai−2 + 2ai+1 − 6ai + 2ai+1 + ai = 0 3 ≤ i ≤ N − 2 (47c)

aN − 4aN−1 + 2aN−2 + aN−3 = 0 (47d)

aN = aR, (47e)

Since the system is linear with N independent equations and N unknowns ai, if the
solution exists, it is unique. We can rewrite the unknowns ai in the form

ai = aL +Ai(aR − aL). (48)

The system (47) is invariant under the exchange L→ R, i→ N + 1− i, so we can look
for a solution with the same symmetry, thus imposing

AN+1−i = 1−Ai. (49)
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Then we can consider an equivalent system of N independent equations obtained either
by summing or subtracting the equations which are mapped into each other with the trans-
formation L→ R, i→ N+1− i, i.e. the first and last equation, the second and penultimate,
the third and third last, and so on. It can be easily demonstrated that all the ai that satisfy
Eq. (49) are already a solution of all the equations obtained summing the equations: for
example, summing Eq. (47b) with Eq. (47d), and replacing ai with (48) we get

a1 − 4a2 + 2a3 + a4 + aN − 4aN−1 + 2aN−2 + aN−3

=
(
A1 +AN − 4(A2 +AN−1) + 2(A3 +AN−2)

+A4 +AN−3

)
(aR − aL) = (1− 4 + 2 + 1)(aR − aL) = 0

(50)

The equations obtained instead from the differences, rewritten in terms of the Ai coefficients,
become

A1 = 0 (51a)

A1 − 4A2 + 2A3 +A4 = 0 (51b)

Ai−2 + 2Ai+1 − 6Ai + 2Ai+1 +Ai = 0 (51c)

with 3 ≤ i ≤ N/2 if N is even, and 3 ≤ i ≤ (N − 1)/2 if N is odd. The system of equations
to solve has therefore been halved compared to the starting one. From this point on let’s
focus only on the even case, with N = 2m.

From Eq. (51c) with i = m we can obtain Am−2 as a function of Am−1, Am, Am+1,
Am+2,

Am−2 = −2Am−1 + 6Am − 2Am+1 −Am+2, (52)

which replaced in Eq. (51c) with i = m− 1 gives Am−3 as a function of Am−1, Am, Am+1,
Am+2. Repeating the substitutions iteratively, we can write Ai in the form

Ai = −gm−i+2Am−1 + fm−i+2Am − em−i+2Am+1 − dm−i+2Am+2 (53)

where the coefficients dn, en, fn, gn are defined by the recurrence relation

Xn+4 = −2Xn+3 + 6Xn+2 − 2Xn+1 −Xn, (54)

with the following starting values

d0 = −1, d1 = 0, d2 = 0, d3 = 0

e0 = 0, e1 = −1, e2 = 0, e3 = 0

f0 = 0, f1 = 0, f2 = 1, f3 = 0

g0 = 0, g1 = 0, g2 = 0, g3 = −1.

(55)

By using Eq. (49), Am+1 = 1−Am, and Am+2 = 1−Am−1, so we can rewrite (51) as

Ai = αiAm−1 + βiAm − γi, (56)

where

αi = dm−i+2 − gm−i+2 = (d− g)m−i+2

βi = (f + e)m−i+2

γi = (e+ d)m−i+2.

(57)

By imposing A1 = 0, from Eq. (56) with i = 1 we obtain

Am =
γ1 − α1Am−1

β1
, (58)
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which can be replaced in (56) that becomes

Ai = BiAm−1 − Ci, (59)

where
Bi = αi − α1βi/β1, Ci = γi − γ1βi/β1. (60)

Finally, replacing the Ai from (59) in (51b), we obtain

Am−1 =
4C2 − 2C3 − C4

4B2 − 2B3 −B4
. (61)

Once replaced in (59), it determines the solution to the system of equations (51). The
coefficients Ai for i > m are obtained from those with i ≤ m using Eq. (49).

The case with N odd, N = 2m+1, can be analyzed with the same procedure, obtaining
Eq. (53) and from this the solution expressed in the form (59), with the same definitions of
Bi and Ci from (60), but with

αi = −gm−i+2,

βi = (f + d)m−i+2,

γi = (e/2 + d)m−i+2.

(62)

Similarly, we can also solve the system of equations associated with the case of the heat
baths with “finite” efficiency, which correspond to replacing the border condition

A1 = 0 → −5A1 +A2 +A3 = 0. (63)

Also in this case the solution takes the form (59), but with

Am−1 =
C1 − 4C2 + 2C3 + C4

B1 − 4B2 + 2B3 +B4
, (64)

Bi =

(
αi − βi

α3 + α2 − 5α1

β3 + β2 − 5β1

)
, (65)

Ci =

(
γi − βi

γ3 + γ2 − 5γ1

β3 + β2 − 5β1

)
, (66)

where αi, βi, γi are defined as (60) with N even and as (57) with N odd.

B.1 Closed-form expressions for d, e, f, g

The coefficients dn, en, fn, gn can be expressed in a closed form solving the recursion relation
(54). If we consider Xn = xn, it satisfies Eq. (54) if x is a solution of

x4 + 2x3 − 6x2 + 2x+ 1 = 0. (67)

The roots of this polynomial equation are

x1 = x2 = 1, x3 = −2 +
√
3 ≡ ϕ, x4 = −2−

√
3 ≡ ψ. (68)

A general solution Xn of the recursion relation (54) is therefore obtained from the roots
xi by considering a linear combination of xni . Since the root x1 = 1 occurs 2 times, nxn1 = n
is added to the linear combination, so the general solution of (54) is

Xn = w1 + w2n+ w3ϕ
n + w4ψ

n, (69)

where the coefficients wi are determined imposing the initial conditions of the recurrence.
For dn, en, fn, gn this conditions are the ones in (55), from which we can finally obtain the
closed form expressions
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dn = (6n− 12 + (−12 + 7
√
3)ψn − (12 + 7

√
3)ϕn)/36

en = (6n− 14 + (7− 4
√
3)ψn − (7 + 4

√
3)ϕn)/12

fn = (6n− 4− ϕψn + ψϕn)/12

gn = (6− 6n+ (−3 + 2
√
3)ψn − (3 + 2

√
3)ϕn)/36.

(70)

With this expressions we can therefore obtain a closed form for the coefficients Ai. For
example, in the case with the heat baths with finite efficiency and even size N = 2m, A1

can be expressed as

A1 =
4
√
3− 6− ϕ2m(6 + 4

√
3)

(4
√
3− 6)m+ 5

√
3− 6− ϕ2m((6 + 4

√
3)m+ 5

√
3 + 6)

, (71)

that for large N , since |ϕ| = 2−
√
3 < 1, can be approximated with A1 ≈ 1/m = 2/N .

C Onsager coefficients

To obtain the expressions for the Onsager coefficients in the class of models with local energy
ϵi = cαi , it is useful to define

I(k) =

∫ ∞

0
xk exp(−βxα +mx)dx. (72)

With this notation, I(0) is equal to the partition function z(m,β), and the k−th moment
⟨ck⟩ is

⟨ck⟩ =
1

z(β,m)

∫ ∞

0
xk exp(−βxα +mx)dx =

I(k)

I(0)
. (73)

In particular, we have

a =
I(1)

I(0)
, h =

I(α)

I(0)
. (74)

By deriving I(k) with respect to β and m, we obtain

∂mI(k) =

∫ ∞

0
xk+1 exp(−βxα +mx)dx = I(k + 1)

∂βI(k) = −
∫ ∞

0
xk+α exp(−βxα +mx)dx = −I(k + α).

(75)

The Onsager coefficients can be obtained considering the derivatives of a and h. For example,
to obtain Laa, we need to calculate

∂ma = ∂m
I(1)

I(0)
=
I(2)

I(0)
−
I2(1)

I2(0)
, (76)

and in a similar way we can calculate all the other derivatives to obtain

Laa = 2∂ma = 2
(
I(2)I(0)− I2(1)

)
/I2(0)

Lah = −2∂βa = 2
(
I(α+ 1)I(0)− I(α)I(1)

)
/I2(0)

Lha = 2∂mh = Lah

Lhh = −2∂βh = 2
(
I(2α)I(0)− I2(α)

)
/I2(0)

(77)
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If we now want the coefficients Lij on the critical line h = Γ (α + 1), lets consider the
limit β → 0, m→ −1/a, in which I(k) becomes

lim
β→0+

I(k) = Γ (k + 1)ak+1. (78)

Therefore, the Onsager coefficients in this limit become

Laa = 2a2, Lhh = 2
(
Γ (2α+ 1)− Γ 2(α+ 1)

)
a2α (79)

Lah = Lha = 2(Γ (α+ 2)− Γ (α+ 1))aα+1

= 2αΓ (α+ 1)aα+1.
(80)

D The diffusion coefficient D

The diffusion coefficient D of the models with the evolution rule defined in Sec. 3 can be
obtained making the expression for the probability P (x, t) to find a breather on site x at
time t continuous in space and time, so that it can be expressed as a diffusion equation:

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t). (81)

In the evolution algorithm, which updates the triplets Ti = (i− 1, i, i+ 1) with i chosen at
random, the only triplets that allow the breather’s movement are Tx, Tx−1 and Tx+1, which
can be chosen with probability 1/N . In these cases, after the update the energy peak can
be found with probability 1/3 in any one of the sites of the chosen triplet. For example, the
breather can reach x − 2 only when Tx−1 is chosen, but each one of Tx−1, Tx, Tx+1 allow
it to remain in the initial position x. The breather also remains in x if the other triplets of
which it is not part are chosen. Therefore, the probability to find the breather in x at time
t+ 1 is given by

P (x, t+ 1) =
1

N

(
P (x, t) +

2

3
(P (x− 1, t) + P (x+ 1, t))

+
1

3
(P (x− 2, t) + P (x+ 2, t))

)
+
N − 3

N
P (x, t).

(82)

Lets Taylor expand (82) to the first order in δt, the time increment for a single triplet
update: by subtracting P (x, t) from both members and then dividing by δt we obtain

∂P (x, t)

∂t
=

1

Nδt

(
2

3
(P (x− 1, t) + P (x+ 1, t))

+
1

3
(P (x− 2, t) + P (x+ 2, t))− 2P (x, t)

)
.

(83)

We can then Taylor expand (83) to the second order in space x, the first non vanishing
order, from which we get

∂P (x, t)

∂t
=

2δx2

Nδt

∂2P (x, t)

∂x2
= D

∂2P (x, t)

∂x2
, (84)

where δx = 1 is the distance between two adjacent sites. Time is measured in Monte Carlo
steps δτ , that corresponds to N moves that increase time by δt, thus δτ = Nδt = 1. The
diffusion coefficient D is then is given by

D =
2(δx)2

δτ
= 2. (85)
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