
HYPERBOLIC SPACES THAT DETECT ALL STRONGLY-CONTRACTING

DIRECTIONS

STEFANIE ZBINDEN

Abstract. Given a geodesic metric space X, we construct a corresponding hyperbolic space, which

we call the contraction space, that detects all strongly contracting directions in the following sense;

a geodesic in X is strongly contracting if and only if its parametrized image in the contraction
space is a quasi-geodesic. If a finitely generated group G acts geometrically on X, then all strongly-

contracting elements act as WPD elements on the contraction space. If the space X is CAT(0), or
more generally Morse-dichotomous, that is if all Morse geodesics are strongly-contracting, then all

generalized loxodromics act as WPD elements, implying that the action is what we call “universally

WPD”.

Introduction

Acylindrical actions were introduced by Sela [Sel97] and Bowditch [Bow08]. Acylindrical hyper-
bolicity was introduced by Osin in [Osi16], unifying the notions of WPD elements and hyperbolically
embedded subgroups, which are of great significance.

Acylindrical hyperbolicity has been proven to be a powerful tool [BBF13, BF02, DGO17, Ham08,
Hul17, HO13, Sis18, GHP+23]. Several classes of groups have been proven to be acylindrically hy-
perbolic, for example the mapping class groups [MM98], Out(Fn) [BF10], groups acting geomet-
rically on a space with strongly contracting geodesics [BBF15] and many more, see for example
[GH21, CW17, LP16, Ham08].

One of the most prominent open questions about acylindrical hyperbolicity is whether it is invariant
under quasi-isometry or even just commensurability. This question has been asked for example in
[DGO17, Problem 9.1] and [Osi16, Question 2.20].

In [MO19], it is shown that acylindrical hyperbolicity is a commensurability invariant for groups
that admit a largest acylindrical action. While not all acylindrically hyperbolic groups admit a largest
acylindrical action [Abb16], this illustrates the importance of studying specific acylindrical actions.

In [PSZ22], Petyt-Spriano-Zalloum use curtains, which are generalizations of hyperplanes to, for a
given CAT(0) group, construct a hyperbolic space on which it acts universally WPD (see Definition
1.26).

In this paper, given a geodesic metric space X, we associate to it a hyperbolic space X̂ called the
contraction space (see Definition 2.3). We then show that groups acting geometrically on weakly Morse-
dichotomous spaces (see Definition 1.27) act universally WPD. Note that weakly Morse-dichotomous
spaces are spaces where all Morse geodesics are strongly contracting, such as CAT(0)-spaces [Cas20],
injective metric spaces [SZ22], groups hyperbolic relative to abelian subgroups [Sis13] and certain
infinitely presented C ′(1/6)–small-cancellation spaces [Zbi23].

Theorem A. If a finitely generated group G acts geometrically on a weakly Morse-dichotomous space
X, then the action of G on the contraction space X̂ is non-uniformly acylindrical and universally
WPD.
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2 STEFANIE ZBINDEN

Since CAT(0) spaces are weakly Morse-dichotomous, the theorem above can be viewed as a gener-
alization of some of the results of [PSZ22].

Construction of the contraction space. The moral idea behind the construction of the contraction
space is as follows. If we have a geodesic metric space X and we cone-off all subset which are “not-
hyperbolic”, then the resulting space X̂ is hyperbolic. In practice, instead of coning-off non-hyperbolic
subsets, we add intervals of length one between every pair of points whose connecting geodesic is not
“strongly-contracting” enough, we call such points anti-contracting. The precise execution of these
ideas and definitions can be found in Section 2. In Section 5 (see Proposition 5.5) we show that for
groups hyperbolic relative to subgroups with empty Morse boundary, the contraction space is canon-
ically quasi-isometric to the coned-off graph, showing that the contraction space can and should be
viewed as a generalization of the coned-off graph for not necessarily relatively hyperbolic groups.

The contraction space can be constructed for any geodesic metric space X, not just weakly Morse-
dichotomous spaces. If there was a “nice” action of a group G on X, this induces a “nice” action of G
on the contraction space X̂. The following theorems detail consequences of different assumptions on
the “niceness” of the action of G on X and the space X.

If we assume that a group G acts properly on a geodesic metric space X, then the action of G on
the contraction space X̂ is not necessarily a universal WPD action. However, we still know that it is
a non-uniformly acylindrical action, as stated in the theorem below.

Theorem B. Let G be a group acting properly on a geodesic metric space X. Then the action of G
on the contraction space X̂ is non-uniformly acylindrical. Further, if there exists an element g ∈ G
whose axis in X is strongly contracting, then G ↷ X̂ has unbounded orbits.

If we require that G is finitely generated and acts geometrically on a geodesic metric space X, then
we retrieve that being strongly-contracting, WPD, and loxodromic is equivalent.

Theorem C. Let G be a finitely generated group which acts geometrically on a geodesic metric space
X. Let g ∈ G be an element. The following are equivalent;

(1) g is loxodromic (w.r.t the action on X̂),

(2) g is WPD (w.r.t the action on X̂),
(3) g is strongly-contracting (w.r.t the action on X).

In [BCK+23] the notion of recognizing spaces for stable subgroups is introduced (see Definition
1.28). Roughly speaking, a hyperbolic space X is a recognizing space for a group G if all stable
subgroups of G embed quasi-isometrically into X in a natural way. The theorem below states that
under nice enough assumptions, the contraction space is a universal recognizing space and that while
the action of G on the contraction space might not be acylindrical, G acts acylindrically along its
stable subgroups.

Theorem D. If a finitely generated group G acts geometrically on a Morse-dichotomous space X,
then the contraction space X̂ is a universal recognizing space. Moreover if H ≤ G is a stable subgroup,
then G acts acylindrically along the orbit of H in X̂.

The theorem below is a weaker version of Theorem D which holds in more generality.

Theorem E. Let X be a geodesic metric space. Let C ≥ 0 be a constant and let Y ⊂ X be a subset such

that [x, y] is C-contracting for all x, y ∈ Y . Then the inclusion (Y, d) ↪→ (X̂, d̂) is a quasi-isometric

embedding. Moreover, if G is a group acting properly on X, then the action G ↷ X̂ is acylindrical
along Y .
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Lastly, we show that unboundedness of the contraction space comes from strongly contracting rays.

Theorem F. Let ρ > 0 be a constant. There exists a constant ∆ = ∆(ρ) such that the following
holds. If X is a geodesic metric space whose isometry group Isom(X) has ρ-dense orbit, then one of
the following holds

(1) Uniform Boundedness: d̂iam(X̂) ≤ ∆.

(2) Unboundedness: X̂ is unbounded.

Moreover, d̂iam(X̂) is unbounded if and only if X contains a strongly-contracting geodesic ray or
equivalently Isom(X) ↷ X contains a strongly-contracting element.

We want to highlight the following structure results which are essential in the proof of the above
theorems and also highlight the useful properties of the contraction space.

Theorem G. Let X be a geodesic metric space and let γ : I → X be a geodesic.

(1) The parametrized image γ̂ of γ in the contraction space X̂ is a quasi-geodesic if and only if γ
is strongly contracting.

(2) Let x ∈ X be a point and let p and q be points on γ closest to x with respect to the metrics d

and d̂ respectively. We have that d̂(p, q) < 17.

(3) Let G be a group acting on X. If g acts loxodromically on X̂, then g acts strongly-contracting
on X.

On Petyt-Zalloum’s work. In upcoming work [PZ], Petyt-Zalloum generalize Sageev’s construction
[Sag95] for a non-discrete set of walls. In particular, given a geodesic metric space X, they construct

a hyperbolic space X̃ such that the following hold.

• There is a coarsely Lipschitz, Isom(X)–invariant map p : X → X̃.
• If γ : I → X is a geodesic, then p(γ) is a quasi-geodesic if and only if γ is strongly contracting.
This is analogous to a combination of Lemma 2.13 and Lemma 2.10.

• If a group G acts properly on X and g ∈ G, then g ↷ X̃ loxodromic, g ↷ X̃ WPD and g ↷ X
strongly-contracting are equivalent. This is analogous to Theorem C, and can be used to prove
an analogue of the universal WPD action part of Theorem A.

• If G acts coboundedly on X and X is Morse-dichotomous, then a subgroup H ≤ G is stable if
and only its orbit in X̃ is quasi-isometrically embedded. This is a similar but stronger result
than Theorem D.

Their constructions also allow them to prove other results, which are unrelated to results in this
paper. For example (with Spriano) they show that if X is Morse-dichotomous and not hyperbolic,
then every group acting coboundedly on X has an infinite-dimensional space of quasi-morphisms.

The main difference between the two constructions is that Petyt-Zalloum use and develop the
machinery of spaces with walls (also leading to potential other applications, which are not about
strong contraction), while in this paper, the results follow more directly from strong-contraction.

Outline. In Section 1 we give background on strong-contraction and acylindrical hyperbolicity. In
Section 2 we define the contraction space X̂ associated to a geodesic metric space X. In fact, given
a geodesic metric space X, we construct a family of hyperbolic spaces associated to X. This family
of hyperbolic spaces {X̂K}K is indexed by functions K called contraction gauges. We further prove
Theorem G(1). In Section 3 we prove Theorems A - E. The key ingredient in the proofs is Theorem
G(2), which allows us to control closest point projections in the contraction space. Due to Theorem
G(2) we can prove Lemma 3.8, which is the second key technical Lemma of Section 3. Lemma 3.8
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states that if two opposite sides of a sufficiently large quadrangle are short in the contraction space
X̂, then the other two sides come close in X. In Section 4, we prove Theorem F. Lastly, in Section 5
we show that the contraction space of a group hyperbolic to subgroups with empty Morse boundary
is naturally-isomorphic to the coned off graph.

Acknowledgements. I would like to thank Harry Petyt, Davide Spriano and Abdul Zalloum for dis-
cussions about our respective projects - figuring out the similarities and differences of our constructions
and their applications was very helpful. Further, I would like to thank Jacob Russell, Dawid Kielak,
Matt Cordes, Ric Wade, Alexandre Martin, Antoine Goldsborough, Oli Jones and in particular my
supervisor Alessandro Sisto for helpful comments and inspiring discussions both about the project and
possible future applications.

1. Preliminaries

Throughout this paper, (X, d) denotes a geodesic metric space. For any subspace Y ⊂ X the closest
point projection from X to Y , if it exists, is denoted by πY : X → 2Y . Let x ∈ X. We denote the open
ball of radius r around x by Br(x). For points x, y ∈ X we denote by [x, y] a choice of geodesic from
x to y. We assume that [x, y] = [y, x]−1. If γ is a geodesic and z, z′ ∈ γ, we denote the subsegment
of γ (or its inverse) from z to z′ by γ[z,z′]. In particular, if z, z′ ∈ [x, y] we denote the subsegment of
[x, y] from z to z′ by [x, y][z,z′].

Definition 1.1. Let Φ : R≥0 → R≥0 be a function. Let A(t) and B(t) be two properties depending
on a parameter t ∈ R≥0. We say that A and B are Φ-equivalent if the following holds. If A(t) holds,
then B(Φ(t)) holds and if B(t′) holds, then A(Φ(t′)) holds.

Definition 1.2 (Quasi-geodesic). Let C ≥ 1 be a constant. A continuous map γ : I → X is a
C-quasi-geodesic if

|t− s|
C

− C ≤ d(γ(s), γ(t)) ≤ C|t− s|+ C,(1)

for all s, t ∈ I ⊂ R.

1.1. Morse and strongly contracting (quasi-)geodesics. In this section, we recall the definition
of Morse (quasi-)geodesics and strongly-contracting quasi-geodesics. We then recall key properties of
Morse (resp strongly-contracting) quasi-geodesics. For a more detailed background on properties of
Morse (resp strongly-contracting) quasi-geodesics, we recommend [Cor17, CS15] and [ACGH17].

1.1.1. Morse (quasi-)geodesics.

Definition 1.3. A function M : R≥1 × R≥0 → R≥0 is called a Morse gauge, if it is non-decreasing
and continuous in the second coordinate.

Definition 1.4 (Morseness). A quasi-geodesic γ is called M -Morse for some Morse gauge M if every
C-quasi-geodesic λ with endpoints on γ stays in the closed M(C,C)-neighbourhood of γ. A quasi-
geodesic is called Morse if it is M -Morse for some Morse gauge M .

The following lemma is a well-known fact stating that Morse quasi-geodesics are at bounded Haus-
dorff distance from geodesics, proofs can be found for example in [CS15].

Lemma 1.5. Let M be a Morse gauge and C ≥ 1 a constant. There exists a constant D such that
the following holds. Let λ be an M -Morse C–quasi-geodesic. There exists a geodesic γ such that the
Hausdorff distance between λ and γ is at most D.
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Proof. For quasi-geodesic segments, this is the statement of Lemma 2.5 (3) of [CS15]. For quasi-
geodesic rays, this is proven in the proof of Lemma 2.10 of [CS15]. For bi-inifinite quasi-geodesics, the
proof is analogous to the proof of Lemma 2.10 of [CS15]. □

1.1.2. Strongly-contracting (quasi-)geodesics.

Definition 1.6 (Strongly-contracting). Let D ≥ 0 be a constant. We say that a geodesic γ is
D-contracting if for every point x ∈ X, diam(πγ(Bd(x,γ)(x))) ≤ D. A geodesic is called strongly-
contracting if it is D-contracting for some constant D.

As shown in [ACGH17, Theorem 7.1], being strongly-contracting is equivalent to satisfying the
bounded geodesic image property.

Lemma 1.7 (Direct consequence of [ACGH17] Theorem 7.1). There exists a function Φcon : R≥0 →
R≥0 such that for all quasi-geodesics γ, the following properties are Φcon–equivalent:

(1) Bounded geodesic image property: Any geodesic λ with d(γ, λ) ≥ C, satisfies diam(πγ(λ)) ≤
C. We say that γ has C-bounded-geodesic image.

(2) Strong-contraction: The geodesic γ is C-contracting.

The following lemma states that strong contraction of geodesics behaves well under taking subseg-
ments; a proof can be found in [EZ22, Theorem 1.1].

Lemma 1.8 (Strongly-contracting subsegments). There exists a function Φsub : R≥0 → R≥0 such that
every subgeodesic γ′ of a C-contracting geodesic γ is Φsub(C)-contracting.

Theorem 1.4 of [ACGH17] implies that being strongly-contracting implies being Morse, which can
be used to prove further results about strongly-contracting quasi-geodesics.

Lemma 1.9 (Implication of Theorem 1.4 of [ACGH17]). Let C ≥ 0 be a constant. There exists a
Morse gauge M only depending on C such that any C–contracting quasi-geodesic is M–Morse.

Using the above result, we can state Lemma 1.5 in terms of strongly-contracting quasi-geodesics,
which is the statement of the Lemma below.

Lemma 1.10 (Lemma 1.5 for strong-contraction). Let C ≥ 1 be a constant. There exists a constant D
such that the following holds. Let λ be a C–contracting C–quasi-geodesic, then there exists a geodesic
γ such that the Hausdorff distance between λ and γ is at most D.

Lemma 1.8 and Lemma 1.10 can be used to show that quasi-geodesics close to strongly-contracting
geodesics are strongly-contracting.

Lemma 1.11. There exists a function Φd : R≥0 → R≥0 such that the following hold.

(1) Every C–quasi-geodesic λ with Hausdorff distance at most C from a C-contracting C–quasi-
geodesic γ is Φd(C)–contracting.

(2) Every C–quasi-geodesic segment λ with endpoints contained in a C–neighbourhood of a C–
contracting C–quasi-geodesic γ is Φd(C)–contracting.

Proof. (1): Let λ be a C-quasi-geodesic with Hausdorff distance at most C from a C–contracting
C–quasi-geodesic γ. In light of Lemma 1.7 it is enough to show that λ has the C ′′–bounded geodesic
image property, where C ′′ only depends on C.

Since γ is C–contracting, it has the C ′–bounded geodesic image property for some C ′ only depending
on C by Lemma 1.7.
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Let x ∈ X. We next show that dHaus(πγ(x), πλ(x)) is bounded by 3C+3C ′. If d(x, λ) ≤ C+C ′, then
d(x, γ) ≤ 2C+C ′ and hence dHaus(πγ(x), πλ(x)) ≤ (C+C ′)+(2C+C ′) = 3C+2C ′. If d(x, λ) > C+C ′,
let a ∈ πλ(x). Further, let b be on [x, a] at distance C +C ′ from a. We have that d([x, a][x,b], γ) ≥ C ′.
Since γ has C ′-bounded geodesic image, diam(πγ([x, a][x,b])) ≤ C ′. For any c ∈ πγ(b) we have that
d(c, b) ≤ 2C + C ′ and hence d(c, a) ≤ 3C + 2C ′. Thus dHaus(πγ′(x), πλ(x)) ≤ 3C + 3C ′.

We are now ready to show that λ hast the C ′′ bounded geodesic image property for C ′′ = 7C ′+6C.
Let η be a geodesic with d(η, λ) ≥ C ′ + C. We have that d(η, γ) ≥ C ′. Since γ has C ′-bounded
geodesic image, diam(πγ(η)) ≤ C ′. By the argument above, dHaus(πγ(η), πλ(η)) ≤ 3C+3C ′ and hence
diam(πλ(η)) ≤ C ′ + 6C + 6C ′ = C ′′, implying that λ indeed has C ′′ bounded geodesic image. Lemma
1.7 about the equivalence of strong contraction and bounded geodesic image concludes the proof.

(2): Let λ be a C-quasi-geodesic segment whose endpoint lie in the C–neighbourhood of a C–
contracting C–quasi-geodesic γ. By Lemma 1.5, there exists a geodesic γ′ with Hausdorff distance
at most C ′ from γ, which is C ′′–contracting by (1). Further C ′ and C ′′ depend only on C. By
[Cor17, Lemma 2.1] combined with Lemma 1.9, there exists a subsegment γ′′ ⊂ γ′ and a constant H
depending only on C ′′ (and hence depending only on C) such that dHaus(γ

′′, λ) ≤ H. By Lemma 1.8
about subgeodesics of strongly-contracting geodesics the geodesic γ′′ is C ′′′–contracting, where C ′′′

depends only on C. Now (1) concludes the proof. □

In light of Lemma 1.11, we can strengthen Lemma 1.10 by being able to say that not only are
C-contracting C-quasi-geodesics close to a geodesic, but that geodesic is also C ′-contracting for some
C ′ only depending on C. This is summarized in the following lemma.

Lemma 1.12. There exists a function Φgeo : R≥0 → R≥0 such that every C-contracting C-quasi-
geodesic λ has Hausdorff distance at most Φgeo(C) from a Φgeo(C)-contracting geodesic γ.

1.2. Quadrangle contraction. In this subsection we introduce the notion of quadrangle contraction.
We then show that quadrangle contraction is equivalent to strong contraction. Being able to work with
quadrangle contraction instead of strong contraction, in particular the notion of thin geodesics, greatly
simplifies the proofs about the contraction space defined in the next Section.

Let γ be a geodesic segment. The midpoint of γ, denoted by mγ , is the point on γ which is
equidistant from both endpoints γ− and γ+ of γ. For any pair of points x, y we denote m[x,y] by mxy.

Definition 1.13. An n-gon G is an n-tuple (γ1, γ2, . . . , γn) of geodesic segments satisfying γ+
i = γ−

i+1

for all 1 ≤ i ≤ n. Here γn+1 denotes γ1. We call a 2-gon, 3-gon or 4-gon a bigon, triangle or quadrangle
respectively.

We say that an n-gon G = (γ1, γ2, . . . , γn) contains a geodesic segment γ, if γ is a subsegment of γ1.

Definition 1.14 (r-thin). A geodesic segment γ is r-thin if every quadrangle Q = (γ1, γ2, γ3, γ4)
containing γ satisfies that γ2 ∪ γ3 ∪ γ4 intersects the closed r-ball around mγ . We say that a geodesic
segment is thin if it is r-thin for some r.

Note that degenerate quadrangles (i.e. one or multiple sides are a point) are also quadrangles. Thus
if we know a segment γ is r-thin, this allows us to make statements about triangles and bigons the
segment γ is contained in.

Definition 1.15 (quadrangle-contracting). A geodesic γ is r-quadrangle-contracting if every subseg-
ment γ′ ⊂ γ of length at least 3r is r-thin.

Before we prove that quadrangle-contraction and strong contraction are equivalent, we prove the
following technical lemma. The lemma highlights a property about closest point projection. Its main
use is Corollary 1.17, which we usually apply to quadrangles that contain contain r-thin geodesics.
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Lemma 1.16. Let γ be a geodesic. Let x ∈ X be a point with closest point projection x′ ∈ πγ(x). Let

y be a point on γ, then d(y, [x, x′]) ≥ d(y,x′)
2 .

Proof. Let z ∈ [x, x′]. Since x′ is the closest point projection of x on γ we have that d(z, x′) ≤ d(z, y).
By the triangle inequality, d(x′, y) ≤ d(x′, z) + d(z, y) ≤ 2d(z, y), which concludes the proof. □

Corollary 1.17. Let γ and γ′ be geodesics. Let x and y be points on γ′ with closest point projections
x′ ∈ πγ(x) and y′ ∈ πγ(y). Let m be a point on γ with d(x,m) > 2r and d(y,m) > 2r. If d([x′, x] ∪
γ′
[x,y] ∪ [y, y′],m) ≤ r, then d(m, γ′

[x,y]) ≤ r.

Lemma 1.18. There exists a function ΦQ : R≥0 → R≥ 0 such that for any geodesic γ, the following
properties are ΦQ-equivalent.

(1) The geodesic γ is r–quadrangle contracting.
(2) The geodesic γ is C–contracting.
(3) The geodesic γ has D–bounded geodesic image.

Proof. Lemma 1.7 implies that (2) ⇐⇒ (3).
(2) =⇒ (1) : Assume γ is C–contracting. Let γ′ ⊂ γ be a subsegment of length ℓ(γ′) ≥ 3C ′ + 1,

where C ′ = Φcon(Φsub(C)) is a constant such that every subsegment of γ has C ′–bounded geodesic
image (see Lemmas 1.8 and 1.7). It suffices to show that γ′ is r = (4C ′ + 1)–thin. Let γ′′ ⊂ γ′ be a
subsegment of length 3C ′ + 1 which contains mγ′ . Let Q = (γ1, γ2, γ3, γ4) be a geodesic quadrangle
containing γ′. The set πγ′′(γ2 ∪ γ3 ∪ γ4) contains both endpoints of γ′′. Thus diam(πγ′′(γi)) ≥
ℓ(γ′′)/3 > C ′ for some i ∈ {2, 3, 4}. Since γ′′ has C ′–bounded geodesic image d(γi, γ

′′) < C ′ and hence
d(γi,mγ′) < C ′ + ℓ(γ′′) ≤ r.

(1) =⇒ (3) : Let λ be a geodesic with diam(πγ(λ)) > 4r + 1. Let x, y be points on λ such that
there exist points a ∈ πγ(x), b ∈ πγ(y) with d(a, b) > 4r + 1. Let γ′ = γ[a,b]. Consider the geodesic
quadrangle Q = (γ′, [b, y], λ[y,x], [x, a]). Using that γ is r–quadrangle-contracting and using Corollary
1.17, we get that d(λ[y,x],mγ) ≤ r. Hence d(λ, γ) ≤ r, which shows that γ has D = (4r + 1)–bounded
geodesic image. □

Definition 1.19. We denote by Φ the function which is the maximum of the previously mentioned
functions Φd,Φgeo,Φcon,Φsub and ΦQ.

1.3. Morse and strongly contracting Elements. In this section we recall the notions of Morse
and strongly contracting elements and outline how they relate to one another.

Notation: In this section, G denotes a group and (X, d) a geodesic metric space on which G acts.
All actions in this paper are assumed to be actions by isometries.

An element g ∈ G is called loxodromic (with respect to the action of g ↷ X), if the map Z → X
defined via n 7→ gnx is a quasi-isometry for some (or equivalently all) x ∈ X.

If G is a finitely generated group acting geometrically on X, then an element g ∈ G is Morse if the
set {gix}i∈Z is at bounded Hausdorff distance from a Morse geodesic line. Since Morseness is preserved
under quasi-isometries, being Morse (unlike being loxodromic) is an intrinsic property of the element
g ∈ G and does not dependent on the specific action or space X.

Definition 1.20 (strongly-contracting axis). We say that (the axis of) an element g ∈ G is C–
contracting, if g ↷ X is loxodromic and g stabilizes a bi-infinite C-contracting C-quasi-geodesic. We
say that the axis of g is strongly-contracting if it is C-contracting for some constant C ≥ 0.

Observe that if an element g ↷ X is C-contracting, then Lemma 1.12 states that {gix}i∈Z is in the
Φ(C)–neighbourhood of a Φ(C)–contracting geodesic for some x ∈ X.
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Observe that (by Lemma 1.12 and Lemma 1.11) an element g ↷ X is strongly-contracting if and
only if {gix}i∈Z is at bounded Hausdorff distance from a strongly-contracting geodesic line. If the
action of a finitely generated group G on X is geometric and g is strongly-contracting, then g is Morse.

1.4. Actions on hyperbolic spaces. In this section we recall some background on acylindrical
hyperbolicity and WPD elements. For more details we recommend [Osi16].

Notation: As in the previous section, G denotes a group acting (by isometries) on a geodesic
metric space (X, d).

Definition 1.21 (acylindrical action). Let G be a group that acts on a hyperbolic space X. We say
that G acts acylindrically on X if for all R > 0 there exists n ∈ N and D > 0 such that for all x, y ∈ X
with d(x, y) > D the following holds:

|{g ∈ G | d(x, gx) < R, d(y, gy) < R}| < n.(2)

A finitely generated group G is called acylindrically hyperbolic if it admits a non-elementary acylin-
drical action.

In our paper, we focus on slightly weaker forms of acylindrical actions. The first one is non-uniform
acylindricity, where |{g ∈ G | d(x, gx) < R, d(y, gy) < R}| is bounded, but not necessarily uniformly
bounded, this was introduced in [Gen16]. The second one is an acylindrical action along a subset,
introduced in [Sis16]. There, |{g ∈ G | d(x, gx) < R, d(y, gy) < R}| < n but only for x, y in a certain
subset A ⊂ X instead of the whole space.

Definition 1.22 (Non-uniform acylindricity). We say that a group G acts non-uniformly acylindrically
on a hyperbolic space X if for all R > 0 there exists D ≥ 0 such that

|{g ∈ G|d(x, gx) < R, d(y, gy) < R}| < ∞,(3)

for all x, y ∈ X with d(x, y) ≥ D.

Definition 1.23. Let G be a group which acts on a hyperbolic space Y and let A be a subset of Y .
We say that G acts acylindrically along A if for all R > 0 there exists n ∈ N and D > 0 such that for
all x, y ∈ A with d(x, y) > D the following holds:

|{g ∈ G|d(x, gx) < R, d(y, gy) < R}| < n.(4)

In our paper, we will have actions which are acylindrical along the orbit of stable subgroups of G.

Definition 1.24. Let H be a finitely generated subgroup of a finitely generated group G. We say
that H is stable if the following two properties hold

(1) H is undistorted (in other words, the natural embedding of H in G is a quasi-isometric em-
bedding)

(2) There exists a Morse gauge M such that any geodesic (in G) between any two points in H is
M–Morse in G.

1.4.1. WPD elements. Another important notion are WPD elements.

Definition 1.25 (WPD). Let G be a group that acts on a hyperbolic space X. A loxodromic element
g ∈ G is called WPD (weakly properly discontinuous) if for all x ∈ X and R > 0 there exists an integer
N ∈ N such that

|
{
h ∈ G|d(x, hx) < R, d(gNx, hgNx) < R

}
| < ∞.(5)
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An element g ∈ G is called generalized loxodromic if there is a hyperbolic space X and an action
of G on X for which g is WPD. In [Sis16], it is shown that every generalized loxodromic element is a
Morse element.

One focus of our paper is to construct actions where all generalized loxodromics act WPD. We call
such actions universal WPD actions.

Definition 1.26. Let G be a group acting on a hyperbolic space X. We say that the action of G on
X is a universal WPD action if all generalized loxodromic elements are WPD.

In Section 2 we will construct a hyperbolic space with an action of a group G, which satisfies (under
certain assumptions) that an element is WPD if and only if it is strongly contracting. Since all Morse
elements are generalized loxodromics, such an action is a universal WPD action if and only if being a
Morse element is equivalent to being a strongly contracting element. This leads us to the definition of
Morse-dichotomous and weakly Morse dichotomous spaces, where this is precisely the case.

Definition 1.27 (Morse-dichotomous). We say that a geodesic metric space X is Morse-dichotomous
if for every Morse gaugeM there exists a constant C such that allM -Morse geodesics are C-contracting.
We say that a geodesic metric spaceX is weakly Morse-dichotomous if every Morse geodesic is strongly-
contracting.

Examples of Morse-dichotomous spaces include the following:

• CAT(0) spaces [Cas20]
• Injective metric spaces [SZ22]. Note that the mapping class group acts on an injective metric
space [HHP23].

• Certain infinitely presented C ′(1/6)–small cancellation groups [Zbi23].

1.4.2. Quasi-isometrically embedded subspaces. In [BCK+23], the notion of recognizing space for stable
subgroups is introduced.

Definition 1.28. Let H ≤ G be a stable subgroup and let X be a hyperbolic space on which G
acts. If the orbit map from H to X is a quasi-isometry we say that X is a recognizing space for H.
We further say that X is a universal recognizing space for G if it is a recognizing space for all stable
subgroups of G.

In Section 3 we will show that under certain conditions on X and the action of G on X, the
contraction space X̂ is a universal recognizing space.

2. Construction - the contraction space

In this section, we define the contraction space and show that it is hyperbolic. Intuitively, the
construction works as follows. We want to “collapse” (i.e. add an interval of length one between) all
pairs of points whose connecting geodesic is not “strongly-contracting enough”. Since every geodesic
segment is strongly-contracting (the diameter of any projection is at most the length of the segment)
we need to specify what “strongly-contracting enough” means. It turns out that there are several
different ways to define “strongly-contracting enough”, which lead to different hyperbolic spaces which
are not canonically isomorphic. In the following, we focus on a particular choice of making the notion
“strongly-contracting enough” precise. In Section 2.4, we discuss different choices of the definitions.

We introduce the notion of contraction gauge.

Definition 2.1 (contraction gauge). We call a function K : R≥0 → R≥0∪{∞} which is non-decreasing
and satisfies K(r) ≥ 4r + 1 for all r a contraction-gauge. If ∞ is not in the image of K, we say that
K is full otherwise we say that K is partial.
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Morally, a geodesic segment is “strongly-contracting enough” if for some r ≥ 0, it is at least K(r)–
long and r–thin. In the next section, we make the notion of “strongly-contracting enough” precise by
defining what it means to be K-anti-contracting.
Notation: For the rest of the paper, unless noted otherwise, K denotes a contraction gauge.

2.1. Construction. We say that a pair of points (x, y) is anti-contracting if none of its subsegments
are “strongly-contracting enough”.

Definition 2.2 (Anti-contracting). We say that a pair of points (x, y) ∈ X ×X is K-anti-contracting
if d(x, y) ≥ 1 and for all r ≥ 0 and all geodesics γ from x to y the following holds. No subsegment γ′

of γ of length ℓ(γ′) ≥ K(r) is r–thin. We denote the set of K–anti-contracting pairs by AK .

Now we are ready to define the K-contraction space.

Definition 2.3 (The K-contraction space). The K-contraction space of X, denoted by X̂K is con-
structed as follows; Start with the space X. Then, for every pair of K-anti-contracting points
(x, y) ∈ AK add an interval of length one and glue its endpoints to x and y respectively.

We denote the induced path metric in X̂K by d̂ if it is clear which contraction function was used and

by d̂K otherwise. Since X is a geodesic metric space, so is X̂K . Similarly, we denote D-neighbourhoods

in X̂K by N̂D(·), the diameter with respect to d̂ by d̂iam(·) and so on. There is a natural inclusion

ιK : X ↪→ X̂K and we identify X with its image in X̂K . Observe that d(x, y) ≥ d̂(x, y) for all x, y ∈ X.

For any path γ : I → X we denote the composition ιK ◦ γ : I → X̂K by γ̂. While the images of γ and
γ̂ are equal, the important distinction is that if γ is a (quasi-)geodesic, γ̂ need not be one. Further

[̂x, y] denotes the image of the geodesic [x, y] in X̂K and is not necessarily a geodesic (however, later

on we will prove that [̂x, y] is at bounded Hausdorff distance from a geodesic in X̂K). For any pair of

points x, y ∈ X̂K , [x, y]K denotes a choice of geodesic (with respect to d̂) from x to y. Further, if we
do not specify, then closest points, neighbourhoods, being a geodesic and so on is always considered
to be with respect to the metric d.

Remark 2.4. If d̂K(x, y) > 1 for some points x, y ∈ X, then there exists a constant r ≥ 0, a geodesic
γ from x to y and a subsegment γ′ ⊂ γ such that γ′ is at least K(r)–ong and r–thin.

The construction above associates a family {X̂K}K of what we will prove to be hyperbolic spaces

to each geodesic metric space X̂K . Later on we will show that on mild assumptions on K (i.e.
K(r) ≥ 10r + 1 or K being full) the K-contraction space satisfies a variety of desired properties. To
not always have to specify the contraction gauge K, we want to distinguish one of these spaces and
simply call it the contraction space.

Definition 2.5 (Contraction space). If K(r) = 10r+1, we denote X̂K by X̂ and call it the contraction
space.

2.2. Hyperbolicity. In this section, we first show that for any contraction gaugeK, theK–contraction
space X̂K is hyperbolic. Secondly, we show that if X contains a strongly-contracting geodesic ray and

K(r0) ̸= ∞ for some large enough r0 ≥ 0, then (X̂K , d̂) is non-trivial.

Proposition 2.6. For any contraction gauge K, the K-contraction space X̂K is δ–hyperbolic, where
δ is a constant neither depending on K nor X.

To prove this, we use the following proposition of [DDLS23]. It is a version of the guessing geodesic
lemma from [MS13] which works in a more general setting.
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Figure 1. Geodesic triangles are thin

Lemma 2.7 (Guessing geodesics, Proposition 2.2 of [DDLS23]). Let Y be a path-connected metric
space, let S ⊂ Y be an R-dense subset for some R > 0, and let δ ≥ 0 such that for all pairs x, y ∈ Y
there are rectifyable path-connected sets η(x, y) ⊂ Y containing x, y and satisfying:

(1) for all x, y ∈ S with d(x, y) ≤ 3R we have diam(η(x, y)) ≤ δ,
(2) for all x, y, z ∈ S we have η(x, y) ⊂ Nδ(η(x, z) ∪ η(z, y)).

Then there exists a constant δ′ depending only on δ and R such that Y is δ′-hyperbolic and the Hausdorff
distance between η(x, y) and any geodesic from x to y is at most δ′.

Proof of Proposition 2.6. We use Lemma 2.7 about guessing geodesics where we choose S = X and

define η(x, y) = [̂x, y] for all x, y ∈ X. The set X is 1
2 -dense in X̂K . Clearly, x, y ∈ η(x, y), further,

ℓ(η(x, y)) ≤ d(x, y) so η(x, y) are indeed rectifyable paths. It remains to prove (1) and (2), which we
will prove for δ = 6.

We first prove the following claim, which directly implies (2).

Claim 1. If (γ, γ′, γ′′) is a geodesic triangle in X, then γ ⊂ N̂1(γ
′ ∪ γ′′).

Proof of claim. Denote the starting points of γ, γ′ and γ′′ by x, y and z respectively and let p be a

point on γ. We will show that d̂(p, q) ≤ 1, where q is a point on γ′ ∪ γ′′ closest to p with respect to

the metric d. Without loss of generality q lies on γ′′. Assume that d̂(p, q) > 1. Then the pair (p, q)
is not K–anti-contracting. In particular, there exists a constant r ≥ 0, a geodesic λ : I → X from p
to q and a subgeodesic λ′ ⊂ λ which is at least K(r)–long and r–thin. Let m be the midpoint of λ′
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as depicted in Figure 1. Note that d(m, p) ≥ K(r)/2 > 2r (and similarly d(m, q) > 2r). Considering
the triangle (λ, γ′′

[q,x], γ[x,p]) yields that there exists a point p1 on γ′′
[q,x] ∪ γ[x,p] with d(m, p1) ≤ r.

We have that d(p, p1) ≤ d(p,m) + r < d(p, q). Hence the point p1 cannot lie on γ′′
[q,x] (otherwise q

would not be a closest point to p) implying that p1 ∈ γ[x,p]. A similar argument for the quadrangle
(λ, γ′′

[q,z], γ
′
[z,y], γ[y,p]) yields that there exists a point p2 ∈ γ[y,p] with d(m, p2) ≤ r. Since p lies on

a geodesic from p1 to p2, there exists i ∈ {1, 2} such that d(p, pi) ≤ r. Hence d(p,m) ≤ 2r, a

contradiction. Thus d̂(p, q) ≤ 1. Since this holds for any vertex p ∈ γ, the statement follows. ■

(1): Let x, y ∈ X with d̂(x, y) ≤ 3/2. If d(x, y) ≤ 3/2, then d̂iam(η(x, y)) ≤ 3/2 ≤ δ. Otherwise,
there exist a pair of K-anti-contracting points (x′, y′) with d(x, x′) ≤ 1/2 and d(y, y′) ≤ 1/2. By
the definition of anti-contracting, for any z, z′ ∈ [x′, y′] we have that d(z, z′) ≤ 1 or (z, z′) is K–anti-

contracting as well. In particular, d̂iam([x′, y′]) ≤ 1. The claim proven above applied to the triangles

([x, y], [y, x′], [x′, x]) and ([y, x′], [x′, y′], [y′, y]) yields that [x, y] ⊂ N̂2([x, x
′] ∪ [x′, y′] ∪ [y′, y]). Hence

d̂iam([x, y]) ≤ 6. □

Remark 2.8. We denote the constant δ′ from Lemma 2.7 for δ = 6 by δ0. With this notation, the
K-contraction space is δ0 hyperbolic.

2.3. Quasi-geodesics in the contraction space. In this section we investigate which geodesics in
X map to parameterised quasi-geodesics in X̂K .

Remark 2.9. Instead of choosing η(x, y) = [̂x, y], we could have chosen η(x, y) = γ̂ for any geodesic
γ from x to y and the proof would have worked analogously. Hence, any geodesic γ : I → X from x
to y is at Hausdorff distance at most δ0 from [x, y]K . In particular, if z lies on a geodesic from x to

y, then d̂(x, z) ≤ d̂(x, y) + δ0. Moreover, d̂iam(γ) ≤ d̂(x, y) + 2δ0 for any geodesic γ : I → X from x
to y. Indeed, let p, q ∈ γ for some p, q with d(x, p) ≤ d(x, q). Applying the the statement above twice,

we get that d̂(p, y) ≤ d̂(x, y) + δ0 and d̂(p, q) ≤ d̂(p, y) + δ0, implying that d̂(p, q) < d̂(x, y) + 2δ0.

Lemma 2.10. Let K be a contraction-gauge and let γ : I → X be a C-contracting geodesic. If
K(Φ(C)3) < ∞, then γ̂ : I → X̂K is a Q-quasi-geodesic, where Q = 4(K(Φ(C)3) + 6Φ(C) + 3).

Recall that Φ is defined in Definition 1.19.

Proof. Let π : X̂K → X be the map that sends x ∈ X̂K to (one of) its closest points in X. Observe

the following; if d̂(x, y) ≤ 1
4 , then d̂(π(x), π(y)) ≤ 1. Let τ : X̂K → γ be a map that sends points

x ∈ X to (one of) their closest points in γ with respect to the metric d. Further for x ∈ X̂K −X define

τ(x) = τ(π(x)). We will show that for all x, y ∈ X̂K ,

d(τ(x), τ(y)) ≤ Qd̂(x, y) +Q,(6)

which, when applied to points on γ, directly implies that γ̂ is a Q–quasi-geodesic. To show (6), by the
triangle inequality, it is enough to show that

d(τ(x), τ(y)) ≤ Q

4
,(7)

for all x, y ∈ X̂K with d̂(x, y) ≤ 1
4 , or alternatively for all x, y ∈ X with d̂(x, y) ≤ 1. We will proceed

to show the latter.
Let x, y ∈ X be two points with d̂(x, y) ≤ 1. Define x′ = τ(x) and y′ = τ(y). We aim to show

that d(x′, y′) ≤ Q/4. Assume that d(x′, y′) > Q/4. Let a′ and b′ be points on γ[x′,y′] at distance
2Φ(C) + 1 from x′ and y′ respectively. Since γ is C-contracting, it is Φ(C)-quadrangle-contracting.
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Figure 2. Quasi-geodesics are stongly contracting

In particular, considering the quadrangle ([x′, y′], [y′, y], [y, x], [x′, x]) yields points a and b on [y′, y] ∪
[y, x]∪ [x, x′] which are in the Φ(C)-neighbourhood of a′ and b′ respectively. By Corollary 1.17, a and b
lie on [x, y]. By Lemma 1.11, [x, y][a,b] is Φ

2(C)-contracting and hence Φ3(C)-quadrangle-contracting.

Consequently, [x, y][a,b] is Φ
3(C)-thin. Further, d(a, b) ≥ d(x′, y′)− (6Φ(C)+2) > K(Φ3(C)), implying

that d(x, y) > 1 and (x, y) is not K–anti-contracting, a contradiction to d̂(x, y) ≤ 1. □

The following corollary follows directly from Lemma 2.10

Corollary 2.11. If X contains a strongly-contracting geodesic ray and K is full, then X̂K is un-
bounded.

Next we want to prove Lemma 2.13, which is a partial converse of Lemma 2.10. Before we start
with the proof we introduce the notion of separatedness, which will prove useful in the proof.

Definition 2.12 (separated). Let x, y ∈ X be points. We say that x and y are (r,K)–separated
for some r ≥ 0 if there exists a geodesic γ from x to y and a subgeodesic γ′ ⊂ γ which is at least
K(r)–long and r–thin. If it is clear which contraction gauge we are using, we simply say that x and
y are r–separated. We call the geodesic γ an r–witness of the separation of x and y and we call the
point mγ′ the pinch point.

Note that if d̂(x, y) > 1, then x and y are r–separated for some r ≥ 0.

Lemma 2.13. Let γ : I → X be a geodesic. If γ̂ is a Q-quasi-geodesic, then γ is Φ(27Q2)-contracting.

Proof. Let γ : I → X be a geodesic such that γ̂ is a Q-quasi-geodesic. We show that γ has the
(27Q2)–bounded geodesic image property, and hence is Φ(27Q2)–contracting.

Let λ : J → X be another geodesic. Assume that there exist points p, q on λ whose closest point
projections p′ ∈ πγ(p) and q′ ∈ πγ(q) onto γ satisfy d(p′, q′) ≥ 27Q2. Since γ̂ is a Q–quasi-geodesic,

there exist points x, x′ on γ[p′,q′] with d̂(x, x′) = 2, 12Q2 ≤ d(p′, x) ≤ d(p′, x′) and 12Q2 ≤ d(x′, q′).

Since γ̂ is a Q–quasi-geodesic, d(x, x′) ≤ 3Q2. Hence the points x and x′ are r–separated for some r
with K(r) ≤ 3Q2 (and thus r ≤ Q2). Let γ′ be an r–witness with pinch point m of the separation of x
and x′. This is depicted in Figure 2. Consider the quadrangleQ = (γ[p′,x]◦γ′◦γ[x′,q′], [q

′, q], λ[q,p], [p, p
′])

and the bigon B = (γ′, γ[x,x′]). Since m is the pinch point, there exists a point y ∈ [q′, q]∪λ[q,p] ∪ [p, q]
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such that d(y,m) ≤ r. Further, there exists a point z ∈ γ[p,x′] with d(z,m) ≤ r. Hence d(y, z) ≤ 2r
but d(z, {p′, q′}) ≥ 4r. By Corollary 1.17, we can assume that y ∈ λ[q,p].

Hence d(λ, γ) ≤ 2r ≤ 6Q2 implying that γ has (27Q2)-bounded geodesic image and hence is
Φ(27Q2)–contracting by Lemma 1.7. □

2.4. Alternative definitions. It turns out that in the definiton of the K-contraction space X̂K , there
were some choices involved. Most prominently, how to define what “not strongly-contracting enough”
should mean. In this section we explore other ways we could have defined the K–contraction space
X̂K .

Denote by BK ⊂ X×X the set of pairs (x, y) with d(x, y) ≥ 1 and such that for all geodesics γ from x
to y the following holds. No subsegment γ′ of γ of length ℓ(γ′) ≥ K(r) is r–quadrangle-contracting.

Note that the only difference between the definition of AK and BK is that we replaced “r–thin” by
“r–quadrangle-contracting”. Since any r–quadrangle-contracting geodesic is also r–thin, we have that
AK ⊂ BK .

If we change the definition of anti-contracting, separated and witness as described below and change
the definition of X̂K accordingly, then all the results from Section 2, Section 3 and Section 4 still hold.
The proofs work analogously.

• (anti-contracting) A pair (x, y) ∈ X ×X is K-anti-contracting if and only if it is contained in
BK .

• (separated) A pair of points (x, y) is (r,K)–separated if there exists a geodesic γ form x to y
and a subgeodesic γ′ of γ which is r–quadrangle contracting and at least K(r)–long.

• (witness) A geodesic γ from x to y is a witness of a (K, r)-separation of the pair (x, y) if there
exists a subgeodesic γ′ ⊂ γ which is r–quadrangle contracting and at least K(r)–long.

We call the K-contraction space obtained from the definitions above the alternative K–contraction
space and denote it by X̃K (and its metric by d̃). The example below shows that while the K–
contraction space and the alternative K–contraction space share quite a few properties, they are
fundamentally different.

Example 2.14. Let X be the Cayley graph of the free product G = Z∗Z2 with respect to the standard
generating set S = {a, b, c}, where Z = ⟨a⟩ and Z2 = ⟨b, c⟩. Let K be a full contraction gauge. We will

show that the K–contraction space X̂K is canonically quasi-isometric to the Bass-Serre tree T of X,
while the alternative K–contraction space X̃K is not canonically quasi-isometric to the Bass-Serre tree
T . Consequently, the K-contraction space X̂K is not canonically quasi-isometric to the alternative
K-contraction space X̃K .

Let Y be the Cayley graph of Z2 = ⟨b, c⟩. X contains various copies of Y , which we will call sheets.
Consider the Bass-Serre tree T of X. The canonical projection π : X → T sends every sheet S of X
to a distinct vertex v of T . We say that the distance between two sheets is the distance between their
projections.

Observation 1. If two points x, y ∈ X lie in the same sheet, then (x, y) ∈ AK ⊂ BK .

The observation above is a special case of the observation below.

Observation 2. If γ : I → X is a geodesic which is completely contained in a single sheet, then γ is
not r–thin for any r < ℓ(γ)/2.

Further note that any geodesic γ whose midpoint mγ is contained in the interior of an edge e of X
labelled by a is 0-thin (any path from one endpoint of γ to the other endpoint of γ has to go through
mγ). This leads us to the following observation.
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Observation 3. If two points x, y ∈ X satisfy that their projections π(x) and π(y) in T have distance
at least K(0) + 1, then (x, y) ̸∈ AK .

Indeed, if the distance of π(x) and π(y) is at least K(0), then there exists a point z on [x, y]
which is in the interior of an edge labelled by a and satisfies d(x, z) ≥ K(0)/2 and d(z, y) ≥ K(0)/2.
Consequently, the subgeodesic γ′ of [x, y] of length K(0) and midpoint z is 0–thin, implying that
(x, y) ̸∈ AK .

Fact 4. The K–contraction space X̂K is canonically quasi-isometric to the Bass-Serre tree T . In
particular, any geodesic γ : I → X whose projection to T is unbounded satisfies that γ̂ is unbounded.

This can be seen as follows. Extend the projection π : X → T to a projection π̂ : X̂K → T ,
where π̂(x) for points x ∈ X̂K −X is defined as π(y), for some point y ∈ X closest to x. The above
observations show that π̂ is a (K(0) + 2)–quasi-isometry.

Fact 5. The canonical projection π̃ : X̃K → T (defined analogously as π̂) is not a quasi-isometry.
In particular, there exists a geodesic γ : I → X whose projection π(γ) to the Bass-Serre tree T is

unbounded but whose projection γ̃ to the alternative contraction space X̃K is bounded.

Consider the geodesic γ : I → X (starting at any point, say x0) and labelled by

b5
1

ab5
2

ab5
3

a . . . .(8)

Observation 6. We have that π(γ) is unbounded but γ̃ is bounded.

The former is trivially true. We will prove the latter, by showing that (x, y) ∈ BK for all x, y ∈ γ
with d(x, y) ≥ 1. Assume that γ′ is a subgeodesic of γ which is r–quadrangle-contracting and at
least K(r)–long. By the definition of γ, there exists a subsegment γ′′ of γ of length at least (3r + 1)
and which is completely contained in a single sheet. By the observation above, γ′′ is not r–thin, a
contradiction to γ′-being r–quadrangle-contracting. Since γ is chosen in a way such that between any
pair of points x, y ∈ γ there is a unique geodesic, the argument above shows that (x, y) ∈ BK for all
x, y ∈ γ with d(x, y) ≥ 1. In other words, the diameter of γ̃ is 1.

We can generalize the construction of a contraction space even further. Namely, given a contraction
gauge K and a constant r ≥ 0 we can choose a set of geodesics segments GK(r) such that the following
holds:

• If γ ∈ GK(r), then γ is r–thin and at least K(r)–long.
• If γ is an at least K(r)–long r–quadrangle-contracting geodesic, then γ ∈ GK(r).

With this, we can update the definition of anti-contracting, separated and witness as follows.

• (anti-contracting) A pair (x, y) ∈ X ×X is K–anti-contracting if and only if for all all r ≥ 0
and all geodesics γ from x to y, no subgeodesic γ′ of γ is contained in GK(r). We denote the
set of K–anti-contracting pairs of points by CK .

• (separated) A pair of points (x, y) is (r,K)–separated if there exists a geodesic γ form x to y
and a subgeodesic γ′ of γ which is contained in GK(r).

• (witness) A geodesic γ from x to y is a witness of a (K, r)-separation of the pair (x, y) if there
exists a subgeodesic γ′ ⊂ γ which is contained in GK(r).

We call the K-contraction space defined using these definitions the (GK ,K)–contraction space. As in
the case of the alternative contraction space, the results in Section 2 hold and the proofs are analogous.
The results in Section 3 and Section 4 hold under the assumption that GK(r) is G–invariant for all r,
where G is the group featuring in the statements. Again, the proofs work analogously.
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3. Group actions on the contraction space

Notation: In this section, G denotes a group acting by isometries on a geodesic metric space (X, d).
Since the set of K–anti-contracting pairs of points is translation-invariant, the action G ↷ X

naturally induces an action of G ↷ X̂K . In this section we study the connection between the two
actions and properties of G ↷ X̂K . In particular we prove generalized versions of the Theorems A, B,
C, D and E.

3.1. Acylindricity and WPD elements. We start by studying WPD elements of G ↷ X̂K and
then prove generalized versions of the Theorems A, B and C. Most results follow directly from the
construction of theK-contraction space. However, to prove Theorem 3.9 (which is a generalized version

of Theorem B) we further need to show that closest points projections in the K–contraction space X̂K

are related to closest point projections in X (Lemma 3.7).

Proposition 3.1. Let G be a group acting properly on X and let g ∈ G be an element such that
g ↷ X̂K is loxodromic. Then g ↷ X̂K is WPD.

Proof. Let g ∈ G be an element which acts loxodromically on X̂K . Since X is 1-dense in X̂K , it is
enough to show that for every x ∈ X and R > 0 there exists an integer N ∈ N such that

|{h ∈ G|d(x, hx) < R, d(gNx, hgNx) < R}| < ∞.(9)

Let R > 0, let x ∈ X and let τ = d(x, gx). Since g ↷ X̂K is loxodromic, there exists c > 0 such

that d̂(x, gnx) ≥ nc for all n ∈ N. At the same time, d(x, gnx) ≤ nτ . We will show that (9) holds
for N = (6τ/c + 6δ0 + 3R + 6)/c, where we recall that δ0 is the hyperbolicity constant as defined in
Remark 2.8.

Let M = d̂(x, gNx). We have that M ≥ cN and hence M ≥ 6τ/c + 6δ0 + 3R + 6. Further
d(x, gNx) ≤ Nτ ≤ Mτ/c. Define x0 = x. Further, for all 1 ≤ i ≤ M/2 choose a point xi on [x, gNx]

with d̂(x, xi) = 2i and with d(x, xi) ≥ d(x, xi−1). Observe that with this definition, d(x, gNx) ≥∑⌊M/2⌋
i=1 d(xi−1, xi). There exists an index i0 with M/6−1 ≤ i0 ≤ M/3 satisfying d(xi0 , xi0+1) ≤ 6τ/c.

Indeed, otherwise d(x, gNx) > (M/6) · (6τ/c) ≥ Mτ/c, a contradiction. Let γ′ be an r-witness of the
separation of xi0 and xi0+1 with pinch point m. Since d(xi0 , xi0+1) ≤ 6τ/c, we have that r ≤ 2τ/c.

Let γ be a geodesic from x to gNx of which γ′ is a subgeodesic. Let h ∈ G be an element

with d̂(x, hx) < R and d̂(gNx, hgNx) < R. Consider the quadrangle Q = (γ, [gNx, hgNx], h ·
[gNx, x], [hx, x]). Since m is a pinch point, there exists a point y ∈ [gNx, hgNx] ∪ h · [gNx, x] ∪ [hx, x]
with d(y,m) ≤ r ≤ 2τ/c. We have that

d(m, [hx, x]) ≥ d̂(m, [hx, x]) ≥ d̂(m,x)−R− δ0 ≥ d̂(xi0 , x)−R− 2δ0

≥ M/3−R− 2δ0 − 2.

We use Remark 2.9 for the second and third step. Since M > 2τ/c + 3R + 6δ0 + 6, the above
calculation shows that y ̸∈ [hx, x]. One can show analogously that y ̸∈ [gNx, hgNx]. Therefore,
d(m,h · [gNx, x]) ≤ r. Since the action of G on X is proper, only finitely many elements h ∈ G satisfy
this, which concludes the proof. □

Proposition 3.2. Let G be a finitely generated group acting geometrically on X. Let g ∈ G be an
element where g ↷ X̂K is WPD. Then g ↷ X is strongly-contracting.

Proof. Let x ∈ X. Since g ↷ X̂K is WPD, g ↷ X is Morse (see [Sis16, Theorem 1]). In particular,
{gix}i∈Z is at bounded Hausdorff distance (with respect to d) from a Morse geodesic line γ : R → X.
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Say dHaus({gix}i∈Z, γ) ≤ D. Further, g ↷ X̂K is loxodromic and hence there exists c > 0 such that

d̂(x, gnx) ≥ cn for all n ∈ N.
We next show that γ̂ is a quasi-geodesic. Let τ = d(x, gx) and let s, t ∈ R. There exists i, j

such that d(γ(s), gix) ≤ D and d(γ(t), gjx) ≤ D. Since, d(gix, gjx) ≥ |s − t| − 2D, we have that

|i − j| ≥ |s−t|−2D
τ . Consequently, d̂(γ̂(t), γ̂(s)) ≥ |i − j|c − 2D ≥ c|s−t|

τ − 2Dc
τ − 2D, implying that

γ̂ is indeed a quasi-geodesic. Lemma 2.13 implies that γ is strongly-contracting, which concludes the
proof. □

Proposition 3.3. Let g ∈ G be a element for which g ↷ X is C-contracting. If K(Φ4(C)) < ∞, then

g ↷ X̂K is loxodromic.

Proof. Since g ↷ X is strongly-contracting, there exists x ∈ X and a Φ(C)-contracting geodesic γ
such that {gix}i∈Z is in the Φ(C)–neighbourhood of γ. Further the map f : Z → X defined by i 7→ gix

is a quasi-isometric embedding. We have to show that the map f̂ : Z → X̂K defined by i 7→ gix is also
a quasi-isometric embedding. By Lemma 2.10, γ̂ is a Q-quasi-geodesic for some Q. Let i, j ∈ Z. There
exist p, q on γ with d(p, gix) ≤ Φ(C) and d(q, gjx) ≤ Φ(C). We have that

d̂(gix, gjx) ≥ d̂(p, q)− 2Φ(C) ≥ d(p, q)

Q
−Q− 2Φ(C) ≥ d(gix, gjx)− 2Φ(C)

Q
−Q− 2Φ(C).

Since f is a quasi-isometric embedding, the above inequalities imply that d̂(gix, gjx) ≥ |i−j|
Q′ −Q′ for

some Q′ ≥ 1 and hence f̂ is indeed a quasi-isometric embedding. □

Theorem 3.4 (Generalization of Theorem C). Let K be a full contraction gauge and let G be a finitely
generated group acting geometrically on X. Let g ∈ G be an element. The following are equivalent;

(1) g is loxodromic (w.r.t the action on X̂K),

(2) g is WPD (w.r.t the action on X̂K),
(3) g is strongly-contracting (w.r.t the action on X).

Proof. Proposition 3.1 states that (1) =⇒ (2). Further, (2) =⇒ (3) follows from Proposition 3.2.
Lastly, (3) =⇒ (1) follows from Proposition 3.3. □

The following Theorem is a generalized version of the second part of Theorem A.

Theorem 3.5. Let K be a full contraction gauge and let G be a finitely generated group acting
geometrically on a weakly Morse-dichotomous space X. Then the action of G on X̂K is universally
WPD.

Proof. If g ∈ G is a generalised loxodromic, then g is Morse (see [Sis16, Theorem 1]) with respect to
the action on X. Since X is weakly Morse-dichotomous, g is strongly-contracting with respect to the
action on X. By Theorem 3.4, g is WPD with respect the action on X̂K . □

We show that if G acts properly on X the action on the K-contraction space X̂K is non-uniformly
acylindrical under the assumptions that either K is partial or K(r) ≥ 10r + 1 for all r ≥ 0. We start
with proving that the action is non-uniformly acylindrical if K is partial.

Theorem 3.6 (Non-uniform acylindricity). Let K be a partial contraction gauge and let G be a group

acting properly on X. Then the action of G on X̂K is non-uniformly acylindrical.
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Figure 3. Closest point projections in X̂K

Proof. Since X is 1-dense in X̂K it is enough to show (3) of Definition 1.22 for points x, y ∈ X. Let

r ≥ 0 be such that K(r) = ∞. Let R > 0 and let x, y ∈ X be points with d̂(x, y) ≥ 2k + 2 for
k = R + r + 2δ0 + 2. Recall that δ0 is the hyperbolicity constant defined in Remark 2.8. Let z be a

point on [x, y] with d̂(x, z) = k and let z′ be a point on [z, y] with d̂(z′, y) = k. With this definition,

d̂(z, z′) ≥ 2. Let γ′ be an r′-witness of the separation of z and z′ for some r′ and let m be the
pinch point. Observe that a geodesic can only be an r′ witness if K(r′) < ∞. Since K(r) = ∞ and
contraction gauges are non-decreasing, we know that r′ < r.

Let γ be a geodesic from x to y containing γ′. Let g ∈ G be such that d̂(x, gx) < R and d̂(y, gy) < R.
It remains to show that there are at most finitely many such elements g. Consider the quadrangle Q =
(γ, [y, gy], g · [y, x], [gx, x]). Since m is the pinch point, there exists a point p ∈ [y, gy]∪ g · [y, x]∪ [gx, x]
with d(p,m) ≤ r′. Since

d(m, [x, gx]) ≥ d̂(m, z)− d̂iam([x, gx]) ≥ k −R− 2δ0 > r ≥ r′,

we have that p ̸∈ [x, gx]. Note that d̂iam([x, gx]) ≤ R + 2δ0 by Remark 2.9. Similarly, p ̸∈ [y, gy] and
hence p ∈ g · [y, x]. Since the action of G on X is proper, there are only finitely many g ∈ G with
d(m, g · [y, x]) ≤ r. This concludes the proof. □

To prove non-uniform acylindricity for full contraction gauges, we need be able to control closest
point projections in X̂K . More precisely, we want to show that if we take the closest point projections

(onto a geodesic) with respect to d or d̂, then the resulting points are close with respect to d̂. We show
this in the following lemma.

Lemma 3.7 (Closest point projections). Let x ∈ X be a point, γ : I → X be a geodesic and p (resp

q) be closest points to x on γ with respect to the metric d (resp d̂). If K(r) ≥ 10r + 1 for all r ≥ 0,

then d̂(p, q) < 17.

Proof. Assume that d̂(p, q) ≥ 17. Let y be the point on γ[q,p] closest to p which satisfies d̂(y, p) ≥ 3/2.
Let λ be an r-witness with pinch point m of the separation of y and p. This is depicted in Figure
3. Consider the triangle Q = (γ[q,y] ◦ λ, [p, x], [x, q]). Since m is the pinch point of λ, there exists
z ∈ [p, x] ∪ [x, q] with d(m, z) ≤ r. We show that z ∈ [x, q]. Assume otherwise. Consider the bigon
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Figure 4. Quadrangle estimates

B = (λ, γ[p,y]). There exists a point z′ ∈ γ[p,y] with d(z′,m) ≤ r. Hence d(z, z′) ≤ 2r. Lemma 1.16
shows that d(z′, p) ≤ 4r and hence d(m, p) ≤ 5r. This is a contradiction to d(m, p) ≥ K(r)/2 > 5r.
So indeed z ∈ [x, q].

For the rest of the proof we assume that z is the point on [x, q] closest to m. Let y′ be the point
on γ[q,y] ◦ λ closest to z. Since d(z,m) ≤ r we know that d(m, y′) ≤ 2r and hence y′ lies on λ. In the

proof of Proposition 2.6 it is shown that if d̂(a, b) ≤ 3/2 for points a, b ∈ X and η is a geodesic from a

to b, then d̂iam(η) ≤ δ = 6. Applying this to a = y and b = p yields that d̂(y, y′) ≤ 6. Consequently,

d̂(z, y) ≤ d̂(z, y′) + 6. Using the triangle inequality, we get that

17− 3/2 ≤ d̂(p, q)− 3/2 ≤ d̂(q, y) ≤ d̂(q, z) + d̂(z, y) ≤ 2d̂(z, y) ≤ 2d̂(z, y′) + 12,

where the fourth inequality holds since q is the closest point on γ to x with respect to d̂ (and hence the

closest point to z on γ with respect to d̂). Hence d̂(z, y′) > 1. In particular, there exists an r′-witness λ′

with pinch point m′ of the separation of y′ and z. Now consider the triangle (γ[q,y] ◦λ[y,y′], λ
′, [x, q][z,q])

since m′ is a pinch point, there exists a point a ∈ γ[q,y] ◦ λ[y,y′] ∪ [x, q][z,q] with d(a,m′) ≤ r′. Since y′

is the closest point on γ[q,y] ◦λ to z, d(m′, γ[q,y] ◦λ) ≥ K(r′)/2 > r′ and hence a lies on [x, q][z,q]. Next
consider the triangle (λ′, [z,m], λ[m,y′]). Again since m′ is a pinch point, there exists b ∈ [z,m]∪λ[m,y′]

with d(b,m′) ≤ r′. Analogously to the other triangle, b ̸∈ λ[m,y′] and hence b ∈ [z,m]. Using the
triangle inequality, we get that d(z, b) ≥ d(z,m′) − d(m′, b) ≥ K(r′)/2 − r′ > 4r′, while d(a, b) ≤ 2r′.
Hence d(a,m) < d(z,m) contradicting that z is the point on [x, q] closest to m and thus yielding the

desired contradiction to d̂(p, q) ≥ 17. □

Next we prove the following lemma, which is a technical lemma about quadrangles with small sides
in the contraction space. We will need it both for the proof of Theorem B and Proposition 3.10, which
shows that elements acting loxodromic on the contraction space X̂K act strongly-contracting on X.

Lemma 3.8. Let K be a full contraction gauge with K(r) ≥ 10r + 1 for all r ≥ 0. For all R > 0,

there exists D > 0 such that the following holds. Let x, y ∈ X be points with d̂(x, y) ≥ D = 2k+2. Let

x′, y′ be points on [x, y] such that d̂(x, x′) = k and d̂(y, y′) = k. Let r0 be a constant such that x′ and

y′ are r0-separated, we call r0 a middle separator of x and y. Let x′′, y′′ be points with d̂(x, x′′) < R

and d̂(y, y′′) < R. Then d([x, y], [x′′, y′′]) ≤ r0.

Proof. Let R > 0 we show that the statement holds for k = 2R + 3δ0 + 18. Recall that δ0 is the

hyperbolicity constant defined in Remark 2.8. By the triangle inequality d̂(x′, y′) ≥ 2, so there does
indeed exists r0 such that x′ and y′ are r0-separated. Let λ be an r0-witness with pinch point m of
the separation of x′ and y′.
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Consider the quadrangle Q = ([x, x′] ◦ λ ◦ [y′, y], [y, y′′], [y′′, x′′], [x′′, x]). Since m is a pinch point,
there exists z ∈ [y, y′′] ∪ [y′′, x′′] ∪ [x′′, x] with d(z,m) ≤ r0. Assume that z ∈ [x′′, x], this is depicted
in Figure 4. Let p and q be the closest point projections of z onto [x, x′] ◦λ ◦ [y′, y] with respect to the

metrics d and d̂. We have that d(z, p) ≤ d(z,m) ≤ r0 and hence d(p,m) ≤ 2r0, implying that p ∈ λ

and hence d̂(x, p) ≥ d̂(x, x′)− δ0 = k − δ0, by Remark 2.9.

Next we study q. Since d̂(x, x′′) < R and z lies on [x′′, x] we have that d̂(z, x) ≤ R + δ0 (see

Remark 2.9). Consequently d̂(q, x) ≤ d̂(x, z) + d̂(z, q) ≤ 2d̂(z, x) ≤ 2R + 2δ0. But now d̂(p, q) ≥
d̂(x, p) − d̂(x, q) ≥ k − 2R − 3δ0 > 17, a contradiction to Lemma 3.7, implying that z ̸∈ [x′′, x].
Analogously we can show that z ̸∈ [y, y′′]. Consequently, z ∈ [y′′, x′′], which concludes the proof. □

Theorem 3.9 (Non-uniform acylindricity, generalization of Theorem B). Let K be a full contraction

gauge with K(r) ≥ 10r+1 and let G be a group acting properly on X. Then the action of G on X̂K is
non-uniformly acylindrical. Furthermore, if there exists an element g ∈ G whose axis in X is strongly
contracting, then G ↷ X̂ has unbounded orbits.

Proof. The furthermore part follows from Lemma 2.10. Since X is 1-dense in X̂K it is enough to show
(3) of Definition 1.22 for points x, y ∈ X. Let R > 0 and let D > 0 be as in Lemma 3.8.

Let g ∈ G be an element such that d̂(x, gx) < R and d̂(y, gy) < R. By Lemma 3.8, there exists
r0 ≥ 0 (not depending on g) such that d([gx, gy], [x, y]) ≤ r0. Due to the properness of the action of
G on X, there are only finitely many elements g ∈ G with d([gx, gy], [x, y]) ≤ r0, which concludes the
proof. □

The following proposition is a strengthening of Proposition 3.2. We will use it in the next section.

Proposition 3.10. Let K be a full contraction gauge with K(r) ≥ 10r + 1 for all r ≥ 0. Let G be a

group acting on X. If an element g ∈ G acts loxodromically on X̂K , then g acts strongly-contracting
on X.

Proof. Let x ∈ X and let g ∈ G be an element acting loxodromically on X̂K . In other words, the map

i 7→ gix from Z → (X̂K , d̂) (and consequently from Z to (X, d)) is a quasi-isometric embedding. In

particular, there exists a constant Q such that the path γk : R → X̂K

γk = · · · ◦ [gikx, g(i+1)k] ◦ [g(i+1)kx, g(i+2)kx] ◦ · · ·

is a Q-quasi-geodesic for all k ∈ N. Since X̂K is hyperbolic, there exists a constant δ such that the
Hausdorff distance between a geodesic and a Q-quasi-geodesic with the same endpoints is at most δ.
Let R = δ+ δ0 + 1. With this, we have that [x, gNx] and (γk)[x,gNx] have Hausdorff less than R (with

respect to d̂) for all N, k such that N is divisible by k.
Let D be the constant from Lemma 3.8, when applying it to R. Let k be an integer such that

d̂(x, gkx) ≥ D. Let D′ = d(x, gkx).
For the moment, fix N such that N is divisible by k. Denote by yi a point on [x, gNx] such

that d̂(yi, g
ikx) ≤ R. Let r0 be a middle separator of x and gkx. By Lemma 3.8, there exists

m ∈ [x, gkx] and for all i ∈ Z, there exists zi ∈ [x, gNx][yi,yi+1] such that d(zi, g
ikm) ≤ r0. In

particular, d(zi, g
ikx) ≤ D′ + r0. Implying that d(zi, zi+1) ≤ 3D′ + 2r0 and consequently that the

Hausdorff distance between (γk)[x,gNx] and [x, gNx] is bounded by 6D′ + 4r0. Furthermore, we have

that d̂(zi, zj) ≥ d̂(gikx, gjkx)−2D′−2r0. In particular, ̂[x, gNx] is a C-quasi-geodesic for some constant
C not depending on N .
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Next we consider the sequence of geodesics ([g−ikx, gikx])i∈N. By Arzela-Ascoli, there exists a sub-

sequence converging to a geodesic λ. Above we have shown that ̂[g−ikx, gikx] is a C-quasi-geodesic for
all i and hence λ is also a C-quasi-geodesic. Lemma 2.13 implies that λ is strongly-contracting. Above
we have shown that the Hausdorff distance (with respect to d) between [g−ikx, gikx] and (γk)[g−ikx,gikx]

is uniformly bounded. Consequently, the Hausdorff distance of λ and γk is bounded. Hence g is indeed
strongly contracting. □

3.2. Stable subgroups and universal recognizing spaces. In this section we prove generalized
versions of Theorem D and Theorem E. In particular, we show that if the action of a finitely generated
group G on X is geometric and X is Morse-dichotomous, then stable subgroups of G embed quasi-
isometrically into the contraction space (implying that the contraction space is a universal recognizing
space) and the action along their orbit is acylindrical.

We start with proving a generalized version of Theorem E.

Theorem 3.11 (Generalization of Theorem E). Let K be a full contraction gauge with K(r) ≥ 10r+1
for all r ≥ 0. Let X be a geodesic metric space. Let C ≥ 0 be a constant and let Y ⊂ X be a subset such

that [x, y] is C-contracting for all x, y ∈ Y . Then the inclusion (Y, d) ↪→ (X̂, d̂) is a quasi-isometric

embedding. Moreover, if G is a group acting properly on X, then the action G ↷ X̂ is acylindrical
along Y .

Proof. Using Lemma 2.10, we get a constant Q such that [̂x, y] is a Q-quasi-geodesics for all x, y ∈ Y .

In particular, the inclusion (Y, d) ↪→ (X̂, d̂) is a quasi-isometric embedding.
By Lemma 1.18, we get a constant r such that [x, y] is r–quadrangle-contracting for all x, y ∈ Y .
It remains to show that G acts acylindrically along Y . Let R > 0 define D = 2R + 6r + 2δ0 + 1.

We will show that for all x, y ∈ Y with d̂(x, y) ≥ D, we have that

|{g ∈ G|d̂(x, gx) < R, d̂(y, gy) < R}| < n,

for some constant n not depending on x and y. Let x, y ∈ Y with d(x, y) > D and let g ∈ G such that

d̂(x, gx) < R and d̂(y, gy) < R. We will show that d(x, gx) < D′ for D′ = Q(D + R + r + 2Q) + r.
Then the properness of the action of G on X concludes the proof.

Let m ∈ [x, y] be a point such that d̂(x,m) = D/2. In particular, d̂(m, y) ≥ D/2, d(x,m) ≥
d̂(x,m) ≥ 3r and d(y,m) ≥ 3r. Consider the quadrangleQ = ([x, y], [y, gy], g·[y, x], [gx, x]). Since [x, y]
is r–quadrangle-contracting (and d(m, {x, y}) ≥ 3r), there exists a point p ∈ [y, gy] ∪ g · [y, x] ∪ [gx, x]
such that d(p,m) ≤ r. By Remark 2.9 and the triangle inequality, for any point q ∈ [x, gx] (or

q ∈ [y, gy]) we have that d̂(m, q) ≥ D/2 − R − δ0 > r and hence d(m, q) > r. Thus, p ∈ g · [y, x].
Furthermore, by the triangle inequality, d̂(gx, p) ≤ D/2 + R + r. Since [̂y, x] (and hence g · [̂y, x]) is
a Q-quasi-geodesic, we have that d(gx, p) ≤ Q(D/2 +R+ r) +Q2 and d(x,m) ≤ QD/2 +Q2. Recall
that D′ = Q(D +R+ r + 2Q) + r. By the triangle inequality, d(gx, x) ≤ D′. □

Theorem 3.12 (Generalization of Theorem D). Let K be a full contraction gauge with K(r) ≥ 10r+1.
Let G be a finitely generated group acting geometrically on a Morse-dichotomous space X and let
H ⊂ G be a stable subgroup. Then H quasi-isometrically embeds into X̂K and the action of G on X̂K

is acylindrical along the orbit of H. In particular, X̂K is a universal recognition space of G.

Proof. Pick a basepoint x0 ∈ X. Since H is a stable subgroup of G (and hence undistorted in G) and
G acts geometrically on X, the map ϕ : H → X defined by ϕ(h) = hx0 is a quasi-isometric embedding.
Define Y = ϕ(H). Moreover, there exists a Morse gauge M such that [x, y] is M -Morse for all elements



22 STEFANIE ZBINDEN

Figure 5. Proof of diameter dichotomy

x, y ∈ Y . Since X is Morse-dichotomous, there exist constants C and r such that [x, y] is C-contracting
and r-quadrangle-contracting for all x, y ∈ Y .

Theorem 3.11 shows that (Y, d) ↪→ (X̂K , d̂) is a quasi-isometric embedding and that G acts acylin-
drical along Y . □

4. The diameter dichotomy

In this section we prove Theorem F. More precisely, we show that if Isom(X) acts coboundedly on

X, then the K–contraction space X̂K is either unbounded or has uniformly bounded diameter only
depending on the density of the action of Isom(X) on X. We further show that in this case, the

K-contraction space X̂K is unbounded if and only if X contains a strongly-contracting ray.

Definition 4.1 (density). Let G be a group acting coboundedly on a metric space X. We say that
the density of x ∈ X, denoted by ρx is the Hausdorff distance between G · x and X. We say that the
density of the action is ρ = infx∈X{ρx}.

Proposition 4.2. If Isom(X) acts coboundedly on X with density ρ, then there exists a constant
∆ = ∆(ρ) > 0 depending only on ρ such that for all contraction gauges K, one of the following holds:

• d̂iamK(X̂K) ≤ ∆,

• X̂K is unbounded.

Proof. Let x ∈ X such that ρx ≤ ρ + 1. We show that the Proposition holds for ∆ = 4δ0 + 2ρ + 9,
where δ0 is the hyperbolicity constant defined in Remark 2.8. Let K be a contraction gauge where

d̂iamK(X̂) = D < ∞. Assume by contradiction that D > ∆. There exist points x, y ∈ X with

d̂(x, y) ≥ D − 2. Let m be the midpoint of the geodesic [x, y]K . As depicted in Figure 5, there exists

g ∈ Isom(X) such that d(gx,m) ≤ ρ + 1 (and hence d̂(gx,m) ≤ ρ + 1). Consider the triangle with

vertices x, y and gy. Since X̂K is a δ0 hyperbolic space, there exists p ∈ [x, gy]K ∪ [gy, y]K with

d̂(m, p) ≤ δ0 (and hence d̂(p, gx) ≤ ρ+ δ0 + 1). If p ∈ [x, gy]K , we have that

d̂(x, gy) = d̂(x, p) + d̂(p, gy) ≥ d̂(x,m)− δ0 + d̂(gy, gx)− δ0 − ρ− 1 ≥ 3

2
D − 2δ0 − ρ− 4 > D,

a contradiction. If p ∈ [gy, y]K , we get a contradiction analogously, which concludes the proof. □
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Next we will prove a generalized version of the moreover part of Theorem F. This is summarized in
the proposition below.

Proposition 4.3 (Generalized version of moreover part of Theorem F). If Isom(X) acts coboundedly

on X and K is a full contraction gauge, then X̂K is bounded if and only if X does not have any
strongly contracting geodesic ray or equivalently, if Isom(X) ↷ X does not have a strongly-contracting
element.

One direction follows directly from Lemma 2.10. To show the other we use the classification of
actions on hyperbolic spaces.

As shown in Gromov [Gro87] an action of a group G on a hyperbolic space Y falls into exactly one
of the following three categories:

• (elliptic) The orbit of G is bounded.
• (parabolic) The group G has unbounded orbit but no loxodromic elements.
• (loxodromic) There exists a loxodromic element g ∈ G.

For example in [CDCMT15], it is shown that if a group G acts coboundedly on a hyperbolic space
Y , then the action cannot be parabolic, leading to the following well-known lemma.

Lemma 4.4. If a group G acts coboundedly on a hyperbolic space Y , then either Y is bounded, or
there exists an element g ∈ G acting loxodromically on Y .

With this result, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. If Isom(X) has a strongly-contracting element, then X contains a strongly

contracting geodesic. Corollary 2.11 then states that the contraction space X̂K is unbounded.
On the other hand, if X̂K is unbounded, then Lemma 4.4 implies that there exists a loxodromic

element g ∈ Isom(X) (since X is 1-dense in (X̂K , d̂), Isom(X) acts coboundedly on (X̂K , d̂)). Propo-
sition 3.10 implies that g is strongly-contracting, and hence that there exists a strongly-contracting
bi-infinite geodesic in X. □

Lemma 4.5. Let H be an undistorted subgroup of a finitely generated group G. Assume that the
Morse boundary of H is empty (that is, no geodesic metric space Y on which H acts geometrically
contains a Morse geodesic ray). Let K be a full contraction gauge such that K(r) ≥ 10r + 1 for all
r ≥ 0. If X is a geodesic metric space on which G acts geometrically, then the orbit Hx is bounded

with respect to the metric d̂ for all elements x ∈ X.

Proof. Let x ∈ X and let Ỹ be the convex hull of the orbit Hx ⊂ (X̂K , d̂). Since X̂K is hyperbolic

and H ⊂ G is undistorted, H acts coboundedly on Ỹ and Ỹ is hyperbolic. Assume by contradiction

that d̂iam(Ỹ ) = ∞. By Lemma 4.4, there exists an element h ∈ H such that h ↷ Ỹ is loxodromic.

Consequently h ↷ X̂K is loxodromic. By Proposition 3.10, h ↷ X is strongly contracting. Since G
acts geometrically on X, this implies that h is Morse — a contradiction to H having empty Morse
boundary. □

Corollary 4.6. Let K be a full contraction gauge with K(r) ≥ 10r + 1 for all r ≥ 0. If Y ⊂ X is an
undistorted subspace with empty Morse boundary and Y acts coboundedly on Y with density ρ, then

d̂iam(Y ) is bounded, where the bound only depends on the density ρ.
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5. Relatively hyperbolic groups

In this section, we show that for groups hyperbolic relative to groups with empty Morse boundary,
the contraction space is naturally quasi-isometric to the coned off space. This suggests that the con-
traction space should be viewed as a generalization of the coned-off space for not necessarily hyperbolic
groups.

This is the only section were the results do not hold for the alternative contraction space and the
(GK ,K)–contraction space as defined in Section 2.4 and one of the main reasons we chose the definition
of anti-contracting as we have.

5.1. Definition and properties. Relative hyperbolicity can be thought of as a generalisation of
hyperbolicity. Roughly speaking, a group G (spaceX) is hyperbolic relative to a collection of subgroups
(subspaces) P if G (X) is hyperbolic after “collapsing” all elements of P. A precise definition can be
found in [Bow12]. There are many different but equivalent definitions of relatively hyperbolic groups
(and spaces). In this paper, we do not work with any definition in particular but use the the results
of [Sis13], which we summarize below.

Lemma 5.1 (Consequences of [Sis13]). Let X be a geodesic metric space hyperbolic relative to a
collection of subset P and let {πP : X → P | P ∈ P} be a collection of closest point projections. There
exists a constant C and an increasing function f : R≥1 → R≥1 such that the following conditions hold.

(1) If γ is a geodesic and diam(γ ∩ NC(P )) ≤ C ′ for all peripherals P ∈ P, then γ is f(C ′)–
contracting.

(2) For all P ∈ P, x ∈ X and p ∈ P , dX(p, πP (x)) ≤ C + (dX(x, p)− dX(x, P )).
(3) Let γ be a geodesic with endpoints x, y ∈ X and let P ∈ P be a peripheral. If d(γ, πP (x)) ≥ C,

then d(πP (x), πP (y)) ≤ C.
(4) Let γ be a geodesic and let P ∈ P be a peripheral. Let x, y be the first and last points of

γ which are in the closed C-neighbourhood of P , then for any point z ∈ γ[x,y] we have that
d(z, P ) ≤ 2C.

The coned-off graph is defined as follows.

Definition 5.2 (Coned-off graph). Let G be a finitely generated group with generating set S which
is relatively hyperbolic to a collection of subgroups (subsets) P. Let X = Cay(G,S). The coned-off

graph X̃ is defined as follows.
Vertices of X̃: The vertices of X̃ are the elements of G.
Edges of X̃: There is an edge between vertices x, y ∈ G if x and y are connected by an edge in X

or if there exists a peripheral P ∈ P such that x, y ∈ P .

With this definition, there exists a natural inclusion from X to the coned-off graph X̃, which we
will denote by ιcone. We denote the (induced graph) metric of X̃ by dcone.

5.2. Quasi-isometry between the coned-off graph and the contraction space. In this section,
G denotes a finitely generated group with finite generating set S which is hyperbolic relative to a
collection of subgroups P which all have empty Morse boundary. The set {πP : X → P |P ∈ P}
denotes a system of closest point projections and C, f are as in Lemma 5.1. They Cayley graph
Cay(G,S) is denoted by X and the coned-off graph by X̃.

We show that the coned-off graph X̃ is quasi-isometric to the contraction space X̂ by showing that
sets which are uniformly bounded in one graph are also uniformly bounded in the other.

Lemma 5.3. Let P ∈ P be a peripheral, then d̂iam(P ) < ∞.
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Proof. Since peripheral subgroups of relatively hyperbolic groups are undistorted (this is for example
a consequence of Lemma 5.14), the lemma is a direct consequence of Lemma 4.5. □

Since there are only finitely many types of peripheral subgroups, we have that supP∈P{d̂iamP} < ∞
and we denote it by Dper.

The next lemma can be thought of as a converse of Lemma 5.3 and shows that if points are far
away in the coned-off graph X̃, they are far away in the contraction space X̂.

Lemma 5.4. There exists a constant Drel such that the following holds. Let x, y ∈ X be two points

with dcone(x, y) > Drel, then d̂(x, y) > 1.

Proof. We will first prove the following claim.

Claim 2. For large enough D, if there exists a peripheral P ∈ P such that following hold, then (x, y)
is not anti-contracting.

• diam(NC(P ) ∩ [x, y]) ≥ D. Let z ∈ [x, y] be the point closest to x with d(z, P ) ≤ C.
• dcone(x, z) ≥ D.

Proof of Claim. Let γ be the subsegment of [x, y] centred at z with length D/2. Let x′ and y′ be
the left and right endpoint of γ. Note that by Lemma 5.1(4), we have that d(y′, P ) ≤ 2C and hence by
the triangle inequality, d(πP (z), πP (y

′)) ≥ D/2− 3C. Furthermore, d(γ[x′,z], P ) ≥ C by the definition
of z. Hence d(πP (x

′), πP (z)) ≤ C by (3).
Let Q = (γ1, γ2, γ3, γ4) be a quadrangle containing γ. Let a and b be the left and right endpoints of

γ1. Observe that d(πP (a), πP (x
′)) ≤ C by (3) and hence by the triangle inequality d(πP (a), z) ≤ 3C.

Consequently, d(πP (a), πP (b)) ≥ d(πP (x
′), πP (y

′)) − 2C ≥ D/2 − 5C. Let 2 ≤ i ≤ 4 be the largest
index such that d(πP (γ

+
i ), πP (γ

−
i )) > C. If D/2 − 2C ≥ 3C + 1, there exists 4 ≥ i ≥ 2 which

satisfies this. By Lemma 5.1(3) we have that d(γi, πP (γ
+
i )) < C and by maximality of i, we have that

d(γi, z) ≤ 2C + d(πP (a), z) ≤ 5C.
Hence, for D ≥ 50C + 1, we have that γ is 5C–thin and at least 50C + 1–long, implying that the

pair (x, y) is not anti-contracting. ■
From now on, fix D large enough that satisfies the claim. Next we will show that for large enough

Drel, the statement holds. Conditions for Drel are outlined in the proof. Let x, y ∈ X be points with
d̃(x, y) ≥ Drel.

If [x, y] satisfies the assumptions of Claim 2, then (x, y) is not anti-contracting and we are done. As-
sume instead that [x, y] does not satisfy the assumptions of Claim 2. In other words, for all peripherals
P ∈ P, at least one of the following holds.

• dcone(x, P ) ≤ D + C,
• diam(NC(P ), [x, y]) ≤ D.

Let z ∈ [x, y] be the last point on [x, y] with dcone(x, z) = D + 2C + 1. The conditions above imply
that for every peripheral diam(NC(P ), [x, y][z,y]) ≤ D. By Lemma 5.1(1), we have that [x, y][z,y] is
f(D)–contracting. We have that d(z, y) ≥ dcone(z, y) ≥ Drel −D− 2C − 1. So, for large enough Drel,
the geodesic [x, y][z,y] is r = Φ(f(D))–quadrangle-contracting and at least 10r+1–long, implying that

(x, y) is not anti-contracting and hence d̂(x, y) > 1. □

We are now ready to prove that the coned-off graph X̃ and the contraction space X̂ are quasi-
isometric.
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Proposition 5.5. Let G be a finitely generated group which is hyperbolic relative to a collection of
subgroups P which all have empty Morse boundary. Then the contraction space X̂ is naturally quasi-
isometric to the coned off graph X̃.

Proof. Let x, y ∈ G and let l = dcone(x, y). Let γ : I → X̃ be a geodesic from x to y. For 0 ≤ i ≤ l,
denote by xi the point on γ with dcone(x, xi) = i. With this, x0 = x and xl = y. For each i, we have
one of the following.

• (xi, xi+1) ∈ E(X). In this case, d̂(xi, xi+1) ≤ d(xi, xi+1) ≤ 1.

• There exists a peripheral P ∈ P such that xi, xi+1 ∈ P . In this case, d̂(xi, xi+1) ≤ Dper by
Lemma 5.3 and the remark below.

Thus, by the triangle inequality, d̂(x, y) ≤ lDper.

Conversely, let x, y ∈ X be points with d̂(x, y) ≤ l and let γ : I → X̂ be a geodesic from x to y.

Define x0 = x. For 1 ≤ i ≤ 2l, inductively define xi as the point on γ ∩X which maximizes d̂(x, xi)

but satisfies d̂(xi−1, xi) ≤ 1. Note that if d̂(xi, xi−1) < 1, then either xi = y or the points right after

xi were in X̂ −X. Since X̂ −X consists of a disjoint union of interiors of edges of length 1, the latter

implies that d̂(xi, xi+1) = 1. Thus, we have that x2l = y. Further, for each 1 ≤ i ≤ 2l we have by
Lemma 5.4, that dcone(xi−1, xi) ≤ Drel. By the triangle inequality, we have that dcone(x, y) ≤ 2lDrel.

The above observations show that the map ι̂cone : (X, d̂) → (X̃, dcone) is a quasi-isometry. Since

(X, d̂) is 1-dense in X̂, the proposition follows. □
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