
ar
X

iv
:2

40
4.

12
17

9v
1 

 [
m

at
h.

N
T

] 
 1

8 
A

pr
 2

02
4

LOCAL FACTORS AND CUNTZ-PIMSNER ALGEBRAS

IGOR V. NIKOLAEV1

Abstract. We recast the local factors of the Hasse-Weil zeta function at
infinity in terms of the Cuntz-Pimsner algebras. The nature of such factors is
an open problem studied by Deninger and Serre.

1. Introduction

Let V be an n-dimensional smooth projective variety over a number field k and
let V (Fq) be a good reduction of V modulo the prime ideal corresponding to q = pr.

Recall that the local zeta Zq(u) := exp
(
∑∞

m=1 |V (Fq)|
um

m

)

is a rational function

Zq(u) =
P1(u) . . . P2n−1(u)

P0(u) . . . P2n(u)
, (1.1)

where P0(u) = 1− u and P2n(u) = 1 − qnu. Each Pi(u) is the characteristic poly-
nomial of the Frobenius endomorphism Friq : (a1, . . . , an) 7→ (aq1, . . . , a

q
n) acting

on the i-th ℓ-adic cohomology group Hi(V ) of variety V . The number of points

on V (Fq) is given by the Lefschetz trace formula |V (Fq)| =
∑2n

i=0(−1)
i tr (Friq),

where tr is the trace of endomorphism Friq [Hartshorne 1977] [5, pp. 454-457]. The
Hasse-Weil zeta function of V is an infinite product

ZV (s) =
∏

p

Zq(p
−s), s ∈ C, (1.2)

where p runs through all but a finite set of primes. Such a function encodes
arithmetic of the variety V . For example, if E is an elliptic curve over Q then

ZE(s) =
ζ(s)ζ(s−1)

L(E,s) , where the order of zero of function L(E, s) at s = 1 is conjec-

tured to be equal the rank of E.
Recall that a fundamental analogy between number fields and function fields

predicts a prime p = ∞ in formula (1.1). It was a mystery how the factor Z∞(u)
looks like. The problem was studied by Serre who constructed local factors Γi

V (s)
realizing the analogy. The goal was achieved in terms of the Γ-functions attached
to the Hodge structure on V [Serre 1970] [10]. To define Γi

V (s) in a way similar
to finite primes, Deninger introduced an infinite-dimensional cohomology Hi

ar(V )
and an action of Frobenius endomorphism Fri∞ : Hi

ar(V ) → Hi
ar(V ), such that

Γi
V (s) ≡ char−1 Fri∞, where char Fri∞ is the characteristic polynomial of Fri∞

[Deninger 1991] [2, Theorem 4.1].
The aim of our note is to recast Γi

V (s) in terms of the Cuntz-Pimsner algebras
[Pask & Raeburn 1996] [9]. Namely, let AV be the Serre C∗-algebra of V [8,
Section 5.3.1]. Recall [6, Lemma 4] that tr (Friq) = tr (Mkiq), where Mkiq is
the Markov endomorphism of a lattice Λi ⊆ τ∗(K0(AV ⊗ K)) ⊂ R defined by the

2010 Mathematics Subject Classification. Primary 11M55; Secondary 46L85.
Key words and phrases. local factors, Cuntz-Pimsner algebras.

1

http://arxiv.org/abs/2404.12179v1


2 NIKOLAEV

canonical trace τ on the K0-group of stabilized C∗-algebra AV [6, p.271]. Therefore

|V (Fq)| =
∑2n

i=0(−1)
i tr (Mkiq) [6, Theorem 1] and the local zeta Zq(u) is a function

of the endomorphisms Mkiq, where 0 ≤ i ≤ 2n. On the other hand, Mkiq ∈ GLbi(Z)
is given by a positive matrix, where bi is the i-th Betti number of V [6, p. 274].
We shall denote by OMki

q
the Cuntz-Krieger algebra given by matrix Mkiq [Cuntz

& Krieger 1980] [1]. Thus the local factors Γi
V (s) must correspond to the Cuntz-

Krieger algebras given by the countably infinite matrices Ai
∞ ∈ GL∞(Z). The OAi

∞

are called the Cuntz-Pimsner algebras [Pask & Raeburn 1996] [9].
Each matrix Ai

∞ is constructed as follows. Let Mod (V ) be the moduli variety
of V . Recall that an analog of AV for Mod (V ) is given by a cluster C∗-algebra A,
such that Prim (A) ∼= Mod (V ), where Prim (A) is the set of two-sided primitive
closed ideals of A endowed with the Jacobson topology. Moreover, AV ⊂ A/I
and K0(AV ) ∼= K0(A/I), where I ∈ Prim (A) [7, Theorem 2]. (Note that the
construction is given for n = 1 [7] but true for the dimensions n ≥ 1.) In other
words, one gets a short exact sequence of the abelian groups:

K0(I)
i
→֒ K0(A)

p
→ K0(AV ), (1.3)

where K0(I) ∼= K0(A) ∼= Z∞. Since K0(AV ) ∼= K0(AV ⊗ K), the Z-modules
Λi ⊆ τ∗(K0(AV ⊗ K)) specified earlier, define a pull back of (1.3). Thus one gets

an exact sequence of modules Λ∞
i

i∗
→֒ Λ∞

i

p∗

→ Λi. Here the rank of cluster algebra
τ−1(Λi

∞) is equal to the Betti number bi and i∗ is the injective homomorphism
given by a matrix Ai

∞ ∈ GL∞(Z) for each 0 ≤ i ≤ 2n. Our main result can be
formulated as follows.

Theorem 1.1. For every smooth n-dimensional projective variety V over a number

field k there exist the Cuntz-Pimsner algebras OAi
∞

, such that the Hasse-Weil zeta

function of V is given by the formula:

ZV (s) =

2n
∏

i=0

(

char Ai
∞

)(−1)i+1

. (1.4)

The paper is organized as follows. A brief review of the preliminary facts is given
in Section 2. Theorem 1.1 proved in Section 3. An application of theorem 1.1 is
considered in Section 4.

2. Preliminaries

We briefly review Deninger cohomology, Cuntz-Pimsner algebras and cluster C∗-
algebras. We refer the reader to [Deninger 1991] [2], [7] and [Pask & Raeburn 1996]
[9] for a detailed exposition.

2.1. Deninger cohomology. The Hodge-Tate module is a p-adic generalization
of the Hodge structure. Namely, let G be the absolute Galois group of a p-adic field
Qp acting by continuity on the algebraic completion C of Qp. If χ is a cyclotomic
character of G, then a module generated by the integer powers of χ is called Hodge-

Tate, see [Fontaine 1982][4, Section 1.1] for the details. Let T :=
(

lim
←−

µpn

)

⊗Qp,

where µm is the m-th root of unity. The Hodge-Tate ring is defined as BHT :=
C[T±1], where G acts on T i by χi. The Hodge filtration on the ring BHT is given by
the formula T iC[T±1]. Using the multi-prime numbers (p1, . . . , pn), one can extend
BHT to the multivaraible Laurent polynomials C[T±1], where T = (x1, . . . , xn).
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Deninger’s idea is to replace the ring BHT over C by a ring Bar of the Laurent
polynomials over the archimedian place R [Deninger 1991] [2, Section 3]. Deninger
cohomology of a smooth projective variety V is defined by the formula

Hi
ar(V ) = D(Bi

ar), (2.1)

where Bi
ar is the i-th cohomology of V viewed as a real Hodge structure and D is a

functor from the category of Hodge structures to an additive category of modules
defined by the derivation Θ = T d

dT
on the ring Bar. The following fundamental

result relates the Deninger cohomology and the Serre local factors Γi
V (s).

Theorem 2.1. ([2, Theorem 4.1]) The derivation Θ induces an endomorphism

Fri∞ : Hi
ar(V )→ Hi

ar(V ), such that

char−1 Fri∞ ≡ Γi
V (s). (2.2)

Remark 2.2. In what follows, all determinants are the regularized determinants
of the countably infinite-dimensional matrices in the sense of [Deninger 1991] [2,
Section 1]. Thus the polynomial char Fri∞ := det (Fri∞ − sI) in (2.2) is well
defined.

2.2. Cuntz-Pimsner algebras. Recall that the Cuntz-Krieger algebra OA is a
C∗-algebra generated by the partial isometries s1, . . . , sn which satisfy the relations















s∗1s1 = a11s1s
∗
1 + a12s2s

∗
2 + · · ·+ a1nsns

∗
n

s∗2s2 = a21s1s
∗
1 + a22s2s

∗
2 + · · ·+ a2nsns

∗
n

. . .
s∗nsn = an1s1s

∗
1 + an2s2s

∗
2 + · · ·+ annsns

∗
n,

(2.3)

where A = (aij) is a square matrix with aij ∈ {0, 1, 2, . . .}. (Note that the original
definition of OA says that aij ∈ {0, 1} but is known to be extendable to all non-
negative integers [Cuntz & Krieger 1980] [1].) Such algebras appear naturally in
the study of local factors [6].

The Cuntz-Pimsner algebra is a generalization of OA to the countably infinite
matrices A∞ ∈ GL∞(Z) [Pask & Raeburn 1996] [9]. Recall that the matrix A∞ is
called row-finite, if for each i ∈ N the number of j ∈ N with aij 6= 0 is finite. The
matrix A is said to be irreducible, if some power of A is a strictly positive matrix and
A is not a permutation matrix. It is known that if A∞ is row-finite and irreducible,
then the Cuntz-Pimsner algebra OA∞

is a well-defined and simple [Pask & Raeburn
1996] [9, Theorem 1]. An AF-core F ⊂ OA∞

is an Approximately Finite (AF-) C∗-

algebra defined by the closure of of the infinite union ∪k,j∪i∈V
j

k

F
j
k (i), where F

j
k (i)

are finite-dimensional C∗-algebras built from matrix A∞, see [Pask & Raeburn
1996] [9, Definition 2.2.1] for the details. We shall denote by α : OA∞

→ OA∞
an

automorphism acting on the generators si of OA∞
by to the formula αz(si) = zsi,

where z is a complex number of the absolute value |z| = 1. Thus one gets an action
of the abelian group T ∼= R/Z on OA∞

. It follows from the Takai duality [Pask &
Raeburn 1996] [9, p. 432] that:

F ⋊α̂ T ∼= OA∞
⊗K, (2.4)

where α̂ is the Takai dual of α and K is the C∗-algebra of compact operators. Using
(2.4) one can calculate the the K-theory of OA∞

.
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Theorem 2.3. ([9, Theorem 3]) If A∞ is row-finite irreducible matrix, then there

exists an exact sequence of the abelian groups:

0→ K1(OA∞
)→ Z∞ 1−At

∞−→ Z∞ i∗−→ K0(OA∞
)→ 0, (2.5)

so that K0(OA∞
) ∼= Z∞/(1−At

∞)Z∞ and K1(OA∞
) ∼= Ker (1 −At

∞), where At
∞

is the transpose of A∞ and i : F →֒ OA∞
. Moreover, the Grothendieck semigroup

K+
0 (F ) ∼= lim

−→
(Z∞, At

∞).

2.3. Cluster C∗-algebras. The cluster algebra of rank n is a subring A(x, B) of
the field of rational functions in n variables depending on variables x = (x1, . . . , xn)
and a skew-symmetric matrix B = (bij) ∈ Mn(Z). The pair (x, B) is called a
seed. A new cluster x′ = (x1, . . . , x

′
k, . . . , xn) and a new skew-symmetric matrix

B′ = (b′ij) is obtained from (x, B) by the exchange relations [Williams 2014] [11,
Definition 2.22]:

xkx
′
k =

n
∏

i=1

x
max(bik,0)
i +

n
∏

i=1

x
max(−bik,0)
i ,

b′ij =

{

−bij if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2 otherwise.
(2.6)

The seed (x′, B′) is said to be a mutation of (x, B) in direction k. where 1 ≤ k ≤ n.
The algebra A(x, B) is generated by the cluster variables {xi}

∞
i=1 obtained from

the initial seed (x, B) by the iteration of mutations in all possible directions k. The
Laurent phenomenon says that A(x, B) ⊂ Z[x±1], where Z[x±1] is the ring of the
Laurent polynomials in variables x = (x1, . . . , xn) [Williams 2014] [11, Theorem
2.27]. In particular, each generator xi of the algebra A(x, B) can be written as a
Laurent polynomial in n variables with the integer coefficients.

The cluster algebra A(x, B) has the structure of an additive abelian semigroup
consisting of the Laurent polynomials with positive coefficients. In other words, the
A(x, B) is a dimension group, see Section 2.1.6 or [8, Definition 3.5.2]. The cluster
C∗-algebra A(x, B) is an AF-algebra, such that K0(A(x, B)) ∼= A(x, B).

2.3.1. Cluster C∗-algebra A(Sg,n). Denote by Sg,n the Riemann surface of genus
g ≥ 0 with n ≥ 0 cusps. Let A(x, Sg,n) be the cluster algebra coming from a
triangulation of the surface Sg,n [Williams 2014] [11, Section 3.3]. We shall denote
by A(Sg,n) the corresponding cluster C∗-algebra. Let Tg,n be the Teichmüller space
of the surface Sg,n, i.e. the set of all complex structures on Sg,n endowed with
the natural topology. The geodesic flow T t : Tg,n → Tg,n is a one-parameter
group of matrices diag(et, e−t) acting on the holomorphic quadratic differentials
on the Riemann surface Sg,n. Such a flow gives rise to a one parameter group
of automorphisms σt : A(Sg,n) → A(Sg,n) called the Tomita-Takesaki flow on the
AF-algebra A(Sg,n). Denote by Prim A(Sg,n) the space of all primitive ideals of
A(Sg,n) endowed with the Jacobson topology. Recall ([7]) that each primitive ideal
has a parametrization by a vector Θ ∈ R6g−7+2n and we write it IΘ ∈ Prim A(Sg,n)

Theorem 2.4. ([7]) There exists a homeomorphism h : Prim A(Sg,n) × R →
{U ⊆ Tg,n | U is generic} given by the formula σt(IΘ) 7→ Sg,n; the set U = Tg,n

if and only if g = n = 1. The σt(IΘ) is an ideal of A(Sg,n) for all t ∈ R and

the quotient algebra A(Sg,n)/σt(IΘ) is a non-commutative coordinate ring of the

Riemann surface Sg,n.
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3. Proof of theorem 1.1

For the sake of clarity, let us outline the main ideas. Let Fri∞ be the Frobenius
endomorphism of the Deninger cohomologyHi

ar(V ) as stated in Theorem 2.1. From
(2.1) we recall that Hi

ar(V ) is the additive group of the ring of Laurent polynomilas
R[x±1], where x = (x1, . . . , xbi). A restriction of Fri∞ : R[x±1] → R[x±1] to
the Laurent polynomials Z[x±1] gives rise to a two-sided primitive ideal IiF (called
the i-th Fontaine ideal) in the cluster C∗-algebra A

i, where K0(A
i) ∼= Z[x±1] and

K0(I
i
F )
∼= Fri∞(Z[x±1]). We prove that the AF -algebras Ai/IiF and A

i
V are stably

isomorphic, where K0(A
i
V )
∼= Λi (Lemma 3.1). Next it is proved that matrix Ai

∞ is
conjugate to Fri∞ in the group GL∞(Z) (Lemma 3.3). In particular, char Ai

∞ ≡
char Fri∞ for all 0 ≤ i ≤ 2n (Corollary 3.4). The rest of the proof follows from
Theorem 2.1, see Lemma 3.5. Let us pass to a detailed argument.

Lemma 3.1. A
i/IiF and A

i
V are stably isomorphic AF -algebras, where K0(A

i
V )
∼=

Λi.

Proof. (i) Let us show that if projective varieties V, V ′ are isomorphic over the
number field k, then there exists a ring automorphism φ of Ai such that the cor-
responding Fontaine ideal IiF ′ = φ(IiF ). Indeed, let V → V ′ be an isomorphism
between projective varieties V and V ′. The cohomology functor induces an isomor-
phism φ : Hi

ar(V ) → Hi
ar(V

′) of the corresponding Deninger cohomology groups.
Recall that Hi

ar(V ) ∼= R[x±1] and since the isomorphism of V is defined over a
number field k, one gets an isomorphism φ : Z[x±1] → Z[y±1]. (Note that group
isomorphism φ extends to a ring isomorphism by choice of a monomial basis in the
ring of the Laurent polynomials, and vice versa.) Recall that K0(A

i) ∼= Z[x±1] and
K-theory is a functor; thus one gets an an automorphism φ : Ai → A

i. It remains
to notice that the endomorphism Fri∞ : Z[x±1] → Z[x±1] commutes with φ and
therefore φ(Fri∞(Z[x±1])) = Fri∞(Z[y±1]). By definition K0(I

i
F )
∼= Fri∞(Z[x±1])

and thus the Fontaine ideal IiF ′ = φ(IiF ).

(ii) Let IiF ⊂ A
i be an i-th Fontaine ideal. Since IiF is a primitive two-sided ideal,

the quotient C∗-algebra Ai/IiF is simple. It follows from item (i) that isomorphisms
of V over k correspond to the C∗-isomorphisms of the algebra A

i/IiF .

(iii) On the other hand, we have a lattice Λi ⊆ τ∗(K0(AV ⊗ K)) ⊂ R , where
the rank of Λi is equal to the i-th Betti number bi of V [6, p.271]. It is well known
that if projective varieties V, V ′ are isomorphic over the number field k, then their
Serre C∗-algebras AV ,AV ′ must be stably isomorphic (even isomorphic) [8, Section
5.3.1]. Since theK0-groups are invariant under the stable isomorphisms, the lattices
τ∗(K0(AV ⊗ K)) ≡ τ∗(K0(AV ′ ⊗ K)) and Λi ≡ Λ′

i as subsets of the real line. By
definition K0(A

i
V ) = Λi, so that the AF -algebras Ai

V and A
i
V ′ are isomorphic.

(iv) To finish the proof, it remains to compare the results of items (ii) and
(iii). Indeed, we constructed two covariant functors V 7→ A

i/IiF and V 7→ A
i
V from

smooth n-dimensional projective varieties V to the category of AF -algebras. But all
morphisms in the latter category are stable isomorphisms between the AF -algebras,
i.e.

(

A
i/IiF

)

⊗K ∼= A
i
V ⊗K.

Lemma 3.1 is proved. �
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Corollary 3.2. Cluster algebra K0(A
i) has rank equal to the i-th Betti number of

V .

Proof. It is known that the rank of lattice Λi is equal to the i-th Betti number bi of
variety V [6, p.271]. Since K0(A

i
V )
∼= Λi and

(

A
i/IiF

)

⊗K ∼= A
i
V ⊗K, we conclude

that K0(A
i/IiF )

∼= Λi and thus the rank of K0(A
i) is equal to bi. �

Lemma 3.3. There exists a simple Cuntz-Pimsner algebra OAi
∞

such that:

OAi
∞

⊗K ∼= IiF ⋊α̂i T, (3.1)

where Ai
∞ ∈ GL∞(Z) is conjugate to the matrix Fri∞ and IiF is the i-th Fontaine

ideal of Ai.

Proof. (i) For an i-th Fontaine ideal IiF ⊂ A
i, let us calculate the semi-group

K+
0 (IiF ). It is easy to see, that K0(I

i
F )
∼= Z∞ and the corresponding Grothendieck

semigroup K+
0 (IiF )

∼= lim
−→

(Z∞, F ri∞), where the injective limit is taken by the

iterations of the endomorphism Fri∞ acting on Z∞.

(ii) On the other hand, if F i ⊂ OAi
∞

is the core AF -algebra of a Cuntz-Pimsner

algebra OAi
∞

, then K+
0 (F i) ∼= lim

−→
(Z∞, (Ai

∞)t), see Theorem 2.3.

(iii) We now define matrix Ai
∞ ∈ GL∞(Z) so that:

K+
0 (F i) ∼= K+

0 (IiF ), (3.2)

where∼= is an isomorphism of the Grothendieck semigroups, i.e. an order-isomorphism
of the corresponding positive cones.

(iv) It follows from (3.2) that IiF ⋊α̂i T ∼= OAi
∞

⊗K, see formula (2.4). Moreover,

an isomorphism lim
−→

(Z∞, (Ai
∞)t) ∼= lim

−→
(Z∞, F ri∞) implies that matrices Ai

∞ and

Fri∞ are conjugate in GL∞(Z).

(v) Since the determinant det (Fri∞ − sI) is regular (Remark 2.2), we conclude
that the conjugate matrix Ai

∞ must be row-finite and irreducible, i.e. OAi
∞

is a
correctly defined simple Cuntz-Pimsner algebra.

Lemma 3.3 is proved. �

Corollary 3.4. char Ai
∞ ≡ char Fri∞.

Proof. The characteristic polynomial char Ai
∞ = det(Ai

∞ − sI) is invariant of the
conjugacy class of matrix Ai

∞. We conclude from Lemma 3.3 that char Ai
∞ ≡

char Fri∞. (The converse is false in general.) Corollary 3.4 is proved.
�

Lemma 3.5. ZV (s) =
∏2n

i=0

(

char Ai
∞

)(−1)i+1

.

Proof. (i) Recall that

ZV (s) =

2n
∏

i=0

(

Γi
V (s)

)(−1)i

, (3.3)
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where Γi
V (s) is the i-th Serre local factor at p =∞ [Serre 1970] [10, Section 3]. In

view of Deninger’s Theorem 2.1 we can substitute Γi
V (s) ≡ char−1 Fri∞ so that

the Hasse-Weil zeta function (3.3) becomes:

ZV (s) =

2n
∏

i=0

(

char Fri∞
)(−1)i+1

. (3.4)

(ii) On the other hand, there exist Cuntz-Pimsner algebras OAi
∞

, such that

char Ai
∞ ≡ char Fri∞ (Corollary 3.4). Thus one can write the Hasse-Weil zeta

function (3.4) in the form:

ZV (s) =

2n
∏

i=0

(

char Ai
∞

)(−1)i+1

. (3.5)

Lemma 3.5 is proved. �

Theorem 1.1 follows from Lemmas 3.3 and 3.5.

4. Riemann zeta function

Let us point out a relation between the Cuntz-Pimsner algebra OA∞
and non-

trivial zeroes of the Riemann zeta function ζ(s). If V is a curve, then n = 1 and
formula (1.4) for the Hasse-Weil zeta function can be written as:

ZV (s) =

2
∏

i=0

(

char Ai
∞

)(−1)i+1

=
char A1

∞

char A0
∞ char A2

∞

. (4.1)

Moreover, char A0
∞ = s

2π and char A2
∞ = s−1

2π [Deninger 1992] [3, Section 3]. Thus
one can write (4.1) in the form:

(2π)−2s(s− 1)ZV (s) = char A1
∞. (4.2)

On the other hand, the Hasse-Weil zeta function can be linked to the Riemann
zeta function ζ(s) by the well known formula:

ZV (s) = 2−
1
2π− s

2Γ
(s

2

)

ζ(s), (4.3)

where Γ
(

s
2

)

is the gamma function. We can use (4.3) to exclude ZV (s) from (4.2):

2−
5
2π

−s−4

2 Γ
(s

2

)

s(s− 1)ζ(s) = char A1
∞. (4.4)

It follows from (4.4) that non-trivial zeros of the Riemann zeta function coincide
with the roots of characteristic polynomial of the matrix A1

∞ defining the Cuntz-
Pimsner algebra OA1

∞

. Thus the row-finite and irreducible matrices are proper
candidates for Hilbert’s idea to settle the Riemann Hypothesis via spectra of the
self-adjoint operators.
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