LOCAL FACTORS AND CUNTZ-PIMSNER ALGEBRAS

IGOR V. NIKOLAEV ${ }^{1}$

Abstract

We recast the local factors of the Hasse-Weil zeta function at infinity in terms of the Cuntz-Pimsner algebras. The nature of such factors is an open problem studied by Deninger and Serre.

1. Introduction

Let V be an n-dimensional smooth projective variety over a number field k and let $V\left(\mathbf{F}_{q}\right)$ be a good reduction of V modulo the prime ideal corresponding to $q=p^{r}$. Recall that the local zeta $Z_{q}(u):=\exp \left(\sum_{m=1}^{\infty}\left|V\left(\mathbf{F}_{q}\right)\right| \frac{u^{m}}{m}\right)$ is a rational function

$$
\begin{equation*}
Z_{q}(u)=\frac{P_{1}(u) \ldots P_{2 n-1}(u)}{P_{0}(u) \ldots P_{2 n}(u)} \tag{1.1}
\end{equation*}
$$

where $P_{0}(u)=1-u$ and $P_{2 n}(u)=1-q^{n} u$. Each $P_{i}(u)$ is the characteristic polynomial of the Frobenius endomorphism $F r_{q}^{i}:\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}^{q}, \ldots, a_{n}^{q}\right)$ acting on the i-th ℓ-adic cohomology group $H^{i}(V)$ of variety V. The number of points on $V\left(\mathbb{F}_{q}\right)$ is given by the Lefschetz trace formula $\left|V\left(\mathbb{F}_{q}\right)\right|=\sum_{i=0}^{2 n}(-1)^{i} \operatorname{tr}\left(F r_{q}^{i}\right)$, where $t r$ is the trace of endomorphism $F r_{q}^{i}$ [Hartshorne 1977] [5, pp. 454-457]. The Hasse-Weil zeta function of V is an infinite product

$$
\begin{equation*}
Z_{V}(s)=\prod_{p} Z_{q}\left(p^{-s}\right), \quad s \in \mathbf{C} \tag{1.2}
\end{equation*}
$$

where p runs through all but a finite set of primes. Such a function encodes arithmetic of the variety V. For example, if E is an elliptic curve over \mathbf{Q} then $Z_{E}(s)=\frac{\zeta(s) \zeta(s-1)}{L(E, s)}$, where the order of zero of function $L(E, s)$ at $s=1$ is conjectured to be equal the rank of E.

Recall that a fundamental analogy between number fields and function fields predicts a prime $p=\infty$ in formula (1.1). It was a mystery how the factor $Z_{\infty}(u)$ looks like. The problem was studied by Serre who constructed local factors $\Gamma_{V}^{i}(s)$ realizing the analogy. The goal was achieved in terms of the Γ-functions attached to the Hodge structure on V [Serre 1970] [10]. To define $\Gamma_{V}^{i}(s)$ in a way similar to finite primes, Deninger introduced an infinite-dimensional cohomology $H_{a r}^{i}(V)$ and an action of Frobenius endomorphism $F r_{\infty}^{i}: H_{a r}^{i}(V) \rightarrow H_{a r}^{i}(V)$, such that $\Gamma_{V}^{i}(s) \equiv \operatorname{char}^{-1} F r_{\infty}^{i}$, where char $F r_{\infty}^{i}$ is the characteristic polynomial of $F r_{\infty}^{i}$ [Deninger 1991] [2, Theorem 4.1].

The aim of our note is to recast $\Gamma_{V}^{i}(s)$ in terms of the Cuntz-Pimsner algebras [Pask \& Raeburn 1996] [9]. Namely, let \mathscr{A}_{V} be the Serre C^{*}-algebra of V [8, Section 5.3.1]. Recall [6, Lemma 4] that $\operatorname{tr}\left(F r_{q}^{i}\right)=\operatorname{tr}\left(M k_{q}^{i}\right)$, where $M k_{q}^{i}$ is the Markov endomorphism of a lattice $\Lambda_{i} \subseteq \tau_{*}\left(K_{0}\left(\mathscr{A}_{V} \otimes \mathcal{K}\right)\right) \subset \mathbf{R}$ defined by the

[^0]canonical trace τ on the K_{0}-group of stabilized C^{*}-algebra \mathscr{A}_{V} [6, p.271]. Therefore $\left|V\left(\mathbb{F}_{q}\right)\right|=\sum_{i=0}^{2 n}(-1)^{i} \operatorname{tr}\left(M k_{q}^{i}\right)\left[6\right.$, Theorem 1] and the local zeta $Z_{q}(u)$ is a function of the endomorphisms $M k_{q}^{i}$, where $0 \leq i \leq 2 n$. On the other hand, $M k_{q}^{i} \in G L_{b_{i}}(\mathbf{Z})$ is given by a positive matrix, where b_{i} is the i-th Betti number of V [6, p. 274]. We shall denote by $\mathcal{O}_{M k_{q}^{i}}$ the Cuntz-Krieger algebra given by matrix $M k_{q}^{i}$ [Cuntz \& Krieger 1980] [1]. Thus the local factors $\Gamma_{V}^{i}(s)$ must correspond to the CuntzKrieger algebras given by the countably infinite matrices $A_{\infty}^{i} \in G L_{\infty}(\mathbf{Z})$. The $\mathcal{O}_{A_{\infty}^{i}}$ are called the Cuntz-Pimsner algebras [Pask \& Raeburn 1996] [9].

Each matrix A_{∞}^{i} is constructed as follows. Let $\operatorname{Mod}(V)$ be the moduli variety of V. Recall that an analog of \mathscr{A}_{V} for $\operatorname{Mod}(V)$ is given by a cluster C^{*}-algebra \mathbb{A}, such that $\operatorname{Prim}(\mathbb{A}) \cong \operatorname{Mod}(V)$, where $\operatorname{Prim}(\mathbb{A})$ is the set of two-sided primitive closed ideals of \mathbb{A} endowed with the Jacobson topology. Moreover, $\mathscr{A}_{V} \subset \mathbb{A} / I$ and $K_{0}\left(\mathscr{A}_{V}\right) \cong K_{0}(\mathbb{A} / I)$, where $I \in \operatorname{Prim}(\mathbb{A})$ [7, Theorem 2]. (Note that the construction is given for $n=1$ [7] but true for the dimensions $n \geq 1$.) In other words, one gets a short exact sequence of the abelian groups:

$$
\begin{equation*}
K_{0}(I) \stackrel{i}{\hookrightarrow} K_{0}(\mathbb{A}) \xrightarrow{p} K_{0}\left(\mathscr{A}_{V}\right), \tag{1.3}
\end{equation*}
$$

where $K_{0}(I) \cong K_{0}(\mathbb{A}) \cong \mathbf{Z}^{\infty}$. Since $K_{0}\left(\mathscr{A}_{V}\right) \cong K_{0}\left(\mathscr{A}_{V} \otimes \mathcal{K}\right)$, the \mathbb{Z}-modules $\Lambda_{i} \subseteq \tau_{*}\left(K_{0}\left(\mathscr{A}_{V} \otimes \mathcal{K}\right)\right)$ specified earlier, define a pull back of (1.3). Thus one gets an exact sequence of modules $\Lambda_{i}^{\infty} \stackrel{i_{*}}{\longrightarrow} \Lambda_{i}^{\infty} \xrightarrow{p_{*}} \Lambda_{i}$. Here the rank of cluster algebra $\tau^{-1}\left(\Lambda_{\infty}^{i}\right)$ is equal to the Betti number b_{i} and i_{*} is the injective homomorphism given by a matrix $A_{\infty}^{i} \in G L_{\infty}(\mathbf{Z})$ for each $0 \leq i \leq 2 n$. Our main result can be formulated as follows.

Theorem 1.1. For every smooth n-dimensional projective variety V over a number field k there exist the Cuntz-Pimsner algebras $\mathcal{O}_{A_{\infty}^{i}}$, such that the Hasse-Weil zeta function of V is given by the formula:

$$
\begin{equation*}
Z_{V}(s)=\prod_{i=0}^{2 n}\left(\operatorname{char} A_{\infty}^{i}\right)^{(-1)^{i+1}} \tag{1.4}
\end{equation*}
$$

The paper is organized as follows. A brief review of the preliminary facts is given in Section 2. Theorem 1.1 proved in Section 3. An application of theorem 1.1 is considered in Section 4.

2. Preliminaries

We briefly review Deninger cohomology, Cuntz-Pimsner algebras and cluster C^{*} algebras. We refer the reader to [Deninger 1991] [2], [7] and [Pask \& Raeburn 1996] [9] for a detailed exposition.
2.1. Deninger cohomology. The Hodge-Tate module is a p-adic generalization of the Hodge structure. Namely, let G be the absolute Galois group of a p-adic field \mathbf{Q}_{p} acting by continuity on the algebraic completion C of \mathbf{Q}_{p}. If χ is a cyclotomic character of G, then a module generated by the integer powers of χ is called HodgeTate, see [Fontaine 1982][4, Section 1.1] for the details. Let $T:=\left(\lim _{\longleftarrow} \mu_{p^{n}}\right) \otimes \mathbf{Q}_{p}$, where μ_{m} is the m-th root of unity. The Hodge-Tate ring is defined as $B_{H T}:=$ $C\left[T^{ \pm 1}\right]$, where G acts on T^{i} by χ^{i}. The Hodge filtration on the ring $B_{H T}$ is given by the formula $T^{i} C\left[T^{ \pm 1}\right]$. Using the multi-prime numbers $\left(p_{1}, \ldots, p_{n}\right)$, one can extend $B_{H T}$ to the multivaraible Laurent polynomials $C\left[T^{ \pm 1}\right]$, where $T=\left(x_{1}, \ldots, x_{n}\right)$.

Deninger's idea is to replace the ring $B_{H T}$ over C by a ring $B_{a r}$ of the Laurent polynomials over the archimedian place \mathbf{R} [Deninger 1991] [2, Section 3]. Deninger cohomology of a smooth projective variety V is defined by the formula

$$
\begin{equation*}
H_{a r}^{i}(V)=\mathbb{D}\left(B_{a r}^{i}\right) \tag{2.1}
\end{equation*}
$$

where $B_{a r}^{i}$ is the i-th cohomology of V viewed as a real Hodge structure and \mathbb{D} is a functor from the category of Hodge structures to an additive category of modules defined by the derivation $\Theta=T \frac{d}{d T}$ on the ring $B_{a r}$. The following fundamental result relates the Deninger cohomology and the Serre local factors $\Gamma_{V}^{i}(s)$.

Theorem 2.1. ([2, Theorem 4.1]) The derivation Θ induces an endomorphism $F r_{\infty}^{i}: H_{a r}^{i}(V) \rightarrow H_{a r}^{i}(V)$, such that

$$
\begin{equation*}
\operatorname{char}^{-1} \operatorname{Fr}_{\infty}^{i} \equiv \Gamma_{V}^{i}(s) \tag{2.2}
\end{equation*}
$$

Remark 2.2. In what follows, all determinants are the regularized determinants of the countably infinite-dimensional matrices in the sense of [Deninger 1991] [2, Section 1]. Thus the polynomial char $F r_{\infty}^{i}:=\operatorname{det}\left(F r_{\infty}^{i}-s I\right)$ in (2.2) is well defined.
2.2. Cuntz-Pimsner algebras. Recall that the Cuntz-Krieger algebra \mathcal{O}_{A} is a C^{*}-algebra generated by the partial isometries s_{1}, \ldots, s_{n} which satisfy the relations

$$
\begin{cases}s_{1}^{*} s_{1} & =a_{11} s_{1} s_{1}^{*}+a_{12} s_{2} s_{2}^{*}+\cdots+a_{1 n} s_{n} s_{n}^{*} \tag{2.3}\\ s_{2}^{*} s_{2} & =a_{21} s_{1} s_{1}^{*}+a_{22} s_{2} s_{2}^{*}+\cdots+a_{2 n} s_{n} s_{n}^{*} \\ & \cdots \\ s_{n}^{*} s_{n} & =a_{n 1} s_{1} s_{1}^{*}+a_{n 2} s_{2} s_{2}^{*}+\cdots+a_{n n} s_{n} s_{n}^{*}\end{cases}
$$

where $A=\left(a_{i j}\right)$ is a square matrix with $a_{i j} \in\{0,1,2, \ldots\}$. (Note that the original definition of \mathcal{O}_{A} says that $a_{i j} \in\{0,1\}$ but is known to be extendable to all nonnegative integers [Cuntz \& Krieger 1980] [1].) Such algebras appear naturally in the study of local factors [6].

The Cuntz-Pimsner algebra is a generalization of \mathcal{O}_{A} to the countably infinite matrices $A_{\infty} \in G L_{\infty}(\mathbf{Z})$ [Pask \& Raeburn 1996] [9]. Recall that the matrix A_{∞} is called row-finite, if for each $i \in \mathbf{N}$ the number of $j \in \mathbf{N}$ with $a_{i j} \neq 0$ is finite. The matrix A is said to be irreducible, if some power of A is a strictly positive matrix and A is not a permutation matrix. It is known that if A_{∞} is row-finite and irreducible, then the Cuntz-Pimsner algebra $\mathcal{O}_{A_{\infty}}$ is a well-defined and simple [Pask \& Raeburn 1996] [9, Theorem 1]. An AF-core $\mathscr{F} \subset \mathcal{O}_{A_{\infty}}$ is an Approximately Finite (AF-) $C^{*}-$ algebra defined by the closure of of the infinite union $\cup_{k, j} \cup_{i \in V_{k}^{j}} \mathscr{F}_{k}^{j}(i)$, where $\mathscr{F}_{k}^{j}(i)$ are finite-dimensional C^{*}-algebras built from matrix A_{∞}, see [Pask \& Raeburn 1996] [9 , Definition 2.2.1] for the details. We shall denote by $\alpha: \mathcal{O}_{A_{\infty}} \rightarrow \mathcal{O}_{A_{\infty}}$ an automorphism acting on the generators s_{i} of $\mathcal{O}_{A_{\infty}}$ by to the formula $\alpha_{z}\left(s_{i}\right)=z s_{i}$, where z is a complex number of the absolute value $|z|=1$. Thus one gets an action of the abelian group $\mathbb{T} \cong \mathbf{R} / \mathbf{Z}$ on $\mathcal{O}_{A_{\infty}}$. It follows from the Takai duality [Pask \& Raeburn 1996] [9, p. 432] that:

$$
\begin{equation*}
\mathscr{F} \rtimes_{\hat{\alpha}} \mathbb{T} \cong \mathcal{O}_{A_{\infty}} \otimes \mathcal{K} \tag{2.4}
\end{equation*}
$$

where $\hat{\alpha}$ is the Takai dual of α and \mathcal{K} is the C^{*}-algebra of compact operators. Using (2.4) one can calculate the the K-theory of $\mathcal{O}_{A_{\infty}}$.

Theorem 2.3. ([9, Theorem 3]) If A_{∞} is row-finite irreducible matrix, then there exists an exact sequence of the abelian groups:

$$
\begin{equation*}
0 \rightarrow K_{1}\left(\mathcal{O}_{A_{\infty}}\right) \rightarrow \mathbf{Z}^{\infty} \xrightarrow{1-A_{\infty}^{t}} \mathbf{Z}^{\infty} \xrightarrow{i_{*}} K_{0}\left(\mathcal{O}_{A_{\infty}}\right) \rightarrow 0, \tag{2.5}
\end{equation*}
$$

so that $K_{0}\left(\mathcal{O}_{A_{\infty}}\right) \cong \mathbf{Z}^{\infty} /\left(1-A_{\infty}^{t}\right) \mathbf{Z}^{\infty}$ and $K_{1}\left(\mathcal{O}_{A_{\infty}}\right) \cong \operatorname{Ker}\left(1-A_{\infty}^{t}\right)$, where A_{∞}^{t} is the transpose of A_{∞} and $i: \mathscr{F} \hookrightarrow \mathcal{O}_{A_{\infty}}$. Moreover, the Grothendieck semigroup $K_{0}^{+}(\mathscr{F}) \cong \xrightarrow[\longrightarrow]{\lim }\left(\mathbf{Z}^{\infty}, A_{\infty}^{t}\right)$.
2.3. Cluster C^{*}-algebras. The cluster algebra of rank n is a subring $\mathcal{A}(\mathbf{x}, B)$ of the field of rational functions in n variables depending on variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and a skew-symmetric matrix $B=\left(b_{i j}\right) \in M_{n}(\mathbf{Z})$. The pair (\mathbf{x}, B) is called a seed. A new cluster $\mathbf{x}^{\prime}=\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$ and a new skew-symmetric matrix $B^{\prime}=\left(b_{i j}^{\prime}\right)$ is obtained from (\mathbf{x}, B) by the exchange relations [Williams 2014] [11, Definition 2.22]:

$$
\begin{align*}
x_{k} x_{k}^{\prime} & =\prod_{i=1}^{n} x_{i}^{\max \left(b_{i k}, 0\right)}+\prod_{i=1}^{n} x_{i}^{\max \left(-b_{i k}, 0\right)} \\
b_{i j}^{\prime} & = \begin{cases}-b_{i j} & \text { if } i=k \text { or } j=k \\
b_{i j}+\frac{\left|b_{i k}\right| b_{k j}+b_{i k}\left|b_{k j}\right|}{2} & \text { otherwise }\end{cases} \tag{2.6}
\end{align*}
$$

The seed $\left(\mathrm{x}^{\prime}, B^{\prime}\right)$ is said to be a mutation of (\mathbf{x}, B) in direction k. where $1 \leq k \leq n$. The algebra $\mathcal{A}(\mathbf{x}, B)$ is generated by the cluster variables $\left\{x_{i}\right\}_{i=1}^{\infty}$ obtained from the initial seed (\mathbf{x}, B) by the iteration of mutations in all possible directions k. The Laurent phenomenon says that $\mathcal{A}(\mathbf{x}, B) \subset \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$, where $\mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$ is the ring of the Laurent polynomials in variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ [Williams 2014] [11, Theorem 2.27]. In particular, each generator x_{i} of the algebra $\mathcal{A}(\mathbf{x}, B)$ can be written as a Laurent polynomial in n variables with the integer coefficients.

The cluster algebra $\mathcal{A}(\mathbf{x}, B)$ has the structure of an additive abelian semigroup consisting of the Laurent polynomials with positive coefficients. In other words, the $\mathcal{A}(\mathbf{x}, B)$ is a dimension group, see Section 2.1.6 or [8, Definition 3.5.2]. The cluster C^{*}-algebra $\mathbb{A}(\mathbf{x}, B)$ is an AF-algebra, such that $K_{0}(\mathbb{A}(\mathbf{x}, B)) \cong \mathcal{A}(\mathbf{x}, B)$.
2.3.1. Cluster C^{*}-algebra $\mathbb{A}\left(S_{g, n}\right)$. Denote by $S_{g, n}$ the Riemann surface of genus $g \geq 0$ with $n \geq 0$ cusps. Let $\mathcal{A}\left(\mathbf{x}, S_{g, n}\right)$ be the cluster algebra coming from a triangulation of the surface $S_{g, n}$ [Williams 2014] [11, Section 3.3]. We shall denote by $\mathbb{A}\left(S_{g, n}\right)$ the corresponding cluster C^{*}-algebra. Let $T_{g, n}$ be the Teichmüller space of the surface $S_{g, n}$, i.e. the set of all complex structures on $S_{g, n}$ endowed with the natural topology. The geodesic flow $T^{t}: T_{g, n} \rightarrow T_{g, n}$ is a one-parameter group of matrices $\operatorname{diag}\left(e^{t}, e^{-t}\right)$ acting on the holomorphic quadratic differentials on the Riemann surface $S_{g, n}$. Such a flow gives rise to a one parameter group of automorphisms $\sigma_{t}: \mathbb{A}\left(S_{g, n}\right) \rightarrow \mathbb{A}\left(S_{g, n}\right)$ called the Tomita-Takesaki flow on the AF-algebra $\mathbb{A}\left(S_{g, n}\right)$. Denote by Prim $\mathbb{A}\left(S_{g, n}\right)$ the space of all primitive ideals of $\mathbb{A}\left(S_{g, n}\right)$ endowed with the Jacobson topology. Recall ([7]) that each primitive ideal has a parametrization by a vector $\Theta \in \mathbf{R}^{6 g-7+2 n}$ and we write it $I_{\Theta} \in \operatorname{Prim} \mathbb{A}\left(S_{g, n}\right)$

Theorem 2.4. ([7]) There exists a homeomorphism $h: \operatorname{Prim} \mathbb{A}\left(S_{g, n}\right) \times \mathbf{R} \rightarrow$ $\left\{U \subseteq T_{g, n} \mid U\right.$ is generic $\}$ given by the formula $\sigma_{t}\left(I_{\Theta}\right) \mapsto S_{g, n}$; the set $U=T_{g, n}$ if and only if $g=n=1$. The $\sigma_{t}\left(I_{\Theta}\right)$ is an ideal of $\mathbb{A}\left(S_{g, n}\right)$ for all $t \in \mathbf{R}$ and the quotient algebra $\mathbb{A}\left(S_{g, n}\right) / \sigma_{t}\left(I_{\Theta}\right)$ is a non-commutative coordinate ring of the Riemann surface $S_{g, n}$.

3. Proof of theorem 1.1

For the sake of clarity, let us outline the main ideas. Let $F r_{\infty}^{i}$ be the Frobenius endomorphism of the Deninger cohomology $H_{a r}^{i}(V)$ as stated in Theorem 2.1. From (2.1) we recall that $H_{a r}^{i}(V)$ is the additive group of the ring of Laurent polynomilas $\mathbf{R}\left[\mathbf{x}^{ \pm 1}\right]$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{b_{i}}\right)$. A restriction of $F r_{\infty}^{i}: \mathbf{R}\left[\mathbf{x}^{ \pm 1}\right] \rightarrow \mathbf{R}\left[\mathbf{x}^{ \pm 1}\right]$ to the Laurent polynomials $\mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$ gives rise to a two-sided primitive ideal I_{F}^{i} (called the i-th Fontaine ideal) in the cluster C^{*}-algebra \mathbb{A}^{i}, where $K_{0}\left(\mathbb{A}^{i}\right) \cong \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$ and $K_{0}\left(I_{F}^{i}\right) \cong F r_{\infty}^{i}\left(\mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]\right)$. We prove that the $A F$-algebras $\mathbb{A}^{i} / I_{F}^{i}$ and \mathbb{A}_{V}^{i} are stably isomorphic, where $K_{0}\left(\mathbb{A}_{V}^{i}\right) \cong \Lambda_{i}\left(\right.$ Lemma 3.1). Next it is proved that matrix A_{∞}^{i} is conjugate to $F r_{\infty}^{i}$ in the group $G L_{\infty}(\mathbf{Z})$ (Lemma 3.3). In particular, char $A_{\infty}^{i} \equiv$ char Fr_{∞}^{i} for all $0 \leq i \leq 2 n$ (Corollary 3.4). The rest of the proof follows from Theorem 2.1, see Lemma 3.5. Let us pass to a detailed argument.

Lemma 3.1. $\mathbb{A}^{i} / I_{F}^{i}$ and \mathbb{A}_{V}^{i} are stably isomorphic $A F$-algebras, where $K_{0}\left(\mathbb{A}_{V}^{i}\right) \cong$ Λ_{i}.

Proof. (i) Let us show that if projective varieties V, V^{\prime} are isomorphic over the number field k, then there exists a ring automorphism ϕ of \mathbb{A}^{i} such that the corresponding Fontaine ideal $I_{F^{\prime}}^{i}=\phi\left(I_{F}^{i}\right)$. Indeed, let $V \rightarrow V^{\prime}$ be an isomorphism between projective varieties V and V^{\prime}. The cohomology functor induces an isomorphism $\phi: H_{a r}^{i}(V) \rightarrow H_{a r}^{i}\left(V^{\prime}\right)$ of the corresponding Deninger cohomology groups. Recall that $H_{a r}^{i}(V) \cong \mathbf{R}\left[\mathbf{x}^{ \pm 1}\right]$ and since the isomorphism of V is defined over a number field k, one gets an isomorphism $\phi: \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right] \rightarrow \mathbf{Z}\left[\mathbf{y}^{ \pm 1}\right]$. (Note that group isomorphism ϕ extends to a ring isomorphism by choice of a monomial basis in the ring of the Laurent polynomials, and vice versa.) Recall that $K_{0}\left(\mathbb{A}^{i}\right) \cong \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$ and K-theory is a functor; thus one gets an an automorphism $\phi: \mathbb{A}^{i} \rightarrow \mathbb{A}^{i}$. It remains to notice that the endomorphism $F r_{\infty}^{i}: \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right] \rightarrow \mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]$ commutes with ϕ and therefore $\phi\left(\operatorname{Fr}_{\infty}^{i}\left(\mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]\right)\right)=F r_{\infty}^{i}\left(\mathbf{Z}\left[\mathbf{y}^{ \pm 1}\right]\right)$. By definition $K_{0}\left(I_{F}^{i}\right) \cong F r_{\infty}^{i}\left(\mathbf{Z}\left[\mathbf{x}^{ \pm 1}\right]\right)$ and thus the Fontaine ideal $I_{F^{\prime}}^{i}=\phi\left(I_{F}^{i}\right)$.
(ii) Let $I_{F}^{i} \subset \mathbb{A}^{i}$ be an i-th Fontaine ideal. Since I_{F}^{i} is a primitive two-sided ideal, the quotient C^{*}-algebra $\mathbb{A}^{i} / I_{F}^{i}$ is simple. It follows from item (i) that isomorphisms of V over k correspond to the C^{*}-isomorphisms of the algebra $\mathbb{A}^{i} / I_{F}^{i}$.
(iii) On the other hand, we have a lattice $\Lambda_{i} \subseteq \tau_{*}\left(K_{0}\left(\mathscr{A}_{V} \otimes \mathcal{K}\right)\right) \subset \mathbf{R}$, where the rank of Λ_{i} is equal to the i-th Betti number b_{i} of V [6, p.271]. It is well known that if projective varieties V, V^{\prime} are isomorphic over the number field k, then their Serre C^{*}-algebras $\mathscr{A}_{V}, \mathscr{A}_{V^{\prime}}$ must be stably isomorphic (even isomorphic) [8, Section 5.3.1]. Since the K_{0}-groups are invariant under the stable isomorphisms, the lattices $\tau_{*}\left(K_{0}\left(\mathscr{A}_{V} \otimes \mathcal{K}\right)\right) \equiv \tau_{*}\left(K_{0}\left(\mathscr{A}_{V^{\prime}} \otimes \mathcal{K}\right)\right)$ and $\Lambda_{i} \equiv \Lambda_{i}^{\prime}$ as subsets of the real line. By definition $K_{0}\left(\mathbb{A}_{V}^{i}\right)=\Lambda_{i}$, so that the $A F$-algebras \mathbb{A}_{V}^{i} and $\mathbb{A}_{V^{\prime}}^{i}$ are isomorphic.
(iv) To finish the proof, it remains to compare the results of items (ii) and (iii). Indeed, we constructed two covariant functors $V \mapsto \mathbb{A}^{i} / I_{F}^{i}$ and $V \mapsto \mathbb{A}_{V}^{i}$ from smooth n-dimensional projective varieties V to the category of $A F$-algebras. But all morphisms in the latter category are stable isomorphisms between the $A F$-algebras, i.e. $\left(\mathbb{A}^{i} / I_{F}^{i}\right) \otimes \mathcal{K} \cong \mathbb{A}_{V}^{i} \otimes \mathcal{K}$.

Lemma 3.1 is proved.

Corollary 3.2. Cluster algebra $K_{0}\left(\mathbb{A}^{i}\right)$ has rank equal to the i-th Betti number of V.

Proof. It is known that the rank of lattice Λ_{i} is equal to the i-th Betti number b_{i} of variety $V\left[6\right.$, p.271]. Since $K_{0}\left(\mathbb{A}_{V}^{i}\right) \cong \Lambda_{i}$ and $\left(\mathbb{A}^{i} / I_{F}^{i}\right) \otimes \mathcal{K} \cong \mathbb{A}_{V}^{i} \otimes \mathcal{K}$, we conclude that $K_{0}\left(\mathbb{A}^{i} / I_{F}^{i}\right) \cong \Lambda_{i}$ and thus the rank of $K_{0}\left(\mathbb{A}^{i}\right)$ is equal to b_{i}.

Lemma 3.3. There exists a simple Cuntz-Pimsner algebra $\mathcal{O}_{A_{\infty}^{i}}$ such that:

$$
\begin{equation*}
\mathcal{O}_{A_{\infty}^{i}} \otimes \mathcal{K} \cong I_{F}^{i} \rtimes_{\hat{\alpha}^{i}} \mathbb{T} \tag{3.1}
\end{equation*}
$$

where $A_{\infty}^{i} \in G L_{\infty}(\mathbf{Z})$ is conjugate to the matrix $F r_{\infty}^{i}$ and I_{F}^{i} is the i-th Fontaine ideal of \mathbb{A}^{i}.

Proof. (i) For an i-th Fontaine ideal $I_{F}^{i} \subset \mathbb{A}^{i}$, let us calculate the semi-group $K_{0}^{+}\left(I_{F}^{i}\right)$. It is easy to see, that $K_{0}\left(I_{F}^{i}\right) \cong \mathbf{Z}^{\infty}$ and the corresponding Grothendieck semigroup $K_{0}^{+}\left(I_{F}^{i}\right) \cong \underset{\longrightarrow}{\lim }\left(\mathbf{Z}^{\infty}, F r_{\infty}^{i}\right)$, where the injective limit is taken by the iterations of the endomorphism $F r_{\infty}^{i}$ acting on \mathbf{Z}^{∞}.
(ii) On the other hand, if $\mathscr{F}^{i} \subset \mathcal{O}_{A_{\infty}^{i}}$ is the core $A F$-algebra of a Cuntz-Pimsner algebra $\mathcal{O}_{A_{\infty}^{i}}$, then $K_{0}^{+}\left(\mathscr{F}^{i}\right) \cong \underset{\longrightarrow}{\lim }\left(\mathbf{Z}^{\infty},\left(A_{\infty}^{i}\right)^{t}\right)$, see Theorem 2.3.
(iii) We now define matrix $A_{\infty}^{i} \in G L_{\infty}(\mathbf{Z})$ so that:

$$
\begin{equation*}
K_{0}^{+}\left(\mathscr{F}^{i}\right) \cong K_{0}^{+}\left(I_{F}^{i}\right), \tag{3.2}
\end{equation*}
$$

where \cong is an isomorphism of the Grothendieck semigroups, i.e. an order-isomorphism of the corresponding positive cones.
(iv) It follows from (3.2) that $I_{F}^{i} \rtimes_{\hat{\alpha}^{i}} \mathbb{T} \cong \mathcal{O}_{A_{\infty}^{i}} \otimes \mathcal{K}$, see formula (2.4). Moreover, an isomorphism $\underset{\longrightarrow}{\lim }\left(\mathbf{Z}^{\infty},\left(A_{\infty}^{i}\right)^{t}\right) \cong \underset{\longrightarrow}{\lim }\left(\mathbf{Z}^{\infty}, F r_{\infty}^{i}\right)$ implies that matrices A_{∞}^{i} and $F r_{\infty}^{i}$ are conjugate in $G L_{\infty}(\mathbf{Z})$.
(v) Since the determinant det $\left(F r_{\infty}^{i}-s I\right)$ is regular (Remark 2.2), we conclude that the conjugate matrix A_{∞}^{i} must be row-finite and irreducible, i.e. $\mathcal{O}_{A_{\infty}^{i}}$ is a correctly defined simple Cuntz-Pimsner algebra.

Lemma 3.3 is proved.
Corollary 3.4. char $A_{\infty}^{i} \equiv \operatorname{char} \mathrm{Fr}_{\infty}^{i}$.
Proof. The characteristic polynomial char $A_{\infty}^{i}=\operatorname{det}\left(A_{\infty}^{i}-s I\right)$ is invariant of the conjugacy class of matrix A_{∞}^{i}. We conclude from Lemma 3.3 that char $A_{\infty}^{i} \equiv$ char $F r_{\infty}^{i}$. (The converse is false in general.) Corollary 3.4 is proved.

Lemma 3.5. $Z_{V}(s)=\prod_{i=0}^{2 n}\left(\operatorname{char} A_{\infty}^{i}\right)^{(-1)^{i+1}}$.
Proof. (i) Recall that

$$
\begin{equation*}
Z_{V}(s)=\prod_{i=0}^{2 n}\left(\Gamma_{V}^{i}(s)\right)^{(-1)^{i}} \tag{3.3}
\end{equation*}
$$

where $\Gamma_{V}^{i}(s)$ is the i-th Serre local factor at $p=\infty$ [Serre 1970] [10, Section 3]. In view of Deninger's Theorem 2.1 we can substitute $\Gamma_{V}^{i}(s) \equiv \operatorname{char}^{-1} \operatorname{Fr}_{\infty}^{i}$ so that the Hasse-Weil zeta function (3.3) becomes:

$$
\begin{equation*}
Z_{V}(s)=\prod_{i=0}^{2 n}\left(\operatorname{char} \operatorname{Fr}_{\infty}^{i}\right)^{(-1)^{i+1}} \tag{3.4}
\end{equation*}
$$

(ii) On the other hand, there exist Cuntz-Pimsner algebras $\mathcal{O}_{A_{\infty}^{i}}$, such that char $A_{\infty}^{i} \equiv$ char $\operatorname{Fr}_{\infty}^{i}$ (Corollary 3.4). Thus one can write the Hasse-Weil zeta function (3.4) in the form:

$$
\begin{equation*}
Z_{V}(s)=\prod_{i=0}^{2 n}\left(\operatorname{char} A_{\infty}^{i}\right)^{(-1)^{i+1}} \tag{3.5}
\end{equation*}
$$

Lemma 3.5 is proved.

Theorem 1.1 follows from Lemmas 3.3 and 3.5.

4. Riemann zeta function

Let us point out a relation between the Cuntz-Pimsner algebra $\mathcal{O}_{A_{\infty}}$ and nontrivial zeroes of the Riemann zeta function $\zeta(s)$. If V is a curve, then $n=1$ and formula (1.4) for the Hasse-Weil zeta function can be written as:

$$
\begin{equation*}
Z_{V}(s)=\prod_{i=0}^{2}\left(\operatorname{char} A_{\infty}^{i}\right)^{(-1)^{i+1}}=\frac{\operatorname{char} A_{\infty}^{1}}{\operatorname{char} A_{\infty}^{0} \operatorname{char} A_{\infty}^{2}} \tag{4.1}
\end{equation*}
$$

Moreover, char $A_{\infty}^{0}=\frac{s}{2 \pi}$ and char $A_{\infty}^{2}=\frac{s-1}{2 \pi}$ [Deninger 1992] [3, Section 3]. Thus one can write (4.1) in the form:

$$
\begin{equation*}
(2 \pi)^{-2} s(s-1) Z_{V}(s)=\operatorname{char} A_{\infty}^{1} \tag{4.2}
\end{equation*}
$$

On the other hand, the Hasse-Weil zeta function can be linked to the Riemann zeta function $\zeta(s)$ by the well known formula:

$$
\begin{equation*}
Z_{V}(s)=2^{-\frac{1}{2}} \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) \tag{4.3}
\end{equation*}
$$

where $\Gamma\left(\frac{s}{2}\right)$ is the gamma function. We can use (4.3) to exclude $Z_{V}(s)$ from (4.2):

$$
\begin{equation*}
2^{-\frac{5}{2}} \pi^{\frac{-s-4}{2}} \Gamma\left(\frac{s}{2}\right) s(s-1) \zeta(s)=\operatorname{char} A_{\infty}^{1} \tag{4.4}
\end{equation*}
$$

It follows from (4.4) that non-trivial zeros of the Riemann zeta function coincide with the roots of characteristic polynomial of the matrix A_{∞}^{1} defining the CuntzPimsner algebra $\mathcal{O}_{A_{\infty}^{1}}$. Thus the row-finite and irreducible matrices are proper candidates for Hilbert's idea to settle the Riemann Hypothesis via spectra of the self-adjoint operators.

References

1. J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
2. C. Deninger, On the Γ-factors attached to motives, Invent. Math. 104 (1991), 245-261.
3. C. Deninger, Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992), 135-150.
4. J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Annals of Math. 115 (1982), 529-577.
5. R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977.
6. I. V. Nikolaev, On traces of Frobenius endomorphisms, Finite Fields Appl. 25 (2014), 270-279.
7. I. V Nikolaev, On cluster C^{*}-algebras, J. Funct. Spaces 2016, Article ID 9639875, 8 p. (2016)
8. I. V. Nikolaev, Noncommutative Geometry, Second Edition, De Gruyter Studies in Math. 66, Berlin, 2022.
9. D. Pask and I. Raeburn, On the K-theory of Cuntz-Krieger algebras, Publ. RIMS, Kyoto Univ. 32 (1996), 415-443.
10. J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou (Théorie des nombres) 11 (1969-1970), exp. 19, pp. 1-15.
11. L. K. Williams, Cluster algebras: an introduction, Bull. Amer. Math. Soc. 51 (2014), 1-26.

1 Department of Mathematics and Computer Science, St. John's University, 8000
Utopia Parkway, New York, NY 11439, United States.
Email address: igor.v.nikolaev@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 11M55; Secondary 46L85.
 Key words and phrases. local factors, Cuntz-Pimsner algebras.

