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Crystal seeding enables a deeper understanding
of phase behavior, leading to the development of
methods for controlling and manipulating phase
transitions in various applications such as materi-
als synthesis, crystallization processes, and phase
transformation engineering. How to seed a crys-
talline in time domain is an open question, which
is of great significant and may provide an avenue
to understand and control time-dependent quan-
tum many-body physics. Here, we utilize a mi-
crowave pulse as a seed to induce the formation of
a discrete time crystal in Floquet driven Rydberg
atoms. In the experiment, the periodic driving on
Rydberg states acts as a seeded crystalline order
in subspace, which triggers the time-translation
symmetry breaking across the entire ensemble.
The behavior of the emergent time crystal is elab-
orately linked to alterations in the seed, such as
the relative phase shift and the frequency dif-
ference, which result in phase dependent seed-
ing and corresponding shift in periodicity of the
time crystal, leading to embryonic synchroniza-
tion. This result opens up new possibilities for
studying and harnessing time-dependent quan-
tum many-body phenomena, offering insights into
the behavior of complex many-body systems un-
der seeding.

Crystal seeding is a fundamental process used in the
field of crystallography to facilitate the controlled growth
of crystals [1, 2]. By introducing preformed crystals, ei-
ther of the same or different composition, into a crystal-
lizing solution, nucleation and growth of new crystals can
be initiated and guided [3]. This step has proven to be
crucial in optimizing the crystallization process, enabling
the production of high-quality crystals with desired prop-
erties. The addition of seed crystals provides a template
for the newly forming crystals to align and grow upon.
For example, the nucleation of ice involves the forma-
tion of a small ice nucleus, known as an ice embryo or
seed, from a supercooled liquid or vapor phase, around
which additional water molecules can attach and grow
into larger ice crystals [4].
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In recent years, a fascinating crystal in time domain
was put forward called as “time crystal” in the field
of physics [5], exhibiting non-equilibrium properties and
temporal periodicity. Time crystals are the exotic non-
equilibrium states that break time-translation symme-
try in both discrete and continuous ways [6–9], and are
widely studied in experiments [10–18] and theories [19–
24] in different systems. Researchers are actively ex-
ploring the exotic properties of time crystals beyond the
realm of fundamental physics [25–33], which deepen our
understanding of time crystals. The emergence of time
crystals relies on carefully engineered interactions be-
tween individuals. The many-body interactions are of
utmost importance in enabling and sustaining the unique
properties observed in time crystals. By periodically
driving the system, typically through the application of
external fields or laser pulses, the particles are forced into
a cyclic motion that breaks the time-translation symme-
try.

The long-range interaction offered by Rydberg atoms
provides a good platform for study of the non-equilibrium
dynamics [34–36] in many-body physics. The observed
oscillation possess a certain degree of order and behav-
ior that goes against the expected behavior dictated by
the second law of thermodynamics, allowing us to study
discrete and continuous time crystals [36–38]. Due to
their unique nature, it is intriguing to see how to seed
time crystals as the same way as traditional crystals.
Recently, a theoretical work [39] introduces the concept
of seeding time crystal, where a single subsystem in a
broken-symmetry phase acts as a nucleation center, in-
ducing time-translation symmetry breaking throughout
the ensemble. Once time crystal nucleation begins, it
triggers the growth of time crystals, leading to the for-
mation of larger time crystal structures.

In this work, we have experimentally realized seeding
discrete time crystal (DTC) in strongly interacting Ry-
dberg atoms under external radio-frequency (RF) field
periodic driving conditions. By applying an amplitude
modulated microwave field to periodically driving Ry-
dberg atoms, we build a crystalline order that serves
as a seed, causing time-translation symmetry breaking
throughout the entire ensemble. The features of the
seeded time crystal are closely connected to variations
in the seed, leading to synchronized subharmonic dy-
namics. This seeding method enables the adjustment
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Figure 1. Physical model of seeding time crystal. (a) Energy level diagram, which includes a ground state |g⟩ and
Rydberg states |R1,2⟩, the detuning ∆(t) can be shifted periodically by applying an external pulsed radio-frequency (RF) field,
both of Rydberg states have a decay rate of γ. A laser drives the atom ground state |g⟩ to |R1,2⟩ with Rabi frequency Ω1,2,
and another amplitude modulated microwave field couples the states |R2⟩ and |R3⟩ with a Rabi frequency ΩMW. (b) Physical
diagram containing seeding time crystal in a system composed of driven and dissipation Rydberg atoms and the driving RF
field. The microwave field driving creates a seed of breaking time translation symmetry in subspace (labeled by A), and then
growing as a global time crystal of the entire ensemble (labeled by B). (c) Measured phase maps of no-DTC, 2-DTC, 3-DTC,
and their transitions. The color bar represents the Fourier transform intensity. (d-f) The measured Fourier spectrum of input
seed signal without RF field (d), Fourier spectrum with absent of seed signal (e), and Fourier spectrum with both of inputting
seed signal and RF field (f). The weak signal on the left side of the spectrum is the system noise.

of the seeded subharmonic response frequency and the
phase. By changing the frequency of the seed, we alter
the underlying temporal arrangements, resulting in dif-
ferent time crystal formations beyond the integer DTCs.
The reported results on seeding time crystal open up new
avenues for controlling of non-equilibrium physics and
allowing for the controlled growth of time crystals with
desired properties.

Physical Model and Experimental Diagram

To demonstrate the physical concept of seeding time
crystal, we first build a quantum many-body system
with periodic Floquet driving, in which the system can
produce DTCs [38]. The system energy diagram is de-
picted by Fig. 1(a), which contains N atoms consisting of
ground state |g⟩ and Rydberg states |R1,2⟩. By applying
square wave modulation to the detuning ∆(t) = ∆0 +∆

when 0 ≤ t < T/2, and ∆(t) = ∆ when T/2 ≤ t < T ,
thus this system satisfies discrete time translation sym-
metry under this periodic Floquet driving. To demon-
strate the process of seeding time crystal, an amplitude
modulated microwave field with a modulated frequency
of fs is used to drive the Rydberg states between |R2⟩
and |R3⟩. Here, |R3⟩ is used as an auxiliary state for seed-
ing. The physical diagram is represented in Fig. 1(b). In
this physical diagram, the state of broken symmetry in
subspace A induced by the microwave driving gives rise
to unique properties and behaviors. This broken sym-
metry phase serves as a seed, initiating a cascade effect
that gradually spreads throughout the ensemble. As the
cascade progresses, the global time crystal in subspace
B emerges, manifesting as a synchronized oscillation or
repetition of physical properties over time. In this pro-
cess, as the number of state spaces with N interacting
m-level atoms have mN state spaces (here m = 3 for
the model), the presence of weak microwave field peri-
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Figure 2. Random 2-DTC orders seeding. (a) Histogram of the amplitude of 2-DTC acquired from i = 1∼500 independently
experimental trials. In these measurements, the relative phase between the seed field and the RF-field is fixed. (b-d) The
examples for illustrating the Fourier spectrum within the corresponding regimes shown in (a) [see red, green, and gray bars].
The measured Fourier spectrum for each example corresponds to a specific experimental trial, with i values of 24 (b), 292 (c),
and 406 (d), respectively.

odic driving modifies the Rydberg population ρR2R2
cor-

responding to the subspace of the system consisting of N
states.

The Hamiltonian of seeding DTC is based on periodical
double Rydberg state model with additional microwave
driving [36, 38]:

Ĥ(t) =
1

2

∑
i

(
Ω1σ

gR1

i +Ω2σ
gR2

i +ΩMW(t)σR2R3
i + h.c.

)
−
∑
i

(
∆(t)nR1

i + (∆(t) + δ)nR2
i + (∆(t) + δ)nR3

i

)
+
∑
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i nR3

j

+
1

2
(nR1

i nR1
j + nR2

i nR2
j + nR3

i nR3
j )

]
(1)

where ΩMW(t) = A0 + ASin(2πfst + φ0 + φ) (fs is the
modulated frequency, φ0 is the initial phase, φ represents
the relative phase between RF-field and seed field.), σgr

i
(r = R1, R2) represents the i-th atom transition between

the ground state |g⟩ and the Rydberg state |r⟩, nR1,R2,R3

i
are the population operators for the two Rydberg energy
levels |R1⟩, |R2⟩ and |R3⟩, and Vij are the interactions
between the Rydberg atoms.

When ΩMW = 0, the system has discrete time transla-
tion symmetry breaking with the presence of the periodic
detuning ∆(t), resulting in exotic phase diagram includ-
ing 2-DTC, higher-order DTC, and the criticality [38].
In this work, we demonstrate the seeding operation be-
fore the criticality and observe the system subharmonic
dynamics. The seeding effect is based on critical slowing
down which makes the system highly sensitive to pertur-
bations in the vicinity of the critical point. The seeded
DTC occurs because of the presence of weak microwave

field periodic driving, in which it acts as a seed to trigger
the subharmonic response of the many-body system.
In the experiment, we applied a three-photon

electromagnetically-induced transparency (EIT) scheme
to prepare the Rydberg atoms [from the ground state∣∣6S1/2

〉
to the Rydberg state

∣∣49P3/2

〉
using three lasers

with wavelengths of 852 nm (probe), 1470 nm, and 780
nm], and measured the Rydberg atom population by the
transmission of the probe field [40, 41]. The microwave
field couples the Rydberg states 48

∣∣D5/2

〉
and 49

∣∣P3/2

〉
,

acting as a seed to trigger DTC. We firstly measure the
phase diagram without the seed field, which is given in
Fig. 1(c). In Fig. 1(c), the 2-DTC, 3-DTC phases and
the criticality can be observed versus the laser detuning
∆. When the system approaches criticality, the response
bifurcated into no-DTC and 2-DTC (or 2-DTC and 3-
DTC) phases.
In the vicinity of the critical point, the system is sensi-

tive to the perturbations due to the critical slowing down,
and even small perturbations can have a large impact on
the system’s behavior. We input a seed signal with a fre-
quency of fs = f0/2 [see Fig. 1(d)] at ∆, this condition
is before the onset of the phase transition from 3-DTC
to 2-DTC. Before the critical point, there is no obvious
subharmonics response in the Fourier spectra, as given
in Fig. 1(e). When seeding a weak microwave signal, 2-
DTC appears, see the results in Fig. 1(f). In this case,
the measured ratio of output to input is greater than 7,
exhibiting amplification of the seed signal.

Random 2-DTC Orders Seeding

Near the critical point, the system is disordered and
has a tendency to undergo spontaneous time-translation
symmetry breaking. This leads to multiple possible non-



4

0 t

(a) (b)

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

Tr
an

sm
is

si
on

 (a
.u

.)

Tr
an

sm
is

si
on

 (a
.u

.)

M
ag

ni
tu

de
 (a

.u
.)

Time (ms) Time (ms)

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.10

seed

drive

(c) (d)
φ = 1.03� φ = 0.53�

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

Relative Phase (φ )

A
m

pl
itu

de
(a

.u
.)

Figure 3. Phase-locked seeding. (a) The time sequence of the driving RF-field (green) and the microwave seed field (red).
The seed has a sinusoidal function and the RF-driver is a TTL signal. In this case, the periodicity of the seed is twice of the
driving. The measured amplitude of 2-DTC (solid dots) versus the relative phase φ between the driving field and the seed field.
The red curve is the theoretical fit. (c) and (d) are the measured responses with relative phases φ = 1.03π and φ = 0.53π.

equilibrium states, referring to disordered DTC phases.
When the seed field is applied, the system can follow dif-
ferent trajectories and choose different non-equilibrium
states, resulting in randomization of the phase of the
atoms. Due to small differences and uncertainties in
each experiment, different non-equilibrium states can be
achieved, which in turn affects the phase difference. By
repeatedly seeding process with 500 times, we measure
the amplitude of seeded harmonic response and plot
histogram of the resulting non-equilibrium states. Fig-
ure. 2(a) shows the corresponding histograms of the am-
plitude of 2-DTC for all possible non-equilibrium states
that highlight the randomization in the statistical dis-
tribution. The random counting statistics confirms the
disordered phases before the criticality.

We show three examples to illustrate this randomiza-
tion, see the measured results presented in Figs. 2(b-d).
Figures. 2(b-d) display the Fourier spectrum at the ex-
perimental trial i = 24, 292, and 406, respectively. The
amplitude of the seeded 2-DTC is randomized with each
trial, while the phase remains preserved for an extended
period after the seeding operation. These seeded non-
equilibrium states occur diverse due to the fluctuations

near the critical point.

Phase-Locked Seeding

The emergence of the seeded 2-DTC phase is influ-
enced by relative phase between the seed field and the
RF-driving field. To illustrate this, we introduce a seed
signal with a double periodicity (fs = f0/2) into the
microwave field and vary the relative phase φ after the
seeding operation, as shown in Fig. 3(a). The seed field
builds up a transition channel between Rydberg states
48

∣∣D5/2

〉
and 49

∣∣P3/2

〉
, modifying the system states in

the subspace. As the intensity of the seed field varies si-
nusoidally, the population at the Rydberg state 49

∣∣P3/2

〉
also undergoes periodic evolution. This periodic decrease
in population acts as a trigger for the system to transition
into 2-DTC phase. In this case, synchronization occurs,
leading to the formation of a coherent and time-ordered
pattern in the system.
By varying the relative phase φ from 0 to 2π, we record

the amplitude of seeded 2-DTC phase, the results are
given in Fig. 3(b). During the change phase, the chang-
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Figure 4. 2-DTC seeding dynamics. (a) Physical diagram for triggering 2-DTC. The frequency of driving the Rydberg
states |R2⟩ and |R3⟩ is twice of the frequency of the RF-field driving. The emergence of 2-DTC is triggered by switching the
microwave field on. (b) The time sequence of the microwave seed field. The seeding is initiated by switching on the microwave
field. (c) The recorded transmission dynamics. The transmission dynamics can be divided into three regimes: the growth
regime, the successful seeding regime, and the shrinkage regime.

ing seed waveform and the RF-driving waveform start to
align with each other, causing them to overlap and lead-
ing to a joint action on exciting atoms. This joint action
induces a new period of collective dynamics, thus result-
ing in seeded 2-DTC, see more details in Method Sec-
tions. The response of seeded 2-DTC versus φ behaves
as a doubling frequency with relative to the seed field.
For example, when φ = 1.03π, the 2-DTC phase can be
amplified and we can thus observe the visible periodic
doubling signal [see Fig. 3(c)], resulting in synchroniza-
tion. While at φ = 0.53π, the 2-DTC phase cannot be
amplified, corresponding to unsynchronization.

Seeding Dynamics

To demonstrate the seeding dynamics, we input a
pulsed amplitude modulated microwave field [with a fre-
quency of fs = f0/2] to switch the seeding field off and
on. The physical diagram for illustrating seeding process
is given in Fig. 4(a), where we have two Rydberg states
denoted as |R2⟩ and |R3⟩. The pulsed seeding field drives
transition between these two states periodically. This
pulsed transition process acts as a pulsed seed to affect
the temporal arrangements of Rydberg population ρR2R2

in the presence of RF-field periodic driving. Specifically,
it leads to the response frequency of Rydberg popula-
tion ρR2R2

changing from f0 to f0/2 when switching the
seed field on. We can then observe the seeding dynamics
of time crystal by recording the probe transmission, as
shown in Figs. 4(b) and (c).

In Figs. 4(b) and (c), we observe that there are gradu-
ally modified temporal arrangements of transmission at
the beginning of switching, indicating the seeding growth

regime. The duration of this growth regime in our ex-
periment is approximately ∼ 0.1 ms, as indicated by the
shaded green area around t = 0.5 ms. Once the growth
regime is completed, 2-DTC is successfully seeded, as
shown by the shaded red area in Fig. 4(c). In this regime,
the system exhibits persistent periodical oscillation, but
with the same frequency as the seed field. When we
switch off the seed field, 2-DTC phase gradually disap-
pears. This gradual decrease corresponds to the shrink-
age of the seeded 2-DTC.

Embryonic Synchronization

Furthermore, the shape and intensities of the initial
seeding also influence the evolution of many-body sys-
tem, leading to the emergence of DTCs with distinct fre-
quencies. Firstly, we measure the magnitude of 2-DTC
response by altering the intensities of seed field [here, we
set fs = f0/2]. The results are shown in Fig. 5(a). The
magnitude of 2-DTC response in the Fourier spectrum
is directly proportional to the amplitude of seed field U .
By this way, we can effectively control the strength of
seeded 2-DTC phase.
The fundamental frequency f0/2 of 2-DTC is associ-

ated with the characteristic oscillation or periodicity of
time crystal’s phases or patterns. When the driving fre-
quency matches this resonant frequency, the system can
synchronize its behavior with the external driving, lead-
ing to the emergence of a time crystal. When the seeding
frequency deviates from f0/2, the non-resonant seeding
introduces perturbations or disruptions to the system,
causing it to explore a broader range of possible energy
states or patterns of oscillation, for example, fractional
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Figure 5. Embryonic synchronization. (a) Measured 2-DTC response versus the seed field amplitude U (blue dots). The
black line is the fit linear function. Here, the seed frequency is set at fs = f0/2. (b) Measured gain by seeding different DTCs
with altering different fs. Notably, we observe that the subharmonics align with the seed frequency. There is a higher gain at
frequencies above fs and a weaker response at frequencies below fs. In these cases, the relative phase φ = 1.03π.

DTCs.
Secondly, by varying the seed frequency fs from 2π×15

kHz to 2π×25 kHz, we record the intensity of signal at
frequency fs in the Fourier spectrum. We analyze their
characteristics through the magnitude of subsequent sub-
harmonics response in the Fourier spectrum. Impor-
tantly, we observe that the subharmonics align with the
frequency of seed field, resulting in embryonic synchro-
nization, the measured data for gain of output to in-
put are given in Fig. 5(b). The gain has a formula of
G = (Sout − Sin)/Sin, in which Sin(out) represents the
amplitude at f = fs in Fourier spectrum without (with)
RF-field. Interestingly, we not only observe a gain greater
than 0 at fs = f0/2, but we also find that this gain
can occur for frequencies other than f0/2. For example,
when we set fs = 2π×19.6 kHz [corresponding to a non-
integer DTC], we still observe a gain greater than 0. For
fs ̸= f0/2 (corresponding to seeding time crystal with
different embryos), we are essentially starting the sys-
tem off with different starting points, which can lead to
the emergence of time crystals with distinct characteris-
tics, see Method Sections for more details. This indicates
that seeded DTC response is not limited to a specific fre-
quency and can occur at different frequencies, offering
more flexibility in controlling and amplifying the signal.
This variation in frequency allows us to modify the un-
derlying temporal arrangements and ultimately obtain
different types of time crystal formations.

Furthermore, we observe that the gain is not symmet-
ric at fs = f0/2. The gain is present for frequencies fs
below f0/2, but it disappears for frequencies fs above
f0/2, resulting in a loss. This asymmetric behavior can
be explained from the stimulated amplification of seed-
ing in two energy levels [f = 0 and f = f0/2] involved in
the amplification process. In the case of fs < f0/2, the
energy of seed field is lower than the energy difference
between the two energy levels. As a result, the system is

injected with energy through the RF-driving and amplify
the seed field, leading to a gain in the overall output. On
the other hand, when fs > f0/2, the frequency of the
seed field is higher than half the resonant frequency f0.
This means that the energy of seed field is higher than
the energy difference between the two energy levels, and
thus the system is hard to synchronize to the change of
seed field. In this case, a part of Rydberg atoms are
driven by the RF-field, thus the response induced by the
seed field becomes weak, leading to a loss or attenuation.

Discussions

In summary, we have studied seeding crystal in time
domain in Floquet driven Rydberg atoms. The coherent
driving on Rydberg atoms by the microwave field forms
a nucleation center, acting a seed of broken-symmetry
phase in subspace. Through the interaction of Rydberg
atoms, the laser driving and dissipation, and the seed
of microwave driving, the subspaces of system are cou-
pled to each other, resulting in time-translation symme-
try breaking throughout the entire ensemble. To our best
knowledge, the findings in this work reveal a first experi-
mental demonstration of seeding DTC. This work is dif-
ferent from seeding continuous time crystal proposed in
the theoretical work [39]. The same things in these two
works reveal that time crystal can be seeded in both in
discrete and continuous cases. We also find that the sys-
tem can be seeded at a frequency that does not match
the natural resonance of 2-DTC. This variation in fre-
quency allows us to modify the underlying temporal ar-
rangements and ultimately obtain different types of time
crystal formations, providing a avenue to study fractional
DTCs. This also allows us to study and understand how
the manipulation of the initial conditions influences the
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behavior and properties of the resulting time crystal for-
mation.

The introduced technological method opens up new
avenues of engineering of time crystals, unlocking for the
control and manipulation temporal patterns and subhar-
monic responses in quantum many-body systems. Fur-
thermore, exploring the range of frequencies for gener-
ating DTCs and the phase-locking mechanism help us
gain a deeper understanding of the underlying mecha-

nisms involved in their formation and stability. This
achievement not only advances our fundamental under-
standing of time crystals but also has significant impli-
cations for various applications, such as quantum com-
puting and quantum many-body physics. Seeding time
crystals opens up exciting possibilities for further inves-
tigation on non-equilibrium quantum physics, marking
a significant milestone to understand and utilize their
unique properties.

[1] A. A. Chernov, Modern crystallography III: crystal
growth, Vol. 36 (Springer Science & Business Media,
2012).

[2] B. R. Pamplin, Crystal Growth: International Series on
the Science of the Solid State (Elsevier, 2013).

[3] E. A. Stura and I. A. Wilson, Analytical and production
seeding techniques, Methods 1, 38 (1990).

[4] B. Murray, D. O’sullivan, J. Atkinson, and M. Webb, Ice
nucleation by particles immersed in supercooled cloud
droplets, Chemical Society Reviews 41, 6519 (2012).

[5] F. Wilczek, Quantum time crystals, Physical Review Let-
ters 109, 160401 (2012).

[6] K. Sacha and J. Zakrzewski, Time crystals: a review,
Reports on Progress in Physics 81, 016401 (2017).

[7] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, Dis-
crete time crystals, Annual Review of Condensed Matter
Physics 11, 467 (2020).

[8] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme,
A. Hemmerich, and H. Keßler, Observation of a continu-
ous time crystal, Science 377, 670 (2022).

[9] M. P. Zaletel, M. Lukin, C. Monroe, C. Nayak,
F. Wilczek, and N. Y. Yao, Colloquium: Quantum
and classical discrete time crystals, Reviews of Modern
Physics 95, 031001 (2023).

[10] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee,
J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter,
A. Vishwanath, et al., Observation of a discrete time crys-
tal, Nature 543, 217 (2017).

[11] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, et al., Ob-
servation of discrete time-crystalline order in a disordered
dipolar many-body system, Nature 543, 221 (2017).

[12] T. Li, Z.-X. Gong, Z.-Q. Yin, H. Quan, X. Yin,
P. Zhang, L.-M. Duan, and X. Zhang, Space-time crys-
tals of trapped ions, Physical Review Letters 109, 163001
(2012).

[13] D. V. Else, B. Bauer, and C. Nayak, Floquet time crys-
tals, Physical Review Letters 117, 090402 (2016).

[14] S. Autti, V. Eltsov, and G. Volovik, Observation of a
time quasicrystal and its transition to a superfluid time
crystal, Physical Review Letters 120, 215301 (2018).

[15] J. Smits, L. Liao, H. Stoof, and P. van der Straten, Ob-
servation of a space-time crystal in a superfluid quantum
gas, Physical Review Letters 121, 185301 (2018).

[16] A. Pizzi, A. Nunnenkamp, and J. Knolle, Bistability and
time crystals in long-ranged directed percolation, Nature
communications 12, 1061 (2021).

[17] S. Autti, P. J. Heikkinen, J. T. Mäkinen, G. E. Volovik,
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METHODS

Experimental Setup

The system is based on the room temperature Cae-
sium atoms in a 7-cm vapor cell. A three-photon exci-
tation scheme is used to excite atoms from the ground
state to the Rydberg state [38], in which a 852 nm probe
field drives the transition of

∣∣6S1/2

〉
−→

∣∣6P3/2

〉
, a 1470

nm laser drives the transition of
∣∣6P3/2

〉
−→

∣∣7S1/2

〉
,

and a 780 nm coupling field drives the transition of∣∣7S1/2

〉
−→

∣∣49P3/2

〉
. In the experimental setup, the 852

nm laser beam is divided into two probe beams (one is
probe and another is reference) to pass through the vapor
cell (1/e2 -waist radius of approximately 200 µm), and

the 1470 nm and 780 nm laser beams propagate in the op-
posite direction to one of the probe laser beams to reduce
the Doppler broadening effect. The 1470 nm and 780 nm
laser beams have 1/e2 -waist radius of approximately 500
µm. These configurations induce three-photon electro-
magnetically induced transparency, leading to the trans-
parency of the probe laser beam. Finally, the two 852
nm laser beams are received by a balanced photoelectric
detector for differential amplification measurement.
The RF-field is applied by two parallel round electrode

plates, which are placed parallel to each other on both
sides of the vapor cell 4 cm apart. The positive and
negative electrode plates are connected to a functional
generator (F1), which is triggered by another functional
generator (F2). The seed field is in microwave band that
is generated from a vector signal source (Ceyear, 1465F-
V), which is switched by the functional generator (F2).
The seed field is fed through an external antenna to drive
the transition of |R2⟩ −→ |R3⟩ (the corresponding transi-
tion

∣∣49P3/2

〉
−→

∣∣48D5/2

〉
has a frequency of 6.507 GHz)

with Rabi frequency ΩMW. The seed field couples the
atoms at Rydberg state 49P3/2 calculated by the Python
package, Alkali Rydberg calculator [42]. The external
antenna has a radiated direction that is perpendicular
to the laser beam propagation direction. All data in the
experiment are the signal in time domain, we make a
Fourier transformation to measure the frequency of time
crystal.

Quantum Master Equation

To simulate the dynamics of seeding time crystal, we
build a quantum many-body system by considering N
four-level atoms composed of a ground state |g⟩ and three
Rydberg states |R1⟩ , |R2⟩ , |R3⟩ (all with an equal decay
rate γ). A laser excite atoms from |g⟩ to |R1⟩ and |R2⟩
with Rabi frequency Ω1 and Ω2 respectively. The mi-
crowave coupling the Rydberg states |R2⟩ and |R3⟩ with
Rabi frequency Ω3(t), where Ω3(t) = A0 +ASin(2πfst+
φ0 + φ) is the seed to drive system. The periodical RF-
field driving shift the detuning ∆(t), which provides the
Floquet-driven conditions. The excited Rydberg atoms
interact strongly through the van der Waals interaction
Vij = C6/ |ri − rj |6, here ri and rj are the locations of
i-th and j-th atoms. The Hamiltonian of system is de-
scribed as Eq.1, the dynamics of system is governed by
the quantum master equation:

∂tρ̂ = i[Ĥ, ρ̂] + LR1
[ρ̂] + LR2

[ρ̂] + LR3
[ρ̂] (2)

The Lindblad operators are given by Lr =
(γ/2)

∑
i(σ̂

rg
i ρ̂σ̂gr

i − {n̂r
i , ρ̂}), which represents the decay

process from the Rydberg state |r⟩ (r = R1, R2, R3) to
the ground state |g⟩. As the the thermal motion with
large number of Rydberg atoms in system, the many-
body correlation may be weak and we can consider the
mean-field approximations. In the mean-field treatment,
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Figure 6. The calculated phase plane in the basis of ρR1R1 and Im[ρgR1 ] versus time t. The black and red curves are
the trajectories of the atoms at frequency of 2-DTC without and with seeding. There is an oscillation behavior with presence
of seeding, see the persistent red cycles. While for no seeding, the atoms end a fixed black point. The green arrow indicates
the initial state at t = 0. In these cases, the theoretical parameters are χ = -22, Ω1 = 3.5, Ω2 = 3.5, γ = 0.78, δ = 8.6, A0 = A
= 1.5. The responses are filtered out by a low-pass filter which allows signals with frequencies below a certain cutoff frequency
to pass through while attenuating higher frequencies.

we obtained the following equations:

ρ′gR1
(t) =

1

2
(−γρgR1(t) + 2i(∆(t)− VMF)ρgR1(t))

+
1

2
Ω1iρR1R1(t)−

1

2
Ω1iρgg(t)

+
1

2
iΩ2ρR2R1(t)−

1

2
iΩ3(t)ρgR3(t), (3)

ρ′gR2
(t) =

1

2
(−γ + 2iδ) ρgR2(t) + i(∆(t)− VMF)ρgR2(t)

+
1

2
iΩ1ρR1R2

(t) +
1

2
Ω2 (iρR2R2

(t)− iρgg(t)) ,

(4)

ρ′gR3
(t) =

1

2
(−γ + 2iδ) ρgR3

(t) + i(∆(t)− VMF)ρgR3
(t)

+
1

2
iΩ1ρR1R3

(t) +
1

2
iΩ2ρR2R3

(t)− 1

2
iΩ3(t)ρgR1

(t),

(5)

ρ′R1R1
(t) = −γρR1R1

(t) +
1

2
Ω1 (iρgR1

(t)− iρR1g(t))

+
1

2
Ω3(t) (iρR3R1

(t)− iρR1R3
(t)) , (6)

ρ′R1R2
(t) =

1

2
(−2γρR1R2

(t) + 2iδρR1R2
(t)) +

1

2
iΩ1ρgR2

(t)

− 1

2
iΩ2ρR2g(t) +

1

2
iΩ3(t)ρR3R2

(t), (7)

ρ′R1R3
(t) =

1

2
(−2γρR1R3

(t) + 2iδρR1R3
(t)) +

1

2
iΩ1ρgR3

(t)

+
1

2
Ω3(t) (iρR3R3

(t)− iρR1R1
(t)) , (8)

ρ′R2R2
(t) = −γρR2R2

(t) +
1

2
Ω2 (iρgR2

(t)− iρR2g(t)) ,

(9)

ρ′R2R3
(t) = −γρR2R3

(t) +
1

2
iΩ2ρgR3

(t)− 1

2
iΩ3(t)ρR2R1

(t),

(10)

ρ′R3R3
(t) = −γρR3R3

(t) +
1

2
Ω3(t) (iρR1R3

(t)− iρR3R1
(t))

(11)

where VMF = χ(ρR1R1
(t) + ρR2R2

(t) + ρR3R3
(t)) is the

mean-field shift of Rydberg atoms.

Trajectories in Phase Plane

By numerically calculating the master equation, we
can obtain the time evolution of the system. We apply a
low-pass filter to the atomic density matrices ρR1R1 and
ρgR1

, effectively removing the oscillating signals at fre-
quency f = f0. By this way, we plot the phase plane
in the basis of ρR1R1

and ρgR1
versus time t, as shown

in Fig. 6, which allows us to reveal how the behavior of
the system has changed with or without the seed field.
We set the condition of the system before the critical
point [δc = 8.7], for example δ = 8.6. At the beginning,
the trajectories of the atoms are the same for both cases
with and without seeding. However, as time progresses,
the trajectories bifurcate and take different paths in the
phase plane, see the black and red trajectories in Fig. 6.
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Figure 7. The phase dependent seeding. (a) represents the phase plane of atoms, including trajectories with relative phases
φ = π/2 (black) and φ = 0 (red). (b) and (c) correspond to time flow of Rydberg population ρR1R1 at φ = π/2 and φ = 0,
respectively. The green and blue curves are the waveform of the RF-driving field and seed field. In these cases, the theoretical
parameters are χ = -22, Ω1 = 3.5, Ω2 = 3.5, γ = 0.78, δ = 8.6, A0 = A = 1.5. (d) The calculated amplitude of the seeded
2-DTC versus the relative phase φ. In this case, A0 = 0.5, A = 1.0. (e) and (f) The calculated Fourier spectrum with a relative
phase φ = π/2 and φ = 0.

In the absence of a seed field, all atoms converge to a
relatively fixed point in the phase plane, indicating that
they do not exhibit 2-DTC oscillation behavior. On the
other hand, when a seed field is applied, all atoms ex-
hibit collective dynamics and show persistent oscillating
trajectories, forming a limit cycle [34]. The frequency of
these oscillations is f = f0/2 with same with the seed
field, revealing the periodical features of seeded 2-DTC.
This shows the dynamic behavior of system with and
without seeding.

Phase-Dependent Seeding

The theoretical simulations show that the relative
phase between the seed field and the RF-field also affects
strength of the seeded 2-DTC. We map the phase plane
at φ = π/2 and φ = 0 as shown in Fig. 7(a), in which the
phase difference leads to the different trajectories and the
distinct cycling size. Figures. 7(b) and (c) are the corre-
sponding configurations of time sequences. The different
time sequences result in a distinct joint action on excit-
ing Rydberg population ρR1R1 . By altering the relative
phase φ, we record the amplitude of the seeded 2-DTC
and plot the results shown in Fig. 7(d). We can find that
the periodicity of the seed 2-DTC is twice of the RF-field
driving, which is in good agreement with the experimen-
tal observations [see Fig. 3(b)]. By setting φ = π/2 and
φ = 0, we obtain the two opposite situations of synchro-
nization and unsynchronization, as given in Fig. 7(e) and
Fig. 7(f), respectively.

Once the initial conditions are fixed by setting the ini-
tial phase φ0 = 0.93π, the phase difference between the

driving field and the seed field is directly related to the
amplification of 2-DTC order. When the waveform of
the seed field is in phase with the 2-DTC [it means that
the driving and seed fields have the same timing with
φ = 0], the atoms are gradually synchronized, the signal
of 2-DTC will be further amplified. When the wave-
form of the seed field is out of phase with the 2-DTC
[φ = π/2], the atoms are not synchronized, and the sig-
nal 2-DTC cannot be effectively amplified. These result
in an obvious difference on response of 2-DTC, see the
height of peaks at f = f0/2 in the Fourier spectrum given
in Fig. 7(e) and Fig. 7(f).

Seeding Fractional DTCs

We also perform numerical studies on the emergence of
seeded n-DTCs with n beyond integers. In these studies,
we input a seed field with frequencies fs = 0.475f0 and
fs = 0.45f0 which are not resonant with the fundamen-
tal frequency of 2-DTC (f = f0/2). We then record the
corresponding Fourier spectrum of the Rydberg popula-
tion ρR1R1 . The Fourier spectrum are shown in Fig. 8(a)
and Fig. 8(b), in which we observe the seeded n-DTCs
with fractional numbers n = 40/19 and n = 20/9 re-
spectively. These numerical studies show prediction for
seeding n-DTCs with fractional values of n.
In the experiment, we applied a seed field with fre-

quencies of fs = 2π × 19 kHz and fs = 2π × 18 kHz. We
then measured the Fourier spectrum of probe transmis-
sion and found that the measured results are consistent
with the theoretical predictions, as shown in Fig. 8(c)
and Fig. 8(d). In these two results, the peaks marked
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Figure 8. Seeding fractional DTCs. (a) and (b) are the calculated results of seeding fractional DTCs by altering the
seed frequencies of fs = 0.475f0 and fs = 0.45f0. The peaks [marked by the arrow of dotted lines] in the Fourier spectrum
correspond to the subharmonic responses of 40/19-DTC and 20/9-DTC. In these cases, the theoretical parameters are χ =
-22, Ω1 = 3.5, Ω2 = 3.5, γ = 0.78, δ = 8.6, A0 = A = 1.2. (c) and (d) are the measured data by applying the seed field with
frequencies of fs = 2π× 19 kHz and fs = 2π× 18 kHz. The measured fractional DTCs (40/19-DTC and 20/9-DTC) are found
by the marked peaks in the Fourier spectrum. The symmetric peaks on the other sides are the difference frequency signals,
which has a frequency of f0 − fs.

by the dotted arrows in the Fourier spectrum correspond
to the seeded fractional DTCs (40/19-DTC and 20/9-
DTC). Both of theoretical and experimental findings sug-
gest that fractional DTCs can be seeded by selecting the
frequencies of the seed fields.
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