
Abnormal solutions of Bethe–Salpeter equation

with massless and massive exchanges

Jaume Carbonell1*, Vladimir A. Karmanov2†,
Ekaterina A. Kupriyanova2†, Hagop Sazdjian1†
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Abstract

We summarize the main properties of the so called ”abnormal solutions” of the
Wick–Cutkosky model, i.e. two massive scalar particles interacting via massless
scalar exchange (”photons”), within the Bethe–Salpeter equation. These solutions
do not exist in the non-relativistic limit, in spite of having very small binding
energies. They present a genuine many-body character dominated by photons,
with a norm of the valence constituent wave function (two-body norm) that
vanishes in the limit of zero binding energy.
We present new results concerning the massive-exchange case, in particular deter-
mine under which conditions is it possible to obtain such peculiar solutions
without spoiling the model by tachyonic states (M2 < 0).

Keywords: Bethe–Salpeter equation, Wick–Cutkosky model, Abnormal solutions,
Hybrid states

1 Introduction

Lorentz invariance of a physical theory does not only manifest itself when the velocities
of the particles are comparable to the speed of light or when their momenta are
comparable to the constituent rest masses. This fundamental symmetry of nature can
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also have dynamical consequences in the low-energy limit and can induce quantitative
and qualitative differences with respect to a non-relativistic description.

One could expect, indeed, that when describing a bound state of two particles
with a very small binding energy, and involving momenta smaller than the constituent
masses, both approaches, a relativistic and a non-relativistic one, would lead to very
similar results. However this is not always the case.

For instance, when considering the zero-binding-energy limit of the Light-Front [1]
and of the Bethe–Salpeter (BS) [2, 3] equations in a φ2χ scalar theory, it is found
[4] that the results of these covariant theories are very close to each other, but differ
from the results of the non-relativistic Schrödinger equation when the mass µ of the
exchange particle is non-zero.

More spectacular is the fact that there are families of low-energy solutions that
exist in a relativistic theory while they are totally absent in its non relativistic limit.
This happens within the BS equation when considering two scalar particles interacting
by a massless (µ=0) scalar exchange.

The properties of such states, first discovered by Wick [5] and Cutkosky [6] in the
µ=0 case, and since denoted ”abnormal solutions”, is the main subject of the present
contribution, with special emphasis on its eventual persistence in the massive (µ > 0)
case.

We present in Section 2 a brief summary of the BS equation for the scalar model.
Section 3 is aimed to describe the Cutkosky solution for the massless-exchange case
and the properties of normal and abnormal states. Section 4 contains selected results
of the massive-exchange case. Concluding remarks follow in 5.

2 The Bethe–Salpeter equation

The BS equation deals with a well-defined object form the Quantum Filed Theory
point of view: the matrix element of the T-product of the Heisenberg operators taken
between the vacuum and the bound state [7]

Φ(x1, x2, P ) =< 0 | T{ϕ(x1)ϕ(x2)} | P > (1)

Its Fourier transform Φ(k, P )

Φ(x1, x2, P ) =

∫
dp1
(2π)4

dp2
(2π)4

Φ(p1, p2) e
−iPx e−ikx = e−iPx

∫
dk

(2π)4
Φ(k, P ) e−ikx

written in terms of the total P = p1 + p2 and relative 2k = p1 − p2 momenta, obeys
the equation

Φ(k, P ) = S1(k, P ) S2(k, P )

∫
d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (2)
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where

S1(k, P ) =
i(

P
2 + k

)2 −m2 + iϵ

S2(k, P ) =
i(

P
2 − k

)2 −m2 + iϵ

are the free particle propagators in the case of two equal masses and iK is the interac-
tion kernel. If iK contained all irreducible graphs of a Lagrangian density, the solution
of (2) would be equivalent to the solution of the full QFT problem. This kind of
”mantra” is however a wishful thinking, not only because nobody knows how to con-
struct such a kernel, but, would it be the case, the corresponding integral equation
would not be integrable. One is then limited to use very simple reductions that keep
only a vague flavour of the underlying Lagrangian theory. In the simplest case of two
scalar particles of massm interacting via a massive scalar exchange µ the ladder kernel
reads

iK(k, k′) = − g2

(k − k′)2 − µ2 + iϵ
=⇒ V (r) = − g2

4π

e−µr

r
(3)

In the non-relativistic limit it leads to the Yukawa potential V (r).
Equation (2) is an implicit eigenvalue equation with repect to the total mass

squared of the system, M2 ≡ P 2, which in this ladder approximation, appears only in
the free propagators.

Fig. 1 Feyman graph representing the BS amplitude in momentum space.

The BS amplitude Φ(k, P ) is quite a nasty mathematical object, plagued with sin-
gularities, as a function of the arguments, which represents the Feynman amplitude
depicted in Fig. 1 and which has not an easy interpretation in terms of wave func-
tions. These singularities motivated G. Wick [5] to change the original formulation
in Minkowski space into the Euclidean metric, introducing the, since then famous,
Wick rotation in the time-like component: k0=ik4 such that kM = (k0, k1, k2, k3) →
kE = (k1, k2, k3, k4 = −ik0) and k2M=k20 − k21 − k22 − k23=−k2E=−(k21 + k22 + k23 + k24).
This change of metric paved the way for obtaining the first solutions of BS equation
with kernel (3) with µ=0. Results were published by Wick himself in the quoted ref-
erence [5] and in a much more complete way by Cutkosky in the subsequent paper of
the same journal [6]. They constitute the so-called Wick–Cutkosky (W-C) model,
although we will abusively use the same denomination for the µ ̸=0 case.
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For the S-wave and the W-C model, the equation reads:[
(k2 + k24 +m2 − 1

4
M2)2 +M2k24

]
ΦE(k4, k) =

∫ ∞

0
dk′

∫ ∞

−∞
dk′4V

E
0 (k4, k; k

′
4, k

′)ΦE(k′4, k
′)

(4)

where the S-wave Euclidean kernel

V E
0 (k4, k; k

′
4, k

′) =
αm2k′

π2k
log

[(k4 − k′4)
2 + (k + k′)2 + µ2]

[(k4 − k′4)
2 + (k − k′)2 + µ2]

. (5)

is smooth everywhere for µ ̸= 0 and presents only logarithmic singularities in the
diagonal {k′ = k}×{k′4 = k4} for µ = 0. Here, α = g2/(16πm2). Nowadays there exist
several methods to solve accurately the BS equation in Euclidean space for a bound
state problem. They apply to a large variety of kernels with bosons and fermions and
even beyond the ladder approximation. A much more precarious situation is however
observed in the scattering problem.

Other methods have been developed aiming to obtain a Minkowski solution of the
same equation. They are based on an integral representation of the BS amplitude
which collects all the singularities in an analytic term and deals with a regular weight
function that obeys a modified BS equation. They are also much better adapted to
understand the abnormal states for the massless as well as for the massive exchange
cases. These ”Minkowski-space” methods are widely inspired by the one developed by
Cutkosky in his solution of the massless W-C model, that will be briefly summarized
in the coming section.

3 Cutkosky’s solution for the massless case

In his first publication [6], Cutkosky searched for the solution of (2) with the
interaction kernel (3) in the form of an integral representation:

ΦLM
n (k, P ) =

n−L−1∑
ν=0

∫ +1

−1

dz gνnL(z)
YLM (k̂)[

k2 + (k · P ) z −
(
m2 − P 2

4

)
+ iϵ

]2+n−ν (6)

in terms of unknown “weight functions” gνn(z).
For the S-wave, which is the only case we are going to consider here, and

disregarding a global normalization factor, (6) turns into

Φn(k, P ) =

n−1∑
ν=0

∫ +1

−1

dz
gνn(z)[

k2 + (k · P ) z −
(
m2 − P 2

4

)
+ iϵ

]2+n−ν (7)

The solution Φn, where n = 1, 2, 3, . . . , which plays the role of the principal quan-
tum number in the non-relativistic Coulomb problem, is obtained as a superposition
of n components gνn(z) labelled by ν = 0, 1, . . . , n− 1.
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Cutkosky obtained a coupled set of integral equations for the weigh functions gνn(z)
in the – highly inspired but useless – form1

gνn(z) =
λ

2

ν∑
ν′=0

(n− ν + 1)! (n− ν′ − 1)!

(n− ν′ + 1)! (n− ν − 1)!

∫ +1

−1

dt

∫ 1

0

dx x(1− x)n−ν−1

×
∫ +1

−1

dz′
δ[z − xt− (1− x)z′]

(1− η2 + η2z′2)ν−ν′+1
gν

′

n (z′) (8)

where

λ =
g2

16π2m2
=
α

π
(9)

η =
M

2m
= 1− B

2m
(10)

After simplifying the coefficients and introducing

Q(z) = 1− η2(1− z2) (11)

one is left with the, still useless, system of integral equations

gkn(z) =
λ

2

k∑
k′=0

(n− k + 1)(n− k)

(n− k′ + 1)(n− k′)

×
∫ +1

−1

dt

∫ 1

0

dx x(1− x)n−k−1

∫ +1

−1

dz′
δ[z − xt− (1− x)z′]

Q(z′)k−k′+1
gk

′

n (z′) (12)

The integration over dt can be performed, using the δ function

1. Since x > 0∫ +1

−1

dt δ[z−xt−(1−x)z′] =
∫ +1

−1

dt δ[xt−(z−(1−x)z′)] = 1

x

∫ +1

−1

dt δ

[
t− z − (1− x)z′

x

]
which takes the form∫ +1

−1

dt δ(t− t0) t0(x, z, z
′) =

z − (1− x)z′

x
(13)

2. Expression (13) vanishes except if t0 ∈ [−1,+1] that is if the following two
conditions are satisfied

−1 <
z − (1− x)z′

x
< +1

rewritten as

−1 <
z − z′

x
+ z′ < +1 (14)

To fulfill these conditions we must distinguish the sign of z − z′

1Note that there was a misprint in the integration limits over t in the original publication [6].
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• If z − z′ > 0,
- the left part of (14) is automatically fulfilled 2

- the right part requires the condition

x >
z − z′

1− z′

and so∫
dt δ(t− t0)

∫ 1

0

dx x(1− x)n−k−1 =

∫ 1

z−z′
1−z′

dx (1− x)n−k−1

= − 1

n− k

[
(1− x)n−k

]1
z−z′
1−z′

=
1

n− k

(
1− z

1− z′

)n−k

(15)

• If z − z′ < 0,
- the right part of (14) is automatically fulfilled since z′ + z−z′

x < z′ < +1
- the left part requires

x >
z′ − z

1 + z′

∫
dtδ( t− t0)

∫ 1

0

dx x(1− x)n−k−1 =

∫ 1

z′−z
1+z′

dx (1− x)n−k−1

= − 1

n− k

[
(1− x)n−k

]1
z′−z
1+z′

=
1

n− k

(
1 + z

1 + z′

)n−k

(16)

Gathering (15) and (16) we obtain∫
dtδ( t− t0)

∫ 1

0

dx x (1− x)n−k−1 =
1

n− k
Rn−k(z, z′)

where we have introduced the kernel

R(z, z′) = θ(z − z′)

(
1− z

1− z′

)
+ θ(z′ − z)

(
1 + z

1 + z′

)
=

{ 1−z
1−z′ , if z′ < z
1+z
1+z′ , if z′ > z

(17)

By inserting this expression in (12), one is finally left with the following trian-
gular system of coupled one-dimensional integral equations, useful for numerical

2since z−z′
x > z − z′ and so z−z′

x + z′ > z > −1
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calculations:

gνn(z) =
λ

2

ν∑
ν′=0

cνν
′

n

∫ +1

−1

dz′
Rn−ν(z, z′)

Qν−ν′+1(z′)
gν

′

n (z′) ν = 0, 1, ...n− 1 (18)

with coefficients

cνν
′

n =
(n− ν + 1)

(n− ν′ + 1)(n− ν′)

The kernels R(z, z′) and Q(z), defined respectively in (17) and (11), are displayed in
Fig. 2. R(z, z′) is continuous in both arguments but has a cusp at z′ = z, while 1/Q(z)
is peaked around z = 0. This peak becomes increasingly sharp when the binding energy
tends to zero. Since both kernels appear in equation (18) to some integer power, when
this power is large they become quasi-singular around the critical points (z′ = z and
z = 0), and make the calculations difficult.

-1 -0,5 0 0,5 1

z’

0
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0,6

0,8

1

R
(z

,z
’)

z=-0.9

z=-0.5

z=0

z=0.5

z=0.9

-1 -0,5 0 0,5 1
z

100

101

102

103

104

1/
Q

η2=0.9

η2=0.99

η2=0.999
η2=0.9999

Fig. 2 Left panel kernel R(z,z’) defined in (17) and right panel kernel Q defined in (11) for different
values of η.

For n = 1 there is a single equation determining the unique component of Φ1

g1(z) =
λ

2

∫ +1

−1

dz′
R(z, z′)

Q(z′)
g1(z

′) (19)

For n = 2, the solution Φ2 is determined by two components, g02 and g12 , satisfying

g02(z) =
λ

2

1

2

∫ +1

−1

dz′
R2(z, z′)

Q(z′)
g02(z

′)

g12(z) =
λ

2

[
1

3

∫ +1

−1

dz′
R(z, z′)

Q2(z′)
g02(z

′) +

∫ +1

−1

dz′
R(z, z′)

Q(z′)
g12(z

′)

]
For n = 3 the solution is given by

g03(z) =
λ

2

1

3

∫ +1

−1
dz′

R3(z, z′)
Q(z′)

g03(z
′)
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g13(z) =
λ

2

[
c103

∫ +1

−1
dz′

R2(z, z′)

Q2(z′)
g03(z

′) + c113

∫ +1

−1
dz′

R2(z, z′)
Q(z′)

g13(z
′)

]

g23(z) =
λ

2

[
c203

∫ +1

−1
dz′

R(z, z′)

Q3(z′)
g03(z

′) + c213

∫ +1

−1
dz′

R(z, z′)

Q2(z′)
g13(z

′) + c223

∫ +1

−1
dz′

R2(z, z′)
Q(z′)

g23(z
′)

]
It is worth noticing that, for each n, the component g0n decouples from the rest. It

is determined by a single equation

g0n(z) =
λ

2n

∫ +1

−1

dz′
Rn(z, z′)

Q(z′)
g0n(z

′) (20)

and provides the full spectrum of the W-C model. The rest of the components are
needed to reconstruct the full BS amplitude and other observables, like, e.g., form
factors.

Since (20) is homogeneous, the norm of g0n is not fixed by (20), and can be only
determined by normalizing Φn in (7). On the contrary, there is no choice in the norm
of the components gν>0

n , since they obey an inhomogeneous equation with a source
term proportional to g0n.

There is an equivalent formulation of (18) in differential form. For instance, eq.
(20) providing g0n for any n, is equivalent to the differential equation

g′′
0
n(z) +

2(n− 1)z

1− z2
g′

0
n(z)−

n(n− 1)

1− z2
g0n(z) +

λ

(1− z2)Q(z, η)
g0n(z) = 0 (21)

with the boundary conditions g0n(±1) = 0.
For n=2, and after having obtained g02 by (21), the component g12 is a solution of

the inhomogeneous equation

g′′
1
2 +

α

π

1

(1− z2)Q(z, η)
g12 = − α

3π

1

(1− z2)Q2(z, η)
g02 (22)

with g02 as a source term, and so forth for the other n’s.

3.1 Normal and abnormal states

The W-C model has an infinite family of solutions (Φn,Mn), which, for small values of
the coupling constant α, are ”logarithmically tangent” to the non-relativistic Coulomb
bound-state spectrum [8]:

Bn(α) =
mα2

4n2

[
1 +

4

π
α lnα+ o(α2)

]
(23)

where Mn = 2m−Bn.
For a given n, the function g0n(z) satisfies the homogeneous equation (21), in which

n plays role of a parameter. Such equations usually have a whole spectrum of solutions.
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This just takes place in the equation (21). Therefore, for each value of n=1,2,. . . ,
there exists an additional series of eigenvalues labeled by a new quantum number
κ = 0, 1, . . ., which is a consequence of the symmetry of the 4D Coulomb problem. The
components of the corresponding eigenstates gνnκ have a well defined parity determined
by κ.

gνnκ(−z) = (−)κgνnκ(z)

The subset κ = 0 corresponds, for small values of α, to the standard Balmer series
(23), that is, to the ”normal” non-relativistic solutions. The other states, with κ ̸= 0
, do not have a counterpart in the non-relativistic theory and for this reason were
named by Wick ”abnormal states”. It is worth mentioning that the states with odd
values of κ have vanishing contributions to the S-matrix [9]. So the first abnormal
state with dynamical content is κ = 2.

We have displayed in Fig. 3 the energies of the lower states as a function of the
coupling constant λ = α

π in a log-log scale. One sees clearly that two different
families of states arise: in solid black lines is the ensemble of normal states (κ = 0)
with different values of the principal quantum number n. They have an accumulation
point in (λ,B)=(0,0). We have included in black dashed line the non-relativistic limit
for the ground state. Colored lines correspond to the ground state (n = 1) of the
abnormal solutions: κ = 1 in red, κ = 2 in green,.... This family is totally decoupled,
in its λ(B) trajectory, from the first one, though the normal and abnormal series
intersect. As seen in Fig. 3, between two excited normal states there are the abnormal
ones. The abnormal series has an accumulation point at (λ,B)=(1/4,0). One can show
[5, 6] that, for small values of B, the energies of the abnormal states behave as

λ(B) ≈ 1

4
+

4π2(κ− 1)2

ln2 B
m

(24)

independently of the main quantum number n. Notice from Fig. 3 that the asymptotic
value λmin = 1/4, independent of κ, is reached very slowly when B tends to zero. For
instance, for κ=2 and B=10−6, the value of λ is still a factor two larger than 1/4.

The fact that this horizontal asymptote is reached always from above means that
the abnormal solutions exist only for large values of the coupling constant: λ ≥ 1

4 or
α ≥ π

4 . This is the meaning of the horizontal bold brown line at λ = λmin = 1/4.
The existence of a minimal coupling constant to bind a two-body system

is typical of a Yukawa-like massive-exchange potential. From this point of
view, the ground abnormal state (κ = 2) behaves as if it was created by the exchange
of a ”massive photon” with a non zero effective mass µeff . One can get an evaluation
of its value by means of the solution of the non-relativistic Yukawa model [31]. One
can see there that the minimal coupling constant for the appearance of the first bound
state in the dimensionless problem is G0 ≈ 1.680. It is related to the minimal coupling
constant of the dimensionful problem by αmin = µ

mG0. For all abnormal solutions one
has αmin = π/4, which gives µeff/m = 0.47.

On another hand, it turns out that for values of λ > 2 the ground state of the model,
i.e., the normal state with n=1 and κ=0, has M2 < 0. If we want to restrict ourselves
to non-tachyonic states, the coupling constant must be limited to λ ≤ λmax = 2. This

9
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Fig. 3 Solid black lines correspond to binding energies of the first (n=1,2,...) normal states (κ = 0)
as a function of the coupling constant α. Abnormals states, limited to ground n=1, are in colored
lines: κ = 1 in red, κ = 2 in green,... .

is the reason for the horizontal brown line at λ = λmax in Fig. 3. Since the first
abnormal state is κ=2 and it crosses the line λ = λmax at B ≈ 0.00903, this means
that all abnormal states, although requiring large values of the coupling constants to
exist, concern very low-energy solutions.

It is quite a paradoxical situation for a relativistic theory to predict a series of new
low-energy states. We would like to mention here that the existence of such states,
would they be obtained with a simplified kernel, require the full covariance of the
theory. If the excitation in the time-like degrees of freedom are frozen, the abnormal
states disappear [10].

3.2 Characterization of the abnormal states

In a series of papers [11–13], summarized in [14], we have studied the properties of
the abnormal states in the W-C model, with the main aim of giving an intrinsic
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characterization of such states, rather than a relative position in the full spectrum of
the model.

We have extensively compared the elastic and inelastic form factors of normal
versus abnormal states. The most striking difference lies in the two-body contents of
the corresponding state vectors. Indeed, in the Light-Front approach, the state vector
| P ⟩ appearing in the definition of the BS amplitude (1) is a QFT state involving
many-body components (Fock expansion):

| P ⟩ =
∞∑

n≥2

Ψn(k1, k2, . . . , k,) | n⟩ | n⟩ = a†k1
a†k2

, . . . , a†kn−2
b†q1b

†
q2

where the operators b† and a† are the creation operators of the constituent massive
particles and of the exchanged particle, respectively, and where Ψn is, by definition,
the n-body wave function.

The total norm of a state vector results from adding the partial norms of the
corresponding 2-, 3- and many-body components

⟨P | P ⟩ = 1 =

∫
Ψ2

2 +

∫
Ψ2

3 +

∫
Ψ2

4 + . . . = N2 +N3 +N4 + . . .

Having normalized the BS amplitude Φ by the condition F (0)=1, where F (Q) is
the elastic electric form factor of the full bound system, we have obtained the two-
body wave function by projecting on the Light-Front plane, ω · x=0 with ω2 = 0, the
BS amplitude

ψ2(k1, k2, P, ω) =
(ω · k1)(ω · k2)

π(ω · P )

∫ +∞

−∞
Φ(k + βω, P ) dβ

and by that, the two-body norm

N2 =
1

(2π)3

∫
ψ2
2(k⊥, x)

d2k⊥dx

2x(1− x)
.

We have displayed in Fig. 4 the two-body norm N2 of the first two normal (left
panel) and abnormal (right panel) states as functions of their binding energy B. As
one can see, an essential difference appears between the two-body contents of a normal
and an abnormal state. In the limit of small binding energies, the two-body norm N2

of a normal state tends to 1 (left panel) , indicating that it is described by a 2-body.
valence wave function. On the contrary, the abnormal states has a two-body norm
that, in this B → 0 limit, tends to 0, indicating a genuine many body character of
such states. This difference holds for the ground as well as for the first excited states.

This is an intrinsic difference between such kind of states, related to only their
very internal structure and independent of their energy, and was probably the most
striking result of our previous work [14].

It is worth mentioning here some kind of skepticism expressed by Wick himself,
when commenting on the existence of such states at the very end of his seminal article
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[5]. He wrote ”About the possible existence of these abnormal solutions, we shall not
try to speculate. Since they occur only for finite values of λ (λ ≥ 1/4) it will be
unwise to assume that they are a property of the complete BS equation. Certainly
the ladder approximation cannot be trusted to such extent”. To our knowledge, this
judicious remark still remains an open question. However the many-body character of
the abnormal states that we have put in evidence, seems to provide an argument in
favour of their existence. It is hard to imagine a possible mechanism with which the
non-ladder many-body contributions could inhibit the construction of such collective
many-body states.

1e-05 0,0001 0,001 0,01 0,1 1

B/m

0,5

0,6

0,7

0,8

0,9

1

N
2

n=1 κ=0

n=2 κ=0

2 0 0,001 0,002 0,003 0,004 0,005

B/m

0

0,05

0,1

0,15

0,2

N
2

n=1 κ=2

n=2 κ=2

Fig. 4 N2-dependence on the binding energy B/m for the ground (n = 1) and first excited (n = 2)
states. On left panel for the normal states (κ = 0) and on right panel for the abnormal ones (κ = 2).

So far we have considered the case of equal constituent masses. If the Coulomb
field would be provided by a heavy ion, interacting with an electron, we would deal
with strongly unequal constituent masses. The existence of abnormal states in this
case was studied in [6, 15]. It turns out that in a system with such different masses the
abnormal states still exist. Moreover, the effect of unequal masses is attractive. The
balance between the exchanged photons and the massive constituents is little sensitive
to the mass ratio, and so the many-photon component still predominates.

It remains to see whether the abnormal states survive when the exchange mass
differs from zero. This will be the content of our forthcoming publication [29] . The
first results are summarized in the next section.

4 Solutions for the massive-exchange case

The solution of the massive-exchange case can be obtained by directly solving the
BS equation in Euclidean space (4). There are however other alternatives which are
inspired by the Cutkosky solution of the massless-exchange case, previously discussed.
They are also based on a, now two-dimensional, integral representation of the BS
amplitude that is due to Nakanishi [16] and that reads

Φ(k, p) = −i
∫ 1

−1

dz′
∫ ∞

0

dγ
g(γ, z)[

γ +m2 − 1
4M

2 − k2 − p · k z − iϵ
]3 . (25)
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Once inserted in the BS equation, one can obtain an integral equation for the bi-
dimensional spectral function g(γ, z). This approach was first suggested by Kusaka
and Williams [17, 18] with the aim of obtaining the BS solutions in Minkowski space,
and has taken different forms during the almost thirty years of sustained developments
[19–27].

Our last formulation [26] is based on a combined use of the Nakanishi representa-
tion, the Light-Front projection of the BS amplitude and the Stieltjes transform. The
(bound state) BS equation for the weight function g takes the standard form

g(γ, z) =

∫ ∞

0

dγ′
∫ 1

−1

dz′ N(γ, z; γ′, z′) g(γ′, z′) (26)

Several, a priori equivalent, forms of the kernel N corresponding to the W-C model
can be found in [22, 26, 28].

Although the spectral function g(γ, z) is smooth, the kernel N has several moving
singularities in both integration variables γ′, z′. They are of course integrable but must
be treated with some care to avoid spurious structures. The detailed analysis of these
singularities depends on the particular form of the kernel and will be given in [29].
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Fig. 5 Upper panel: The Euclidean BS amplitude for µ = 0.15 and B = 0.2. On the left, as a
function of k4 for selected values of k, and on the right, as a function of k for selected values of k4.
Lower panel: the same state in terms of the Nakanishi weight function g(γ, z)

We display in Fig. 5 two representation of the same state, one (upper part) obtained
with the BS solution in Euclidean space (4) and the other one (lower part) with the
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solution of eq. (26). They correspond to µ = 0.15, a binding energy B = 0.2, with
the coupling constant α = 2.10. If the Euclidean solution in the upper part of the
figure is a very smooth function of both arguments, the γ-dependence of the Nakanishi
weight function g is non-trivial. We can show analytically [29] that g is constant in
a triangular domain ∆ of the (γ, z) plane, illustrated in Fig. 6, presents a cusp on
its border and evolves continuously outside. The analytic expression of this domain is
∆ = {(γ, z) ∈ R2 : z ∈ [−1,+1] and γ = γ0(z)} with γ0(z) given by

γ0(z) = (1− |z|)M
2

4m2

(
µ2

m2
+ 4

µ

M

√
1− M2

4m2

√
1− µ2

4m2

)
(27)

This peculiar behaviour was missed in our first publications [19, 20] because of some
numerical instabilities in the left-hand side kernel3 and was only vaguely suggested in
[22] due to an unadapted basis set used in the numerical solution. It was however well
reproduced in Figs. 2 and 3 of [17]. It seems to be also well reproduced in Fig. 5 of
Ref. [27], although in this work the domain of constant g is half a circle rather than
a triangle, maybe due to the used logarithmic scale or to some change of variable.
Notice also that the negative part of g, visible in Fig. 5 for γ ∼ 0.2, is totally absent
in reference [17] and not clearly seen in [27]. On the contrary the results from [18] are
not understandable in terms of the previous analysis.

+1

γ

γ (z)
0

z

−1

Fig. 6 Domain ∆ of the (γ, z) where the solution g(γ, z) is constant.

When µ ̸= 0 the symmetry of the 4D Coulomb problem is lost, as well as the
κ quantum number identifying the abnormal states in the µ=0 case. The solutions
of the BS equation are then labeled by a single quantum number n which tells us
nothing about the normal or abnormal character of the state. On another hand, the
level ordering of the abnormal states in the µ=0 case depends critically on the binding
energy B of the state. As one can see in Fig. 3, for B=0.1, the first abnormal state
(κ=2, n=1) (in green) is the 6th excitation in the α spectrum, while for B=0.01 it
corresponds to the 11th... and for B=0 there is an infinity of normal states below the
first abnormal one. So, even for µ=0, just by computing the α spectrum for a given B,

3We were solving at that time a generalized eigenvalue equation, formally writen as VL g = VR g
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there is no way to identify the abnormal state without study its wave function: there
is an infinity of level crossing among normal and abnormal states when B is changed.

In a recent work we have extensively studied the survival of the abnormal states
in the massive case. The method and the results will be detailed in a forthcoming
publication [29]. We present in what follows a summary of the main results concerning
the very existence of such states.

The procedure is based on tracing the trajectories of a well-identified abnormal
state for µ=0 as a function of µ, and on determining in this way the ensemble of
parameters (α, µ) allowing the existence of the abnormal states, as well as their binding
energies B(α, µ). We will restrict here to the non-tachyonic domain of the coupling
constant: 1/4 < λ = α

π < 2.
An illustrative example is given in the left panel of Fig. 7 for the ground abnormal

state (n=1, κ=2) with binding energy B=0.007. This state (in blue solid line) corre-
sponds to the 12th excitation at µ=0. When µ is increased, the corresponding value
of α increases until it reaches the maximum allowed value of the coupling constant
α/π = 2. This determines, the maximum allowed exchanged mass µ for this state:
µmax ≈0.0030. This result constitutes the first evidence, a numerical proof
of existence, of abnormal states in the W-C model with non-zero µ. Such
a possibility was considered in Ref. [30], in relation with its eventual contribution to
the S-matrix.

By repeating this study for several values of B, one can determine µmax(B), that
is the maximum value of µ compatible with a non-tachyonic ground state solution
(M2 > 0) as a function of its binding energy B. It is worth noticing here that for
µ > 0 the non-tachyonic condition is not exactly given by α = 2π but by a a slightly
larger value αmax(µ) > 2π due to the short-range character of the µ > 0 interaction.
Since the involved values of µ are very small, one can take for practical purposes
αmax(µ) = 2π. The µmax(B) dependence is the essential ingredient in our study and it
is displayed in the right panel of Fig. 7. The maximum allowed value of the exchanged
mass is reached for B = 0 and is µmax(0) = 0.087 (in constituent units).

We have repeated this study for several values of the binding energy and obtained
the results of Fig. 8. Our technology does not allow us to go below B=10−5, essentially
due to the difficulty of accurately computing higher excited states. For B=10−6 and
B=0 we have just inserted the values for µ=0. On the other hand, it is worth noticing
that the µ = 0 limit of the W-C model is non-analytic and highly singular. This
is manifested already by the fact that the two-dimensional weigh function g(γ, z)
generates in this limit a δ(γ) function and there remains only the z-dependence. When
computing the solutions for very small values of µ we are faced to this embarrassing
vicinity. Let us also mention that the slope at µ = 0 of the α(µ,B) represented at
B=0 is infinite.

The curves displayed in Fig. 8 delineate the parameter domain of the W-C model,
for which the abnormal states exist. It constitutes the main result of our work. They
allow us to draw two conclusions. The first one is that abnormal states exist for µ > 0.
The second one is that, due to stability reasons of the theory, their binding energy is
smaller than B/m ≈ 0.00903 and the exchanged mass is limited to very small values
of µ, µ/m < 0.0087.
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Fig. 7 Left panel: dependence of the α-spectrum as a function of µ, for B=0.007. The horizontal
dashed line corresponds αmax(µ) ≈ 2π. The trajectory α(µ) – corresponding to the ground abnormal
state (in blue solid line) – remains smaller than αmax(µ) until µ ≈0.0030. The ground abnormal
state, which at µ=0 is the 12th excitation of α spectrum, displays a level crossing at µ ≈0.0034
and becomes the 11th excited state. Right panel: by repeating the study for several values of B one
determines the domain µmax(B).

5 Conclusion

We have reviewed the main properties of the “abnormal solutions” of the Bethe–
Salpeter equation with the Wick–Cutkosky model, i.e., scalar particles with mass m
interacting via massless (µ=0) exchange, as wells as its extension to the massive-
exchange case.

These are low-energy (B/m < 0.009) solutions that exist in this particular rel-
ativistic approach, but are absent in the non-relativistic limit (Coulomb problem).
Their position in the full spectrum of the model is totally decoupled from the normal
solutions, which tend to the standard Coulomb states, and require, even in the zero
binding limit, a minimal value of the coupling constant, αmin = π/4, to exist. From
this point of view the abnormal solutions behave as if they were created by an effective
”massive photon”. In the µ = 0 case, this is equivalent to a ”massive photon” with an
effective mass of µeff/m ≈ 0.47. For the µ > 0 case, the value of µeff is roughly the
same than for the massless case since the values of αmin are practically unchanged
with µ (See left panel of Fig 7).

Discovered by Cutkosky [6] soon after the formulation of the Bethe–Salpeter
equation and its first solution in Euclidean space by Wick [5], we have given them [14]
an intrinsic characterization in terms of the small two-body norm of their valence wave
function, which vanishes in the B → 0 limit. This confers to them a genuine many
body status.

We have presented new results concerning the massive-exchange case, where we
have obtained the ensemble of parameters of the model, in particular the values of the
exchanged mass µ, that allow the existence of such peculiar solutions without spoiling
the model by tachyonic states (M2 < 0).

As our previous analysis shows, the reason for the existence of abnormal states,
dominated by multi-photon exchange, is the strong electrical field between constituents
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and therefore it can be hardly affected by the eventual spin degrees of freedom which
were not included in our consideration. The experimental creation and observation of
these systems do not seem to be an easy task, but they would be of great interest.
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