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Abstract

In this paper we compare Skill-Relatedness Networks (SRNs) for se-
lected countries, that is to say statistically significant inter-industrial
interactions representing latent skills exchanges derived from observed
labor flows, a kind of industry spaces. Using data from Argentina
(ARG), Germany (DEU) and Sweden (SWE), we compare their SRNs
utilizing an information-theoretic method that permits to compare net-
works of "non-aligned" nodes, which is the case of interest. For each
SRN we extract its portrait, a fingerprint of structural measures of
the distributions of their shortest paths, and calculate their pairwise
divergences. This allows us also to contrast differences in structural
(binary) connectivity with differences in the information provided by
the (weighted) skill relatedness indicator (SR). We find that, in the
case of ARG, structural connectivity is very different from their coun-
terpart in DEU and SWE, but through the glass of SR the distances
analyzed are all substantially smaller and more alike. These results
qualify the role of the SR indicator as revealing some hidden dimen-
sion different from connectivity alone, providing empirical support to
the suggestion that industry spaces may differ across countries.
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1 Introduction

Labor flows are a key factor in understanding economic activity, as they represent the
interplay of workers’ supply and firms’ employment demand in the labor market. Par-
ticularly, job-to-job transitions are relevant labor flows, with recognized pro-cyclical be-
havior [1] that carry tacit information about the relevance of past jobs’ experience for
new employers, specially those occurring between firms with different economic activities.
These transitions are crucial for understanding the exchange of skills and abilities across
sectors.

Traditionally, economists analyze labor flows with data at high level of aggregation
of the standard classifications of productive activities, in order to correlate it with con-
ventional national accounts data of sectoral activity. The evolution of labor flows in
Argentina has been analyzed using administrative records, which have shown that more
disaggregated data can provide a richer picture of the temporal evolution of labor flows
than aggregated data [2]. This is because employment flows carry information about the
productive structure and diffuse knowledge among economic activities. Clearly, a more
disaggregated level of detail, at the same time brings more complexity in interpretation
tasks.

Labor mobility across different industries reflects interconnections between economic
activities, which can be effectively represented as networks. These networks highlight the
properties of connectivity between economic sectors, offering insights into the flow of labor
and the relationships between various industries within an economy.

In Argentina, the Ministry of Labor, Employment and Social Security has data of
administrative records of formal private labor employment from the Argentine Pension
System1 provided by the Observatory of Business and Employment Dynamics2. The data
includes interannual exchanges of employment between productive economic activities reg-
istered between 2009 and 2014. The set of activities includes nearly 400 sectors (branches
of economic activities) at four digits of ISIC Rev.4 classifier.

Previously, in [3, 4] the inter-industry labor flows of Argentina have been studied at
high level of details, and revealed that networks extracted are typically very dense, not
sparse, with clear core-periphery structures, and present small-world properties. Although
these microscale networks provide new and useful information, they also pose several
challenges for their interpretation and applications in, for example, policy design and
analysis. The structure of interannual of labor Networks vary over time due to both
cyclical and structural factors ([3], [2], [5]). We also applied the skill-relatedness (SR)
indicator measure for the analysis of labor flow dynamics [6], and compare it with the
original flows in order to differentiate the type of information that each of these techniques
offers for characterizing the productive system based on the dynamics of private formal
employment [7].

In this paper, we focus on the skill-relatedness networks (SRN). We are particularly
interested in uncovering the structure of skill overlap between industries, as measured by
labor flow transitions. To achieve this, we construct a network of normalized inter-industry
labor flows following the methodology outlined in (Neffke et al. [8], and Straulino et al.
[9]) and characterize its structure.

Furthermore, we aim to compare the SRN of Argentina (ARG) with the SRNs of
Germany (DEU) and Sweden (SWE). Our objective is to investigate to what extent the

1Spanish: Sistema Integrado Previsional Argentino (SIPA).
2Spanish: Observatorio de Empleo y Dinámica Empresarial (OEDE).
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inter-industry labour networks differ between developing and developed countries? This
comparison will provide insights into the differences in skill-relatedness patterns and in-
dustrial interactions across different economic contexts.

The proposed challenge translates into a new problem, because the underlying net-
works present systems of different dimensions, i.e. networks with non-aligned nodes.
Comparing and identifying similarities between networks can indeed be a challenging
problem. When given two networks, determining how similar they are typically involves
quantifying their structural, topological, or functional similarities. Several methods and
metrics have been developed to address this problem: Graph Invariants, Network Mea-
sures, Graph Matching Algorithms, Information-Theoretic Methods, Network Alignment,
Machine Learning Approaches. Choosing an appropriate method depends on the specific
characteristics of the networks and the research question at hand. Indeed, approaches to
network comparison can be roughly divided into two groups based on whether they con-
sider or require two graphs defined on the same set of nodes. When we consider networks
defined on the same set of nodes, the comparison becomes straightforward since there’s
no need to align nodes between the two networks. For example, the cases of comparison
of SRNs with the same number of nodes -aligned- has been already done by [9]. How-
ever, even if two networks have identical topologies, they might have no nodes or edges in
common simply because they are defined on different sets of nodes. This highlights the im-
portance of carefully considering the context and objectives when choosing a comparison
approach for networks.

In the present case, we are dealing with a “non-aligned“ network comparison, i.e.
no nodes are necessarily shared between the networks. For this, we are using portraits
divergence, a method for characterizing large complex networks by introducing a new ma-
trix structure, unique for a given network, which encodes structural information, provides
useful visualization, and allows for rigorous statistical comparison between networks [10].

The paper is organized as follows: in section 2 we described the tree datasets used
in the analysis and methodology used, section 3 presents our results, and in section 4
we discuss results and research ahead. An ending appendix contains specific tables and
graphs.

2 Data and Methods

We utilize different datasets for selected countries: Argentina (ARG), Germany (DEU),
and Sweden (SWE), at the level of 4 digits of detail of their national economic activity
classifications, procured from various sources.

These labor flows and skill-relatedness data are utilized to construct networks of inter-
actions, while employment data is employed to determine the relative size of sectors. We
call the interactions “links” or “edges” and the industries “nodes”. Subsequently, we com-
pare the built skill-relatedness networks using information-theoretic methods, specifically
portraits divergence. A difficult problem when studying networks is that of comparison
and identification, in particular, when they are defined on different sets of nodes, i.e. the
size of the network is different, and thus, the number and/or economic activities of the
underlying economic systems to be compared are different. These methods enable us to
uncover structural information and conduct rigorous statistical comparisons between the
networks.
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2.1 Data

In order to build the Skill-Relatedness networks (SRN)s for ARG, SWE, and DEU we
processed data at four digits of their national economic activity classifications (compatibles
to ISIC 4 or NACE 2 classification, the European version of ISIC 4) from different sources,
explained herein and summarised in Table 1).

In the case of Argentina, we utilize labor flow data for the period 2009-2014 obtained
from the Observatory of Employment and Business Dynamics within the Ministry of
Labor, Employment, and Social Security. This data is sourced from administrative records
of the Federal Public Revenue Administration. With access to flow transition matrices, we
proceed to calculate the skill-relatedness (SR) indicator, as outlined in [8], following the
methodology described in the next section. Subsequently, we construct the corresponding
Skill-Relatedness Networks (SRNs).

In the case of Germany, we use directly the SR data at four digit WZ08 national
industrial classification (equivalent to NACE 2), for the period 2007-2013, published in [8]
by the authors3 originally estimated from data of the Employee History4, based on the
social security records of Germany. Additionally, we use German employment data from
DESTATIS, the Federal Statistical Office of Germany.

In the case of Sweden, we use directly the SR data at four digit SNI 2007 national
industrial classification (equivalent to NACE 2), for the period 2007-2017, calculated by
the Swedish Agency for Growth Policy Analysis ([11]) using the methods in [8] with
Swedish administrative data5. We use Swedish employment data from Statistics of Sweden
for the period of analysis.

2.2 Methods

Skill-Relatedness Networks. Given that on the Argentine side we have the data of
flows, i.e. transition flows matrices, we first proceed to construct the skill-relatedness net-
works according to the methodology outlined in [9]. We calculate the skill-relatedness in-
dicator, SRij ,∀i, j ∈ N , where N represents the total number of industries (hereafter used
interchangeably with "economic activities" or "sectors") included. The skill-relatedness
indicator between industries i and j is computed as a ratio between the observed labor
flows and the expected flows from a null model, which is calculated from the margins of
the respective (AN×N) flow matrix for each cell (see [8], [6], and [12] for further insights
into this methodology), see Fig. 1. The indicator is then symmetrized and normalized to
map it to the interval SR ∈ [−1, 1].

In the cases of Germany and Sweden, we count with skill-relatedness data to build
the matrices directly. For further analysis and network comparison, we keep only positive
values of skill-relatedness values of the matrices. Bounding to positive values, seems to be
an appropriate method and a proper criteria for pruning the networks of the less significant
flows in the “skill-relatedness” sense. Values greater than 0 indicate that the number of
observed job switches is greater than what would be expected at random under the null
model specified, i.e. workers that would have moved at random given the respective size of

3See “Skill relatedness matrices for Germany” at
https://iab.de/publikationen/publikation/?id=7202046.

4German: Beschäftigten-Historik, BeH.
5See “Skill relatedness matrices for Sweden” at

https://www.tillvaxtanalys.se/in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.html.
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Argentina Germany Sweden

Data Inter-industry labor flows Inter-industry skill-
relatedness

Inter-industry skill-
relatedness

Classification ISIC 4 WZ08 (NACE 2) SNI 2007 (NACE 2)
Period 2009-2014 2007-2014 2007–2017
Years (#) 5 7 10
Flows
. total 2,060,515 5,529,890 5,100,000
. avg./year 412,103 789,984 510,000
Sectors (#)
. original 410 597 586
. SR+ 407 584 577
Source Ministry of Labor, Em-

ployment, and Social Se-
curity, based on Federal
Public Revenue Adminis-
tration data

[12], Table 2, based on
Beschäftigten-Historik,
Federal Statistical Office

Rapport 2021:02:04,
Swedish Agency for
Growth Policy Analysis,
based on LISA data,
Statistics of Sweden

URL N/A DESTATIS.de SCB.ce

Table 1: Data reference summary for Argentina, Germany and Sweden. Administrative data at 4
digits of economic activity classifications. Comparable classification systems ISIC 4 and NACE 2.
In relative terms with respect to total and average employment, the differences in inter-industry
flows in Germany and Sweden with respect to Argentina are due to the larger number of nodes in
the networks, and larger periods.

each industry (similar to the Configuration Model). Hereafter we refer to these networks
with positive skill-relatedness, SRij > 0, as SRN+s or simply SRNs and conveniently
index them by country whenever needed [9]. Fig 2 shows the skill-relatedness networks
for three respective datasets. We plot the heatmap respresentation for both, unweighted,
ie. binary network (Fig. 2, lower row), and weighed networks (Fig. 2, upper row).

Regarding the size of the networks to compare, which refers to the number of nodes or
industries included in the analysis, it’s worth noting that Germany and Sweden have more
than 40% more industries at their four-digit detailed classification compared to Argentina.
This difference in network size presents the challenge of comparing networks that are “non-
aligned”, meaning they have different numbers of nodes, where no nodes are necessarily
shared between the networks. To address this issue, we employ the information-theoretic
method of portrait network divergence, which was developed in [13], and is suitable for
comparing networks of different sizes and without node correspondence. A common ap-
proach for comparison without assuming node correspondence is to utilize a comparison
measure based on a graph invariant. Graph invariants are properties of a graph that hold
for all isomorphisms of the graph. Using an invariant helps alleviate concerns about the
encoding or structural representation of the graphs, allowing the corresponding measure
to focus solely on the topology of the network. Graph invariants can take various forms,
including probability distributions. Thus, by focusing on the topology of the networks and
abstracting from the problem of node correspondence, we can compare these networks,
without ensuring that networks use the exact same industrial classification encoding, which
allows for a direct comparison of their structures without the need to align nodes. This
approach enables us to analyze the similarities and differences in the network topology
across different countries or contexts.
Portraits. The method stands on the construction of a Bℓ,k-matrix (v.g.: the network
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Figure 1: The scheme of construction of skill-relatedness indicator used for Argentina. The
sequential steps from the observed flow matrix to the skill relatedness indicator matrix. A reference
matrix of “expected flows”, fe

ij , built on the basis of the edges (eg: totals per rows, Fi., columns,

F.j , and table, F..) of the matrix of observed flows. This matrix reflects “random” flows in the
sense that sectoral exchanges are proportional to the outflows and inflows between sectors with
respect to total flows. For each cell an associated matrix of elements, SRij , is calculated as the
ratio of the observed value of employment flows with respect to the theoretical or expected value.
Thus, one can interpret values less than unity, SRij ∈ [0, 1) as not moving away from a random
distribution significantly, while values greater than unity, SRij ∈ [1,+∞), showing deviations
from the proposed random distribution as benchmark. The SR matrix is symmetrized by means
of averaging the SR matrix with its transpose. In this way the related graph becomes undirected.

Figure 2: Skill-Relatedness Networks (SRNs). Heatmap representation of undirected filtered
(positive) networks: Unweighted (binary, upper row) and weighted (lower row) SRNs. Sorting
is done with a hierarchical clustering algorithm with complete linkage. Visualizations of SRN+

for Argentina (ARG), Germany (DEU), and Sweden (SWE) for periods and size according to the
specifications in Table 1.

portrait, see [10]) consisting of:

Bℓ,k ≡ the number of nodes who have (exactly) k nodes at distance ℓ

for 0 ≤ ℓ ≤ d and 0 ≤ k ≤ N − 1, where the distance is taken as the shortest path length
and d is the graph’s diameter (see Fig. 3). In this sense, like onion layers, each node vi
is surrounded by ℓ-shells or connectivity layers of order ℓ. The rows represent histograms
(or distributions) of ℓ-order shortest paths. This matrix condenses structural properties
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Figure 3: Bℓ,k(G)-matrix construction. For each node vi ∈ V , count connected nodes at ℓ-steps
distance, its ℓ-shell or connectivity layer, then summarise for each ℓ-distance (in rows) the number
of nodes that have k-neighbors, taken as shortest path length (ℓ-shells). The first row ℓ = 0 gives
the number of nodes. The second row ℓ = 1 stands for degree distribution: each sector’s number
of direct connections. The subsequent rows ℓ ≥ 2 distribution of l-nearest neighbours. The last
row ℓ = d gives the diameter of the network, i.e. longest shortest path in the network.

of the network based on the distance connecting two nodes in terms of successive links or
path lengths, ℓ, which encode shortest path distributions, for example including the degree
distribution (ℓ = 1, for an unweighted network) and higher order paths. It is important
to state that the network portraits are agnostic of the identity of the nodes, capturing
topological information without reference to the nodes attributes. As a graph invariant,
the B-matrix of a network is unique and can be used as a network “fingerprint”. In this
way, comparing two networks G and G′ can be translated into comparing their portraits,
B and B′.
Network Portrait Divergence. After computing the portraits of these networks, say
G and G′, each portrait can be transformed into matrices of row-wise probability distri-
butions, then reduce them to two single joint distributions for all rows which can be used
to define a single Kullback-Liebler (KL) divergence between their portraits (see [13]). The
network portrait divergence (NPD) is defined then as the Jensen-Shannon divergence:

DJS(G,G
′) ≡

1

2
KL(P ||M) +

1

2
KL(Q||M),∈ [0, 1]

where M ≡ 1

2
(P ||Q) is the mixture distribution of P and Q, where P is P (k, ℓ) =

kBℓ,k

N2

and Q is, likewise, Q(k, ℓ) =
kB′

ℓ,k

N2 .
Note that unweighted networks will have integer diameter d, while for weighted net-

works d ∈ R is continuous. In this latter case, which specifically concern us for the
comparison of SRNs, the shortest paths may have non-integer paths so the algorithm used
to find the shortest paths for unweighted networks changes from breadth-first-search to
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Dijkstra’s algorithm. Also a binning strategy for aggregating (continuous) shortest paths
is due. A simple one is to use b bins as quantiles to be able to compute the portraits,
Bℓ,k and B′

ℓ,k, of each network. In our case we choose binedges regarding the weight
distribution of the SRNs under analysis.

3 Results

The SRNs for each country, built from the positive skill-relatedness indicator matrices
and ancillary employment data, present a visible dense structure with a unique giant
component (induced by the construction of SRN+) having short paths and diameter (top
row in Fig. 2). As reported in Table 1, although the statistical systems of classification
for economic sectors where compatible between countries, the size of these networks vary
because of: a) differences in some sectors’ specification as informed by each country, and;
b) as a result of the filtering process described in section 2, of significantly observed flows
in terms of the skill-relatedness criteria.

After building each country SRN, we computed their respective portraits for weighted,
Bwc

ℓ,k, as well as unweighted, Bc
ℓ,k, versions of the SRNs with c ∈ {ARG,DEU, SWE},

plotted in Fig. 4. We use their unweighted versions to naturally introduce a way to better
comprehend the information contained therein in terms of node connectivity.

In a network portrait, ℓ refers to the length of shortest paths and k counts the “number
of nodes“ having paths of length ℓ, that is to say considering ℓ-shells of each node in the
network (see Fig.3). In an unweighted network ℓ = 1 is the degree distribution, ℓ = n is
the distribution of shortest paths of order n, and ℓ = d is the max length representing the
network diameter. In a weighted network, ℓ has to be discretised as it is continuous.

For the unweighted portraits (upper row in Fig. 4), depicting the fingerprints of the
pure connectivity in the SRNs, show the distribution of shortest paths for each country’s
network. These portraits present a kind of P -shape related to the big connected com-
ponent topology that is characteristic of SRNs, as mentioned earlier. Their range goes
from ℓ = 0 (representing the total count number of nodes, N), occurring Bc

ℓ,k = Nc for
each country network, to ℓ = d, the corresponding (unweighted) diameter of each network
(v.g.: dARG = 4, and dDEU = dSWE = 5). Intuitively, the visualizations of this portraits
show a condensed image of the way nodes, economic sectors in SRNs, are connected and
proximate to each other albeit not identifying the specific connection between any pair of
sectors m and j. The second row (Bc

ℓ=1,k) corresponds naturally to the standard degree
distribution of direct connections. It can be appreciated that this distribution is relatively
more widespread for ARG than for SWE and DEU, with DEU accumulating relatively
more (less connected) nodes in small values of k, that is to say more nodes with small ℓ
order direct neighbourhoods. The next row, Bc

ℓ=2,k, show the distribution of “two steps”
paths or the most proximate indirect neighbourhood shell for each node (ℓ-shell=2), that is
to say: industries connected (through SR-links) with the industries in their direct connec-
tions circle. It can be appreciated that all countries show distributions centred in higher
values of k, corresponding to the majority of nodes (industries) having a great number of
nodes (industries) at this distance. In this case, DEU has a relatively more widespread
distribution, while ARG and SWE appear more alike with higher density in high values
of k. This means that most sectors show many “two steps” connections, a fact consistent
with the analysis of labour flow networks for Argentina evidencing dense networks with
short average paths and diameter, and having small world properties (v.g.: typical diam-
eter of three steps, see [3], [7]). The following row, Bc

ℓ=3,k, show the distribution of “three

8



Figure 4: Network portraits. Upper row: Unweighted (binary) SRNs. Discrete shortest path
length ℓ from 0 to d, the diameter of the network with dARG = 4, and dDEU = dSWE = 5. Lower
row: Weighted SRNs. Continuous (binned) shortest path length ℓ from 0 to d, the diameter of
the network with dARG = 1.95, dDEU = 1.43, and dSWE = 1.96. For a better visualization
we used 16 bins (vertical axis), with smaller bins destined to lower values of SR > 0 (binedges
∈ (0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2)).

steps” paths length, an enhanced indirect neighbors set. It can be appreciated that the
distributions are again skewed towards lower values of k, meaning that as the length of
shortest paths approaches the diameter (shortest paths maximum length) there are less
nodes (industries) having many nodes at this distance. In this case, ARG and SWE appear
more similar with a greater concentration of nodes (industries) having a small k number
of nodes at a three step distance, while DEU has more dispersed distribution with higher
values of k nodes at three steps distance. This suggests that DEU has deeper chains of
connectivity, say showing more cohesion, than ARG and SWE. The last rows of these
unweighted portraits, referring to the more distant layers of connectivity near or at their
(respective) diameters, show high concentration of these longer paths in lower values of
k. This refers to the paths linking nodes with sectors in the outer periphery having very
poor connectivity.

For the weighted portraits (lower row in Fig. 4), depicting the valued fingerprints of
the SRNs, show the distribution of shortest paths in terms of SR for each country’s net-
work. Their range goes from ℓ = 0 to ℓ = d, in this case corresponding to the continuous
diameter of each network (v.g.: dARG = 1.95, dDEU = 1.43, and dSWE = 1.96). To com-
pare this portraits showing the distributions of weighted shortest paths, we computed the
same number of bins for the three SRNs so the interpretation can equally be made for all
values of (binned) ℓ. As can be appreciated, the interpretation of weighted path lengths
and the comparison between them is more demanding although differences and similar-
ities can be appreciated between the fingerprints. The chosen binning, with binedges
∈ (0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2), high-
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lights lower SR+ weights in line with their decreasing prevalence in SRNs (see Fig. 5)
across the (maximum) range, r ∈ (0,max(dc)), of observed weighted paths for all coun-
tries.

With this weight aggregation, the weighted portraits in the lower row of Fig. 4 can be
divided into three “charge zones” in relation with the quantification of sector connectivity
referenced in the horizontal axis and the weighted paths measured in the vertical axis:

a high-concentration low-weighted shortest ℓ-paths in bins 1 to 5, corresponding to
a total weighted distance of ℓ ∈ (0.00, 0.01) and involving the interconnection of
just a few sectors;

b high-dispersion medium-weighted shortest ℓ-paths in bins 6 to 10, corresponding
to a total weighted distance of ℓ ∈ [0.01, 0.10), involving a sharply increasing in-
terconnected (horizontal dispersion) and decreasing concentration (low intensity,
showed in black and white gradient colors) sectors topology; and

c high-concentration high-weighted shortest ℓ-paths in bins 11 to 16, correspond-
ing to a total weighted distance of ℓ ∈ [0.10, 2.00] and involving the decreasing
interconnection of a sectors

Figure 5: SRNs weight distribution.

To quantify these dissimilarities we calculate the (pairwise) network portrait diver-
gence, DJS(G,G′) ∈ [0, 1], with higher values showing more dissimilarity, presented in
Fig. 6 for both unweighted and weighted portraits. The comparison for the unweighted

portraits present stark differences between ARG and those of DEU (0.63) and SWE (0.80),
while at the same time it is also informative of the differences between DEU and SWE
structure (0.55). In light of this results, it is useful to revisit the original binary structure
of the SRNs in the upper row of Fig. 2. Taking the case of ARG, it is quite clear that its
(clustering ordered) connectivity structure differs strikingly with both DEU and SWE. In
particular, in ARG there is a group of approximately 30% of total sectors (bottom right)
with high interconnection within them and some non-trivial interconnection with the rest
of the sectors. In turn the rest of the sectors are grouped and ordered in decreasing order
of total connectivity, showing some subgroups with more connectivity within. In the case
of DEU, the connectivity structure is smoothly decreasing and characterized by a small
modular structure, with some small sector groupings with high connectivity within. The
case of SWE appears as an intermediate between the others, also with smoothly decreasing
modular connectivity structure but with subgroups bigger than in the case of DEU.
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A
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0.00 0.63 0.80

0.63 0.00 0.55

0.80 0.55 0.00

unweighted
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0.00 0.27 0.25

0.27 0.00 0.19

0.25 0.19 0.00

weighted
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SRN networks pairwise portrait divergence

Figure 6: SRNs network pairwise portrait divergence. Right: weighted portraits divergence. Left:
unweighted portraits divergence. Color range for DJS(G,G′) ∈ [0, 1], greater values showing more
dissimilar network portraits.

Regarding the comparison of weighted portraits, the differences of ARG’s SRN and
their counterparts in DEU (0.27) and SWE (0.25) appear less pronounced, and the com-
parison between DEU and SWE (0.19) show the lowest divergence. Again, it is useful
to revisit the original weighted SRNs in the lower row of Fig. 2. This time the visible
connectivity structure is more difficult to disentangle because of the weak density in all
cases. In particular, SWE shows presents more modular structure detectable with the
hierarchical clustering at the corners up-left (higher intersectoral connectivity within and
also between this group and the immediate neighbors down/right, more central), and
down-right (smaller group, less connected with the rest of the network, more periphery
like).

4 Discussion

In this paper we presented a comparison of different countries’ skill-relatedness networks
(SRNs) using data from Argentina (ARG), Germany (DEU) and Sweden (SWE) to assess
the possible differences between SRNs in a developing country vis-a-vis those in devel-
oped countries. To this end we used a method suitable to compare networks of different
size (non-aligned networks) that focuses on topological information [13] using a measure
of network portraits [10], a condensed representation of shortest path length structural
information that compose a unique network fingerprint. Through this applied exercise we
found that the methods of portrait representation of networks and the measure of network
portraits divergence appear as appropriate methods to characterize and compare SRNs.

We found that the comparison of unweighted portraits of these networks show con-
trasting differences between the pure connectivity (binary) structure of the SRNs of a
developing country like Argentina to the corresponding SRNs for developed countries like
Germany and Sweden, with stark differences of interindustry connectivity in Sweden and
high contrast with Germany’s. Moreover, this comparison reveals important differences
in the connectivity structure between Germany and Sweden networks. When comparing
the more relevant weighted skill-relatedness networks we found less contrasting differences
between all the SRNs. In particular, Argentina’s SRN appears quite dissimilar to the
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corresponding to both DEU and SWE, and at the same time Germany’s SRN is quite
similar to that of Sweden. These preliminary findings may give relative support to the
hypothesis of similarity of different countries SRNs conditioned on historical and cultural
differences (see [8]). On the other hand, they show that the connectivity (topological)
structure of different observed SRNs present stark differences between countries.
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A Appendix

Figures 7, 8, and 9 provide detailed visualizations of SRNs for each country.
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Figure 7: Argentina Skill Relatedness Network 2009-2014. Colors represent ISIC rev. 4 economic industrial classification, numbers in
color legend are number of sectors under the correspondent letter division. Node size represents average sectoral employment. Edge
width represents SR > 0.
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Figure 8: Germany Skill Relatedness Network 2007-2014. Colors represent ISIC rev. 4 equivalent economic industrial classification,
numbers in color legend are number of sectors under the correspondent letter division. Node size represents average sectoral employment.
Edge width represents SR > 0.
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Figure 9: Sweden Skill Relatedness Network 2007-2017. Colors represent ISIC rev. 4 equivalent economic industrial classification,
numbers in color legend are number of sectors under the correspondent letter division. Node size represents average sectoral employment.
Edge width represents SR > 0.
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