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Ward Identities in a Two-Dimensional Gravitational Model:

Anomalous Amplitude Revisited Using a Completely

Regularization-Independent Mathematical Strategy

G. Dallabona, P. G. de Oliveira and O. A. Battistel

Abstract

We present a detailed investigation of the anomalous gravitational amplitude in a simple two-

dimensional model with Weyl fermions. We employ a mathematical strategy that completely avoids

any regularization prescription for handling divergent perturbative amplitudes. This strategy re-

lies solely on the validity of the linearity of the integration operation and avoids modifying the

amplitudes during intermediate calculations, unlike studies using regularization methods. Addi-

tionally, we adopt arbitrary routings for internal loop momenta, representing the most general

analysis scenario. As expected, we show that surface terms play a crucial role in both preserving

the symmetry properties of the amplitude and ensuring the mathematical consistency of the re-

sults. Notably, our final perturbative amplitude can be converted into the form obtained using any

specific regularization prescription. We consider three common scenarios, one of which recovers

the traditional results for gravitational anomalies. However, we demonstrate that this scenario

inevitably breaks the linearity of integration, leading to an undesirable mathematical situation.

This clean and transparent conclusion, enabled by the general nature of our strategy, would not

be apparent in similar studies using regularization techniques.

PACS numbers: 12.39.-x,12.38.Bx,11.30.Rd
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I. INTRODUCTION

In the late 1960s, the study of neutral electromagnetic pion decay revealed one of the

most remarkable, subtle, and intriguing aspects of quantum field theory (QFT): the anomaly

phenomenon. Specifically, this anomaly is known as the Adler-Bell-Jackiw (ABJ) anomaly

or triangular anomaly, named after the type of Feynman diagram involved [1–3]. Its impli-

cations extend beyond simply mimicking experimental data; they play a fundamental role

in the structure of QFT itself. For instance, the existence of three families of six quarks

and six leptons as fundamental constituents in the Standard Model (SM) can be under-

stood as a direct consequence of anomalies. When anomalous amplitudes are present in a

theory, it means that not all Ward identities associated with different symmetries can be

simultaneously satisfied for those amplitudes. If the broken symmetry is internal, it leads to

internal inconsistencies in the theory, potentially destroying renormalizability and violating

the unitarity of the S-matrix [4]. Consequently, the theory’s renormalizability can be res-

cued if an anomaly cancellation mechanism exists, where specific combinations of 1/2-spin

fermions cancel the violations arising from different sectors of the theory. Such a mechanism,

consistent with the SM’s structure, necessitates the existence of six quarks and six leptons

[5].

Following the discovery of the ABJ anomaly, numerous other forms of anomalies have

been explored using diverse methods and approaches, both perturbative and nonperturba-

tive. These include the heat kernel method [6, 7], the path integral approach by Fujikawa

[8, 9], and formal techniques like differential geometry and cohomology [10–13, 15, 16, 31].

While these provide elegant formulations, additional tools are often needed to extract mo-

mentum dependence for physical processes. This involves explicitly evaluating anomalous

Feynman diagrams, which are odd tensors (in all even-dimensional spacetimes) with an

odd number of axial-vector vertices and the remaining vertices being vectors with minimal

internal fermionic propagators. Having at least two Lorentz indices, these tensors cannot

simultaneously preserve all Ward identities (chiral anomalies) while reaching the expected

low-energy limits [17–19]. Such amplitudes share the characteristic that, during dominant-

order perturbative calculations, loop contributions render them divergent. Consequently,

their explicit evaluation relies heavily on the chosen prescription and intermediate choices,

such as internal loop momenta labeling. This presents a dilemma: either accept the results’
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dependence on these choices and adjust ambiguous terms later to achieve desired outcomes,

or seek universal procedures for choice-independent results despite the inherent mathemat-

ical ambiguity, recognizing the anomaly as a fundamental QFT phenomenon.

In fact, a similar universal procedure already exists, proposed in the early 2000s by one

of the authors of this work in his doctoral thesis [20]. This method arose from an effort to

develop a divergence-handling strategy for QFTs that is free from limitations and widely

consistent, allowing tensors and pseudotensors to be treated identically. The strategy, based

on a remarkably simple idea, avoids integrating ill-defined integrals. Instead, it extracts the

physical content by rewriting the integrand as a sum of finite integrals, surface terms, and

purely divergent objects. Within this framework, divergent quantities lack physical param-

eters. Only finite integrals are calculated, while divergent pieces are regrouped into scalar

objects and surface terms. This approach preserves the original properties of the integrals,

enabling broader analysis of relevant physical processes. This often provides an advantage,

allowing sound conclusions in situations where traditional regularization methods encounter

difficulties. This method is particularly useful when surface terms play a significant role,

as in the case of anomalous perturbative amplitudes, such as the gravitational anomalies

considered in this contribution.

Similar to chiral anomalies in gauge theories, anomalies might arise in the context of grav-

itation when fermionic fields couple to the external gravitational field through the energy-

momentum tensor [21–25]. In a seminal work, Alvarez-Gaumé and Witten [26] comprehen-

sively studied gravitational anomalies in various field theories. They revealed the structure

of these anomalies in higher dimensions and imposed restrictions on theories compatible with

gravity, assuming anomaly cancellation. Specifically, two-dimensional Weyl spinors exhibit

Lorentz and gravitational anomalies [24, 26, 27]. More recently, Bertlmann and Kohlprath

[28, 29] employed the dispersion relations approach in two-dimensional spacetime to inves-

tigate Einstein and Weyl anomalies. They calculated the one-loop Feynman diagram of

a Weyl fermion in a linearized gravitational background, offering a unique perspective on

anomalies compared to ultraviolet regularization methods. Inspired by this valuable work

and the critical nature of the issues raised, we revisit this intriguing and significant problem

in this study. We believe the adopted procedure can unlock new avenues for analysis. This

approach allows us to obtain results untainted by specific choices typically made during

intermediate calculation steps. In particular, we can clearly examine the role of arbitrari-

3



ness associated with internal loop momentum routing in loop-perturbative amplitudes. It

is well-known that shifting the integration variable for linearly divergent integrals requires

compensating with a corresponding surface term to maintain equality. Therefore, the re-

sults for such amplitudes are expected to depend on chosen internal momentum routings.

Any analysis where these routings are treated as specific combinations of physical external

momenta risks being compromised, as different choices can lead to different results. This

aspect, intimately linked to the role of surface terms in perturbative calculations, will be

demonstrably clarified in this investigation. Given the absence of these considerations in

previous works and their crucial impact on conclusions, this contribution is warranted.

Building upon the work presented in Ref. [30], this work offers an alternative calculation

of the gravitational amplitude described in Bertlmann and Kohlprath’s studies [28, 29].

We treat the internal loop momenta as arbitrary and avoid assigning specific values to

surface terms during intermediate steps. This approach directly reveals the structure of

ambiguity associated with these terms and their impact on the qualitative and quantitative

interpretation of results. Surface terms, whose values can vary between methods, are a

key factor in regularization-dependent results. We analyze three commonly encountered

choices associated with different regularization procedures. We demonstrate that while

specific choices allow us to recover traditional results for gravitational anomalies, these

choices inevitably break the linearity of the integration operation, a fact hidden within

traditional methods. Another notable aspect of our investigation is the connection between

2D gravitational anomalies and the 2D chiral anomaly. Our systematic approach with

subamplitudes allows us to identify mathematical structures shared with simpler theories

like 2D quantum electrodynamics (QED2). This approach reveals universal aspects of 2D

anomalies not accessible in traditional methods.

We organize the work as follows. In Section 2 we establish the theoretical foundation for

our investigation by outlining the expected relationships among Green’s functions (RAGFs)

and Ward identities (WIs) associated with the gravitational amplitude. To facilitate compre-

hension and simplify the calculation, we decompose the gravitational amplitude into smaller,

manageable components called subamplitudes. Notably, some of these subamplitudes align

with typical perturbative amplitudes found in simpler QFTs like QED2. In Section 3, we

briefly explain the chosen method for handling the divergent Feynman integrals encountered

during the calculation of the gravitational amplitude. The Section 4 focuses on analyzing
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the subamplitudes individually. We calculate each subamplitude and explicitly verify its

corresponding RAGFs. Additionally, a set of conditions required for this purpose is identi-

fied. Leveraging the general results obtained in Section 4, in Section 5 we investigate the

possibility of the gravitational amplitude simultaneously satisfying its WIs and RAGFs. We

emphasize three representative scenarios for fixing the undefined quantities involved, includ-

ing the scenario that generates the usual results for gravitational anomalies. Concluding

remarks and a summary of the key findings are presented in the Section 6.

II. THE GRAVITATIONAL AMPLITUDE

In this work we adopt the same model discussed in the Refs. [28] and [29] as well as some

of definitions and notations stated there.

A. The Model and Definitions

The background model of our discussions has a Lagrangian whose (linearized) interaction

part may be written as [31]

Llin
I = −

1

2
hµνT

µν , (1)

where Tµν is the (symmetric) energy-momentum tensor, explicitly given by

T µν =
i

4

[

Eν
aψγ

a

(

1± γ3

2

)

←→
∂µψ + Eµ

aψγ
a

(

1± γ3

2

)

←→
∂ν ψ

]

. (2)

Here Eµ
a is the inverse of zweibein eaµ, ψ is the fermion field, γa are the usual Dirac matrices

and hµν is the linearized gravitational field, defined through the approximations

gµν ≈ ηµν + κhµν , gµν ≈ ηµν − κhµν ,

eaµ ≈ ηaµ +
1

2
κhaµ , Eaµ ≈ ηaµ −

1

2
κhaµ ,

with ηµν being the flat metric. This Lagrangian describe, in two space-time dimensions, the

interaction of a Weyl fermion and a gravitational background field.

The full Green’s function which we are interested in is the two-point function

Gµνρσ (p) = i

∫

d2x eip·x 〈0|T [Tµν (x) Tρσ (0)] |0〉 , (3)
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which, at one-loop level, is written as

TG
µνρσ = i

∫

d2k

(2π)2
Tr

{

ΓG
µν

1

[ 6 k+ 6 k1 −m]
ΓG
ρσ

1

[6 k+ 6 k2 −m]

}

, (4)

where

ΓG
µν = −

i

4

[

γµ ((k + k1)ν + (k + k2)ν) + γν

(

(k + k1)µ + (k + k2)µ

)] (1± γ3)

2
, (5)

gives the Feynman rule for the vertex function. A diagrammatic representation of TG
µνρσ can

be seen in the Fig. (1).

k + k1

k + k2

ΓG
µν ΓG

ρσ

FIG. 1: One-loop diagrammatic representation for TG
µνσρ.

Observe that we have adopted general labels for the internal propagators, namely k+ k1

and k + k2, and, for convenience, taken the fermion as being massive. Given this routing,

the external momentum is identified as p = k2 − k1. The adoption of arbitrary labels is an

important attitude in perturbative calculations in general but is of special importance in the

presently considered problem. Once the power counting of the loop momentum point out

divergence degree higher than the logarithmic one, it is expected that the result is dependent

on the routing adopted for the internal lines momenta. The arbitrary choice guarantee that

such dependence can be identified in the final results. If the internal momenta are label in

terms of external momenta such that the sum k1 + k2 is not zero, terms which would be

nonphysical will be mixed with label independent terms, compromising then the analysis.

The explicit calculation of (4), especially with general labels for the internal propagators,

is very long and tedious. However, the conclusions extracted from are strongly connected

with the calculation details. In order to make an useful investigation, we need to adopt a

systematic way to present such calculations. Having this in mind, in the present work, we

adopt, for the sake of clarity, a particular systematization. We split out TG
µνρσ into three sets

of amplitudes as

TG
µνρσ = −

i

64

{

T (V )
µνρσ + T (AV )

µνρσ + T (A)
µνρσ

}

, (6)
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where each set is composed by a sum of two-point subamplitudes, namely

T (V )
µνρσ = 4

[

T V V
νσ;µρ

]

+ 2pσ
[

T V V
ν;µρ

]

+ 2pν
[

T V V
σ;µρ

]

+ pνpσ
[

T V V
µρ

]

+ (µ←→ ν) + (σ ←→ ρ) , (7)

±T (AV )
µνρσ = 4

[

TAV
νσ;µρ

]

+ 2pσ
[

TAV
ν;µρ

]

+ 2pν
[

TAV
σ;µρ

]

+ pνpσ
[

TAV
µρ

]

+ 4
[

T V A
νσ;µρ

]

+ 2pσ
[

T V A
ν;µρ

]

+ 2pν
[

T V A
σ;µρ

]

+ pνpσ
[

T V A
µρ

]

+ (µ←→ ν) + (σ ←→ ρ) , (8)

T (A)
µνρσ = 4

[

TAA
νσ;µρ

]

+ 2pσ
[

TAA
ν;µρ

]

+ 2pν
[

TAA
σ;µρ

]

+ pνpσ
[

TAA
µρ

]

+ (µ←→ ν) + (σ ←→ ρ) . (9)

The subamplitudes appearing in the above expressions are defined by

T ij
ρσ =

∫

d2k

(2π)2
Tr

{

[Γi]ρ
1

6 k+ 6 k1 −m
[Γj]σ

1

6 k+ 6 k2 −m

}

, (10)

T ij
µ;ρσ =

∫

d2k

(2π)2
(k + k1)µ Tr

{

[Γi]ρ
1

6 k+ 6 k1 −m
[Γj]σ

1

6 k+ 6 k2 −m

}

, (11)

T ij
µν;ρσ =

∫

d2k

(2π)2
(k + k1)µ (k + k1)ν Tr

{

[Γi]ρ
1

6 k+ 6 k1 −m
[Γj]σ

1

6 k+ 6 k2 −m

}

. (12)

In the expressions above the quantities Γi are vertex operators belonging to the set Γi =

{ΓS,ΓP ,ΓV ,ΓA} = {1, γ3, γα, γαγ3}. In addition to the calculation aspect, such introduced

systematization will help us to verify the consistency of the obtained results in a wider sense.

Note that the first set of subamplitudes appears in renormalizable theories like the QED2

[32–34]. This allow us to add an additional aspect to the investigation.

B. Relations among Green’s functions and Ward Identities

Along the difficult task of constructing a consistent interpretation of the perturbative

amplitudes in QFT’s, when the involved quantities are divergent, a special recourse can

play a very important role. We denominated it as relations among Green’s functions. Such

relations can be stated always we have a Lorentz index attached to a perturbative ampli-

tude. They are constructed by using simple ingredients like the Dirac algebra, cyclicity and
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linearity of the trace operation and, especially, the linearity of the integration operation.

In particular, preservation of the linearity in the integration operation involving divergent

Feynman integrals is not a trivial job, as we will see along this work.

Let us consider, in this section, the relevant RAGFs for all required subamplitudes of (4).

In fact, to state the referred relations is a trivial task. In order to exemplify the procedure,

we consider the algebraic identity

(k2 − k1)
ν

{

γµ
1

[( 6 k+ 6 k1)−m]
γν

1

[( 6 k+ 6 k2)−m]

}

=

{

γµ
1

[( 6 k+ 6 k1)−m]

}

−

{

γµ
1

[( 6 k+ 6 k2)−m]

}

, (13)

which is obtained through the ingredients cited above. In practical terms, through this

operation is possible to cancel out an internal propagator. When the integration in the loop

momentum k is taken, after taken the traces in both sides, this algebraic identity will be

converted into a genuine RAGFs involving the contraction of the polarization tensor T V V
µν

with the external momentum pν and two one-point vector amplitudes defined by

T V
µ (ki) =

∫

d2k

(2π)2
Tr

{

γµ
1

[( 6 k+ 6 ki)−m]

}

. (14)

Explicitly, we get the following RAGFs

pσ
[

T V V
σρ (k1, k2)

]

= T V
ρ (k1)− T

V
ρ (k2) , (15)

and, in a similar way,

pρ
[

T V V
σρ (k1, k2)

]

= T V
σ (k1)− T

V
σ (k2) . (16)

If the T V V
σρ and T V

ρ amplitudes are evaluated, through some particular procedure, in such

a way that the final results are in disagreement with the RAGFs, it means, undoubtedly,

that the linearity in the integration operation was violated through the operations made.

Of course, this is not the adequate situation if one want to make predictions in perturbative

treatments of a model or theory. In this sense, the RAGFs give us a powerful test of

consistency of a method used to calculate divergent perturbative amplitudes.

Following this procedure it is possible to state two relevant RAGFs for TG
µνρσ through the

contractions of (4) with the momentum pµ and the metric gµν . According to our previously

introduced notation, we can write

pµTG
µνρσ = −

i

64

{[

pµT (V )
µνρσ

]

+
[

pµT (AV )
µνρσ

]

+
[

pµT (A)
µνρσ

]}

, (17)

gµνTG
µνρσ = −

i

64

{[

gµνT (V )
µνρσ

]

+
[

gµνT (AV )
µνρσ

]

+
[

gµνT (A)
µνρσ

]}

, (18)
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which, in terms of the subamplitudes, means

pµ
[

T (V )
µνρσ

]

= 4
{[

pµT V V
µσ;νρ

]

+
[

pµT V V
νσ;µρ

]}

+ 2pσ
{[

pµT V V
ν;µρ

]

+
[

pµT V V
µ;νρ

]}

+ 2pν
[

pµT V V
σ;µρ

]

+ pνpσ
[

pµT V V
µρ

]

+ p2
{

pσ
[

T V V
νρ

]

+ 2
[

T V V
σ;νρ

]}

+ (σ ↔ ρ) , (19)

pµ
[

T (A)
µνρσ

]

= 4
{[

pµTAA
νσ;µρ

]

+
[

pµTAA
µσ;νρ

]}

+ 2pσ
{[

pµTAA
ν;µρ

]

+
[

pµTAA
µ;νρ

]}

+ 2pν
[

pµTAA
σ;µρ

]

+ pνpσ
[

pµTAA
µρ

]

+ p2
{

pσ
[

TAA
νρ

]

− 2
[

TAA
σ;νρ

]}

+ (σ ↔ ρ) , (20)

pµ
[

T (AV )
µνρσ

]

= ±4
{[

pµT V A
νσ;µρ + pµTAV

νσ;µρ

]

+
[

pµT V A
µσ;νρ + pµTAV

µσ;νρ

]}

± 2pσ
{[

pµT V A
ν;µρ + pµTAV

ν;µρ

]

+
[

pµT V A
µ;νρ + pµTAV

µ;νρ

]}

± 2pν
[

pµT V A
σ;µρ + pµTAV

σ;µρ

]

± pνpσ
[

pµT V A
µρ + pµTAV

µρ

]

± p2
{

pσ
[

T V A
νρ + TAV

νρ

]

+ 2
[

T V A
σ;νρ + TAV

σ;νρ

]}

+ (σ ↔ ρ) , (21)

as well as

gµν
[

T (V )
µνρσ

]

= 8
[

gµνT V V
µσ;νρ

]

+ 4pσ
[

gµνT V V
µ;νρ

]

+ 4
[

pµT V V
σ;µρ

]

+ 2pσ
[

pµT V V
µρ

]

+ (σ ↔ ρ) , (22)

gµν
[

T (A)
µνρσ

]

= 8
[

gµνTAA
µσ;νρ

]

+ 4pσ
[

gµνTAA
µ;νρ

]

+ 4
[

pµTAA
σ;µρ

]

+ 2pσ
[

pµTAA
µρ

]

+ (σ ↔ ρ) , (23)

and

gµν
[

T (AV )
µνρσ

]

= ±8
[

gµνT V A
νσ;µρ + gµνTAV

νσ;µρ

]

± 4pσ
[

gµνT V A
ν;µρ + gµνTAV

ν;µρ

]

± 4
[

pµT V A
σ;µρ + pµTAV

σ;µρ

]

± 2pσ
[

pµT V A
µρ + pµTAV

µρ

]

+ (σ ↔ ρ) . (24)
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In practical terms, we need to state the RAGFs for all subamplitudes defined in Eqs. (10),

(11), and (12). Since the procedure to obtain such RAGFs presents no difficulties, we just

list all of them in the appendix (A).

At this point it is interesting to see that the RAGFs are, strictly speaking, mathematical

identities which are valid in a way independent of the particular context. Then, one would

not expected that they were violated by any calculation procedure. On the other hand, one

would not expect that the Ward identities must be satisfied automatically in the perturba-

tive calculations due to the fact that they are stated by assuming translational invariance

as an ingredient. Such property is not contained in the amplitudes constructed through

the Feynman rules since, in cases where the divergence degree involved is higher than the

logarithmic one, the result is dependent in the routing assumed for the loops internal lines

momenta. Two distinct labels obeying energy-momentum conservation in all vertexes will

generate results which can differ by terms that are proportional to surface terms. The coef-

ficients of such terms are ambiguous combination of the internal lines momenta. In this way,

the WIs are expected to be broken in situations where surface terms are involved. Within

this context, it is the preservation that must be considered as a special accident and not the

violation. So, we must, before considering the content of an explicit mathematical form of an

amplitude, verify if the adopted procedure does not breaks the pertinent RAGFs. In order

to satisfy the WIs a new ingredient must be added to the implication of Feynman rules.

The usual one is the adoption of a regularization procedure. In the present investigation we

adopt a procedure which does not modify the amplitudes in the intermediary steps of the

calculations. The final form is a pure implication of the Feynman rules such that, from the

results, the ones corresponding to other prescriptions can be obtained.

Given the symmetries of the considered model [28], the energy-momentum tensor Tµν is

expected to has the following three properties,

Tµν = Tνµ, ∇
µTµν = 0, gµνTµν = 0 , (25)

which imply, respectively, three canonical WIs (for massless fermions)



















TG
µνρσ = TG

νµρσ ,

pµTG
µνρσ = 0 ,

gµνTG
µνρσ = 0 .

(26)
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As it is well-known, it is always possible to fulfill the first cited Ward identity (TG
µνρσ = TG

νµρσ)

by imposing that the quantized energy-momentum tensor is symmetric [28]. Therefore, we

need to investigate if the last two WIs can be satisfied also. It is expected that both are

broken by anomalous terms known as Einstein and Weyl anomalies, respectively. In our

investigation we will obtain, among other things, a set of conditions to be fulfilled in order

to satisfy these properties.

The main task of next sections is to check, after the explicit calculations of TG
µνρσ, if the

obtained mathematical forms are, firstly, in accordance with the RAGFs to, after this, verify

if it is possible to preserve the associated WIs. For the first task it is only required to be

careful in the operations, in order to obey the mathematics, while for the second task it is

expected that a set of additional conditions need to be identified in order to be imposed in

addition to the application of the Feynman rules.

III. THE PROCEDURE FOR HANDLING DIVERGENT FEYNMAN INTE-

GRALS

Most of QFT’s predictions are made through perturbative methods. The construction of

the perturbative amplitudes, on the other hand, is systematized by the well-known Feynman

rules. Within this context we find, invariably, a set of amplitudes at the loop level, corre-

sponding to physical processes, which are divergent quantities. This requires the adoption

of an adequate procedure in order to handle with this situation. Due to this reason, in

this section we present the procedure which we adopt to handle the intrinsic mathematical

problems of the perturbative series in QFTs. The mathematical strategy adopted play a

crucial role in our investigation.

In a first step, by applying the Feynman rules, we construct the desirable perturbative

amplitude, for one value of the loop momentum. Then, by a simple power counting, it

is stated the superficial degree of divergence. Therefore, physical quantities, which are

combinations of propagators and vertexes, may be in an integrand of a divergent integral

when the integration is taken over the loop momentum, which, formally, corresponds to the

implementation of the last Feynman rule. The usual procedure is, at this point, to adopt

a regularization technique in order to make the integrals. This implies in to modify the

amplitudes as they come from the corresponding Feynman rules. After all the operations
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are made, some limit is taken to, in principle, connect the obtained results to the initial

situation, removing the effects of the mathematical modifications introduced. However, as

it is well known, due to the divergent character of the modified integrals, the integration

and the limit are not commuting operations such that the result is not unique and (which

is bad) is dependent on the intermediary sequence of steps followed. Given this fact, some

aspects of the perturbative calculations are prejudiced, especially those were surface terms

are involved since, in the regularized expressions, they may assume prescription dependent

values. In the dimensional regularization (DR) prescription [35–37], as an example, they

are assumed as having vanishing values, allowing then shifts in the integrating momentum.

On the other hand, in prescriptions where the regularization is made through distributions

at a fixed space-time dimension, the value for the referred surface terms are not zero and

the amplitudes became dependent in the particular routing adopted for the internal lines

momenta of the loop. Both methods produce very different implications in qualitative and

quantitative sense.

In order to avoid the previous described situation, it was developed a procedure which

can circumvent the modifications of the perturbative amplitudes at the intermediary steps

of the calculations such that all the ingredients are present at the final form obtained, like

the aspects related to the surface terms involved. With this attitude a very rich analysis is

allowed since, as we have said, a correspondence with all specific regularization technique is

always possible.

The main idea is to assume that the linearity in the integration operation is a valid

property for Feynman integrals, in such a way it is possible to write the expression for a

perturbative amplitude in any mathematical form which is mathematically identical to that

usually adopted by the Feynman rules, before implementing the last rule. Strictly speaking,

there is an infinite number of equivalent mathematical forms for the Feynman amplitudes.

This freedom allow us to choose the most convenient one for our purposes. We can assume,

at this point a criterion for the choice; the most simple mathematical expression where no

physical parameters will be inside a divergent integral when the last rule is implemented. Our

next task is, therefore, to rewrite the propagators, where resides the dependence on the loop

momentum, in a way which allows us to achieve this goal. In principle, any identity which

generates a sequence of terms having a regressive power counting in the loop momentum

12



can be adopted. Probably the most simple one is the identity [20]

1

Di

=
1

[(k + ki)2 −m2
i ]

=

N
∑

j=0

(−1)j (k2i + 2ki · k + λ2 −m2
i )

j

(k2 − λ2)j+1

+
(−1)N+1 (k2i + 2ki · k + λ2 −m2

i )
N+1

(k2 − λ2)N+1 [(k + ki)
2 −m2

i

] , (27)

where N need to be taken as equal to or greater than the superficial degree of divergence.

On its turn, λ is an arbitrary parameter having dimension of mass and ki is an internal

(arbitrary) momentum. In practical terms, it is equivalent to say that the infinite forms

allowed by the value of N , in the above expression, are completely equivalent to represent

the required expression for a propagator in the application of Feynman rules. It is enough

that the linearity in the integration operation is a valid mathematical property. In addition,

it is required also that, in all steps, the complete independence of the arbitrary parameter

λ is obtained.

The convenient use of the identity (27) make possible to split up any divergent Feynman

integral into a sum of scalar (irreducible) divergent integrals, surface terms and finite func-

tions of the external momenta. The set of divergent quantities is reduced to few objects

which in our present investigation is composed by two irreducible (scalar) ones

I
(2)
log

(

λ2
)

=

∫

d2k

(2π)2
1

(k2 − λ2)
, (28)

I
(2)
quad

(

λ2
)

=

∫

d2k

(2π)2
ln

(

k2 − λ2

k2

)

. (29)

The masses within these objects (mass scales) can be changed freely through identities that

are called scale relations and stated by

[

I
(2)
log

(

λ2
)

]

=
[

I
(2)
log

(

λ20
)

]

+
i

4π
ln

(

λ20
λ2

)

, (30)

[

I
(2)
quad

(

λ2
)

]

=
[

I
(2)
quad

(

λ20
)

]

+
(

λ2 − λ20
)

[

I
(2)
log

(

λ20
)

]

+
i

4π

[

λ2 − λ20 + λ2 ln

(

λ20
λ2

)]

. (31)

On the other hand, we will find four quantities which can be recognized as being surface

13



terms

∆
(2)
1;µν =

∫

d2k

(2π)2
∂

∂kµ

[

kν

(

2− ln
k2

k2 − λ2

)]

=

∫

d2k

(2π)2

{

2kµkν
(k2 − λ2)

− gµν ln

(

k2

k2 − λ2

)}

, (32)

∆
(2)
2;µν =

∫

d2k

(2π)2
∂

∂kµ

(

−
kν

(k2 − λ2)

)

=

∫

d2k

(2π)2

{

2kµkξ

(k2 − λ2)2
−

gµξ
(k2 − λ2)

}

, (33)

�
(2)
2;µναβ =

∫

d2k

(2π)2
∂

∂kµ

(

−
2kνkαkβ
(k2 − λ2)

)

=

∫

d2k

(2π)2

{

4kµkνkαkβ

(k2 − λ2)2
− gµν

2kαkβ
(k2 − λ2)

−gµα
2kνkβ

(k2 − λ2)
− gµβ

2kνkα
(k2 − λ2)

}

, (34)

�
(2)
3;µναβ =

∫

d2k

(2π)2
∂

∂kµ

(

−
2kνkαkβ

(k2 − λ2)2

)

=

∫
{

d2k

(2π)2
8kµkνkαkβ

(k2 − λ2)3
− gµν

2kαkβ

(k2 − λ2)2

−gµα
2kνkβ

(k2 − λ2)2
− gµβ

2kνkα

(k2 − λ2)2

}

, (35)

Σ
(2)
4;µναβξχ =

∫

d2k

(2π)2
∂

∂kµ

(

−
8kνkαkβkξkχ

(k2 − λ2)3

)

=

∫

d2k

(2π)2

{

48kµkνkαkβkξkχ

(k2 − λ2)4
− gµν

8kαkβkξkχ

(k2 − λ2)3

− gµα
8kνkβkξkχ

(k2 − λ2)3
− gµβ

8kνkαkξkχ

(k2 − λ2)3

−gµξ
8kνkαkβkχ

(k2 − λ2)3
− gµχ

8kνkαkβkξ

(k2 − λ2)3

}

. (36)

The convenience of this systematization will be clear in future discussions. In turn, the

finite integrals arising can be integrated out without restrictions and the results written in

terms of a set of finite functions defined through integral representations given in terms of

14



Feynman parameters [38]. In the present work such structures are defined by

ξ
(−1)
k

(

p2, m2
)

=

∫ 1

0

dx
xk

Q (p2, m2; x)
, (37)

ξ
(0)
k

(

p2, m2;λ2
)

=

∫ 1

0

dx xk ln

[

Q (p2, m2; x)

−λ2

]

, (38)

with k = 0, 1, 2, ... and the polynomial Q given by Q (p2, m2; x) = p2x(1 − x) −m2. There

are, obviously, relations between the functions corresponding to two different values of the

index k , allowing us to reduce them to the ξ
(−1)
0 or ξ

(0)
0 , which is particularly useful in

RAGFs or WIs verification.

Observe that within a traditional regularization prescription the divergent objects would

have a value attributed to them. For example, in DR all the above surface terms are taken

as being zero and the Ilog (λ
2) and Iquad (λ

2) objects manifest themselves as poles, for specific

values of the space-time dimension, in the amplitudes. In fact, one can always formulate

a one-to-one map among our results and those produced by regularizations prescriptions,

as will become clear in what follows. On the other hand, in our prescription, they remain

untouched and are present in the final results, where their possible values could be considered

and tested for consistency requirements. These aspects represents the heart of the analysis

and conclusions made in this job.

IV. EXPLICITLY EVALUATION OF THE SUBAMPLITUDES AND THE VERI-

FICATION OF THEIR RAGFS

In order to explicitly calculate the gravitational amplitude TG
µνρσ, we first calculate its

subamplitudes, through the strategy described above, after that we check whether the results

obtained are consistent with the corresponding RAGFs and, if it is the case, verify if it is

possible to satisfy the WIs.

We start with the subamplitudes composing the vector sector given by

T (V )
µνρσ = 4

[

T V V
νσ;µρ

]

+ 2pσ
[

T V V
ν;µρ

]

+ 2pν
[

T V V
σ;µρ

]

+ pνpσ
[

T V V
µρ

]

+ (µ←→ ν) + (σ ←→ ρ) . (39)

These three kind of subamplitudes are defined by taking Γi = γµ and Γj = γν in definitions

(10), (11), and (12).
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A. T V V
σρ amplitude

Let us consider first the T V V
µν (see Eq. (10)). This amplitude belongs to the spectrum of

amplitudes arising in renormalizable theories like QED2, where the gauge invariance plays

a crucial role. In such a context it represents the one-loop polarization tensor. Therefore,

its identification as a substructure of the TG
µνρσ amplitude may shine some light in our

investigation about gravitational anomalies. We will consider, due to this, some details in

the procedures.

We know that it is expected to identify the relations (15) and (16) as properties of its

explicit form. Thus, it is relevant to know the corresponding expression for the one-point

vector function in advance. Beside that, it is a good opportunity to exemplify the use of the

procedure in a simple algebraic scenario. First, after taking the Dirac traces, we obtain the

expression for one value of the loop momentum

tVµ (k1) = 2

[

kα

D1

+ kα1
1

D1

]

. (40)

For the first term we adopt for the propagator the representation

kµ
D1

=
kµ

(k2 − λ2)
−

(k21 + 2k · k1 + λ2 −m2) kµ

(k2 − λ2)2

+
(k21 + 2k · k1 + λ2 −m2)

2
kµ

(k2 − λ2)2
[

(k + k1)
2 −m2

] , (41)

which corresponds to adopt N = 1 in (27). For the second term the same representation can

be adopted. However, in order to avoid unnecessary algebraic efforts, one can take N = 0,

1

D1
=

1

(k2 − λ2)
−

(k21 + 2k · k1 + λ2 −m2)

(k2 − λ2)
[

(k + k1)
2 −m2

] . (42)

Thus
[

kα
D1

+ k1α
1

D1

]

not odd

= −kβ1

{

2kαkβ

(k2 − λ2)2
−

gαβ
(k2 − λ2)

}

+
(k21 + 2k · k1 + λ2 −m2)

2

(k2 − λ2)2
[

(k + k1)
2 −m2

]kα

−
(k21 + 2k · k1 + λ2 −m2)

(k2 − λ2)
[

(k + k1)
2 −m2

]k1α , (43)

where an odd term was omitted since, after the integration, it will vanishes. Note that

the dependence in the arbitrary internal momentum is located only in finite integrals. The
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divergent terms will not contain physical quantities since λ is an arbitrary parameter. After

some reorganization, we can take the integration on both sides
∫

d2k

(2π)2

[

tVµ (k1) + kβ1

{

2kαkβ

(k2 − λ2)2
−

gαβ
(k2 − λ2)

}]

=

∫

d2k

(2π)2
kα (k

2
1 + 2k · k1 + λ2 −m2)

2

(k2 − λ2)2
[

(k + k1)
2 −m2

]

− k1α

∫

d2k

(2π)2
(k21 + 2k · k1 + λ2 −m2)

(k2 − λ2)
[

(k + k1)
2 −m2

] . (44)

This expression is only consequence of the Feynman rules. On the right hand side, there are

only finite integrals. They can be solved without any kind of concern since any reasonable

regularization must give the same result for a finite integral. The integration reveals the

identically zero value. A formal relation can be written by identifying a surface term like

the one defined in (33),

T V
µ (k1) = −2k

α
1

[

∆
(2)
2;µα

(

λ2
)

]

. (45)

The result is proportional to the arbitrary momentum k1 and to the surface term ∆
(2)
2;µα,

whose argument is also an arbitrary quantity. The mathematical object ∆
(2)
2;µα is prescription

dependent in the sense that, in order to attribute a definite value to it, some particular

mathematical procedure is required. It would be desirable that this perturbative amplitude

gives a null result, as we can see below, but the Feynman rules do not imply that.

The same procedure can be used to evaluate the T V V
σρ amplitude. The result can be

written as

T V V
σρ = 2

[

∆
(2)
2;σρ

]

+
i

π

(

pσpρ − gσρp
2
)

[

ξ
(−1)
2

(

p2;m2
)

− ξ
(−1)
1

(

p2;m2
)

]

, (46)

where p = k2 − k1. In the above result we can see clearly the aforementioned organization

through finite and (a priori) divergent objects. For our purposes, it is important to known

if the above result is in accordance to the expected RAGFs (Eqs. (15) and (16)). The

contraction of (46) with pσ gives

pσT V V
σρ = 2 (k2 − k1)

σ
[

∆
(2)
2;σρ

]

, (47)

which, given (45), can be recognized as being the RAGFs (15). So, this (vector) RAGFs is

automatically fulfilled by (46). The same conclusion is also valid for pρ contraction.

This result is a good opportunity to illustrate our preceding comments about RAGFs and

WIs. Since the T V V
σρ amplitude is proportional to the polarization tensor of QED2, gauge
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invariance implies that it must have two conserved vector currents, i.e., pσT V V
σρ = pρT V V

σρ = 0.

It is easy to see that such requirements is not automatically satisfied by expression (46).

The violating term is given by the (undefined) object ∆
(2)
2;σρ, according to the expectations.

The Feynman rules ended their job. The RAGFs are satisfied as it is required but the WIs

satisfaction will depend on an additional ingredient. So, without additional assumptions,

the unique way to obtain a polarization tensor T V V
σρ satisfying its WIs is in the absence of

the object ∆
(2)
2;σρ. As a surface term, this is exactly what would happens if we have used

the DR prescription. This is, in fact, a necessary requirement for all regularizations which

intend to be gauge preserving [39].

B. T V V
µ;σρ amplitude

The next subamplitude to consider is T V V
µ;σρ (see Eq. (11)). The result can be put in the

form

T V V
µ;σρ = −P

α
[

�
(2)
3;αµσρ

]

+ Pρ

[

∆
(2)
2;σµ

]

+ Pσ

[

∆
(2)
2;ρµ

]

+ P α
{

gσρ

[

∆
(2)
2;µα

]

− gµρ

[

∆
(2)
2;ασ

]

− gµσ

[

∆
(2)
2;ρα

]}

−
pµ
2

[

T V V
σρ

]

, (48)

where P = k2+k1. The proposed systematization is, again, clear from the above expression.

In the above equation we also see the polarization tensor T V V
σρ as being a substructure of

T V V
µ;σρ. The crucial question is: does the above expression fulfill its expected RAGFs?

The contraction of the above result with pσ reveals that the RAGFs (A1) is satisfied. The

same happens for the pµ contraction. These calculations can easily be done by observing

the results for the one-point amplitude T V
µ;ν (ki), given in Eq. (C10). On the other hand,

the metric contraction gives

gµσ
[

T V V
µ;σρ

]

=
[

T V
ρ (k2)

]

+m
[

T SV
ρ

]

− (k2 + k1)
σ
{[

gµν�
(2)
3;µνσρ

]

− gσρ

[

gµν∆
(2)
2;µν

]}

, (49)

where T SV
ρ is given by Eq. (D2). The last term of the above equation shows that expression

(48) for T V V
µ;σρ does not (automatically) satisfy the expect RAGFs (A3). The spurious terms

are composed by two surface terms. In order to not break this RAGFs we must have

gµν�
(2)
3;µνσρ = gσρ

[

gµν∆
(2)
2;µν

]

. (50)
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Let us consider this in an explicit way. First we note that the integrand of gµν∆
(2)
2;µν satisfy

a trivial algebraic identity

2k2

(k2 −m2)2
−

2

(k2 −m2)
=

2m2

(k2 −m2)2
, (51)

which means that the integral is finite, as well as the linearity of the integration operation

is assumed. Given that one obtain

gµν∆
(2)
2;µν = −

i

2π
. (52)

In a similar way, the integrand of the quantity gµν [�3;µνσρ] can be rewritten as

8k2kσkρ

(k2 −m2)3
−

8kσkρ

(k2 −m2)2
=

8m2kσkρ

(k2 −m2)3
, (53)

such that the corresponding integral will be finite. Performing the integration we get

gµν [�3;µνσρ] = −
i

2π
gσρ . (54)

Given both results we obtain (50). This means that our procedure is consistent with the

linearity in the integration operation. It is interesting to note that we have evaluated surface

terms and the results obtained are nonzero. Here one can note that the condition (50) would

also be satisfied by assuming �
(2)
3;µνσρ = ∆

(2)
2;µν = 0. If we had applied the DR to perform these

calculations, such requirements would be fulfilled automatically since in the DR prescription

surface terms are assumed to vanish.
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C. T V V
µν;σρ amplitude

The last subamplitude composing the vector sector is T V V
µν;σρ (see Eq. (12)). After a long

and tedious but a straightforward calculation, we obtain

T V V
µν;σρ = SV V

µν;σρ + (gρµgσν + gρνgσµ)
[

I
(2)
quad

(

m2
)

]

+

{

1

3

(

gµνgρσp
2 − gµνpρpσ − gσρpµpν

)

−
1

6

(

gµρgνσp
2 − gµρpνpσ − gνσpµpρ

)

−
1

6

(

gνρgµσp
2 − gνρpµpσ − gµσpνpρ

)

}

[

I
(2)
log

(

m2
)

]

+
i

2π

{

pµpνpσpρ
p2

+
p2

2
(gνρgµσ + gνσgµρ)

−
pν
2
(gµσpρ + gµρpσ)−

pµ
2
(gνρpσ + gνσpρ)

}[

2ξ
(0)
2 − ξ

(0)
1

]

+
i

2π

1

p2
(

pσpρ − p
2gσρ

) (

pµpν − p
2gµν

)

[

ξ
(0)
2 − ξ

(0)
1

]

+
1

4
pρpσ

[

T V V
µν

]

, (55)

where SV V
µν;σρ represents a (ambiguous) combination of surface terms and is given explicitly

in appendix (D). Note that in the expression above the divergent objects appear as functions

of the physical mass (m) rather than an arbitrary scale mass (λ). From now on, we will

adopt this simplified notation, because the mass scale, chosen for the divergent objects, will

not play an important role in the discussions presented in this work. In addition, if needed

for some reason, the mass scale can be changed freely using the scale relations shown in

the Eqs. (30) and (31). The contraction of the above result with pσ or pµ shows that both

expected RAGFs (see Eqs. (A2) and (A6)), are satisfied automatically while the contraction

with the metric gives

gµσ
[

T V V
µν;σρ

]

=
[

T V
ν;ρ (k2)

]

+m
[

T SV
ν;ρ

]

+
1

3

(

kξ2k
χ
2 + kξ1k

χ
2 + kξ1k

χ
1

) [

gµσΣ
(2)
4;µσνρξχ

]

−
1

2

(

k21 + k22
)

[

gµσ�
(2)
3;µσνρ

]

−
1

2
(k2 + k1)ρ (k2 + k1)

ξ
[

gµσ�
(2)
3;µσνξ

]

− (k2 + k1)
ξ k1ν

[

gµσ�
(2)
3;µσρξ

]

+ (k2 + k1)ρ k1ν

[

gµσ∆
(2)
2;µσ

]

+
i

4π

1

3

(

pρpν − gνρp
2
)

, (56)
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where we have used the results (C10) and (D3). Now there are six potentially breaking

terms for the RAGFs (A4). In order to fulfill this RAGFs we have to get fulfilled both the

condition (50) and also

gµσΣ
(2)
4;µσνρξχ = −

i

2π
(gνρgξχ + gνξgρχ + gνχgρξ) . (57)

It is simple to see that this condition is satisfied by using the same sequence of steps used to

obtain (50), i.e., by assuming the validity of the linearity in the integration operation. This

result means that the RAGFs is preserved by the operations made.

D. TAV
σρ amplitude

In the axial-vector sector we can make a similar investigation of the pertinent set of

subamplitudes, which are defined by taking Γi = γσγ3 and Γj = γρ in (10), (11), and (12).

Let us take the simplest amplitude of the set, namely TAV
σρ . This subamplitude is a very

interesting one for our present investigation since it is the well-known anomalous amplitude

belonging to the chiral QED2 [33, 34, 40–42]. Its evaluation can be made trivial if one note

the relation

TAV
σρ = −εσαg

αβ
[

T V V
βρ

]

, (58)

such that, by using (46), we get

TAV
σρ = −2εσξ

[

∆
(2)
2;ξρ

]

−
i

π
εσξ

(

pξpρ − gξρp
2
)

[

ξ
(−1)
2

(

p2;m2
)

− ξ
(−1)
1

(

p2;m2
)

]

. (59)

There are two RAGFs expected to be satisfied by the above expression, which were stated

in (A8) and (A9). The first one refers to the contraction with pρ. This contraction gives,

immediately, the expected difference TA
ν (k1)− T

A
ν (k2) (see Eq. (C6)).

On the other hand, the contraction of (59) with the axial index (pσ) reveals

pσTAV
σρ = −2εσξ (k2 − k1)

σ gξχ
[

∆
(2)
2;χρ

]

−
i

π
εσρp

σ
[

1 +m2ξ
(−1)
0

(

p2, m2
)

]

. (60)

Now, there is subtlety in order to identify the expected difference of two axial one-point

functions in the right hand side of the equation above. This is a very important aspect of

our investigation. For this, it is first necessary to change the position of the Lorentz indexes
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in the first term above. Through the Schouten identity

εσξg
ξχ
[

∆
(2)
2;χρ

]

= ερξg
ξχ
[

∆
(2)
2;χσ

]

− εσρ

[

gξχ∆
(2)
2;ξχ

]

, (61)

such a change of index can be achieved. Given the PV amplitude (see Eq. (D4)), we can

write

pσTAV
σρ =

[

TA
ρ (k1)

]

−
[

TA
ρ (k2)

]

+ 2m
[

T PV
ρ

]

+ 2ερξp
ξ

{

i

2π
+
[

gαβ∆
(2)
2;αβ

]

}

. (62)

From the expression above we see that the RAGFs (A9) is preserved, if and only if,

gξχ∆
(2)
2;ξχ = −

i

2π
, (63)

which is the same result founded in (52). Again, the operations made are in accordance

to the linearity in the integration operation. However, it must be noted that through the

Schouten identity we have constructed two representations for the AV amplitude, such that,

after the immediately above result, allow us to identify

pρ
[

TAV
σρ

]

1
= TA

ν (k1)− T
A
ν (k2) , (64)

pσ
[

TAV
σρ

]

2
=

[

TA
ρ (k1)

]

−
[

TA
ρ (k2)

]

+ 2m
[

T PV
ρ

]

(65)

Both expressions
[

TAV
σρ

]

1
and

[

TAV
σρ

]

2
are identical from the mathematical point of view, as

long as the Schouten identity is valid. Note that the referred identity relates a tensor with

its trace.

It is possible to note an interesting aspect in the above results. In the amplitudes of the

vector sector we evaluated the finite quantities gξχ∆
(2)
2;ξχ, g

µν
�

(2)
3;µνρξ, and gµσΣ

(2)
4;µσνρξχ. In

those cases, the nonzero value found for these quantities put the results in accordance with

the requirements but the null value fulfill the conditions as well. In the present case, the

value gξχ∆
(2)
2;ξχ = 0 breaks the linearity in the integration operation since the axial index

contraction gives

pσTAV
σρ = TA

ρ (k1)− T
A
ρ (k2) + 2m

[

T PV
ρ

]

+
i

π
ερξp

ξ . (66)

On the other hand, in order to fulfill the WIs






pρTAV
σρ = 0 ,

pσTAV
σρ = 2m

[

T PV
ρ

]

,
(67)
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a necessary condition is

TA
ρ (k1)− T

A
ρ (k2) = 0 , (68)

which is guaranteed only by some prescription that attributes a null value for the object

∆
(2)
2;ξχ, in the same way as it was required in the case of the WIs for the polarization tensor

(T V V
σρ ). So, it seems that it is apparently possible to preserve the linearity in the integration

operation and both WIs, simultaneously, with the conditions







∆
(2)
2;ξχ = 0 ,

gαβ∆
(2)
2;αβ = − i

2π
.

(69)

These two conditions are clearly not compatible with the Schouten identity which is neces-

sary to generate the second representation
[

TAV
σρ

]

2
starting from the first one

[

TAV
σρ

]

1
. So,

in order to get this wonderful result it is necessary an illegal trick or to corrupt the mathe-

matics. A consistent condition would be taken both objects as zero quantities, which gives

us

pσTAV
σρ = 2m

[

T PV
ρ

]

+
i

π
ερξp

ξ, (70)

connecting us with the well-known anomalous phenomenon [33] in two-dimensions.

E. TAV
µ;σρ amplitude

The second subamplitude of the axial-vector sector is TAV
µ;σρ. Through the relationship

TAV
µ;σρ = −εσαg

αβ
[

T V V
µ;βρ

]

, (71)

and the result (48) it is straightforward to get

TAV
µ;σρ = εσξP

χ
[

�
(2)
3;µρχξ

]

− εσξPρ

[

∆
(2)
2;ξµ

]

− εσξP
ξ
[

∆
(2)
2;ρµ

]

− εσξP
χ
{

gξρ

[

∆
(2)
2;µχ

]

− gµρ

[

∆
(2)
2;χξ

]

− gµξ

[

∆
(2)
2;ρχ

]}

+
pµ
2

[

TAV
σρ

]

. (72)

From this result it is expected that it should, by consistency, satisfies four RAGFs. The

two RAGFs obtained for the contractions with pµ and pρ are satisfied without additional
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hypothesis. In contrast, contracting (72) with pσ and gµσ gives, respectively,

pσ
[

TAV
µ;σρ

]

=
[

TA
µ;ρ (k1)

]

−
[

TA
µ;ρ (k2)

]

+ 2m
[

T PV
µ;ρ

]

− ερσp
σpξ

{[

gαβ�
(2)
3;αβµξ

]

− gξµ

[

gαβ∆
(2)
2;αβ

]}

− ερσp
σpµ

{

i

2π
+
[

gαβ∆
(2)
2;αβ

]

}

, (73)

gµσ
[

TAV
µ;σρ

]

=
[

TA
ρ (k2)

]

−m
[

T PV
ρ

]

− ερξp
ξ

{

i

2π
+
[

gαβ∆
(2)
2;αβ

]

}

. (74)

We see clearly that the RAGFs, generated by such contractions, are not automatically

satisfied. However, if one wants to preserve both of these RAGFs it is enough to fulfill the

conditions (50) and (52) previously found.

Again, we note that the options �
(2)
3;µνρξ = ∆

(2)
2;µν = 0 and gµν�

(2)
3;µνρξ = gξρ

[

gµν∆
(2)
2;µν

]

= 0

means violations of both RAGF’s as happens in the case of the amplitude TAV
σρ .

F. TAV
µν;σρ Amplitude

The last subamplitude of this set is TAV
µν;σρ. Its relationship with T V V

µν;βρ, Eq. (55),

TAV
µν;σρ = −εσαg

αβ
[

T V V
µν;βρ

]

, (75)

makes its calculation immediate. The contraction of this result with pρ and pµ reveals that

the corresponding RAGFs are satisfied. On the other hand, the contractions with pσ and

gµσ reveal unexpected (violating) terms given explicitly below

pσ
[

TAV
µν;σρ

]

=
[

TA
µν;ρ (k1)

]

−
[

TA
µν;ρ (k2)

]

+ 2m
[

T PV
µν;ρ

]

+
1

3
ερσp

σ
(

kξ2k
χ
2 + kξ1k

χ
2 + kξ1k

χ
1

) [

gαβΣ
(2)
4;αβµνξχ

]

−
1

2
ερσp

σ
(

k21 + k22
)

[

gαβ�
(2)
3;αβµν

]

− ερσp
σpξk1µ

[

gαβ�
(2)
3;αβνξ

]

− ερσp
σpξk1ν

[

gαβ�
(2)
3;αβµξ

]

+ 2ερσp
σk1µk1ν

[

gαβ∆
(2)
2;αβ

]

+
i

4π

1

3
ερσp

σ
[

4pµpν − gµνp
2
]

, (76)
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gµσ
[

TAV
µν;σρ

]

=
[

TA
ν;ρ (k2)

]

−m
[

T PV
ν;ρ

]

+
1

2
ερξp

ξ (k2 + k1)
σ
[

gαβ�
(2)
3;αβνσ

]

− ερξp
ξk1ν

[

gαβ∆
(2)
2;αβ

]

+
i

4π
ερξp

ξpν . (77)

Entirely similar to what occurred with T V V
µν;σρ, in order to save both RAGFs it is imperative

that






gµν�
(2)
3;µνρξ = gξρ

[

gµν∆
(2)
2;µν

]

= − i
2π
gξρ ,

gµσΣ
(2)
4;µσνρξχ = − i

2π
(gνρgξχ + gνξgρχ + gνχgρξ) ,

(78)

which are the same results previously obtained.

We should emphasize, again, that the results above can be easily checked by assuming

the validity of the linearity in the integration operation, as we have pointed out before. The

results for T V A
σρ , T V A

µ;σρ, and T
V A
µν;σρ are completely analogous to TAV

σρ , TAV
µ;σρ, and T

AV
µν;σρ.

G. TAA
σρ Amplitude

Although the procedure is essentially the same to the one presented above, for complete-

ness, we succinctly present the main results for the subamplitudes belonging to the axial

sector, obtained through the substitutions: Γi = γσγ3 and Γj = γργ3 in (10), (11), and (12).

The first subamplitude is TAA
σρ , which has the corresponding result

TAA
σρ = 2

[

∆
(2)
2;σρ

]

+ 4
[

pσpρ − gσρp
2
]

[

ξ
(−1)
2

(

p2, m2
)

− ξ
(−1)
1

(

p2, m2
)

]

− 8m2gσρ

[

ξ
(−1)
1

(

p2, m2
)

]

. (79)

Both expected RAGFs (see appendix A3) are fulfilled by the above expression without any

assumption about the object ∆
(2)
2;σρ.

Again we observe that, similarly to T V V
σρ and TAV

σρ amplitudes, TAA
σρ belongs to the set of

amplitudes associated with standard (renormalizable) theories. So, within such a context,

this amplitude should satisfy additional constraints such as the two following WIs






pσ
[

TAA
σρ

]

= 2m
[

T PA
ρ

]

,

pρ
[

TAA
σρ

]

= 2m
[

TAP
σ

]

,
(80)

representing the proportionality between the axial current divergence and the pseudoscalar

one, for the case of massive fermions. In order to satisfy both WIs it is required that

[

T V
ρ (k1)

]

−
[

T V
ρ (k2)

]

= 0 , (81)
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in a completely similar way as in the case of the amplitude T V V
σρ , as expected.

H. TAA
µ;σρ Amplitude

The second subamplitude of this set is TAA
µ;σρ . We found

TAA
µ;σρ = −P

α
[

�
(2)
3;αµσρ

]

+ Pρ

[

∆
(2)
2;σµ

]

+ Pσ

[

∆
(2)
2;ρµ

]

+ P α
{

gσρ

[

∆
(2)
2;µα

]

− gµρ

[

∆
(2)
2;ασ

]

− gµσ

[

∆
(2)
2;ρα

]}

−
pµ
2

[

TAA
σρ

]

. (82)

When the RAGFs are checked, we find that those corresponding to the contractions

pσ
[

TAA
µ;σρ

]

and pµ
[

TAA
µ;σρ

]

(see appendix A3) are satisfied, while that related to the con-

traction gµσ
[

TAA
µ;σρ

]

gives

gµσ
[

TAA
µ;σρ

]

=
[

T V
ρ (k2)

]

−m
[

T PA
ρ

]

− (k2 + k1)
ξ
{[

gαβ�
(2)
3;αβρξ

]

+ gρξ

[

gαβ∆
(2)
2;αβ

]}

. (83)

The conclusions are the same ones obtained for T V V
µ;σρ.

I. TAA
µν;σρ Amplitude

The last one to be calculated is TAA
µν;σρ . The result can be put in the form

TAA
σρ;µν = SV V

σρ;µν + (gρµgσν + gρνgσµ)
[

I
(2)
quad

(

m2
)

]

+

{

1

3

(

gµνgρσp
2 − gµνpρpσ − gσρpµpν

)

−
1

6

(

gµρgνσp
2 − gµρpνpσ − gνσpµpρ

)

−
1

6

(

gνρgµσp
2 − gνρpµpσ − gµσpνpρ

)

− 2m2gµνgσρ

}

[

I
(2)
log

(

m2
)

]

+
i

2π

{

pµpνpσpρ
p2

+
p2

2
(gνρgµσ + gνσgµρ)

−
pν
2
(gµσpρ + gµρpσ)−

pµ
2
(gνρpσ + gνσpρ)

}[

2ξ
(0)
2 − ξ

(0)
1

]

+
i

2π

1

p2
(

pσpρ − p
2gσρ

) (

pµpν − p
2gµν

)

[

ξ
(0)
2 − ξ

(0)
1

]

−
i

2π

m2

p2
gµν

(

pσpρ − p
2gσρ

)

[

ξ
(0)
0

]

+
1

4
pρpσ

[

TAA
µν

]

. (84)
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The verification of the RAGFs shows that only the contraction gµσTAA
µν;σρ is not automatically

satisfied. Instead, we find

gµσTAA
µν;σρ =

[

T V
ν;ρ (k2)

]

−m
[

T PA
ν;ρ

]

+
1

3

(

kξ2k
χ
2 + kξ1k

χ
2 + kξ1k

χ
1

) [

gµσΣ
(2)
4;µσνρξχ

]

−
1

2

(

k21 + k22
)

[

gµσ�
(2)
3;µσνρ

]

−
1

2
(k2 + k1)ρ (k2 + k1)

ξ
[

gµσ�
(2)
3;µσνξ

]

− k1ν (k2 + k1)
ξ
[

gµσ�
(2)
3;µσρξ

]

+ k1ν (k2 + k1)ρ

[

gµσ∆
(2)
2;µσ

]

+
1

3

[

pνpρ − gνρp
2
]

. (85)

Clearly, the conditions that ensure this RAGFs (see Eq. (A21)) be fulfilled are the same

ones required for the T V V
µν;σρ and TAV

µν;σρ, as discussed above.

V. RAGFS VERSUS EINSTEIN AND WEYL GRAVITATIONAL ANOMALIES

In the section IV we shown that, in order to satisfy (simultaneously) all the RAGFs

expected for the subamplitudes of T
(G)
µνρσ, it is required a set of conditions involving finite

quantities. They represent necessary conditions for the calculation procedure be consistent

with the linearity operation in the integrals. At this point we can ask ourselves: are the

above requirements enough to guarantee also the maintenance of the RAGFs associated

with T
(G)
µνρσ? Given the investigation about the subamplitudes made in the previous section,

the answer to this query is immediate. This is because the gravitational amplitude T
(G)
µνρσ

was decomposed into a sum of subamplitudes. Thus, when we contract T
(G)
µνρσ with pµ or

gµν , we get contractions with these subamplitudes with pµ or gµν also, and, each contraction

generates a RAGFs for such subamplitudes, as we saw in the section IV. For instance, in
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the vector sector we have

pµT (V )
µνρσ = 4

{[

pµT V V
νσ;µρ

]

+
[

pµT V V
µσ;νρ

]}

+ 2pσ
{[

pµT V V
ν;µρ

]

+
[

pµT V V
µ;νρ

]}

+ 2pν
[

pµT V V
σ;µρ

]

+ pνpσ
[

pµT V V
µρ

]

+ 2p2
[

T V V
σ;νρ

]

+ pσp
2
[

T V V
νρ

]

+ (σ ←→ ρ) , (86)

and

gµν
[

T (V )
µνρσ

]

= 8
[

gµνT V V
µσ;νρ

]

+ 4pσ
[

gµνT V V
µ;νρ

]

+ 4
[

pµT V V
σ;µρ

]

+ 2pσ
[

pµT V V
µρ

]

+ (σ ↔ ρ) . (87)

So, obviously, if all subamplitudes fulfill its RAGFs then T
(G)
µνρσ fulfill its RAGFs as well.

So far so good. However, this game becomes more complex when WIs are expected to be

preserved too.

A. Ward Identities and Gravitational Anomalies

As we have argued along the work, the preservation of the RAGFs can be considered

as a requirement of purely mathematical nature. From a physical point of view, the main

question to be considered is about the WIs. Both aspects, however, seems to be coupled.

Precisely due to this reason we reported the investigation in the way presented previously.

As a summary, we saw that the (regularization independent) conditions for the RAGFs

preservation for all subamplitudes are







gµν�
(2)
3;µνρξ = gξρ

[

gµν∆
(2)
2;µν

]

= − i
2π
gξρ ,

gµνΣ
(2)
4;µνσρξχ = − i

2π
(gσρgξχ + gσξgρχ + gσχgρξ) ,

(88)

while the (regularization dependent) conditions for the WIs maintenance, in the two-Lorentz

index amplitudes, are

Σ
(2)
4;µνσρξχ = �

(2)
3;µνρξ = ∆

(2)
2;µν = 0 . (89)

The issue is that these conditions are conflicting ones.
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With a few exceptions, all these calculations are usually performed after a regularization

prescription is adopted. Within this context, in the most of time, it is not possible to see

clearly that, after all calculations, the main difference among two distinct approaches resides

on the value attributed to the aforementioned objects. Note that it is not relevant the way

we write the scalar divergent objects. Relative to the possible values that can be attributed

to the surface terms, it is reasonable to consider three different scenarios, which we will

discuss in details in what follows.

In a first scenario one can adopt a prescription where all the surface terms defined above

are null tensors, i.e.

Σ
(2)
4;µνσρξχ = �

(2)
3;µνρξ = �

(2)
2;µνρξ = ∆

(2)
2;µν = ∆

(2)
1;µν = 0 , (90)

as well as their contractions with gµν (tensor traces)

gµνΣ
(2)
4;µνσρξχ = gµν�

(2)
3;µνρξ = gµν�

(2)
2;µνρξ = gµν∆

(2)
2;µν = gµν∆

(2)
1;µν = 0 . (91)

These assumptions are consistent, in a trivial way, for example, with the Schouten identity

εσξg
ξχ
[

∆
(2)
2;χρ

]

− ερξg
ξχ
[

∆
(2)
2;χσ

]

= εσρ

[

gξχ∆
(2)
2;ξχ

]

, (92)

the one that was required to verify whether the RAGFs for the pseudoamplitudes are pre-

served by the calculations made. As a consequence of these assumptions, all the one-point

functions vanish identically, at least in the massless limit, which are physical desirable results.

On the other side, they are not consistent with the linearity in the integration operation, as

we have seen. We can look at properties (90) as a kind of (physical) consistency relations.

The authors of the present work have shown, in different contexts involving perturbative

calculations [39, 43–45] that the consistency relations are required in order to preserve gauge

invariance as well as to eliminate ambiguous terms, as we have shown for the two-Lorentz

index amplitudes in the section (IV). In general, the conditions (90) are satisfied by a class

of regularizations called gauge preserving regularizations, of which DR is the most popular

member.

By assuming the conditions above we can define what we may call the “physical”

(sub)amplitudes:

T V V
σρ =

i

π

(

pσpρ − gσρp
2
)

[

ξ
(−1)
2 − ξ

(−1)
1

]

, (93)

T V V
µ;σρ = −

pµ
2

[

T V V
σρ

]

, (94)
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T V V
µν;σρ = (gνσgµρ + gνρgµσ)

[

I
(2)
quad

(

m2
)

]

+

{

1

3

(

gσρgνµp
2 − gσρpνpµ − gµνpσpρ

)

−
1

6

(

gσνgρµp
2 − gσνpρpµ − gρµpσpν

)

−
1

6

(

gρνgσµp
2 − gρνpσpµ − gσµpρpν

)

}

[

I
(2)
log

(

m2
)

]

+
i

2π

{

pσpρpµpν
p2

+
p2

2
(gρνgσµ + gρµgσν)

−
pρ
2
(gσµpν + gσνpµ)−

pσ
2
(gρνpµ + gρµpν)

}[

2ξ
(0)
2 − ξ

(0)
1

]

+
i

2π

1

p2
(

pµpν − p
2gµν

) (

pσpρ − p
2gσρ

)

[

ξ
(0)
2 − ξ

(0)
1

]

+
1

4
pνpµ

[

T V V
σρ

]

, (95)

T AV
µν = −εµαg

αβ
[

T V V
βν

]

, (96)

T AV
µ;σρ = −εσαg

αβ
[

T V V
µ;βρ

]

, (97)

T AV
µν;σρ = −εσαg

αβ
[

T V V
µν;βρ

]

, (98)

T AA
σρ =

i

π

{

(

pσpρ − gσρp
2
)

[

ξ
(−1)
2 − ξ

(−1)
1

]

− gσρm
2
[

ξ
(−1)
0

]}

,

T AA
µ;σρ = −

pµ
2

[

T AA
σρ

]

, (99)

T AA
µν;σρ = (gνσgµρ + gνρgµσ)

[

I
(2)
quad

(

m2
)

]

+

{

1

3

(

gσρgνµp
2 − gσρpνpµ − gµνpσpρ

)

−
1

6

(

gσνgρµp
2 − gσνpρpµ − gρµpσpν

)

−
1

6

(

gρνgσµp
2 − gρνpσpµ − gσµpρpν

)

− 2m2gσρgµν

}

[

I
(2)
log

(

m2
)

]

+
i

2π

{

pσpρpµpν
p2

+
p2

2
(gρνgσµ + gρµgσν)

−
pρ
2
(gσµpν + gσνpµ)−

pσ
2
(gρνpµ + gρµpν)

}[

2ξ
(0)
2 − ξ

(0)
1

]

+
i

2π

1

p2
(

pµpν − p
2gµν

) (

pσpρ − p
2gσρ

)

[

ξ
(0)
2 − ξ

(0)
1

]

−
i

2π

m2

p2
gσρ

(

pµpν − p
2gµν

)

[

ξ
(0)
0

]

+
1

4
pµpν

[

T AA
σρ

]

. (100)

Observe that all ambiguous terms were eliminated and all the one-point functions vanished
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(for massless case). From these redefined subamplitudes we get

pµT G
µνρσ = −4 (pσgρν + 2pνgρσ + pρgνσ)

[

I
(2)
quad

(

m2
)

]

+ 2m2
{

pρgνσ

[

I
(2)
log

(

m2
)

]

+ pσgνρ

[

I
(2)
log

(

m2
)

]

+ gνρp
αgσα

[

I
(2)
log

(

m2
)

]

+ gνσp
αgρα

[

I
(2)
log

(

m2
)

]

+
1

64π

[

pρ
(

pνpσ − gνσp
2
)

+ pσ
(

pνpρ − gνρp
2
)

± 2εβνpβ
(

pσpρ − gσρp
2
)]

[

ξ
(−1)
1 − 2ξ

(−1)
2

]

}

∓
1

96π
εβνpβ

(

pσpρ − gσρp
2
)

, (101)

or, by taking the massless limit

pµT G
µνρσ = ∓

1

96π
εβνp

β
(

pσpρ − gσρp
2
)

, (102)

which can be recognized as being the well-known Einstein’s gravitational anomaly [29].

In the same way, the gµνTG
µνρσ contraction gives

gµνT G
µνρσ = 4gσρ

{

3
[

I
(2)
quad

(

m2
)

]

− 2m2
[

I
(2)
log

(

m2
)

]}

−

(

1

8π

)

m2

[

(

pσpρ − p
2gρσ

)

±
1

2
(εµρp

µpσ + εµσp
µpρ)

]

[

ξ
(−1)
1 − 2ξ

(−1)
2

]

+

(

1

24π

)[

(

pσpρ − p
2gρσ

)

∓
1

4

(

ερλp
λpσ + εσλp

λpρ
)

]

, (103)

or

gµνT G
µνρσ =

(

1

24π

)[

(

pσpρ − p
2gρσ

)

∓
1

4

(

ερλp
λpσ + εσλp

λpρ
)

]

, (104)

for a massless fermion. This result is known as Weyl or trace gravitational anomaly. The

main point of the preceding calculation is the demonstration that, from our general results

shown in the section (IV), one can obtain the usual anomalies terms. The caveat, as should be

clear, is that both anomalies are inevitably entangled to a violation of a basic mathematical

property, the linearity in the integration operation. This aspect is, in fact, common to all

anomaly phenomena in QFT.

A second possible track that one may follows, if a regularization get into the game, is to

adopt a procedure where surface terms are taken as null objects, as above, but instead their

contractions with gµν







gµν�
(2)
3;µνρξ = gξρ

[

gµν∆
(2)
2;µν

]

= − i
2π
gξρ ,

gµσΣ
(2)
4;µσνρξχ = − i

2π
(gνρgξχ + gνξgρχ + gνχgρξ) ,

(105)
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being, in effect, non-null quantities. This situation may occurs indirectly depending on the

step of calculations that a regularization is implemented. For instance, when one takes the

surface terms as being zero after the use of the identity (61), this choice can be materialized.

Then, within this paradoxical scenario, through a specific route followed in the calculations,

it would be possible to get the linearity in the integration operation maintained and so no

anomalous terms will survive. It seems that the best of the outcomes is achieved. One could

propose a rule for the evaluation of perturbative amplitudes: for such referred amplitudes,

when convenient, first use the identity (61) and calculate the quantities gµν∆
(2)
2;µν , g

µν
�

(2)
3;µνρξ,

gµσΣ
(2)
4;µσνρξχ obtaining a non-zero value. After that, take the surface terms as being zero.

The desirable results seems to be obtained and, at first sight, one can understand that, with

this recipe, the anomalies are eliminated since all WIs can be fulfilled. However, if we use

the Schouten identity, at least one of the expressions for the contracted tensors will contain

terms like gµν∆
(2)
2;µν . This situation reflects the mathematical impossibility of satisfying all

the RAGFs without to use a Schouten identity like (61). So, the situation above, where all

the WIs are preserved cannot, in fact, occur. In addition, the Schouten identity is violated

since the tensors are null quantities and their traces are not.

A third possibility would be a choice where both, the surface terms as well as their traces

are non-null tensors. For instance, if a regularization gives ∆
(2)
2;µν

∣

∣

∣

reg
= − i

4π
gµν , then its trace

is given by gµν∆
(2)
2;µν = − i

2π
, the same value we found before. These assumptions are con-

sistent with the preservation of the linearity in the integration operation and, consequently,

with the uniqueness of the results since the Schouten identity is preserved also. One can

say that this attitude represents the mathematical consistency. On the other hand, in this

case the one-point functions are nonzero and ambiguous. This is, of course, undesirable

just because the physical amplitudes are ambiguous. The WIs, therefore, are not preserved

due to ambiguous terms. Of course, this class of regularizations yields a scenario which is

not useful to make physical predictions in spite of being mathematically consistent. If we

follow this path, some kind of procedure must be adopted, as an additional ingredient to

the Feynman rules, in order to eliminate the ambiguous quantities arising.

32



VI. SUMMARY AND CONCLUSIONS

Across this paper, we have calculated the perturbative gravitational amplitude T
(G)
µνρσ.

This amplitude was constructed through Feynman rules derived from a two-dimensional

interaction Lagrangian where Weyl fermions couple to the gravitational field via the energy-

momentum tensor. To organize the intermediate calculations and emphasize key aspects of

the analysis, we decomposed the T
(G)
µνρσ amplitude into sets of subamplitudes based on their

tensor character. Each subamplitude was analyzed using a novel method designed to handle

divergent Feynman integrals without limitations and treat both tensors and pseudotensors

equally. Crucially, this method is not a regularization scheme, as no divergent integrals are

calculated during intermediate steps. Instead, the undefined content of each amplitude is

isolated and expressed as either surface terms or scalar objects devoid of physical parame-

ters. For amplitudes with linear or higher divergence, the surface term coefficients capture

all ambiguities arising from the chosen internal loop momenta. Conversely, the finite con-

tent is integrated directly and organized into convenient functions represented by Feynman

parameter integrals. Section IV explicitly demonstrates these features for the calculated

gravitational subamplitudes.

A fundamental question arose after applying the proposed method and obtaining the

results: do they satisfy the expected RAGFs? This is crucial because failing to satisfy the

RAGFs indicates a breaking of linearity in the integration operation, rendering the results

unacceptable. For all subamplitudes to simultaneously satisfy their expected RAGFs, a set

of conditions is necessary. These conditions involve finite quantities, interpretable as traces

over objects identified as surface terms (105). Our direct calculations revealed that these

conditions are universally satisfied, independent of the chosen prescription. This signifies

that our procedure, despite dealing with undefined quantities, yields results consistent with

the required linearity of integration. As such, our calculations align with the established

mathematical requirements for the considered perturbative amplitudes.

The discussion now shifts to the physical interpretation of the results. While ensuring

linearity in integration is crucial for mathematical consistency, satisfying WIs is essential for

interpreting predictions as consequences of the theory’s symmetries. For a universal analysis

of perturbative amplitudes, the calculation method should be independent of the specific

theory they originate from. Within the gravitational amplitude T
(G)
µνρσ, four subamplitudes
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T V V
σρ , TAV

σρ , T V A
σρ , and TAA

σρ are constrained to fulfill WIs if considered part of a gauge theory

with conserved vector currents (e.g., QED2). We found that satisfying all WIs for T V V
σρ

and TAA
σρ requires ∆

(2)
2;ξχ = 0. This condition also preserves the vector WI for TAV

σρ but

violates the axial WI, exhibiting the expected 2D anomaly. However, setting ∆
(2)
2;ξχ = 0

assigns a defined value to an undefined object, potentially through a regularization scheme.

This directly contradicts the condition gµν∆
(2)
2;µν = − i

2π
, necessary for preserving RAGFs

involving pseudotensor amplitudes. This contradiction arises if gµν∆
(2)
2;µν is interpreted as

the trace of ∆
(2)
2;µν , implying a null tensor with a non-null trace. Additionally, this pair of

values violates the Schouten identity. Even for this relatively simple problem, this scenario

presents significant difficulties.

We observed that something similar occurred with the gravitational amplitude. We in-

vestigate three distinct scenarios corresponding to different choices for surface terms, recog-

nizing that these choices effectively represent the selection of specific regularization schemes.

In the first scenario, we made the assumption that there exists a procedure or regularization

scheme capable of assigning a null value to the surface terms and their contractions with

the metric. Consequently, all one-point functions vanish, and ambiguous terms connected to

internal lines momenta are eliminated. This is because ambiguous combinations of internal

lines momenta always act as coefficients of surface terms. Crucially, this approach preserves

Schouten identities that involve surface terms, such as,

εσξg
ξχ
[

∆
(2)
2;χρ

]

− ερξg
ξχ
[

∆
(2)
2;χσ

]

= εσρ

[

gξχ∆
(2)
2;ξχ

]

, (106)

ensuring compatibility with the RAGFs of pseudoamplitudes. Interestingly, this scenario

aligns with the previously analyzed anomalous TAV
σρ amplitude. Within this context, the

customary gravitational anomalies are recovered. From a physical perspective, it appears

that these choices are suitable, demonstrating that our procedure can, once again, replicate

the conventional results obtained through other techniques. However, from a purely math-

ematical standpoint, it introduces a contradiction. Presuming the contractions of surface

terms to be null implicitly violates the principle of linearity in integration, which should

hold true even for divergent integrals. While physically appealing, adopting null surface

term contractions leads to a mathematically inconsistent outcome, unveiling a potential

drawback associated with this particular choice.

Without questioning consistency, we supposed a second scenario that differs from the pre-
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vious one by assuming non-null contractions of the surface terms with the metric (105), while

retaining the assumption of null surface terms themselves. This choice, validated through

simple calculations where the principle of linearity in integration holds, might seemingly

allow satisfying all WIs for the T
(G)
µνρσ amplitude. However, this apparent solution presents

a fundamental obstacle. The Schouten identity, crucial for maintaining these WIs, becomes

violated under this scenario. This violation exposes the inherent incompatibility of this

choice with mathematical consistency, rendering the seemingly attainable solution physi-

cally implausible.

As the final possibility, we explore a scenario where neither the surface terms nor their

contractions with the metric are assumed to be zero. This approach upholds the linearity of

the integration operation, guaranteeing its mathematical consistency in this regard. How-

ever, this path comes at a cost. The resulting amplitudes exhibit broken symmetry relations

and remain ambiguous quantities. This compromise in physical interpretation renders the

obtained results unsuitable for predictive purposes.

This exploration of perturbative gravitational anomalies within a simple 2D model un-

veils some crucial insights regarding the limitations of regularizations. Notably, the results

obtained are not unique, merely representing one possibility among many due to the inher-

ent ambiguity introduced by regularization choices throughout the calculation process. Not

surprisingly, surface terms, rather than purely divergent terms, play the primary role in this

ambiguity. This finding underscores a fundamental challenge: existing regularizations can-

not simultaneously achieve both mathematical consistency and physical meaning. It is not

possible to find a regularization capable of resolving the involved dilemma for the following

reasons:

1) Setting surface terms and their traces to zero: While this eliminates ambiguous

terms often responsible for breaking symmetries, it does so by violating the linearity of

integration. This, in turn, leads to non-unique results, undermining the ability to make

genuine predictions.

2) Retaining surface terms: Although this preserves unique results and avoids vi-

olating the linearity of integration, it also retains the ambiguity and associated symmetry

violations inherent in these terms. Consequently, the resulting predictions remain ambiguous

and lack clear physical interpretation.

3) Setting surface terms to zero but not their traces: This approach appears to
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offer a middle ground, but at the cost of violating the Schouten identity. As before, this

renders the results non-unique and non-predictive, highlighting the impossibility of finding

a ”perfect” regularization that satisfies both conditions.

In essence, regularizations introduce ambiguity, resulting in non-unique outcomes. Fur-

thermore, while surface terms hold the key to this ambiguity, no existing regularization can

simultaneously deliver both mathematically consistent and physically meaningful results.

While the non-uniqueness and ambiguity caused by regularizations may be a general

concern in perturbative QFT calculations, it becomes particularly critical in the context

of anomalies. As demonstrated throughout this work, achieving consistent results through

regularizations in anomaly calculations proves impossible across various examples. This

necessitates exploring alternative strategies beyond traditional Feynman rules to circumvent

these undesirable quantities and transform Feynman amplitudes into physically meaningful

ones. This transformation, akin to the removal of infinities in the renormalization process

without assuming them to be zero, requires a method that does not rely on regularizations.

Finally, it is important to emphasize that investigation was made in a completely

regularization-free approach. Due to this it was possible to appreciate some aspects in

our analisys which are not possible to do in contexts where regularizations are adopted.

Appendix A: Relations among Green functions

The RAGFs involving the subamplitudes defined in (10), (11), and (12) are presented in

this appendix.

1. Vector sector

In the vector sector we have

pσ
[

T V V
µ;σρ

]

=
[

T V
µ;ρ (k1)

]

−
[

T V
µ;ρ (k2)

]

, (A1)

pσ
[

T V V
µν;σρ

]

=
[

T V
µν;ρ (k1)

]

−
[

T V
µν;ρ (k2)

]

, (A2)

gµσ
[

T V V
µ;σρ

]

=
[

T V
ρ (k2)

]

+m
[

T SV
ρ

]

, (A3)

gµσ
[

T V V
µν;σρ

]

=
[

T V
ν;ρ (k2)

]

+m
[

T SV
ν;ρ

]

, (A4)
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pρ
[

T V V
ρ;µν

]

= −
1

2
gµνp

α
[

T V
α (k1) + T V

α (k2)
]

+
1

2
pµ

[

T V
ν (k1)− T

V
ν (k2)

]

+
1

2
pν

[

T V
µ (k1) + T V

µ (k2)
]

+
[

T V
µ;ν (k1)− T

V
µ;ν (k2)

]

−
1

2
p2

[

T V V
µν (k1, k2)

]

, (A5)

pµ
[

T V V
µν;σρ

]

= −
1

2
gσρp

ξ
[

T V
ν;ξ (k1) + T V

ν;ξ (k2)
]

+
1

2
pσ

[

T V
ν;ρ (k1)− T

V
ν;ρ (k2)

]

+
1

2
pρ

[

T V
ν;σ (k1) + T V

ν;σ (k2)
]

+
[

T V
νρ;σ (k1)

]

−
[

T V
νσ;ρ (k2)

]

−
1

2
(k2 − k1)

2 [T V V
ν;σρ

]

. (A6)

Substituting these RAGFs in (7) we get

pµ
[

T (V )
µνρσ

]

= 4
[

T V
νσ;ρ (k1)

]

− 8
[

T V
νσ;ρ (k2)

]

+ 4
[

T V
νρ;σ (k1)

]

− 8
[

T V
νρ;σ (k2)

]

+ 8
[

T V
σρ;ν (k1)

]

− 2gνρp
ξ
[

T V
σ;ξ (k1) + T V

σ;ξ (k2)
]

− 2gνσp
ξ
[

T V
ρ;ξ (k1) + T V

ρ;ξ (k2)
]

+ 4pν
[

T V
σ;ρ (k1)− T

V
σ;ρ (k2)

]

+ 4pν
[

T V
ρ;σ (k1)− T

V
ρ;σ (k2)

]

+ 2pρ
[

T V
ν;σ (k1)− T

V
ν;σ (k2)

]

+ 2pσ
[

T V
ν;ρ (k1)− T

V
ν;ρ (k2)

]

+ 4pρ
[

T V
σ;ν (k1)

]

+ 4pσ
[

T V
ρ;ν (k1)

]

− gνρpσp
ξ
[

T V
ξ (k1) + T V

ξ (k2)
]

− gνσpρp
ξ
[

T V
ξ (k1) + T V

ξ (k2)
]

+ 2pσpν
[

T V
ρ (k1)− T

V
ρ (k2)

]

+ 2pρpν
[

T V
σ (k1)− T

V
σ (k2)

]

+ 2pσpρ
[

T V
ν (k1) + T V

ν (k2)
]

. (A7)

2. Axial-Vector sector

The expected RAGFs for the subamplitudes in the axial-vector sector are

pρTAV
σρ =

[

TA
σ (k1)

]

−
[

TA
σ (k2)

]

, (A8)

pσTAV
σρ =

[

TA
ρ (k1)

]

−
[

TA
ρ (k2)

]

+ 2m
[

T PV
ρ

]

, (A9)
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pσ
[

TAV
µ;σρ

]

=
[

TA
µ;ρ (k1)

]

−
[

TA
µ;ρ (k2)

]

+ 2m
[

T PV
µ;ρ

]

, (A10)

pσ
[

TAV
µν;σρ

]

=
[

TA
µν;ρ (k1)

]

−
[

TA
µν;ρ (k2)

]

+ 2m
[

T PV
µν;ρ

]

,

gµσ
[

TAV
µ;σρ

]

=
[

TA
ρ (k2)

]

−m
[

T PV
ρ

]

, (A11)

gµσ
[

TAV
µν;σρ

]

=
[

TA
ν;ρ (k2)

]

−m
[

T PV
ν;ρ

]

, (A12)

pµ
[

TAV
µ;σρ

]

=
1

2
ερξp

ξ
[

T V
σ (k1) + T V

σ (k2)
]

+
1

2
pρ

[

TA
σ (k1)− T

A
σ (k2)

]

+
[

TA
ρ;σ (k1)

]

−
[

TA
ρ;σ (k2)

]

−
1

2
p2

[

TAV
σρ

]

, (A13)

pµ
[

TAV
µν;σρ

]

= −
1

2
ερξp

ξ
[

T V
ν;σ (k1) + T V

ν;σ (k2)
]

+
1

2
pρ

[

TA
ν;σ (k1)− T

A
ν;σ (k2)

]

+
[

TA
ρν;σ (k1)

]

−
[

TA
ρν;σ (k2)

]

−
1

2
p2

[

TAV
ν;σρ

]

. (A14)

Adding them up to the Eq. (8) we get

pµ
[

±T (AV )
µνρσ

]

= 4
[

TA
νσ;ρ (k1)− T

A
νσ;ρ (k2)

]

+ 4
[

TA
νρ;σ (k1)− T

A
νρ;σ (k2)

]

+ 8
[

TA
σρ;ν (k1)− T

A
σρ;ν (k2)

]

+ 4pρ
[

TA
σ;ν (k1)− T

A
σ;ν (k2)

]

+ 2pρ
[

TA
ν;σ (k1)− T

A
ν;σ (k2)

]

+ 4pσ
[

TA
ρ;ν (k1)− T

A
ρ;ν (k2)

]

+ 2pσ
[

TA
ν;ρ (k1)− T

A
ν;ρ (k2)

]

+ 2pν
[

TA
σ;ρ (k1)− T

A
σ;ρ (k2)

]

+ 2pν
[

TA
ρ;σ (k1)− T

A
ρ;σ (k2)

]

+ 2pσpρ
[

TA
ν (k1)− T

A
ν (k2)

]

+ pνpσ
[

TA
ρ (k1)− T

A
ρ (k2)

]

+ pνpρ
[

TA
σ (k1)− T

A
σ (k2)

]

− 2ερξpξ
[

T V
σ;ν (k1) + T V

σ;ν (k2)
]

− 2εσξpξ
[

T V
ρ;ν (k1) + T V

ρ;ν (k2)
]

− ερξpσpξ
[

T V
ν (k1) + T V

ν (k2)
]

− εσξpρpξ
[

T V
ν (k1) + T V

ν (k2)
]

+ 8m
[

T PV
νσ;ρ + T PV

νρ;σ

]

+ 4mpν
[

T PV
σ;ρ + T PV

ρ;σ

]

+ 4mpσ
[

T PV
ν;ρ

]

+ 4mpρ
[

T PV
ν;σ

]

+ 2mpνpσ
[

T PV
ρ

]

+ 2mpνpρ
[

T PV
σ

]

, (A15)
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pµ
[

±T (V A)
µνρσ

]

= 8
[

TA
νσ;ρ (k1)− T

A
νσ;ρ (k2)

]

+ 8
[

TA
νρ;σ (k1)− T

A
νρ;σ (k2)

]

+ 4pν
[

TA
σ;ρ (k1)− T

A
σ;ρ (k2) + TA

ρ;σ (k1)− T
A
ρ;σ (k2)

]

+ 4pσ
[

TA
ν;ρ (k1)− T

A
ν;ρ (k2)

]

+ 4pρ
[

TA
ν;σ (k1)− T

A
ν;σ (k2)

]

+ 2pσpν
[

TA
ρ (k1)− T

A
ρ (k2)

]

+ 2pρpν
[

TA
σ (k1)− T

A
σ (k2)

]

− 2ενξp
ξ
[

T V
σ;ρ (k1) + T V

σ;ρ (k2) + T V
ρ;σ (k1) + T V

ρ;σ (k2)
]

− ενξp
ξ
[

pσT
V
ρ (k1) + pσT

V
ρ (k2) + pρT

V
σ (k1) + pρT

V
σ (k2)

]

. (A16)

3. Axial sector

The expected RAGFs for the subamplitudes in the axial sector are

pσ
[

TAA
σρ

]

=
[

T V
ρ (k1)

]

−
[

T V
ρ (k2)

]

+ 2m
[

T PA
ρ

]

, (A17)

pσ
[

TAA
µ;σρ

]

=
[

T V
µ;ρ (k1)

]

−
[

T V
µ;ρ (k2)

]

+ 2m
[

T PA
µ;ρ

]

, (A18)

pσ
[

TAA
µν;σρ

]

=
[

T V
µν;ρ (k1)

]

−
[

T V
µν;ρ (k2)

]

+ 2m
[

T PA
µν;ρ

]

, (A19)

gµσ
[

TAA
µ;σρ

]

=
[

T V
ρ (k2)

]

−m
[

T PA
ρ

]

, (A20)

gµσ
[

TAA
µν;σρ

]

=
[

T V
ν;ρ (k2)

]

−m
[

T PA
ν;ρ

]

, (A21)

pµ
[

TAA
µ;σρ

]

= −
1

2
gσρp

ξ
[

T V
ξ (k1) + T V

ξ (k2)
]

+
1

2
pσ

[

T V
ρ (k1)− T

V
ρ (k2)

]

+
1

2
pρ

[

T V
σ (k1) + T V

σ (k2)
]

+
[

T V
ρ;σ (k1)

]

−
[

T V
σ;ρ (k2)

]

−mgσρ
[

T S (k1)− T
S (k2)

]

−
1

2
p2

[

TAA
σρ

]

, (A22)
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pµ
[

TAA
µν;σρ

]

= −
1

2
gσρp

ξ
[

T V
ν;ξ (k1) + T V

ν;ξ (k2)
]

+
1

2
pσ

[

T V
ν;ρ (k1)− T

V
ν;ρ (k2)

]

+
1

2
pρ

[

T V
ν;σ (k1) + T V

ν;σ (k2)
]

+
[

T V
νρ;σ (k1)

]

−
[

T V
νσ;ρ (k2)

]

−mgσρ
[

T S
ν (k1)− T

S
ν (k2)

]

−
1

2
p2

[

TAA
ν;σρ

]

. (A23)

Replacing them into (9) gives

pµ
[

T (A)
µνρσ

]

= 4
[

T V
νσ;ρ (k1)

]

− 8
[

T V
νσ;ρ (k2)

]

+ 4
[

T V
νρ;σ (k1)

]

− 8
[

T V
νρ;σ (k2)

]

+ 8
[

T V
σρ;ν (k1)

]

− 2gνρpξ
[

T V
σ;ξ (k1) + T V

σ;ξ (k2)
]

− 2gνσpξ
[

T V
ρ;ξ (k1) + T V

ρ;ξ (k2)
]

+ 4pν
[

T V
σ;ρ (k1)− T

V
σ;ρ (k2) + T V

ρ;σ (k1)− T
V
ρ;σ (k2)

]

+ 2pρ
[

T V
σ;ν (k1) + T V

σ;ν (k2)
]

+ 2pρ
[

T V
σ;ν (k1) + T V

ν;σ (k1)
]

+ 2pσ
[

T V
ρ;ν (k1) + T V

ρ;ν (k2)
]

+ 2pσ
[

T V
ρ;ν (k1) + T V

ν;ρ (k1)
]

− 4pσ
[

T V
ν;ρ (k2)

]

− 4pρ
[

T V
ν;σ (k2)

]

− (gνρpσ + gνσpρ) p
ξ
[

T V
ξ (k1) + T V

ξ (k2)
]

+ 2pνpσ
[

T V
ρ (k1)− T

V
ρ (k2)

]

+ 2pνpρ
[

T V
σ (k1)− T

V
σ (k2)

]

+ 2pσpρ
[

T V
ν (k1) + T V

ν (k2)
]

− 4mgνρ
[

T S
σ (k1)− T

S
σ (k2)

]

− 2mgνρpσ
[

T S (k1)− T
S (k2)

]

− 4mgνσ
[

T S
ρ (k1)− T

S
ρ (k2)

]

− 2mgνσpρ
[

T S (k1)− T
S (k2)

]

+ 8m
[

T PA
νσ;ρ + T PA

νρ;σ

]

+ 4mpν
[

T PA
σ;ρ + T PA

ρ;σ

]

+ 4mpσ
[

T PA
ν;ρ

]

+ 4mpρ
[

T PA
ν;σ

]

+ 2mpνpσ
[

T PA
ρ

]

+ 2mpνpρ
[

T PA
σ

]

. (A24)

Appendix B: Integrals Results

In order to perform the required calculations to obtain the subamplitudes shown above,

it is enough to use the integrals results which we list in the following. They are

I2 =
i

(4π)

[

ξ
(−1)
0

(

p2, m2
)

]

, (B1)
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I2µ = −
i

(4π)
pµ

[

ξ
(−1)
1

(

p2, m2
)

]

+ (−k1)µ [I2] , (B2)

I2µν =
1

2

[

∆
(2)
2;µν

(

λ2
)

]

+
1

2
gµν

[

I
(2)
log

(

λ2
)

]

−
i

(4π)

1

2
gµν

[

ξ
(0)
0

(

p2, m2;λ2
)

]

+
i

(4π)
pµpν

[

ξ
(−1)
2

(

p2, m2
)

]

+ (−k1)µ [I2ν ] + (−k1)ν [I2µ]

− (k1)ν (k1)µ [I2] , (B3)

I2µνλ = −
1

4
(k2 + k1)

ξ
[

�
(2)
3;ξµνλ

(

λ2
)

]

−
1

8
(k2 + k1)

ξ
{

gµν

[

∆
(2)
2;λξ

(

λ2
)

]

+ gµλ

[

∆
(2)
2;νξ

(

λ2
)

]

+ gνλ

[

∆
(2)
2;µξ

(

λ2
)

]}

−
1

8
(k2 + k1)µ

[

∆
(2)
2;νλ

(

λ2
)

]

−
1

8
(k2 + k1)ν

[

∆
(2)
2;µλ

(

λ2
)

]

−
1

8
(k2 + k1)λ

[

∆
(2)
2;µν

(

λ2
)

]

+
1

2
(k1)µ

[

∆
(2)
2;νλ

(

λ2
)

]

+
1

2
(k1)ν

[

∆
(2)
2;µλ

(

λ2
)

]

+
1

2
(k1)λ

[

∆
(2)
2;µν

(

λ2
)

]

−
1

4

[

gµν (k2 − k1)λ + gµλ (k2 − k1)ν + gνλ (k2 − k1)µ

] [

I
(2)
log

(

λ2
)

]

+
1

2
gµνpλ

[

ξ
(0)
1

(

p2;m2;λ2
)

]

+
1

2
gµλpν

[

ξ
(0)
1

(

p2;m2;λ2
)

]

+
1

2
gνλpµ

[

ξ
(0)
1

(

p2;m2;λ2
)

]

− pµpνpλ

[

ξ
(−1)
3

(

p2;m2
)

]

+ (−k1)µ [I2νλ] + (−k1)ν [I2µλ] + (−k1)λ [I2µν ]

− (−k1)µ (−k1)ν [I2λ]− (−k1)µ (−k1)λ [I2ν ]− (−k1)ν (−k1)λ [I2µ]

+ (−k1)µ (−k1)ν (−k1)λ [I2] . (B4)

Appendix C: One-point Functions

The one-point functions which are used in this work are defined by

T i
σ (k1) =

∫

d2k

(2π)2
Tr

{

[Γi]σ
1

6 k+ 6 k1 −m

}

, (C1)

T i
µ;σ (k1) =

∫

d2k

(2π)2
(k + k1)µ Tr

{

[Γi]σ
1

6 k+ 6 k1 −m

}

, (C2)
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T i
µν;σ (k1) =

∫

d2k

(2π)2
(k + k1)µ (k + k1)ν Tr

{

[Γi]σ
1

6 k+ 6 k1 −m

}

, (C3)

where Γi are vertex operators belonging to the set Γi = {ΓS,ΓP ,ΓV ,ΓA} = {1, γ3, γα, γαγ3}.

By using the integrals shown above one obtain the following results,

T S (k1) = 2m
[

I
(2)
log

(

m2
)

]

, (C4)

T S
ν (k2) = 2m

{

−kξ2

[

∆
(2)
2;νξ

(

m2
)

]

− pν

[

I
(2)
log

(

m2
)

]}

, (C5)

TA
σ = −εσξg

ξχT V
χ , (C6)

TA
µ;σ = −εσξg

ξχT V
µ;χ , (C7)

TA
µν;σ = −εσξg

ξχT V
µν;χ , (C8)

T V
µ (ki) = −2k

ξ
i

[

∆
(2)
2;µξ

]

, (C9)

T V
ν;µ (k2) = gµν

[

I
(2)
quad

(

m2
)

]

+
[

∆
(2)
1;µν

(

m2
)

]

+ kξ2k
χ
2

{

[

∆
(2)
3;µνξχ

(

m2
)

]

+
1

2
gµν

[

∆
(2)
2;ξχ

(

m2
)

]

}

−
1

2
k22

[

∆
(2)
2;µν

(

m2
)

]

− k2µk
ξ
2

[

∆
(2)
2;νξ

(

m2
)

]

+
(

k2νk
ξ
2 − 2k1νk

ξ
2

) [

∆
(2)
2;µξ

(

m2
)

]

, (C10)

T V
µν;σ (k2) =

[

(k1 − k2)µ gνσ + (k1 − k2)ν gµσ

] [

I
(2)
quad

(

m2
)

]

−
1

3
kξ2k

χ
2 k

ω
2

[

Σ
(2)
4;µνσωξχ

]

− kξ2

[

�
(2)
2;µνσξ

(

m2
)

]

− (k2 − k1)µ k
ξ
2k

χ
2

[

�
(2)
3;νσξχ

(

m2
)

]

+ k22k
ξ
2

[

�
(2)
3;µνσξ

(

m2
)

]

+ kξ2k
χ
2

{

k2σ

[

�
(2)
3;µνξχ

(

m2
)

]

+ k1ν

[

�
(2)
3;µσξχ

(

m2
)

]

−
1

3
gµνk

ω
2

[

�
(2)
3;σωχξ

(

m2
)

]

−
1

3
gµσk

ω
2

[

�
(2)
3;νωξχ

(

m2
)

]

}

+ k2σ

[

∆
(2)
1;µν

(

m2
)

]

+ k1ν

[

∆
(2)
1;µσ

(

m2
)

]

− (k2 − k1)µ

[

∆
(2)
1;νσ

(

m2
)

]

− kξ2

{

gµν

[

∆
(2)
1;σξ

(

m2
)

]

+ gµσ

[

∆
(2)
1;νξ

(

m2
)

]}

− k22k2σ

[

∆
(2)
2;µν

(

m2
)

]

− k22k1µ

[

∆
(2)
2;νσ

(

m2
)

]

+ k22 (k2 − k1)ν

[

∆
(2)
2;µσ

(

m2
)

]

− 2k1µk2σk
ξ
2

[

∆
(2)
2;νξ

(

m2
)

]

+
[

2 (k2 − k1)ν k2σ + k22gνσ
]

kξ2

[

∆
(2)
2;µξ

(

m2
)

]

+
[

k22gµν − 2 (k2 − k1)µ (k2 − k1)ν

]

kξ2

[

∆
(2)
2;σξ

(

m2
)

]

−
[

gµσ (k2 − k1)ν + gνσ (k2 − k1)µ

]

kξ2k
χ
2

[

∆
(2)
2;ξχ

(

m2
)

]

. (C11)
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Appendix D: Two-point functions

Here we show some results for the two-point functions not shown explicitly in the main

text. They are:

SV V
µνσρ =

[

�
(2)
2;µνσρ

(

m2
)

]

+
1

12

(

3P ξP χ + pξpχ
)

[

Σ
(2)
4;µνσρξχ

(

m2
)

]

−
1

4

(

P 2 + p2
)

[

�
(2)
3;µνσρ

(

m2
)

]

−
1

2
(Pν − pν)P

ξ
[

�
(2)
3;µσρξ

(

m2
)

]

−
1

2
PσP

ξ
[

�
(2)
3;µνρξ

(

m2
)

]

−
1

2
PρP

ξ
[

�
(2)
3;µνσξ

(

m2
)

]

+
1

12

(

PµP
ξ + pµp

ξ − pµP
ξ + Pµp

ξ
)

[

�
(2)
3;νσρχ

(

m2
)

]

−
1

4
gσρ

(

P ξP χ + pξpχ
)

[

�
(2)
3;µνξχ

(

m2
)

]

+
1

12

(

3P ξP χ + pξpχ
)

{

gµν

[

�
(2)
3;σρχξ

(

m2
)

]

+ gµσ

[

�
(2)
3;νρξχ

(

m2
)

]

+ gµρ

[

�
(2)
3;νσξχ

(

m2
)

]}

− gσρ

[

∆
(2)
1;µν

(

m2
)

]
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[

∆
(2)
1;σρ

(

m2
)

]

+ gµσ

[

∆
(2)
1;νρ

(

m2
)

]

+ gµρ

[

∆
(2)
1;νσ

(

m2
)

]

+

[

1

6
pµpν −

1

4
gµν

(

P 2 + p2
)

]

[

∆
(2)
2;σρ

(

m2
)

]

+
1

2
gσρ (Pν − pν)P

ξ
[

∆
(2)
2;µξ

(

m2
)

]

+
1

2

[

gσρ
(

P 2 + 3p2
)

+ PσPρ − pσpρ
]

[

∆
(2)
2;µν

(

m2
)

]

−
1

4
gµσ

(

P 2 + p2
)

[

∆
(2)
2;νρ

(

m2
)

]

−
1

4
gµρ

(

P 2 + p2
)

[

∆
(2)
2;νσ

(

m2
)

]

+
1

2
(Pν − pν)Pσ

[

∆
(2)
2;µρ

(

m2
)

]

+
1

2
(Pν − pν)Pρ

[

∆
(2)
2;µσ

(

m2
)

]

−
1

2

[

gµσPρP
ξ + gµρPσP

ξ − gσρPµP
ξ + gσρ

(

P ξPµ + pξpµ
)]

[

∆
(2)
2;νξ

(

m2
)

]

−
1

2

[

gµνPρP
ξ − gµρ

(

−
1

2
P ξPν + pνP

ξ +
1

6
pξpν

)

−
1

3
gνρp

ξpµ

]

[
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(2)
2;σξ

(

m2
)

]
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1

2

[

1

3
gνσp
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1

6
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(
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(

1

3
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∆
(2)
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(
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]
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1
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[

gµνgσρp
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1

2
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(
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)

]

[

∆
(2)
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, (D1)

T SV
σ = 0 , (D2)

T SV
ν;σ = 2m

{[

∆
(2)
2;νσ

(

m2
)

]

+ gνσ

[

I
(2)
log

(

m2
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{
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[
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(0)
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(

p2, m2;m2
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[

2ξ
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2

(
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(−1)
1

(

p2, m2
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, (D3)

T PV
σ =

i

2π
mεσξp

ξ
[

ξ
(−1)
0

(

p2, m2
)

]

, (D4)

T PA
σ = −2mpσ

[

ξ
(−1)
0

(

p2, m2
)

]
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T PV
ν;σ = −

1

2
pν

[

T PV
σ
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, (D6)
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µ;σ = −

1

2
pµ

[

T PA
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T PV
µν;σ = mεσξp
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∆
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(
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[

I
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log

(
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(
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(
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