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We theoretically explore the possibility of realizing the symmetry-protected topological Haldane
phase of spin-1 chains in a tunable hybrid platform of superconducting islands (SIs) and quantum
dots (QDs). Inspired by recent findings suggesting that an appropriately tuned QD-SI-QD block
may behave as a robust spin-1 unit, we study the behavior of many such units tunnel-coupled
into linear chains. Our efficient and fully microscopic modeling of long chains with several tens
of units is enabled by the use of the surrogate model solver [Phys. Rev. B 108, L220506 (2023);
arXiv:2402.18357]. Our numerical findings indicate that the QD-SI-QD chains exhibit emblematic
features of the Haldane phase, such as fractional spin-1/2 edge states and non-vanishing string order
parameters, and that these persist over a sizeable region of parameter space.

I. INTRODUCTION

Fueled by open problems in both fundamental and ap-
plied physics, the field of superconductor-semiconductor
hybrids has witnessed sustained advances over the past
few decades. Crucial to the understanding of these super-
semi systems is the hybridization between their various
constituents, which often leads to the presence of tunable
subgap states [1–7]. Their properties directly influence
the design of superconducting qubits and other complex
gateable devices for quantum technologies [8–10].

In particular, the ongoing efforts of realizing poor
man’s Majorana bound states in short Kitaev chains [11–
18] rely on the hybridization of two spatially separated
QDs with an extended gateable super-semi subgap state.
A closely related configuration, where the two QDs are
coupled through a floating superconducting island (SI),
was recently considered for its interesting exchange prop-
erties [19, 20]. Remarkably, it turns out that the QD-SI-
QD (DSD) exhibits a robust spin-1 ground state when
the QDs couple strongly and coherently through (at least
two subgap states in) the SI, in the presence of a size-
able SI Coulomb energy [20]. Inspired by this finding, we
explore here the possibility of realizing the well-known
Haldane phase of spin-1 chains in this super-semi hybrid
platform.

The Haldane phase is a celebrated symmetry-protected
topological phase of matter realized in the gapped ground
state of the spin-1 antiferromagnetic Heisenberg chain
[21–25]. The hallmark of such phases is the existence
of particular edge modes which enjoy some degree of
topological protection, i.e. they are robust to symmetry-
preserving local perturbations. The Haldane phase of a
long-enough spin-1 chain with open boundary conditions
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features a four-fold degenerate many-body ground state
with the edge modes behaving as two effective spin-1/2
degrees of freedom despite the fact that the model’s el-
ementary building blocks were spins-1. This symmetry
fractionalization phenomenon [26] is well-illustrated by
the analytical valence bond solid solution of the Affleck-
Kennedy-Lieb-Tasaki (AKLT) model [27].

The existence of edge states in spin-1 chains has been
extensively investigated over the past decades, both the-
oretically [28–30] and experimentally [31–36]. Various
platforms for realizing synthetic spin-1 chains have been
proposed over the years, e.g. by using gated triple quan-
tum dots [37], arrays of semiconductor QDs in a nanowire
[38–40], a chain of triangular graphene QDs [41, 42], in
addition to molecular [43] and organometallic platforms
[44–47]. Various applications of the spin-1/2 edge states
as qubits have also been suggested [37, 38, 48]. Fur-
thermore, they have direct implications for measurement-
based quantum computation [49, 50].

The purpose of this work is to show that the Haldane
phase may also be realized in a tunable DSD chain under
experimentally reasonable assumptions. The rest of the
paper is organized as follows. In Sec. II, we lay down
the modeling methodology based on the surrogate model
solver [20, 51]. Furthermore, we introduce the Heisen-
berg Hamiltonian and its bilinear-biquadratic generaliza-
tion as ideal spin-1 chains to be used as benchmarks for
the DSD results. In Sec. III, we discuss the numerical
results (energy spectra, spin-densities, string order pa-
rameters) obtained for DSD chains of increasing length:
the individual unit (N = 1), the dimer (N = 2), interme-
diate length chains (N = 3, ...12) and finally long chains
(N = 21, 41), which are expected to visibly display the
main features of the Haldane phase. We draw conclu-
sions and discuss possible generalizations of our work in
Sec. IV.
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II. MODELING METHODOLOGY

A. DSD chains

The total Hamiltonian for a length-N DSD chain is
given by

Ĥ =

N∑
n=1

ĤDSD,n+td

N−1∑
n=1

∑
σ=↑↓

(d†nRσdn+1,L,σ+h.c.) , (1)

where d†nασ creates an electron with spin σ in the α = L,R
quantum dot of the n-th DSD unit. We consider all units
to be identical and described by a Hamiltonian of the
form

ĤDSD = ĤQD,L + ĤSI + ĤQD,R + Ĥtunn . (2)

For each quantum dot α = L,R we use the constant
interaction Hamiltonian

ĤQD,α =
U

2

(
d†α↑dα↑ + d†α↓dα↓ − ν

)2

, (3)

where U is the electron-electron repulsion strength and
ν is the dot energy level in units of electron number.
Throughout this work, all QDs are assumed to be iden-
tical and to effectively host one electron each, i.e. we
always take ν = 1 and large enough values for U . Depart-
ing from this particle-hole symmetric point is known to
reduce the excitation gap above the spin-1 DSD ground
state of interest here [19]. Furthermore, we neglect any
cross capacitances between the different parts of the DSD
units, the effects of which can be accounted for by rescal-
ing the various parameters.

For modeling the SI and its tunnel couplings we em-
ploy the surrogate model solver (SMS) methodology out-
lined in Refs. 20 and 51. For a vanishing SI charging
energy Ec, the full quasi-continuum of SI levels is re-
placed within the SMS approach by a small number of
BCS surrogate orbitals that optimally reproduce the SI-
QD hybridization function [51]. The SMS approach may
be generalized to a non-vanishing Ec provided that the
finite-size effects of the SI can safely be neglected [20]. In
this case, the SMS prescription consists of coupling the
BCS surrogate orbitals (used as before to model the hy-
bridization part) with an auxiliary Cooper pair counting
site that enables the conservation of the total SI parti-
cle number. This leads to an accurate description of the
SI’s charge fluctuations and thus ensures a proper treat-
ment of its Coulomb interaction term. Concretely, the SI
Hamiltonian is given by

ĤSI =
L̃∑

ℓ=1

∑
σ=↑↓

ξ̃ℓc
†
ℓσcℓσ −

L̃∑
ℓ=1

(∆c†ℓ↑c
†
ℓ↓e

−iϕ̂ + h.c.)

+ Ec

 L̃∑
ℓ=1

∑
σ=↑↓

c†ℓσcℓσ + 2N̂p − n0

2

.

(4)

FIG. 1. (a) Modeling of the DSD unit in the SMS approach

with a minimal L̃ = 2 surrogate for the SI coupled to an
auxiliary site counting the number of Cooper pairs Np in the
superconducting condensate. (b) Schematic of the N = 3
DSD chain in its Stot = Sz,tot = 1 ground state. The strength
of the S = 0 valence bond is dictated by the inter-dot tunnel
matrix element td, see Eq. (1).

Here c†iσ creates an electron with spin σ and energy ξ̃i in
the SI with charging energy Ec and optimal occupation
(in units of electron charge) n0. As discussed above, we
need to make use of the canonically conjugate number

and phase operators N̂p and ϕ̂, [N̂p, e
iϕ̂] = eiϕ̂. Physi-

cally, N̂p counts the number of Cooper pairs in the su-

perconducting condensate, while e±iϕ̂ adds/removes one
pair from the condensate. The auxiliary Hilbert space is
spanned by states |p⟩ with an integer number of pairs p,

obeying N̂p|p⟩ = p|p⟩ and e±iϕ̂|p⟩ = |p± 1⟩.
Finally, the QD-SI coupling term appearing in Eq. (2)

reads

Ĥtunn =
∑

α=L,R

L̃∑
ℓ=1

∑
σ=↑↓

√
γℓΓα(c

†
ℓσdασ + h.c.) , (5)

where Γα denote the QDα-SI tunneling rates. The γℓ
parameters define the surrogate model, together with the
energy levels ξ̃ℓ.

As detailed in Ref. 20, the minimal prescription for
reproducing the spin-1 ground state of the DSD unit
relies on the L̃ = 2 surrogate. This is also in agree-
ment with Ref. 19, where a finite-bandwidth was found
to be essential for this purpose (see also the Appendix

for a complementary discussion). For the minimal L̃ = 2
surrogate employed throughout this work, the numerical
values of the above parameters are γ1,2 = 1.246∆ and

ξ̃1,2 = ±1.31∆ (obtained by the optimization method
detailed in Ref. 51 for a half-bandwidth D = 10∆). For
these values, the excitation energy of the BCS quasiparti-
cles becomes Eqp = (∆2+ ξ̃2)1/2 ≃ 1.65∆. More complex

L̃ ≥ 3 surrogates were found to cause only minor quan-
titative differences for the DSD chains considered below.
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B. Mapping to ideal spin-1 chains

When the inter-dot coupling td is small enough and the
picture of robust spin-1 DSD units holds, the low-energy
spectrum of Ĥ in Eq. (1) may be matched to that of the
spin-1 antiferromagnetic Heisenberg chain (AFH) given
by

ĤAFH = JAF

N−1∑
i=1

S⃗i · S⃗i+1 , (6)

with the coupling JAF > 0 following the superexchange
scaling [52] JAF ∼ t2d/U . The spin-1 character of each
DSD unit is gradually lost with increasing td as the corre-
lations between QDs belonging to neighboring units build
up (see also Figs. 3a and 5b below).

The large-td limit corresponds to a dimerized config-
uration where all double-dots are effectively locked into
spin-singlet configurations (see Fig. 1b), leaving two iso-
lated (dangling) spin-1/2 moments at the chain’s edges.
Naively, this behaviour would appear reminiscent of the
AKLT ansatz in which every spin-1 is identified with
the triplet subspace of two virtual spins-1/2 each par-
ticipating in a singlet bond with its other neighboring
spin [27]. The AKLT state is the ground state of the
bilinear-biquadratic (BLBQ) Hamiltonian

ĤBLBQ = JAF

N−1∑
i=1

[
S⃗i · S⃗i+1 + β(S⃗i · S⃗i+1)

2
]
, (7)

for βAKLT = 1/3. For this particular value of β, ĤBLBQ

becomes a sum of projectors onto local spin-2 pairs,
which thus favors the formation of spin-singlet valence
bonds (in the picture of the spin-1 consisting of two sym-
metrized virtual spins-1/2). Note that the biquadratic
exchange coupling is also the simplest local term that is
compatible with all the system’s symmetries which may
be added to the Heisenberg Hamiltonian of Eq. (6). The
BLBQ model features both gapped excitations and frac-
tional spin-1/2 edge states, with a fourfold degeneracy
in the thermodynamic limit, in a range that includes
0 ≤ β ≤ 1/3 belonging to the Haldane phase [28, 53].

In the following section, we will argue that the low-
energy physics of the DSD chains (at weak enough td) is
well captured by the BLBQ Hamiltonian of Eq. (7) with
0 < β < 1/3, and satisfies the necessary requirements of
the Haldane phase.

III. RESULTS

To obtain the low-lying spectrum of the quasi-1D and
locally-interacting systems considered here, our numeri-
cal method of choice is the density matrix renormaliza-
tion group (DMRG) in the matrix-product-state formula-
tion [54, 55], which is straightforward to implement with
the ITensor library [56, 57]. Our numerical codes are

available online [58] and may be run on a standard lap-
top or desktop computer. We employed a maximum bond
dimension of 2000 and an energy convergence threshold
of 5·10−9∆. We truncated the auxiliary Hilbert space for
each SI to the dimension daux = 10. This relatively small
value of daux is able to account for all relevant SI charge
fluctuations given the relatively large charging energy
Ec = 2∆ chosen in our simulations. The longest run-
ning times were of the order of a few days for the longest
N = 41 DSD chain discussed below, whose total Hilbert

space dimension would amount to (4L̃+2 ·daux)N ∼ 10140

for the L̃ = 2 surrogate.

A. The DSD unit

FIG. 2. DSD spin-singlet-triplet energy gap and average SI
and QD spins ⟨Sz⟩ in the Stot = Sz,tot = 1 ground state. The
dashed line indicates the spin-singlet-triplet gap obtained by
perturbation theory (see Appendix). The other parameters
are U = −2ϵd = 6∆, Ec = 2∆. For the SI we employed the
L̃ = 2 surrogate.

Let us first shortly revisit the elementary QD-SI-QD
(DSD) unit, whose properties have been investigated in
some detail in Refs. 19 and 20. The emergence of the
spin-triplet ground state in this setup may be understood
in analogy to the double-dot configuration of Ref. 59. In
a perturbative approach, in addition to the hybridiza-
tion between the QDs’ spin-singlet and the Cooper pairs
(that would naively lead to an overall singlet ground
state), one must consider 4th order tunneling processes
involving single-particle excitations in the superconduct-
ing leads. When it becomes advantageous to perform
the spin-exchange by virtually exciting the superconduc-
tor instead of the QDs, a spin-triplet ground state may
emerge, as detailed in the Appendix and in Ref. 59.
In modeling the DSD unit, we implicitly assumed that

the QDs are coupled through the same SI-orbitals, much
like in the poor-man’s Majorana devices where a spa-
tially extended state in the proximitized semiconductor
allows for crossed Andreev reflections [13–15]. Also, it is
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important to note that the spin-triplet character of the
QD-SI-QD system is rather sensitive to the asymmetry
in the magnitude of the couplings between the QD and
superconducting levels (see discussion around Fig. 8 of
Ref. 20). Furthermore, due to the two-orbital structure
of the SI there is a left-over phase from the four tunneling
amplitudes that cannot be gauged away and which may
impact negatively on the robustness of the spin-triplet.
Altogether, this makes the basic DSD units vulnerable
to mesoscopic fluctuations, which seem hard to circum-
vent with gate defined quantum dots and islands. At this
point, we can only speculate that fluctuations could be
reduced by moving to a super-semi hybrid platform based
on highly regular epitaxially grown tunnel barriers [60–
62]. Henceforth, we will assume the best-case scenario
of symmetric couplings within the DSD unit and focus
on the physics that would emerge from assembling many
such units into longer chains.

We show in Fig. 2 the behavior of the DSD unit’s
spin-singlet-triplet gap with increasing QD-SI tunneling
rate Γ, which shows a robust maximum corresponding
to the crossing between the two lowest-lying spin-singlet
states. This maximum is located at Γ ≃ 3.5∆ and reaches
around 0.6∆ for L̃ = 2 (converging to a slightly larger

value for L̃ ≥ 3 surrogates). At zero coupling, the dif-
ference between the lowest-lying spin-singlets is the pres-
ence of a broken Cooper pair with an energy cost of 2Eqp.
This becomes favored by a strong enough tunneling rate
that encourages the states with single QD occupation to
hybridize with the SC quasiparticle excitations (and also
allows for empty/doubly occupied QDs).

Furthermore, Fig. 2 indicates that in the hybridization
regime where the DSD’s spin-triplet character is the most
robust, the QD and SI components contribute democrat-
ically to the total spin S = 1. The physical picture
is that of a highly correlated DSD unit, fundamentally
different from the weak QD-SI coupling scenario where
each QD carries a well defined spin-1/2 moment. For
weak QD-SI couplings, the DSD chain would thus map
well to the alternating ferromagnetic-antiferromagnetic
Heisenberg chain of spins-1/2. With increasing antifer-
romagnetic coupling (the analogue of the inter-dot cou-
pling td), this model is known to experience a continuous
crossover between the Haldane phase and a dimerized
phase [63, 64].

B. The DSD-DSD dimer

Moving on to the simplest DSD chain, i.e. the N = 2
dimer, we focus on its lowest lying total-spin-singlet,
triplet and quintuplet states, indicated by different col-
ors in Fig. 3a-c. For all cases, we confirm in Fig. 3a
the gradual breakdown of the spin-triplet character of
each DSD unit with increasing inter-dot coupling td.
Here, we show each unit’s effective total spin SDSD de-

fined by SDSD(SDSD + 1) = ⟨S⃗ 2
DSD⟩, together with its

range of fluctuations SDSD ± δSDSD that reproduces

(a)

td

(b)

(c)

U=3Δ

U=6Δ

U=10Δ

JAF~
td
2

U

(d)

U=3Δ
U=6Δ

U=10Δ

FIG. 3. (a) Effective total spin SDSD (continuous lines), de-

fined for each DSD unit by SDSD(SDSD+1) = ⟨S⃗ 2
DSD⟩, and its

estimated range of fluctuations (dashed lines) versus the inter-
dot coupling td, for the NDSD = 2 dimer in its lowest-lying
Stot = 0, 1, 2 states. (b) Spin-triplet and spin-quintuplet exci-
tation energies versus the inter-dot coupling td. (c-d) BLBQ
parameters JAF = (ES=2 − ES=1)/2 and β resulting from
fitting the dimer’s energy spectrum (black curves). For the
fitting of JAF, see also [65]. The values referred in the main
text are indicated by dashed grid lines. The other parameters
are U = 6∆ (in a,b), ϵd = −U/2, Γ = 3∆, Ec = 2∆. For each

SI we employed the L̃ = 2 surrogate.

the spread of the total spin squared between ⟨S⃗ 2
DSD⟩ ±√

⟨(S⃗ 2
DSD)

2⟩ − ⟨S⃗ 2
DSD⟩2/2. The total spin of each DSD

unit is understood to be S⃗DSD = S⃗QD,L + S⃗SI + S⃗QD,R.

The behavior of the DSD-dimer’s low-lying energy
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spectrum interpolates between the AFH-specific scaling
ES=1 − ES=0 = (ES=2 − ES=1)/2 = JAF at low td, and
the AKLT-like scenario with degenerate spin-singlet and
triplet ground states at large td (see also the discussion
in Sec. II B above). For intermediate values of td we use
the BLBQ prescription ES=1 − ES=0 = JAF(1 − 3β),
ES=2 − ES=1 = 2JAF to obtain the JAF and β parame-
ters of the effective BLBQ model, see Eq. (7). The fit-
ting results are shown in Fig. 3c,d, with the effective
antiferromagnetic coupling JAF following the superex-
change scaling JAF ∼ t2d/U to a good extent [65], and
with the biquadratic term β interpolating smoothly be-
tween βAFH = 0 (at small td) and βAKLT = 1/3 (at large
td).

C. Longer DSD chains

1. Energy spectra

2 3 4 5 6 7 8 9 10 11 12

FIG. 4. Spin energy gaps for the DSD, AFH and BLBQ(β =
0.14) chains relative to the spin-singlet (triplet) ground state
for even (odd) chain lengths N . The DSD chain parameters
are U = −2ϵd = 6∆, Γ = 3∆, Ec = 2∆, td = 0.4∆ and JAF =
0.0205∆. For each SI we employed the L̃ = 2 surrogate.

When increasing to N ≥ 3 two main signatures of the
Haldane phase become manifest, namely the exponential
decay of the spin-triplet-singlet gap (with alternating sin-
glet and triplet ground states for even and odd N) and
the convergence of the spin-quintuplet excitation energy
to the corresponding Haldane gap, see Fig. 4. Note that
a faster breakdown of the spin-triplet character is to be
expected for the DSD units in the bulk of N ≥ 3 chains,
as each unit now interacts with both its left and right
neighbors. This is apparent in Fig. 4, where a value of
βN=12 = 0.14 within the BLBQ model is needed to re-
produce well the DSD spin-gaps for N = 12, about twice
as large when compared to βN=2 ≃ 0.07 required for
the N = 2 DSD-dimer at the same td = 0.4∆, cf. also
Fig. 3d.

2. Spin densities and edge states

(a)

Stot=Sz,tot=1

(b)

FIG. 5. (a) Average spin ⟨Sz⟩ along the N = 21 DSD, AFH
and BLBQ(β = 0.14) chains in the Stot = Sz,tot = 1 ground
state. (b) Effective total spin SDSD,n defined for each DSD

unit n = 1, ..., 21 by SDSD(SDSD+1) = ⟨S⃗ 2
DSD⟩, together with

its estimated fluctuation range. The other parameters are
U = −2ϵd = 6∆, Γ = 3∆, Ec = 2∆. For the SI we employed
the L̃ = 2 surrogate.

Even longer chains show clear signatures specific to the
spin-1/2 edge fractionalization [28], see Fig. 5a. Here,
the average spin in the Stot = Sz,tot = 1 ground state of
the N = 21 DSD chain displays the characteristic stag-
gered profile decaying in amplitude away from the edges.
This decay is correlated with the strength of the double-
dot spin-singlet bonds, being weakest at small td, i.e. in
the AFH regime, and strongest at large td, i.e. in the
AKLT-like dimerized regime, where only the end-spins-
1/2 survive and there is no bulk magnetization. When
going towards the latter regime by progressively increas-
ing td, the double-dots tighten up into spin-singlets and
the DSD units across the entire chain experience increas-
ingly stronger fluctuations, gradually losing their spin-1
character, cf. Fig. 5b and see also the discussion around
Fig. 3a.
The increasing-td effects on the edge states are shown

in Fig. 6 for a larger N = 41 DSD chain. In this fig-
ure only, we plot the detailed spin distribution for each
individual QD and SI instead of that corresponding to
entire DSD units. For small to moderate td, i.e. close to
the AFH regime, each QD and SI are seen to contribute
a similar amount to the average spin projection ⟨Sz⟩ of
a DSD unit. This is in agreement with the expectation
from the previous analysis of a single DSD unit, see the
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(a)

unit index n

Stot=Sz,tot=1

FIG. 6. (a) Average spin ⟨Sz⟩ along the N = 41 DSD, AFH
and BLBQ(β = 0.15) chains in the Stot = Sz,tot = 1 ground
state. (b) Detailed average spin ⟨Sz⟩ for each QD and SI in
the first seven units of the N = 41 DSD chain, in its Stot =
Sz,tot = 1 ground state and for various inter-dot couplings td.
The other parameters are U = −2ϵd = 6∆, Γ = 3∆, Ec = 2∆.
For each SI we employed the L̃ = 2 surrogate.

discussion around Fig. 2. At large td, i.e. in the AKLT-
like dimerized regime, the bulk average spin-density be-
comes strongly suppressed as all double-dots are tightly
bound into spin-singlet dimers. What remains is an effec-
tive spin-1/2 moment localized on the outermost QD-SI
block, with the individual QD and SI contributions close
to their values in an isolated QD-SI system (around 0.3
and, respectively, 0.2 for the chosen parameters).

3. String order parameters

The relatively long N = 41 chain features a bulk re-
gion large enough to accommodate a sound investigation
of various correlation functions relevant to the Haldane
phase, cf. Fig. 7. The correlators adequate here are string
order parameters [23] of the form

gO,U (d) =

〈
Ôp

p+d−1∏
j=p+1

Ûj

 Ôp+d

〉
, (8)

(a)

(b)

(c)

gAFH(∞)≃-0.374

gAKLT(∞)=-4/9

FIG. 7. (a) Average spin ⟨Sz⟩ along the N = 41 DSD, AFH
and BLBQ(β = 0.15) chains in the Stot = Sz,tot = 1 ground
state. (b-d) Correlation functions gO,U (d) of Eq. (8) for O =
Sz and U = 1 (b), O = 1 and U = Rz (c), O = Sz and
U = Rz (d), in the bulk (middle third, p = 14) of the N = 41
chain. The other parameters are U = −2ϵd = 6∆, Γ = 3∆,
Ec = 2∆. For the SI we employed the L̃ = 2 surrogate.

which probe the transformation behaviour of the bulk
under a symmetry U , e.g. a spin rotation around the z
axis with π, Rz = exp(iπSz).
For O = Sz and U = 1, Eq. (8) reduces to the

spin-spin correlation function gSz,1 = ⟨Ŝz,p Ŝz,p+d⟩ which
is expected to be short ranged as there is no sponta-
neous breaking of the rotational symmetry in the Hal-
dane phase [21]. This behavior is confirmed in Fig. 7a.
For O = 1 and U = Rz one deals with the pure-string

correlator g1,Rz which is non-zero at large d in the case
of topologically trivial configurations [23]. In Fig. 7b, as
long as td is not too large we find the pure-string cor-
relator g1,Rz to decay as expected for a Haldane phase
where the bulk SO(3) symmetry fractionalizes into the
SU(2) edge-symmetry. For a larger value like td = 2∆
where the DSD spin-1 character is mostly washed out,
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this pure-string correlator acquires a visibly finite posi-
tive value, signaling a trivial configuration.

The Haldane phase features a hidden antiferromag-
netic order [66] that may be revealed by employing the
non-local string order parameter gSz,Rz obtained from
Eq. (8) upon setting O = Sz and U = Rz [23, 67]. This
may be viewed as a standard two-point spin-spin corre-
lator that only picks up a ± sign from the (non-locally)
alternating Sz = ±1 spins while ignoring all Sz = 0
contributions in between. Fig. 7c shows that the DSD
chain features a well-defined string order parameter, with
a value close to its AFH and BLBQ counterparts for
the moderate td = 0.4∆. With increasing td, we notice
how the DSD string correlator |gSz,Rz (∞)| begins to de-
crease, e.g. reaching a significantly reduced value of 0.15
at td = 2∆ for which the above mentioned pure-string
correlator g1,Rz also had long-range order.

When interpreting the order parameters’ behavior, it is
important to realize that an increasing inter-dot coupling
td leads to the build-up of density fluctuations which
gradually erode the spin-1 character of the DSD units.
Strictly speaking, the original SO(3) symmetry of an iso-
lated spin-1 DSD unit is extended to SU(2) at any fi-
nite td. At large td, the above string orders lose their
distinguishing power, with gSz,Rz and g1,Rz both acquir-
ing a long-range order. Although the Haldane phase is
adiabatically connected to a trivial state, its characteris-
tic phenomena remain parametrically stable (i.e. over a
large part of parameter space even when the bulk is in a
trivial phase [68–70]).

In the remainder of this work, we will limit ourselves
to the moderate value td = 0.4∆ which shows clear sig-
natures of the Haldane phase.

4. Entanglement entropy

Even in the absence of string order parameters, topo-
logical phases can be characterized by their “entangle-
ment spectrum”, obtained upon performing a bipartite
cut of the system, tracing out one part and diagonalizing
the reduced density matrix of the other [71–74]. Below,
we denote by λj the Schmidt eigenvalues that square to
the eigenvalues of the reduced density matrix. In partic-
ular, the Haldane phases of integer spin chains are char-
acterized by an even degeneracy of the entire entangle-
ment spectrum, caused by the same symmetries protect-
ing the stability of the Haldane phase when applied to
the eigenstates of the reduced density matrix [75]. The
computation of the entanglement spectrum is straight-
forward in our MPS approach, and leads to the results
shown in Fig. 8. All chains under investigation (DSD,
AFH and BLBQ) consistently display the even degener-
acy required by the Haldane phase (up to minute finite-
size effects), and perfectly agree on the dominant pair of
eigenvalues. While the higher-lying portions of the AFH
and BLBQ’s spectra naturally agree on the degeneracy
patterns, some deviations occur for the DSD chain due

eigenvalue index j

N=41

Stot=Sz,tot=1

FIG. 8. Entanglement spectrum for a bipartition into
(NL, NR) = (20, 21) of the N = 41 DSD, AFH and BLBQ
chains in the Stot = Sz,tot = 1 ground state. The DSD pa-
rameters are U = −2ϵd = 6∆, Γ = 3∆, Ec = 2∆, td = 0.4∆
(a) and td = 0.75∆(b). For the SI we employed the L̃ = 2
surrogate.

to its underlying microscopic structure. This is to be ex-
pected as the entanglement spectrum is a highly sensitive
measure of a state’s correlations. The corresponding en-
tanglement entropies, computed as S = −

∑
j λ

2
j Logλ

2
j ,

are SDSD = 0.857, SAFH = 0.855, SBLBQ = 0.760 for
Fig. 8a.

5. Excited states

We end this section by examining how well does the
mapping of the DSD chain onto the ideal AFH and BLBQ
models extend beyond the ground state manifold. In
Fig. 9, we show the magnetization profile of the lowest-
lying S = 2 state in our longest N = 21 and N = 41
chains. All models agree well on the familiar staggered
profile giving rise to the two edge-spins-1/2, and also on
the bulk acquiring a quasi-uniform spin density (respon-
sible for the spin-1 magnon excitation). The only notice-
able quantitative discrepancy is related to the DSD stag-
gered profile extending slightly more into the bulk than
in the case of the AFH or BLBQ. While higher-order
corrections such as bicubic exchange couplings could be
considered towards reaching a better quantitative agree-
ment of an ideal S = 1 chain with the DSD chain, this is
well beyond the scope of this work.

IV. CONCLUSIONS

The main purpose of this work was to show that the
Haldane phase may be realized in a superconductor-
semiconductor hybrid platform, more precisely in a chain
of repeating QD-SI-QD (DSD) blocks, each exhibiting a
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Stot=Sz,tot=2

unit index n

Stot=Sz,tot=2

FIG. 9. Same as in Figs. 5a and 7a, but for the lowest
Stot = Sz,tot = 2 excited state.

robust spin-1 character over a sizeable parameter regime.
As long as the coupling between neighboring DSD units
was not too strong to destroy their spin-1 character, the
basic physics of the DSD chain could be quite well fitted
by the bilinear-biquadratic spin-1 Hamiltonian of Eq.(7)
with a biquadratic coefficient 0 < β < 1/3. In this
regime, the DSD chain was found to exhibit clear sig-
natures of the Haldane phase, such as the presence of
characteristic spin-density profiles with effective spins-
1/2 at the edges, the long-range order of specific string
correlation functions and the double-degeneracy of the
entanglement spectrum. Our model could be extended,
for example, by including an external magnetic field in
order to define a singlet-triplet qubit protected from de-
cohence by a Haldane gap [38]. In this regime, our DSD
unit would be closely related to the setup used in Ref. 13
to create poor man’s Majorana states; it would thus be
interesting to explore a possible cross-over between the
Haldane and Majorana physics in these systems.

One of the main advantages of the present super-semi
platform lies in the ease of designing higher-spin units:
by individually tunnel-coupling a number N of QDs to
the same SI we would obtain a robust spin S = N/2 unit
[20]. This could enable the realization of more general
spin models in various geometries [76]. In particular, the
generalization of the AKLT state to spins-3/2 on a hexag-
onal lattice has notable implications for quantum com-

putation [77, 78]. However, the Heisenberg model on this
lattice exhibits Néel order and is not in the same phase
as the AKLT model [79], but a more general bilinear-
biquadratic-bicubic model may actually be tuned to an
AKLT phase [80]. In this context, it would be worthwhile
to investigate how the present work generalizes to the
analogous QD3-SI hexagonal network depicted in Fig. 10.

FIG. 10. Illustrations of the spin-3/2 QD3-SI honeycomb lat-
tice. The QDs (SIs) are indicated green dots (blue triangles).
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Appendix: QD-SI-QD perturbation theory

We provide here additional insights from perturbation
theory regarding the spin-singlet-triplet competition in
the QD-SI-QD system. For a complementary picture,
see also Appendix D of Ref. 19. Our discussion below
will parallel that of Sec. III A in Ref. 59.

For simplicity, we work here in the equivalent BCS pic-
ture obtained after transferring the charging term from
the SI to the QDs, see Ref. 20 for details. As in the
main text, we assume that the superconductor is de-
scribed by an L̃ = 2 surrogate with both levels coupled
to each QD by the same tunneling amplitude t. We de-

note the quasiparticle energy by Eqp =
√

∆2 + ξ2, with
ξ = ξ1 = −ξ2 > 0 indicating the levels’ positions. For
convenience we employ the BCS coherence factors u, v
satisfying uv = ∆/2Eqp, u

2 − v2 = ξ/Eqp > 0.

Straightforward 4th order non-degenerate perturba-
tion theory in the tunnel coupling t (implemented for
each total spin subspace using the Sneg software [81, 82])
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leads to the spin-singlet-triplet gap

δS-T ≡ ES=1 − ES=0

t4

=
16

(U/2 + Eqp + Ec)
2
(U + 2Eqp + 4Ec)

+
64u2v2

(U/2 + Eqp + Ec)
2
(U + 4Ec)

+
64u2v2

(U/2 + Eqp + Ec)
2
(U + 2Eqp)

−
16

(
u2 − v2

)2
(U/2 + Eqp + Ec)

2
2Eqp

.

(A.1)

The perturbative expansion may be visualized in terms
of spin-exchange processes with the matrix element of
each process being weighted by the inverse product of
the virtual excitation energies. A final state with ex-
changed spins may be reached via intermediate virtual
states connected by four tunnelling events between the
QDs and the superconductor.

In processes that involve only virtual excitations on
the QDs the two initial electrons have to be swapped,
leading to an overall sign that energetically favors the
spin-singlet state. This is the case for the first three terms
in Eq. (A.1). It is however possible to also exchange the
spins without anticommutation signs through processes
in which a hole is involved. This kind of processes will
energetically favor the spin-triplet state, leading to the
appearance of the last term in Eq. (A.1).

The ratio between triplet-favoring and singlet-favoring
processes is given schematically by 1+EQDs/Eqp, where
EQDs ∼ U + Ec is a typical excitation energy in the QD
subsystem. When it becomes advantageous to perform
the spin-exchange by virtually exciting the superconduc-
tor instead of the QDs, a spin-triplet ground state may
emerge.

Notice however that there is a certain amount of de-
structive interference in last term of Eq. (A.1). Namely,
its subset of processes involving all possible excitations
on both superconducting levels (of the type u1v1u2v2 =
u2v2) will favor the spin-singlet instead. This effect com-
pletely suppresses the last term of Eq. (A.1) in the zero-
bandwidth limit of degenerate levels ξ = 0: for the spin-
triplet to be the ground-state, at least two distinct levels

with enough separation are required in the superconduc-
tor.
Finally, we consider the large-U limit

δS-T = − 32 ξ2

U2 E3
qp

+
64

(
3 + 2Ec ξ

2/E3
qp

)
U3

+O
(
U−4

)
(A.2)

and the large-Ec limit

δS-T =
8

E2
c

[
− ξ2

E3
qp

+
2∆2

E2
qp(U + 2Eqp)

]
+O

(
E−3

c

)
(A.3)

which are both in agreement with the above considera-
tions (and with the conclusions of Ref. 19) regarding the
existence of a finite bandwidth threshold for establish-
ing the spin-triplet ground state. Note however that the
numerical examples considered in the main text (with
U = 6∆, Ec = 2∆) do not fall under any of these lim-
its, but are chosen instead to ensure the maximum spin-
singlet-triplet gap, see Fig. 11.

0 2 4 6 8
0

5

10

15

Ec/Δ

U
/Δ

100δS-T

-2.38

-2.10

-1.82

-1.54

-1.26

-0.98

-0.70

-0.42

-0.14

FIG. 11. Spin-singlet-triplet gap of Eq. (A.1) versus U and
Ec. The other parameters are ∆ = 1, ϵd = −U/2, ξ = 1.31∆.
Only the region with a spin-triplet ground state is colored.
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