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We study an intriguing new type of self-assembled active colloidal polymer system in 3D. It is
obtained from a suspension of Janus particles in an electric field that induces parallel dipoles in the
particles as well as self-propulsion in the plane perpendicular to the field. At low packing fractions,
in experiment, the particles self-assemble into 3D columns that are self-propelled in 2D. Explicit
numerical simulations combining dipolar interactions and active self-propulsion find an activity
dependent transition to a string phase by increasing dipole strength. We classify the collective
dynamics of strings as a function of rotational and translational diffusion. Using an anisotropic
version of the Rouse model of polymers with active driving, we analytically compute the strings’
collective dynamics and centre of mass motion, which matches simulations and is consistent with
experimental data. We also discover long range correlations of the fluctuations along the string
contour that grow with the active persistence time, a purely active effect that disappears in the
thermal limit.

Active matter describes a new class of materials that
are composed of elements driven out of equilibrium by in-
ternal sources of energy. These systems promise a novel
way to add functionality in materials design for a vari-
ety of applications, from drug delivery to metamateri-
als [1–7]. A major challenge however is how to control
activity, i.e. which components of a system are active,
when that activity is to be switched on/off, and how
to use it to steer emergent collective behaviour towards
a desired function. One promising avenue for control-
ling active matter is by tuning the interplay between
active driving and passive mechanics of the mesoscale
structures of the active material at scales intermediate
between the microscopic building blocks and the macro-
scopic (hydrodynamic) scales [8]. This dynamic structure
at the mesoscale can take the form of polymers [9–12],
membranes [13], and disordered or ordered solids [14–17].
Because of the complex internal dynamics of these meso-
structures, more detailed descriptions, going beyond long
wavelength hydrodynamics, must be developed to pre-
cisely uncover the physical principles required to accu-
rately control their behaviour.

Extended one-dimensional polymeric structures are a
promising mesoscale ingredient as their relatively open
structure leaves the system more susceptible to exter-
nal controls. Hence there has been a corresponding
resurgence of experimental and theoretical work on ac-
tive polymer systems [18–20]. Most experimental reali-
sations of active polymer systems have been biological,
e.g. motor-driven cytoskeletal polymers [21] or living or-
ganisms such as worms [19]. Theoretical studies have in-
cluded tangentially driven linear polymers and ring poly-
mers, mostly in 2D [20, 22–24] and more recently have
begun to look at entanglement [25]. Biological compo-
nents however are hard to control and there is a need for
systems built from man-made (synthetic) components.

Active Janus colloids are one of the simplest exper-
imental building blocks of synthetic active materials -
their single particle dynamics is reasonably well approx-
imated by active Brownian particles [26–28]. The Janus
particles of interest here are made from an insulating col-
loid half coated by metal which is itself then coated in
a layer of insulator. When placed in an oscillating elec-
tric field, by the process of induced-charge electrophore-
sis (ICEO) [29, 30], they simultaneously become active
and interact via pairwise dipolar interactions. The col-
loids undergo sedimentation to the bottom of the sam-
ple. Hence they can self-assemble on the bottom sur-
face into 2D polymer-like motile chains [31–33]. Recent
experiments have shown however that it is possible to
study this system in fully 3D by suspending smaller Janus
particles in a solvent, which due to their size sediment
markedly less [34]. At low volume fractions, the parti-
cles self-assemble into active columns (strings) that self-
propel in the plane perpendicular to their axis. We note
it is well known from experiments [35, 36] and simula-
tions [37] that a passive collection of suspended dipolar
colloids have a static string phase at low density.

In this letter, we study the collective dynamics of the
low density phase of actively travelling strings through a
combination of numerical simulations, theoretical tools,
and experimental analysis. Our numerical model com-
bines short range repulsion, dipolar interactions in the
direction of the field and self propulsion, and we find an
activity-dependent transition to the active string phase
as a function of dipole strength. We explore the collective
dynamics of strings as a function of rotational and trans-
lational diffusion strengths. Using a generalised Rouse
model of anistropic 3-dimensional flexible polymers with
active driving allows us to capture the string dynam-
ics. In addition to explaining the global string dynamics,
this predicts a purely active emergent correlation length
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FIG. 1. a - Schematic of the Janus particle used in experiments. The dipoles pi = (0, 0, p) are aligned with electric field
direction and perpendicular to self-propelling velocities v0 = v0(cos θi, sin θi, 0). r = (x, y, z) is the vector separating the
positions of two bead centres. b - Simulations conducted in LAMMPS and visualised in OVITO [38], with packing fraction 5%.
Different colors indicate different clusters. c - The bond vector for a single string, with rn the position of the nth bead. d-e,
Phase diagrams of the mean lifetime and mean size of traveling strings. p = 1, v0 = 0.5 as a function of rotational diffusion
coefficent DR and ratio DT

σ̄2DR
. The three regimes and markers in these phase diagrams are determined by the mean lifetime

phase diagram. The colourbar in the mean size phase diagram is linear and is logarithmic in the mean lifetime phase diagram.
These phase diagrams are based on simulations with box size 20× 20× 80.

along the strings. We further carry out experiments with
metallo-silica Janus particles that we study with confo-
cal microscopy at the single-particle level [39]. We verify
that our theoretical model agrees very well with simula-
tions and is consistent with experiments.

Simulation — We model our dipolar active colloids by
adopting a hybrid potential that combines the Weeks-
Chandler-Anderson (WCA) potential for short-range re-
pulsive interactions between particles with a dipole-
dipole (DD) pair interaction that accounts for the long-
range dipolar forces present in the system [37]. In ex-
periment, the dipole moments are aligned with the oscil-
lating electric field E = Eẑ [32, 34]. Hence all particles
have a constant identical dipole moment p = pẑ with
dipole strength p (that increases with |E|). The inter-
action potential between particles i and j, is UHY,ij =
UWCA(rij) + UDD(p, rij) with

UWCA(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, r < 21/6σ,

UDD(p, r) =
1

r3
(p · p)− 3

r5
(p · r)(p · r),

(1)

where rij = ri − rj is the inter-particle separation and
rij = |rij |. We choose units such that the WCA po-
tential strength ϵ = 1 and the particle diameter is
σ̄ = 21/6σ = 1. The DD pair interaction is attractive
along the direction of the polarisation p and repulsive
in the orthogonal plane, naturally leading to the forma-
tion of parallel strings along ẑ. Due to ICEO, each Janus
particle rotates until the interface between the two halves
is parallel to E, and therefore self-propels in a direction
in the xy plane (Fig. 1a). The Debye screening length
in experiment is much smaller than particle diameter,
allowing us to cut off dipole interactions after the first
neighbour for computational efficiency.

We combine UHY,ij with overdamped Active Brownian

dynamics without hydrodynamics,

ṙi = −1

ζ

∑
j ̸=i

∇∇∇iUHY,ij + v0n̂i + ηηηTi ,

n̂i = (cos θi, sin θi, 0), θ̇i = ηRi ,

(2)

where {ri, θi} are the position, orientation of the ith par-
ticle and ζ is the Stokes drag. We include activity with
self-propulsion speed v0 (that in experiment increases
with |E|) in the direction n̂i, which is constrained to the
xy plane, orthogonal to ẑ (Fig. 1a). Its in-plane angle
θi diffuses with rotational white noise ηRi , with correla-
tion ⟨ηRn (t)ηRm(t′)⟩ = 2DRδ(t − t′)δnm, where DR is the
rotational diffusion coefficient. We also include transla-
tional white noise ηηηTi in all directions, with correlations
⟨ηTαn(t)ηTβm(t′)⟩ = 2DT δ(t − t′)δαβδnm where DT is the
translational diffusion coefficient. The simulation box is
periodic in all three dimensions and we use LAMMPS [40]
with a custom ABP integrator [41].
In our simulations, we systematically vary the dipole

strength, speed and diffusion coefficients via the parame-
ters (p, v0, DR,

DT

σ̄2DR
) while maintaining a fixed low pack-

ing fraction ϕ = 0.05. Strings are defined by a cluster-
ing algorithm with neighbour cutoff distance 1.05σ̄ (Fig.
1b). Here we first locate the transition to the string
phase by varying p and v0 independently for intermediate
DR = 0.15 and different DT (Fig. S2.1a-d). The transi-
tion from a disordered phase at low p to a string phase
at high p shifts from around p = 0.2 − 0.3 at v0 = 0.1
to p ≲ 1 at v0 = 0.7. We choose the point p = 1 and
v0 = 0.5, which is in the string phase in almost all cases.
We find that string formation is subject to slow coarsen-
ing dynamics, necessitating runs of t = 20000 time units
to reach steady-state (Fig. S2.2a). Strings also rapidly
lengthen when p increases (Fig. S2.2b), and we switch to
a tall simulation box Lx×Ly ×Lz ≡ 20×20×80 for our
main runs (Fig. 1b). Strings can still span the system,
so we cut off string size at Lz/σ̄ = 80.
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The persistence of active driving is regulated by rota-
tional diffusion, DR and translational diffusion, DT . If
the fluctuation-dissipation theorem (FDT) holds, DT =
kBT/ζ and DR = kBT/ζr. For Stokes drag, where
σ̄2ζ = 3ζr this implies that DT

σ̄2DR
= 1

3 in simulation
units. Another limit, considered in many ABP simula-
tions is where orientational noise dominates and one can
set DT ≈ 0 (“persistent”). Finally when DR is very large
the effect of activity is to give an effectively thermal sys-
tem with a renormalized active temperature (“thermal”).
The two axes of our phase diagrams are then DR and
DT

σ̄2DR
, with DR varying from 0.003 to 3, which corre-

spond to an active limit and a thermal limit respectively.
DT

σ̄2DR
varies from 0 to 1

3 , which indicate a persistent limit
and the FDT limit, respectively. With this parameter
scan, we construct a phase diagram that focuses on active
string dynamics (Fig. 1d-e). We measure the mean size
and mean lifetime of strings, defined as time interval be-
tween changes in string composition. With the exception
of a string-less phase at high DR and DT , i.e. a thermal
FDT limit, the value of DR predicts string properties.
We find a phase of medium-sized strings that interact
through collisions with lifetimes τl ∼ 100 when DR is rel-
atively low (DR ≤ 0.06) and a phase of non-interacting
solo strings with rapidly increasing τl and lengths that ex-
ceed the system size and wrap the box when DR ≥ 0.15.
We return to this characterisation below.

We probe the collective motion of traveling strings,
first focusing on the motion of their centroids. We fit
the mean square displacement (MSD) of the centroids
of the strings in the xy plane to the MSD of a free 2-
dimensional (2D) ABP in the absence of pair interac-
tions [42, 43]. The effective translational diffusion coeffi-
cient of centroids decays with string length as Dc ∼ N−1,
whereas the collective self-propulsion speed decays with
the square root of length vc ∼ N−1/2 (Fig. 2), and both
are independent of dipole strength p, and phase.

Active Anisotropic Rouse model — We can gain an
understanding of string dynamics by mapping a sin-
gle string to an active polymer model. By solving
∇UHY (r) = 0, we find the equilibrium distance be-
tween two particles a(p), which is a function of the
dipole strength p. By expanding the hybrid potential
UHY near its stable equilibrium position r(0), we can
obtain an effective elastic potential UE := 1

2 (r − r(0)) ·
HU (r

(0)) · (r− r(0))T , with HU the Hessian matrix. HU

is diagonal and our three effective elastic constants are

given by κ11(p) := ∂2UHY

∂x2

∣∣∣
r=r(0)

= ∂2UHY

∂y2

∣∣∣
r=r(0)

and

κ33(p) :=
∂2UHY

∂z2

∣∣∣
r=r(0)

. These elastic constants are func-

tions of the dipole strength p and are isotropic in the xy
plane. κ11(p) and κ33(p) are both strongly increasing
with p, and κ33 ≫ κ11. See SI section 3.1 for details.

For a string of size N , the position of the nth par-
ticle can be expanded around a rigid column as rn :=

FIG. 2. Collective dynamics of traveling strings as a function
of their length. a - Self-propulsion speed of string centroids
vc and b - Collective long-time translational diffusion coeffi-
cient Dl (see Eqn. (4)). The two red lines are our theoretical
predictions Eqn. 4. Data is extracted from simulations at
v0 = 0.1, DR = 0.15, DT

σ̄2DR
= 1

30
, p ∈ [0.6, 0.7, 1.0, 1.4, 2.0],

with colorbars indicating dipole strength p. Error bars corre-
spond to the standard deviation of the fit. The Dl data are
obtained from vc and Dc (Fig. S2.2); vc dominates Dl in this
regime resulting in similar plot shapes. Error was propagated
by assuming independent normal distributions. All data is
picked from the last 5000 time units in steady state.

r
(0)
n +Rn where r

(0)
n = (0, 0, an) and fluctuations Rn =

(R1n, R2n, R3n) := (xn, yn, zn), 1 ≤ n ≤ N (Fig. 1c).
The equations of motion for the strings therefore are an
active anisotropic Rouse model [44] (see SI section 3.2),

Ṙαn =
καα

ζ

∂2Rαn

∂n2
+Aαn + ηTαn,

θ̇n = ηRn .

(3)

for α = 1, 2, 3. Here activity An = (A1n, A2n, A3n) is
confined to the xy plane, i.e A1n = v0 cos θn, A2n =
v0 sin θn and A3n = 0. Using Rouse modes [22, 44], the
equations can be solved analytically and various collec-
tive quantities obtained. Please see SI section 3.2-3.3 for
details.
The motion of the centroid of the string is given by

the lowest (0th) Rouse mode. We therefore compute
the MSD of the string centroid in the xy plane to ob-
tain MSDstring = 4Dct+2v2cD

−1
R

[
t+D−1

R

(
e−DRt − 1

)]
,

with an effective translational diffusion coefficientDc and
the collective self-propulsion speed vc. Comparing the
collective MSDstring with that of a single ABP [42, 43],
we find

vc =
v0√
N

, Dc =
DT

N
, Dl = Dc +

v2c
2DR

=
Deff

N
. (4)

We also obtain Dl, the long-time diffusion coefficient of
string centroids in terms of Deff = DT + v20/(2DR), the
long-time diffusion coefficient of an isolated Janus colloid
with both translational noise and active driving. Our
result also shows that the persistence time of the strings
D−1

R is the same as that of a single particle. Hence, we
find the collective dynamics of traveling strings is solely
governed by their length and Eqn. 4 accurately predicts
the simulation results (red lines in Fig. 2).
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We can understand the difference between collisional
and solo strings with this simple argument: for fixed av-
erage string size ⟨N⟩, in the low DR (collisional) limit,
strings move persistently for their mean free path [45]

which can be approximated as lf ≈ π⟨N⟩σ̄3

12RLzϕ
, where R

is the xy radius of gyration, and 6Lzϕ
π⟨N⟩σ̄3 the projected

2d density of strings, leading to an approximate lifetime
τ colll ≈ lf/vc. In contrast, in the solo regime with large
DR, they are moving diffusively and traverse this dis-

tance in τdiffl ≈ l2f
4Dl

≫ τ colll , leading to a much longer

lifetime. Using ⟨N⟩ = 80, Lz = 80σ̄ and R = 1.5, this
is a good match for the observed string life times at low
DT

σ̄2DR
(see Fig. S2.3).

In addition to their persistent centroid motion, the
fluctuations along the strings are also highly spatially
correlated (Fig. 1b and SI movies). These mesoscale
spatial correlations emerge from the temporal correla-
tions of the active driving coupling preferentially to the
long wavelength elastic modes [14, 15].

To illustrate this, we analyse the correlations of the
bond-vectors, i.e bn = rn − rn−1, at different positions
on the traveling strings (see Fig. 1c). We find new ac-
tive contributions which are due to the finite time cor-
relations in the directions of local active driving. The
relevant correlation function is the correlation between
the deviations of the bonds from those of a rigid column:
Bn = Rn − Rn−1 = bn − (0, 0, a). We obtain an ex-
act expression for this bond-vector deviation correlation
function, Ct(n, n

′) = ⟨Bn ·Bn′⟩, using the higher Rouse

modes (see SI section 3.5) : Ct(n, n) =
2aDa

ξDR

(
e−

a
ξ − 1

)
+

2ζ
(

DT+Da

κ11
+ DT

2κ33

)
:= Ct0 when n = n′, and

Ct(n, n
′) =

aDa

ξDR

(
e

a
ξ + e−

a
ξ − 2

)
e−

a
ξ |n−n′|, (5)

which is valid when the bonds are far from the ends,

1 ≪ n ̸= n′ ≪ N . Here Da =
v2
0

2DR
is the active contri-

bution to the ABP effective translational diffusion coef-
ficient. The correlation length ξ = a

√
κ11

DRζ of the expo-

nential decay scales as 1√
DR

, i.e. with the square root of

active persistence time (Fig. 3a). We note that in the
thermal limit, the system is a flexible chain with no bond
vector correlations when n ̸= n′, i.e. the correlations are
a purely active effect. Fig. 3b shows how in the ther-
mal limit DR → ∞, the n = n′ part of Ct decays to a
constant proportional to DT , whereas for |n − n′| ̸= 0
it decays to 0. Eqn. 5 is an excellent match to simula-
tions of an isolated (non-interacting) string system over
several DR (see Fig. 3c). In the simulations we have sub-
tracted the mean squared equilibrium distance between
two consecutive particles, a2 from ⟨bn ·bn′⟩. For interact-
ing strings (see Fig. 3d), there is still excellent agreement
if we modify the reference state for the bond deviations:
Bn = bn−(0, 0, aem), with aem determined by an empir-

ical least squares fit. In Fig. S2.4, we show correlations
for a range of DR and the best fit aem/a.

a b

c d

FIG. 3. a - Correlation length ξ ∼ D
−1/2
R for different dipole

strengths p. b - Theoretical Ct at |n− n′| = 0, 1. c-d, Bond
vector correlation functions in non-interacting (c) and inter-

acting (d) string systems. p = 1, v0 = 0.5, DT
σ̄2DR

= 1
300

.

Points are simulation data, lines are theoretical predictions.

Experiment — In our experiments, we use the 3D
induced-charge electrophoresis system previously devel-
oped by one of us [34]. Janus particles made from an
insulating colloid half coated by metal are placed in an
oscillating electric field E. We study a fixed volume frac-
tion of 5%. In this system, the Janus colloids move like
active Brownian particles in a plane orthogonal to the
field (xy) and diffuse in the third direction (z). Due to the
imbalance of the dielectric constant between the solvent
and the particles, dipolar interactions are induced by the
external electric field, which point in the direction of the
field. For our parameters (5 kHz and NaCl at a concen-
tration of 10−4mol · L−1, i.e. 0.1mM), the interactions
between the particles can be approximated as a single
effective dipole located at the centre. The Debye screen-
ing length is ≈ 26nm. Here we focus on experiments
with an external electric field amplitude E = 1

3V/µm at
5KHz frequency, giving us an individual particle Péclet
number Pe ≈ 40. Due to limited z resolution, we use
Trackpy to first identify particles with good xy accuracy
in individual z layers vertically spaced by aeff = 2.6µm,
the effective particle spacing at this salt concentration.
We find a landscape of cairn-like strings [46] (columns)

with variable height growing from the bottom surface,
due to the finite gravitational length (Fig. 4a). To iden-
tify strings, we developed a clustering algorithm that fol-
lows strings from the top to the bottom by connecting
to the nearest point, if any, within aeff. Due to the finite
scan–time for each z−layer, moving from the bottom to
the top of the image and the fact that the strings are
self-propelled, moving with instantaneous velocity v in
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a b

FIG. 4. a - Coordinates from experimental data. Different
colors indicate different strings. b - Mean instantaneous speed
plot. We average the speed over strings of the same length.
The best fit of the mean is v = c√

N
with c = 1.3. The gray

bars indicate the standard deviation and the shaded area is
the standard error of the mean.

the xy-plane, the observed strings appear tilted. If the
scan time of the string τs is less than D−1

R , the string ap-
proximately travels in a fixed direction during the scan
(we estimate τs ≲ D−1

R ). We can then measure the veloc-
ity v of traveling strings from the tilt angle (and plane)
of the strings. We perform a least-squares analysis on
the beads in the string to obtain a best fit straight line,
ls making an angle θs with ẑ = (0, 0, 1). (θs < π

2 ). If in
a time τs, the camera has scanned up to height zs, then
the string angle θs and its instantaneous speed v = |v|
are related by vτs = tan θszs. Using our imaging param-
eters, we find v = 1.5802 tan θsµms−1 in our experiment.
By averaging v over strings with the same length N we
find that the mean v decays with N as 1√

N
(Fig. 4b),

which is consistent with our simulations and theory.

In conclusion, we have studied a string forming 3D
active dipolar colloidal system using simulations, theory
and experiment. The collective dynamics of traveling
strings, derived analytically and confirmed by numerical
simulations and experimental analyses, has a simple de-
pendence on string length. At low packing fractions, the
string dynamics is well described by an active anisotropic
Rouse model, showing emergent active bond vector cor-
relations. In future work we plan to extend our analysis
to the active sheets and labyrinth appearing at higher
packing fractions [34], where we also expect additional
hydrodynamic contributions to string dynamics.
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