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Abstract

Parallelisation in Bayesian optimisation is a common strategy but faces several chal-
lenges: the need for flexibility in acquisition functions and kernel choices, flexibility dealing
with discrete and continuous variables simultaneously, model misspecification, and lastly
fast massive parallelisation. To address these challenges, we introduce a versatile and mod-
ular framework for batch Bayesian optimisation via probabilistic lifting with kernel quadra-
ture, called SOBER, which we present as a Python library based on GPyTorch/BoTorch.
Our framework offers the following unique benefits: (1) Versatility in downstream tasks
under a unified approach. (2) A gradient-free sampler, which does not require the gradi-
ent of acquisition functions, offering domain-agnostic sampling (e.g., discrete and mixed
variables, non-Euclidean space). (3) Flexibility in domain prior distribution. (4) Adaptive
batch size (autonomous determination of the optimal batch size). (5) Robustness against
a misspecified reproducing kernel Hilbert space. (6) Natural stopping criterion.

Keywords: Batch Bayesian Optimisation, Bayesian Quadrature, Kernel Quadrature

1 Introduction

Bayesian optimisation (BO; Mockus (1975); Garnett (2023)) is a model-based global op-
timisation strategy for black-box functions. It involves constructing a surrogate model
to approximate the function, and subsequently using the model to efficiently select forth-
coming query points, thereby offering sample-efficient optimisation. However, with the
advancement of the machine learning field, the complexity and variety of practical applica-
tions have increased. For example, many hyperparameter optimisation tasks involve mixed
variables, diverging from the typical assumption of solely continuous or discrete variables
(Ru et al., 2020; Wan et al., 2021; Daulton et al., 2022). Drug discovery (Gómez-Bombarelli
et al., 2018; Adachi, 2021), a prominent area for BO and experimental design, necessitates

*. Work done while at Machine Learning Research Group, University of Oxford, UK

©2024 Masaki Adachi, Satoshi Hayakawa, Martin Jørgensen, Saad Hamid, Harald Oberhauser, Michael A. Osborne.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

ar
X

iv
:2

40
4.

12
21

9v
2 

 [
cs

.L
G

] 
 1

9 
A

pr
 2

02
4

https://creativecommons.org/licenses/by/4.0/


Adachi, Hayakawa, Jørgensen, Hamid, Oberhauser, and Osborne

Ground truth

observed
points

global
maximum

B
es

t f
ou

nd

ov
er

he
ad

 (s
)

Th
om

ps
on

sa
m

pl
in

g
H

al
lu

ci
na

tio
n

SO
B

ER
(O

ur
s)

1st iteration 2nd iteration 3rd iteration 4th iteration

10

8

6

20

15

10

5

0 2 4 1 3 5
iterations iterations

Thompson
sampling

Hallucination

SOBER

Under-
exploration

Over-
exploration

Balanced

batch queries

Figure 1: A demonstrating example featuring 2D Branin-Hoo function with nine peaks and
the global maximum at the bottom-left corner (red star). Initial 10 i.i.d. samples (white
dots) unluckily misidentify the top-left peak as the promising area. Thompson sampling
(blue lines) under-explores, erroneously focusing 30 queries (black crosses) near the top-left.
Conversely, hallucination (black lines) over-explores, constantly venturing into new regions,
yet allocating only a few queries towards the bottom-left area. Our SOBER approach (green
lines) starts with wide exploration, then narrows down to the global maximum, demonstrat-
ing balanced exploration. The convergence plot illustrates that SOBER outperforms the
baselines with the least wall-clock time overhead. The image’s colour scheme represents dif-
ferent functions: upper confidence bound for Thompson and hallucination, logπ for SOBER.

specialised kernels and non-Euclidean space due to the molecular and graph representa-
tions required (Griffiths et al., 2023). Furthermore, real-world tasks often operate under
numerous constraints, and such constraint functions can be black-box (also known as un-
known constraints, Gelbart et al. (2014)). This complexity has spurred the development
of numerous specialised acquisition functions (AFs). Furthermore, these AFs are often in-
compatible with each other, which is a hindrance for practitioners. Particularly in batch
settings, where multiple points are selected simultaneously for parallelising the costly eval-
uations such as physical experiments, compatibility issues become more evident. The batch
setting typically suffers from (1) no compatibility to arbitrary AFs, kernels, or downstream
tasks (e.g., constrained optimisation), (2) limited scalability to large batch size, (3) under-
/over-explorative samples. Figure 1 demonstrates these issues in popular batch Thompson
sampling (TS; Thompson (1933); Kandasamy et al. (2018)) and hallucination (Azimi et al.,
2010). Table 1 and §2.2 delineates the details.

In response to these challenges, we introduce SOBER (Solving Optimisation as Bayesian
Estimation via Recombination), which not only offers more balanced explorative sampling
and faster computation times but also exhibits unique advantages: (1) adaptive batch
sizes—autonomous determination of the optimal batch size at each iteration, (2) robust-
ness against misspecified GPs—our worst-case error is uniformly bounded in misspecified
reproducing Kernel Hilbert Spaces (RKHS), (3) stopping criterion as integral variance, and
(4) the domain prior distribution—flexibility to model input domains based on any distri-
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Batch Thompson sampling
(Kandasamy et al., 2018)

BO ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

DPP-TS
(Nava et al., 2022)

BO ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

MC-SAA
(Balandat et al., 2020)

BO ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

TurBO
(Eriksson et al., 2019)

BO ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

SCBO
(Eriksson and Poloczek, 2021)

BO ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

PESC
(Hernández-Lobato et al., 2015)

BO ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

GIBBON
(Moss et al., 2021)

BO ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

B3O
(Nguyen et al., 2016)

BO ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Hallucination
(Azimi et al., 2010)

Any ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Local Penalisation
(González et al., 2016)

Any ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

SOBER (Ours) Any ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparisons between our proposed SOBER with popular batch methods. Task
refers to batch BO, BQ, and AL. misspec. RKHS refers to bounded worst-case error against
the misspeficied RKHS. Our SOBER is the most versatile algorithm with unique benefits.

bution, unlike typical uniform distribution assumptions. This approach, as illustrated in
Figure 1 and summarised in Table 1, positions our algorithm as a highly versatile solution
not only for BO, but also for Active Learning (AL; Settles (2009)) and Bayesian Quadrature
(BQ; O’Hagan (1991); Hennig et al. (2022)). We firstly introduced the idea of probabilistic
lifting to batch BO, which enables us to leverage a flexible emphkernel quadrature (KQ)
method, thereby offering a versatile and modular approach. As detailed later, specifying
the downstream tasks, AFs, and variable types is equivalent to specification in domain dis-
tribution. Thus, users can enjoy a plug-and-play parallelisation library for AL, BO, and
BQ interchangeably. We have created the open-source library SOBER based on PyTorch
(Paszke et al., 2019), GPyTorch (Gardner et al., 2018), and BoTorch (Balandat et al., 2020),
providing detailed tutorials with varied use cases.

In summary, we offer:
1. A modular and flexible open-sourced Python library for batch BO, AL, and BQ

is ready for pip install sober-bo on https://github.com/ma921/SOBER,
with versatility summarised in Table 1.

2. The unique benefits of adaptive batch sizes, robustness against misspecified
RKHS, and domain prior distribution enhances further efficiency and flexibility.

3. An evaluation of the performance of SOBER against baselines in various syn-
thetic and real-world tasks involving large batch sizes, mixed variables, con-
straints, and non-Euclidean space.

2 Background

In this section, we first introduce the GP, then review the batch BO tasks and related work.

3
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2.1 Gaussian Process

Let (Ω,F ,P) be a probability space and X ⊆ Rd be the input domain. A GP (Stein,
1999; Rasmussen et al., 2006) is a stochastic process g : X × Ω → R, whose properties
are captured by the mean function m : X → R, m(x) = E[g(x, ·)] and covariance function
K : X × X → R, K(x, x′) = E[(g(x, ·) −m(x))(g(x′, ·) −m(x′))]. The covariance function
is symmetric (K(x, x′) = K(x′, x),∀x, x′ ∈ X ) and positive definite (∀t ∈ N, {ai}ti=1 ∈
R, {xi}ti=1 ⊂ X ,

∑t
i,j=1 aiajK(xi, xj) ≥ 0). We refer to any function satisfying the above two

properties as a kernel. A GP induces a probability measure over functions, and is capable of
conditioning on data in closed form for conjugate likelihood cases. In the regression setting,
we further assume the labels y = f(x)+ϵ, where f is the function to estimate, ϵ ∼ N (0, σ2) is
i.i.d. zero-mean Gaussian noise, and σ2 is the noise variance. Given a labelled data set Dt =
{xi, yi}ti=1 := (Xt,Yt) and corresponding covariance matrix KXX = (K(xi, x

′
j))1≤i,j≤t ∈

Rt×t, the conditioned GP regression model is given by f | Dt ∼ GP(mt, Ct), where

mt(x) = m(x) +K(x,Xt)(KXX + σ2It×t)
−1(Yt −m(Xt)),

Ct(x, x
′) = K(x, x′)−K(x,Xt)(KXX + σ2It×t)

−1K(Xt, x
′),

mt(·) and Ct(·, ·) are the mean and covariance functions of the GP posterior predictive
distribution conditioned on t-th data set Dt, and It×t is an identity matrix of size t.

2.2 Batch Bayesian Optimisation and Related Work

BO is the task to find the global maximum of a blackbox function f :

x∗true = argmax
x∈X

f(x),

where x∗true represents the global optimum. BO is a model-based optimiser that typically
uses a GP as a surrogate model (Osborne et al., 2009). It uses GP predictive uncertainty to
solve the blackbox optimisation problem, treating it as active learning to locate the global
optimum. BO must balance the trade-off between exploitation (using current knowledge of
the optimum from mt) and exploration (exploring unseen optima considering uncertainty
from Ct). Unnecessary exploration can lead to a slower convergence rate for the regret,
defined as rt := f(x∗true)− f(xt), where xt is the t-th query point. The next query point is
determined by maximising an acquisition function (AF), with the upper confidence bound

(UCB; Srinivas et al. (2010)) being a popular choice: αft(x) := µt(x)+β
1/2
t

√
Ct(x, x), where

βt represents an optimisation hyperparameter. The rationale behind UCB is the decaying
nature of the maximum information gain as more data is acquired (c.f., Cover (1999)). This
decay is sublinear for popular kernels (Nemhauser et al., 1978; Krause and Guestrin, 2012),
indicating progressively smaller changes for larger values of t, allowing us to demonstrate
the no-regret property, limt→∞

rt
t = 0. Although there is a vast array of AFs, those with

a proven no-regret property are limited to variants of either UCB, expected improvement
(EI; Bull (2011); for the noiseless case), or TS, to the best of our knowledge.

However, most AFs are designed for sequential settings, and extending them to a batch
setting often results in the loss of the no-regret property. Consequently, batch selection
methods are mostly heuristic, yet they are widely accepted due to their practical significance
and effectiveness. Batch BO methods can be categorised into the following two:
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Optimisation-based approach. A prime example on this approach is the hallucination
(Azimi et al., 2010), which extends sequential methods by simulating the sequential process
using a random sample from the GP predictive posterior. Despite its simplicity and empir-
ical effectiveness, this method suffers from over-exploration due to mispecified GP models
resulting from pseudo-labels (see Figure 1), and scalability issues with large batches. Each
sequential query involves AF optimisation, essentially non-convex optimisation reliant on
heuristic optimisers (e.g., CMA-ES; Hansen (2016)), thus introducing optimisation errors
and overhead for each batch query. An alternative approach, using Monte Carlo (MC)-
based AFs (Wilson et al., 2018; Balandat et al., 2020) for efficient parallel computations.
However, as the authors noted, popular information-theoretic AFs (Hennig et al., 2015;
Hernández-Lobato et al., 2014; Wang and Jegelka, 2017) are not supported. Furthermore,
the optimisation-based approach is challenged by a combinatorial explosion in scenarios
involving discrete optimisation. As the number of categorical classes grows, the number of
potential combinations becomes prohibitively large. Specifically, optimising for large batch
sizes requires enumerating all conceivable permutations of both batch samples and discrete
variables, presenting a significant combinatorial challenge (Moss et al., 2021). While recent
work (Daulton et al., 2022) has tackled this, the proof is only applicable to sequential BO.

Thompson sampling-based approach. TS-based approaches can avoid the combina-
torial and scalability issues through randomness. The AF of TS is xt = argmaxx∈X g(x),
where g ∼ GP(mt, Ct) represents a function sample from the GP. This approach can be
seen as sampling from the belief about the global optimum locations, xt ∼ P(x̂∗t | Dt),
where x̂∗t is the estimated global optimum location. Kandasamy et al. (2018) extended TS
to batch BO, which still preserves the no-regret property. In batch BO, the key metric is
the Bayesian regret (BR), defined by:

BR(t) := Ext∈Xn
t
[f(x∗true)− f(xt)]

where Xn
t is the batch TS samples drawn from P(x̂∗t | Dt). By using the same rationale

of UCB, when the maximum information gain is sublinear in the iteration t, the batch TS
enjoys the no-regret properties for BR.

However, it faces limitations: incompatibility with other AFs and under-exploration.
While the theory of batch TS depends on a well-specified GP, the common practice of
using maximum likelihood estimation (MLE) for kernel hyperparameters does not ensure
consistent estimation (Berkenkamp et al., 2019; Ziomek et al., 2024). This misspecification
can invalidate no-regret property, leading to aggregated samples (see Figure 1), contrary
to theoretical expectations. Although attempts have been made to address these issues
(Nava et al., 2022), they often introduce significant overhead due to diversification, such
as determinantal point process (DPP; Kathuria et al. (2016)). Exact computation requires
costly O(|X | · n6.5 + n9.5), and the best known inexact sampling with Markov chain Monte
Carlo (MCMC) still demands O(n5 log n) MCMC steps (Rezaei and Gharan, 2019).

Consequently, a versatile and lightweight batch BO algorithm remains elusive.
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3 Connection with Batch Uncertainty Sampling and Kernel Quadrature

In this section, we will demonstrate how KQ can provide a flexible and efficient solution
for batch uncertainty sampling. We begin by introducing the concept of quantisation, then
establish the connection between batch uncertainty sampling and KQ.

Quantisation. Consider π as a probability distribution defined over the domain X . The
task of quantisation is to find a discrete distribution ν := 1

n

∑n
i=1 δxi , which best approx-

imates π using n representative points xi. To tackle the quantisation task, one initially
identifies an optimality criterion, typically based on a notion of discrepancy between π and
ν, and then devises an algorithm to approximately minimise this discrepancy.

Kernel Quadrature. KQ is a numerical integration that computes the integral of a
function f within an RKHS H associated with a kernel K. Its goal is to approximate an,
otherwise intractable, integral with a weighted sum. A KQ rule, Qπ,K(n) is defined by
weights wn = {wi}ni=1 and points Xn = {xi}ni=1,

Qπ,K(n) :=

n∑
i=1

wif(xi) ≈
∫

f(x)dπ(x). (1)

The KQ rule can also be interpreted with a discrete distribution πKQ :=
∑n

i=1wiδxi , namely,
Qπ,K(n) =

∑n
i=1wif(xi) =

∫
f(x)dπKQ(x). The worst-case error, given π and H, is

wce[Qπ,K(n)] := sup
∥f∥H≤1

∣∣∣∣∣Qπ,K(n)−
∫

f(x)dπ(x)

∣∣∣∣∣,
and KQ aims to approximate Qπ,K(n) that minimises this worst-case error,

Xn,wn ≈ argmin
Xn⊂X ,wn⊂R

wce [Qπ,K(n)] . (2)

There are a vast list of KQ algorithms; herding (Chen et al., 2010; Bach et al., 2012), leverage
score (Bach, 2017), DPP (Belhadji et al., 2019), continuous volume sampling (Belhadji et al.,
2020), kernel thinning (Dwivedi and Mackey, 2021, 2022), to name a few.

Connection to Quantisation. The worst-case error can be considered a divergence be-
tween π and πKQ. There is a theoretical link between KQ and quantisation, as KQ represents
weighted quantisation under the maximum mean discrepancy (MMD) metric (Karvonen,
2019; Teymur et al., 2021). MMD is a method for quantifying the divergence between two
distributions (Sriperumbudur et al., 2010; Muandet et al., 2017), defined as:

MMDH(πKQ, π) :=

∥∥∥∥∥
∫

K(·, x)dπKQ(x)−
∫

K(·, x)dπ(x)

∥∥∥∥∥
H

,

and we can rewrite as (Huszár and Duvenaud, 2012):

MMD2
H(πKQ, π) := sup

∥f∥H=1

∣∣∣∣∣
∫

f(x)dπKQ(x)−
∫

f(x)dπ(x)

∣∣∣∣∣
2

.

This squared formulation equates to the worst-case error: solving for KQ is the same to
finding the discrete distribution πKQ that best approximates π in terms of MMD. Note, KQ
performs weighted quantisation, differing from the previous unweighted quantisation.

6
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Connection to Gaussian Process. Assuming a function ft is modelled by a GP, ft ∼
GP(mt, Ct), with noisy observed points, Dt := (Xt,Yt). Our objective is to estimate the
expectation of the function Ẑ :=

∫
f(x)dπ(x). This scenario is referred to as Bayesian

quadrature (BQ) (O’Hagan, 1991; Hennig et al., 2022), with integral estimates given by:

Eft∼GP(mt,Ct)[Ẑ] =

∫
mt(x)dπ(x) = z⊤

t (KXX + σ2It×t)
−1Yt, (3a)

Vft∼GP(mt,Ct)[Ẑ] =

∫
Ct(x, x

′)dπ(x)dπ(x′) = z′t − z⊤
t (KXX + σ2It×t)

−1zt, (3b)

where zt :=
∫
K(x,Xt)dπ(x) and z′t :=

∫
K(x, x′)dπ(x)dπ(x′) represent the kernel mean

and variance, respectively. To enhance the accuracy of integration, it is desirable to minimise
the uncertainty in the integral estimation as expressed in Eq.(3b). Therefore, Eq.(3b) can be
regarded as the metric to assess the reduction in integral variance, which has been employed
as the AF for BQ (Rasmussen and Ghahramani, 2002; Osborne et al., 2012).

Connecting it All Together. Huszár and Duvenaud (2012) demonstrated that all of
the worst-case error, MMD, and the integral variance are equivalent. The BQ expectation
in Eq.(3a) is a weighted sum; z⊤K−1y0 =

∑n
i=1wBQ,iyi, where wBQ, j :=

∑n
i=1 z

⊤
i K

−1
i,j

and K−1 := (KXX + σ2It×t)
−1. These weights can be considered as forming a discrete

distribution πBQ :=
∑n

i=1wBQ,iδxi , thereby allowing the integral variance estimation to be
expressed as:

Vft∼GP(mt,Ct)[Ẑ] = MMD2
H(πBQ, π) = inf

wBQ

wce[Qπ,Ct ]
2 (4)

for a fixed X, where the kernel for MMD and KQ is the predictive covariance Ct(·, ·). This
choice is due to Ct(·, ·) representing the posterior belief about f , which is expected to be
more accurate than the prior belief represented by K(·, ·).

This demonstrates the close connection between KQ, GP, and quantisation. This equiva-
lence shows that KQ is domain-aware batch uncertainty sampling. Solving KQ is minimising
the worst-case error, which is equivalent to minimising both MMD and the integral vari-
ance. MMD, being the quantisation, ensures that the resulting discrete points are spread
over the distribution πt to approximate, representing domain-aware diversified sampling.
The integral variance represents the expected uncertainty of GP, and its minimisation indi-
cates batch uncertainty sampling. At first glance, minimising Vft [Ẑ] for uncertainty sam-
pling might seem counterintuitive, as sequential uncertainty sampling typically maximises
Ct(x, x). However, Vft [Ẑ] is a scalar value, not a function like Ct(·, ·), and computes a sum-
mary statistic indicating the quality of the selected nodes’ approximation of the integral.
Therefore, minimising this metric by selecting batch samples can be understood as batch
uncertainty sampling. Importantly, KQ is the approximation of intractable integration,
making it applicable to an arbitrary combination of (K,π), unlike BQ1.

In Summary. A quantisation task can be regarded as a KQ task. The selected batch
samples aim to minimise the divergence between the target distribution π and the batch
samples’ distribution πKQ. By employing the GP predictive covariance C(·, ·) as the kernel

1. See Eq.(1). While BQ needs the analytical kernel mean for the right hand side (Eqs.(3a)-(3b)), KQ is
approximating it with the weighted sum. Our previous work (Adachi et al., 2022) applied to batch BQ.
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for the MMD, KQ transitions into batch exploration of GP uncertainty, concurrently min-
imising divergence from the target distribution. Consequently, batch construction through
KQ offers a means to quantise the target distribution while incorporating uncertainty sam-
pling. The benefits of KQ are:

1. Applicable to any kernel, given that the primary goal of the KQ objective is to ap-
proximate the intractable integral of the kernel function.

2. Versatile across any domain, AFs, or constraints, provided the target distribution can
be described as a probability measure π.

3. To naturally produce diversified batch samples, and is able to assess its diversity using
the widely recognised MMD criterion.

4 Batch Bayesian Optimisation as Quadrature

We now consider the application of KQ to the batch BO task. First, we demonstrate that
the probabilistic lifting technique can transform the batch BO task into a KQ problem.
Next, we explain how to solve this reinterpreted task using a KQ algorithm. Finally, we
customise this general batch BO algorithm for varied cases.

4.1 Probabilistic Lifting

Algorithm 1 SOBER algorithm.

Require: domain prior π0, initial data set D0 = (X0,Y0), stopping criterion ∆n

1: ft−1 ← Initialise-GP(D0)
2: while Vx[π̃] < ∆n do
3: πt−1, αt−1, Ct−1 ← Fit-GP-and-Update-π(ft−1)
4: Xn

t ,w
n
t ,Eft [Ẑ],Vx[π̃]← KQ(πt−1, αt−1, Ct−1)

5: Yn
t = Parallel-Query(foracle(X

n
t ))

6: Update dataset Dt ← Dt−1 ∪ (Xn
t ,Y

n
t ) and model ft ← Update-GP(ft−1,Dt).

7: Proceed next round t← t− 1.
8: end while
9: return global maximum estimate ŷ∗t = max[YT ], evidence estimate Eft [Ẑ]

To recast the batch BO task as a KQ task using probabilistic lifting, consider the dual
formulation presented below:

x∗true ∈ argmax
x∈X

f(x)
dual⇐==⇒ δx∗

true
∈ argmax

π∈P(X )

∫
f(x)dπ(x), (5)

where δx denotes the delta distribution at x, making δx∗
true

the point mass at the global
maximum. Consequently, our goal aligns with the KQ objective in Eq.(1), allowing the
application of KQ algorithms to the batch BO task.

How do we interpret this dual formulation? We transform a non-convex optimisation
problem, maxf(x), into an infinite-dimensional optimisation over the set of probability mea-
sures P(X ). In other words, we do not consider pointwise updates: plimt→∞ xt = x∗true as in
the conventional approach. Instead, we aim at distributional updates, plimt→∞ πt = δx∗

true
,

8
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i.e., plimt→∞ Ex[πt] = x∗true, plimt→∞Vx[πt] = 0. This yields max
∫
f(x)dπ(x), making the

non-convex objective f linear and convex for π. This distributional formulation is attractive
due to parallelisability and convexity, widely used in optimisation, from traditional primal-
dual interior-point methods (Vandenberghe and Boyd, 1996; Wright, 1997) to contemporary
Bayesian machine learning theories (Rudi et al., 2020; Wild et al., 2023).

Algorithm 1 outlines our algorithm, SOBER: Line 3 updates πt−1 based on the GP
ft−1. Then, Line 4 employs the KQ algorithm to perform batch uncertainty sampling over
πt−1 to effectively reduce the uncertainty Ct−1(·, ·) by selecting batch points as quantisation
πKQ, where πKQ =

∑n
i=1wKQ,iδxi , with wKQ,i ∈ wn

t and xi ∈ Xn
t . The resulting Xn

t is the
n-point batch BO samples, ensuring diversified batch uncertainty sampling over πt−1. As
illustrated in Figure 1, πt−1 initially spans the domain, withXn

t diversified and progressively
concentrating towards the global maximum over iterations. The variance Vx[πt] becomes a
natural choice of stopping criterion for a distributional convergence.

The next question is, what is π, and how do we update it? Our probabilistic lifting
transforms the original non-convex problem into an even more computationally demanding
problem. Traditional algorithms often assume f is polynomial, allowing for a further tran-
sition to moment space due to closed-form moments of f . However, with our black-box f
and the GP surrogate model’s lack of closed-form kernel mean and variance for arbitrary
π, a possible remedy is to presuppose a functional form for π. We propose two assumptions
regarding π.

Thompson Sampling Interpretation (SOBER-TS). The first approach interprets π
as a probability distribution over the estimated global maxima x̂∗t , denoted as P(x̂∗t ), where
x̂∗t represents the current estimation of the global maxima at ft. The advantage of this
perspective is that it aligns with existing theories on batch TS.

We unpack the interpretation of π = P(x̂∗t ) step by step:
1. x̂∗t ∼ πt(x) is TS, namely x̂∗t = argmaxx∈X gt(x) and gt ∼ GP(mt, Ct).
2. πt is updated through conditioning ft with the new observations.
3. The KQ approach selects batch samples that minimise the expected uncertainty

Vft [Ẑ], allowing us to view Xn
t as TS samples that most contribute to reducing

uncertainty across the distribution P(x̂∗t ).

How can we interpret applying KQ for batch TS with regard to the domain-aware batch
uncertainty sampling? Firstly, the domain-aware means that the resulting KQ samples Xn

t

adhere to the original TS distribution, i.e., Xn
t ∼ P(x̂∗t ) = πt(x). This method can thus

be seen as a variant of batch TS, referenced in studies such as Kandasamy et al. (2018);
Hernández-Lobato et al. (2017); Ren and Li (2024); Dai et al. (2023).

Secondly, how does batch uncertainty sampling help the regret converge faster? As noted
in §2.2, BR convergence rate depends on the spectral decay of maximum information gain
defined as I(Yt; f) = H(Yt)−H(Yt | f), quantifying the reduction in uncertainty about f
from revealingYt. For a GP, I(Yt; f) = I(Yt; ft) =

1
2 log|It×t+σ−2KXX |, where ft := f(Xt).

Nemhauser et al. (1978); Krause and Guestrin (2012); Srinivas et al. (2010) have shown
that the information gain maximiser can be approximated by an uncertainty sampling with
(1 − 1/e) approximation guarantee. Thus, roughly speaking, the maximum information
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gain can be approximately seen as the largest predictive uncertainty Ct. Ultimately, a
faster spectral decay in the maximum information gain in iteration t leads to faster BR
convergence rate. This is the reason why typical BO theoretical paper has the kernel-
specific convergence rate as each kernel has different spectral decay. Here, in later §4.2.2
and Theorem 1, we show that KQ batch uncertainty sampling can be understood as selecting
the largest possible spectral decay of the given kernel Ct. Thus, roughly speaking, KQ is
trying to select the samples with the largest possible information gain in batch n, thereby
accelerating the spectral decay in iteration t. Moreover, in later Proposition 2, we show
that KQ is robust against model misspecification, thereby avoiding remaining stuck in local
minima. Therefore, KQ can give robust, fast spectral decay sampling for batch TS.

In distributional interpretation, KQ selects the points that minimise Vf [Ẑ], which min-
imises the predictive uncertainty Ct over the current TS distribution πt. The main source of
variance Vx[πt−1] is the predictive uncertainty Ct. Hence, the batch uncertainty sampling
with KQ narrows the subsequent TS distribution πt, steering it closer to x∗true.

However, deriving the BR convergence rate of SOBER-TS is non-trivial because it re-
quires an analysis of double spectral decay (one for batch n in KQ, and one for iteration t
in maximum information gain). While the focus here is not on the SOBER-TS algorithm,
future work may explore its BR convergence rate. Given the relationship between DPP and
KQ (Belhadji et al., 2019; Belhadji, 2021), SOBER-TS is expected to match the convergence
rate of DPP-TS (Nava et al., 2022), which has demonstrated a tighter Bayesian cumulative
regret bound compared to standard batch TS approaches (Kandasamy et al., 2018).

Likelihood-Free Inference Interpretation (SOBER-LFI). Figure 1 illustrates that
sampling directly from the TS distribution tends to remain stuck in local minima, contrary
to theoretical expectations (Kandasamy et al., 2018). This discrepancy arises from two
primary causes: model misspecification and the non-closed-form nature of the distribution.
Model misspecification leads to a mis-estimated distribution of x̂∗t . This causes sampling to
be biased toward less promising regions, especially in the initial stages, as seen in Figure
1. This phenomenon is well-documented in the bandit literature (Simchowitz et al., 2021;
Kim et al., 2021; Aouali et al., 2023). Although exploratory adjustments through diversified
sampling (Nava et al., 2022) can alleviate this issue, they entail prohibitive computational
costs. This is attributed to the challenge of sampling from low-probability regions due to
the non-closed-form distribution, as random sampling x̂∗t = argmaxx∈X gt(x) is governed by
its probability P(x̂∗t ). Drawing samples from low-probability areas requires an exhaustive
number of attempts (or luck). A closed-form expression enables more flexible sampling
schemes, such as importance sampling.

To devise a more robust and fast sampling algorithm, we now consider a closed-form
definition for π. Unlike previous bandit approaches that improve TS algorithms, we explore
a non-TS approach. Given the uncertain nature of the global maximiser P(x̂∗t ), x∗true could
be at any location with values potentially exceeding the estimated maximum, denoted as
ŷ∗t := max f(Xt). With this insight, we can define πt(x) as follows:

πt(x) := P
(
ft(x) ≥ ŷ∗t | Dt

)
∝ Φ

[
mt(x)− ŷ∗t√

Ct(x, x)

]
, (6)
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where Φ is the cumulative distribution function (CDF) of the standard normal distribution.
This formulation aligns with the probability of improvement (PI; Kushner (1964)), another
widely-used AF in BO, offering a closed-form (albeit unnormalised) distribution that is
easier to sample from than TS.

We interpret, for pedagogical reasons, the sequential update of π as likelihood-free in-
ference (LFI, Hinton (2002); Hyvärinen (2005); Gutmann and Hirayama (2011); Huang
et al. (2023))2. LFI is particularly valuable when the analytical form of the likelihood is
unavailable. In the context of BO, while we have a Gaussian likelihood P(y | x) for ob-
served data, the likelihood of the global optimum P(x∗true | ŷ∗t ,Dt) lacks an analytical form,
because the true value of x∗true is unknown. This prevents the evaluation of the distance
between a queried point xt and x∗true. LFI addresses this by replacing the exact likeli-
hood function with a ‘synthetic likelihood’, which assesses divergence between observed
and simulated data using summary statistics. This synthetic likelihood is updated with
new observations and converges to the true likelihood as t → ∞. This approach can be
understood as a variant of the Bernstein-von Mises theorem (Van der Vaart, 2000); un-
der an infinite data scenario (t → ∞), the Bayesian posterior converges to the MLE. The
synthetic likelihood exhibits similar asymptotic behaviour (Pacchiardi et al., 2021). Gut-
mann and Corander (2016) demonstrated that PI function can be interpreted as a synthetic
likelihood, where the CDF serves as summary statistic and ŷ∗t as the optimal threshold
for LFI, asymptotically converging to standard Bayesian inference. Wilson (2024) also re-
discovered this (c.f., they framed Eq.(6) as ϵ-optima, where ϵ = ŷ∗t ). Song et al. (2022)
extended on this LFI idea to allow non-GP surrogate models to employ for BO. Further-
more, Wild et al. (2023) showed that the probabilistic lifting formulation could be under-
stood within the framework of Bayesian inference. In this light we view πt(x) as the LFI
synthetic likelihood of the global maximum P(x̂∗t | ŷ∗t ,Dt), wherein πt(x) is updated and
converging to plimt→∞ P(x̂∗t | ŷ∗t ,Dt) → P(x∗true) = δx∗

true
as the iteration t progresses, i.e.,

plimt→∞ ŷ∗t → y∗true = f(x∗true). We denote this approach SOBER-LFI.

Figure 2 illustrates SOBER-LFI. The purple curve represents the synthetic likelihood
πt as defined in Eq.(6), with the KQ algorithm selecting 10 batch samples that closely
approximate the πt distribution and significantly contribute to reducing uncertainty. As
the process progresses, the KQ-selected samples effectively reduce uncertainty: πt=1 evolves
into a much sharper πt=2, centering around x∗true, and by πt=3, it nearly mirrors the delta
distribution δx∗

true
. Remarkably, LFI ensures non-zero values in uncertain regions, enabling

KQ to sample from these zones with very small probability in the last iteration, adhering to
Cromwell’s rule3 (Jackman, 2009). This behaviour is assured by the decaying, yet non-zero,
nature of the CDF in Eq.(6), illustrating SOBER-LFI as a fusion of the exploitative PI πt
and the explorative KQ batching algorithm.

Deriving the BR bound for this LFI framework presents more complexities compared
to traditional TS strategies. To our knowledge, Wang et al. (2018) stands alone in of-
fering a simple regret analysis for PI. They predicated on the strong assumption that
y∗true = f(x∗true) is known beforehand, and even if we accept it, the convergence rate does

2. LFI is often called ‘indirect inference’ (Gourieroux et al., 1993), ‘synthetic likelihood’ (Wood, 2010; Price
et al., 2018), or Approximate Bayesian Computation (ABC, Csilléry et al. (2010); Fujisawa et al. (2021))

3. According to this principle, the prior probability should remain non-zero for all possibilities. Since
synthetic likelihood is updated sequentially, πt−1 can be considered the prior for πt.
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Figure 2: SOBER algorithm. Finding the location of global maximum x∗true is equivalent
to finding the delta distribution δx∗

true
. Based on the surrogate ft, we approximate the

probability of global maximum P(x̂∗t ) as π. We can also set the user-defined acquisition
function αt to adjust batch samples (UCB in this case). KQ algorithm gives a weighted point
set (wn

t ,X
n
t ) that makes a discrete probability measure approximating π (quantisation).

Here, we have used a weighted kernel density estimation based on (wn
t ,X

n
t ) to approximately

visualise the quantisation via KQ. Over iterations, π shrinks toward global maximum, which
ideally becomes the delta function in a single global maximum case.

not hold a no-regret guarantee (Takeno et al., 2023). Nonetheless, although PI is not the-
oretically well-motivated, there are numerous successful studies in practice (e.g., Bergstra
et al. (2011); Akiba et al. (2019)). Additionally, our focus diverges from mere maximisation,
xt = maxx∈X πt(x), to probabilistic sampling, xt ∼ πt(x). Hence, our SOBER-LFI aims
diverge from those of sequential PI maximisation strategy. Interestingly, recent theoreti-
cal studies (Takeno et al., 2023; Ren and Li, 2024) have established a tighter BR bound
by integrating TS with PI, surpassing the results of conventional batch TS (Kandasamy
et al., 2018). Viewing TS as a randomness generator, merging TS with PI can be concep-
tually likened to PI supplemented by exploratory adjustments, aligning with our SOBER-
LFI’s concept. Thus, this emerging theoretical discourse might eventually elucidate the
BR bounds for our SOBER-LFI algorithm. Still, despite their theoretical importance, we
highlight that their methodologies are a variant of batch TS, thereby exhibiting limitations
in misspecification robustness and universality, as depicted in Table 1.

4.2 Recombination: Kernel Quadrature Algorithm

In this section, we reinterpret Eq.(5) as a KQ problem and introduce a KQ algorithm
to address it. Although any KQ method listed in §3 may be applied, we opt for the
recombination approach (Hayakawa et al., 2022) to afford greater flexibility.

4.2.1 Problem Setting of Kernel Quadrature

For simplicity, we begin by considering the discrete optimisation scenario where |X | < ∞.
Suppose we have a kernel Ct(·, ·), which represents the GP posterior predictive covariance at
the t-th iteration, and a set of N -point samples XN

t ∈ X , alternatively denoted by xi ∈ XN
t ,

associated with non-negative weights wN
t , where {wi ∈ wN

t | wi > 0,
∑N

i=1wi = 1}. We
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express this configuration as πt(x) :=
∑N

i=1wiδxi , treating it as a discrete distribution,
or alternatively, as the ordered pair (wN

t ,XN
t ). The goal is to identify a weighted subset

πKQ(x) := (wn
t ,X

n
t ) =

∑n
j=1wjδxj , where n≪ N , that minimises the MMD between πt and

πKQ, given the initial πt and the kernel Ct(·, ·). The quantised subset πKQ, with Xn
t being

a subset of XN
t , determines the batch samples for batch BO. In this discrete framework, we

are equipped to compute the analytical worst-case error for an arbitrary kernel:

Eft−1 [Ẑ] =

∫
mt−1(x)dπt−1(x) ≈ wn

t
⊤mt−1(X

n
t ),

Vft−1 [Ẑ] = wce[Qπt,Ct−1(n)],

= wn
t
⊤Ct−1(X

n
t ,X

n
t )w

n
t − 2wn

t
⊤Ct−1(X

n
t ,X

N
t )wN

t +wN
t

⊤
Ct−1(X

N
t ,XN

t )wN
t .

Initially, πt=0 represents the pool of unlabelled inputs, each assigned equal weights. As
the iteration t progresses, πt evolves into a subset of πt=0, defined as XN

t = XN
t=0\XN

t−1
4.

The corresponding weights, wN
t , are determined by whether π is interpreted as TS or LFI.

Departing from the settings in previous works (Hayakawa et al., 2022; Adachi et al.,
2022), we introduce the following conditions to our framework:
(a) A reward function α : X → R is introduced to add flexibility, integrating

additional considerations (e.g., AF). The objective is to maximise the expected
reward wn

t
⊤α(Xn

t ) while minimising the worst-case error wce[Qπt,Ct−1(n)].

4.2.2 Kernel Quadrature via Nyström Approximation

While the Nyström method (Williams and Seeger, 2000; Drineas and Mahoney, 2005; Kumar
et al., 2012) is commonly used for approximating large Gram matrices through low-rank
matrices, it also offers a direct approach for approximating the kernel function itself. By
selecting a set of M -points XM

t = {xk}Mk=1 ⊂ X , the Nyström approximation for Ct(x, y)
can be described as follows:

Ct(x, y) ≈ C̃t(x, y) :=

n−1∑
j=1

λ−1
j φj(x)φj(y), (7)

where φj(·) := u⊤j Ct(Xnys, ·), for j = 1, . . . , n−1, are termed test functions and are derived

from the broader M -dimensional space span{Ct(xk, ·)}Mk=1. To facilitate Eq.(7), the optimal
rank-s approximation of the Gram matrix Ct(X

M
t ,XM

t ) = UΛU⊤ is determined via eigen-
decomposition. Here, U = [u1, . . . , uM ] ∈ RM×M represents a real orthogonal matrix, and
Λ = diag(λ1, . . . , λM ) consists of eigenvalues λ1 ≥ . . . ≥ λM ≥ 0. Eq.(7) holds if λs > 0.

We can leverage these test functions for the integration estimator Ẑ =
∫
f(x)dπt(x).

With a spectral decay in eigenvalues, the Nyström method efficiently approximates the
original kernel function using a limited set of test functions. Defining φ = {φ1, . . . , φn−1}⊤
as the vector of test functions spanning HC̃t

—the RKHS linked with the approximated

kernel C̃t—we assume knowledge of expectations,
∫
φ(x)dπt(x) = wN

t
⊤
φ(XN

t ), is accessible.

4. For brevity, we use XN
t , despite XN−tn

t being more precise as |XN
t | = N − nt. The same for wN

t .
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This knowledge facilitates the construction of a convex quadrature:

n−1∑
j=1

wjφi(xj) =

∫
φ(x)dπt(x) ≈

∫
f(x)dπt(x). (8)

Consequently, we can approximate the integral using n−1 test functions, interpreting Eq.(8)
as n− 1 equality constraints that both wj and xj must satisfy.

This method’s advantage lies in its use of spectral decay information from the Gram
matrix, promoting faster convergence. If the target function f is smooth and exhibits fast
spectral decay, then a small array of test functions can accurately represent the function,
enhancing the efficiency of batch BO.

4.2.3 Linear Programming Formulation

To solve the KQ task in Eq.(2), we introduce a linear programming (LP) problem. This
problem is designed to simultaneously maximise the reward and minimise the worst-case
error, modifying the approach from (Adachi et al., 2022):

max
w⊂R≥0

w⊤αt(X
N
t ),

subject to (w−wN
t )⊤φj(X

N
t ) = 0,

w⊤1 = 1, w ≥ 0, |w|0 = n,∀j : 1 ≤ j ≤ n− 1,

(9)

where (λj , φj) are derived from the Nyström approximation (recall §4.2.2), 1 = [1, . . . , 1]N

signifies an all-ones vector, similarly for 0, R≥0 represents the set of non-negative real
numbers, and | · |0 indicates the count of non-zero entries.

The intuition of this formulation is as follows:
(1) The solutions are defined by sparse weights w, where each non-zero weight

corresponds to batch selection. The associated samples XN
t define the batch

samples Xn
t ⊂ XN

t . We denote the non-zero weights and their respective sam-
ples as the solution πKQ = (wn

t ,X
n
t ), with the batch size being |Xn

t | = |w|0 = n.
Thus, this LP problem aims to subsample batch samples πKQ from the given
discrete distribution (wN

t ,XN
t ) ∼ πt, effectively performing quantisation.

(2) The goal is to maximise the expected reward αt. For example, if UCB is chosen
as αt, it steers the batch samples towards the highest expected reward.

(3) The first set of LP constraintsa are equality constraints employing test func-
tions from Eq.(8). These n− 1 equality constraints are stringent, significantly
restricting the flexibility typically afforded by LP problems. Within this con-
strained space, the algorithm seeks the largest possible expected reward. When
α(x) = 0, the problem reverts to the standard KQ task, with the algorithm gen-
erating candidate sets (wn

t ,X
n
t ) that fulfill these constraints.

(4) The other constraints ensure that the number of non-zero elements inwmatches
the requested batch size n, maintaining convex and positive weights.

a. This is the worst-case error.
∣∣w⊤φ(XN

t )−wN
t

⊤
φ(XN

t )
∣∣ ≈ ∣∣∫ f(x)dπKQ(x)−

∫
f(x)dπt(x)

∣∣.
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As such, solving the LP problem as defined in Eq.(9) equates to addressing the KQ task
using the Nyström approximation. This equivalence provides an efficient solution framework
for the batch BO algorithm.

4.2.4 Constrained Optimisation Formulation

We now show that a minor adjustment to SOBER can solve batch BO under unknown
constraints. Consider global optimisation subject to unknown constraints, the problem
setting proposed by Gelbart et al. (2014):

x∗true = argmax
x∈X

f(x),

subject to gl(x) ≥ 0, ∀l ∈ [L],
(10)

where f and each gl are unknown black-box functions5. Notably, this approach permits
constraint violations, in contrast to settings that provide a known set of feasible solutions
upfront to permit constraint breaches to be avoided completely (Sui et al., 2015), an as-
sumption invalidated by the black-box nature of our problem. In many practical scenarios,
access to such feasible solutions is not available, nor is the feasibility of the problem it-
self. Additionally, stringent safety-critical constraints could trap these algorithms at local
maxima. Nevertheless, our goal is to minimise the total violation incurred throughout the
optimisation journey.

We model these black-box constraints using GPs, similarly to how we model the ob-
jective function. To maintain focus and brevity, we defer the comprehensive discussion on
constraints modeling via GPs to Gelbart et al. (2014); Adachi et al. (2024a), concentrating
instead on addressing Eqs.(10) with the given probabilistic models. Consequently, we as-
sess the feasibility of constraints through a probabilistic lens, represented as ql, rather than
through a deterministic but unknown constraint function gl.

Integrating the following conditions (b)(c)(d) with those in §4.2.1, we refine our tasks:
(b) A tolerance for quadrature precision ϵLP is given.
(c) The specified batch size n serves as an upper limit, with the actual batch size

adaptively modified to achieve the desired precision within ϵLP.
(d) After selecting the batch querying points (wn

t ,X
n
t ), each point x within Xn

t

is subject to the probabilistic constraint ql(x) (and violated w.p., 1 − ql(x)).
The functions ql : X → [0, 1] are modelled using GPs. Upon querying the true
constraints gl(X

n
t ), we isolate only those points that meet the constraints, along

with their corresponding weights, denoted as π̃KQ = (w̃n
t , X̃

n
t ). With X̃n

t ⊆ Xn
t ,

this subset is used for both quadrature and batch BOa.

a. X̃n
t = Z⊤Xn

t , where Z is a vector of Bernoulli random variables with probabilities ql(X
n
t )

5. Eqs.(10) are only for the inequality constraints yet they can represent the equality constraint using two
inequality constraints by bounding the upper and lower limit to be the same threshold.
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These conditions lead to a reformulated LP problem:

max
w⊂R≥0

w⊤[αt(X
N
t )⊙ q̃t(X

N
t )

]
,

subject to
∣∣(w−wN

t )⊤φj(X
N
t )

∣∣ ≤ ϵLP

√
λj/(n− 2) (1 ≤ ∀j ≤ n− 2),

(w−wN
t )⊤q̃t(X

N
t ) ≥ 0, w⊤1 = 1, w ≥ 0, |w|0 ≤ n,

where ϵLP ≥ 0 acts as a tolerance level, representing the quadrature precision requirement—
lower values indicate higher accuracy. The Hadamard product is denoted by ⊙, and
q̃t(X

N
t ) =

⊙L
l=1 ql(X

N
t ) signifies the joint probability of feasibility across all constraints

ql at iteration t, with
⊙

indicating multiple Hadamard products. In scenarios with a single
constraint (L = 1), the joint feasibility mirrors the individual feasibility, making q̃t = q1.

The rationale behind these adjustments includes:
(1) The objective is to maximise the product of the reward αt and the joint feasi-

bility q̃t, guiding batch samples towards maximising expected ‘safe’ reward.
(2) We relaxed equality constraints to inequality ones to accommodate the ϵLP tol-

erance. The tolerance parameter ϵLP controls the trade-off between quadrature
precision and the expansion of the solution space to find a larger objective.

(3) Applicable for n ≥ 3, this new LP formulation introduces an additional con-
straint, altering the Nyström approximation constraint count in Eq.(8). It
requires that the expected joint feasibility of the solution πKQ be equal to or
greater than that of the initial candidate set πt.

Consequently, the solution to this LP problem yields batch samples that not only comply
with convex quadrature rules within the given tolerance but also maximise the expected
safe reward. The balance between quadrature precision and reward optimisation is tunable
via the single parameter ϵLP, enabling the solution of constrained batch BO tasks within
this framework. This approach parallels our prior work (Adachi et al., 2024a) that focuses
on the adaptive strategy.

4.2.5 Adaptive Batch Sizes

Our focus now shifts to the aspect of adaptive batch sizes within our methodology. As
illustrated in Table 1, traditional algorithms maintain a constant batch size throughout
experiments. This fixed strategy can be inefficient due to the dynamic balance between
cost and speed—larger batches are more costly, smaller batches lead to slower wall-clock
run-times—and the trade-off may change over the run (larger batches are often preferable
earlier). To navigate this balance, we introduce an novel approach that adaptively adjusts
batch sizes.

The concept is straightforward: we set a fixed tolerance for quadrature precision, ϵLP,
rather than fixing the batch size. This strategy allows batch sizes to automatically adjust
to meet predetermined quadrature precision goals, similar to how standard optimisers cease
operations based on convergence threshold. Our KQ strategy eliminates the need for ex-
haustive batch size trials across all possibilities. Furthermore, we extend this approach to
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(a) True objective

(b) True constraint

(e) Feasible region  (g)  Batch w/o εLP 

(d) Constraint GP

(c) Objective GP  

(i)  Batch with εLP 
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×

Feasible region estimation Batch Sampling

Introduce tolerance εLP
by expected violation rate

≥
εLP 

feasible

infeasible

Figure 3: Constrained batch Bayesian optimisation. As the increased violation risk ϵvio
propagates to the tolerance ϵLP, reward maximisation is subsequently prioritised over
quadrature, resulting in safe batch samples.

constrained optimisation scenarios, treating constraint violations as decreases in precision
requirements to subsequently adapt batch compositions.

No Constraints. The number of non-zero elements, |w|0, adjusts according to ϵLP. The
intuition of the batch size adaptivity is explicated as:

1. Demanding higher precision decreases the quadrature error tolerance, necessitating a
larger sample set for more accurate integration.

2. Conversely, lower precision demands require fewer |w|0 to achieve the desired accuracy.
Elaborating further, the batch size is tied to slack variables in LP solvers. An increase
in ϵLP leads to the deactivation of some inequality constraints, as discussed by Dantzig
(2002). The active constraints determine the batch size, often resulting in sparse weights
where |w|0 < n. Large fixed batch sizes become inefficient when fewer samples can fulfill
the precision criteria. Thus, without resorting to brute-force searches across all potential
batch sizes, we can identify the adaptive batch size |w|0.

ϵLP serves as a control lever for all components: batch size, quadrature accuracy, and
reward maximisation. Interestingly, its behaviour is not a monotonic decrease in its mag-
nitude. As ϵLP approaches infinity, the batch size converges to 1, mirroring the sequential
BO scenario. An increase in ϵLP reduces the batch size, as observed in §5.5, embodying a
heuristic for adaptive batch sizes. While it ensures meeting a pre-defined worst-case error
threshold, it does not promise the optimal outcome based on other established metrics like
mutual information. However, as Leskovec et al. (2007) notes, when greedily maximising
mutual information under the weighted candidates and a budget constraint (limitation in
the number of the total queries T ), the approximation factor can be arbitrarily bad. Hence,
even popular information-theoretic strategies also cannot achieve a solution within 1− 1/e
of the optimal in our problem setting (Li et al., 2022).

Under Constraints. Adaptively adjusting batch size in the presence of probabilistic
constraints ql is examined further. Given the uncertainty in accurately predicting the true
constraint gl, the candidate solution XN

t carries a violation risk. The expected violation
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rate, ϵvio := 1 −wN
t

⊤
q̃t(X

N
t ), estimates the ratio of non-compliance. Infeasible points are

excluded from the quadrature nodes for calculation, diminishing quadrature accuracy. ϵvio,
hence, represents an uncontrollable risk. High-risk scenarios demand cautious exploration
to conserve valuable queries, suggesting smaller batches and selections where XN

t is likelier
to meet the true constraint gl. Low risk tolerates a more optimistic exploration approach.

We propose an adaptive exploration strategy in response to varying risk levels, simply by
setting ϵLP = ϵvio. This method permits automatic adjustment to exploration safety levels.
With a high ϵvio indicating greater risk, a higher ϵLP leads to looser quadrature precision,
smaller batch sizes, and a solution set more likely to comply with constraints6. Thus,
a higher ϵLP ensures safer batch sampling. Conversely, a lower risk level, indicated by a
reduced ϵvio, allows for setting a smaller ϵLP, facilitating larger batches and more exploratory
solutions. Figure 3 showcases this adaptive mechanism: elevated risk ϵvio influences ϵLP,
leading to safer batch selections. This adaptive strategy effectively balances computational
uncertainty and real-world risk, providing a flexible and automated means to navigate
between ensuring safety and fostering exploration.

4.3 Theoretical Bounds on Worst-case Error

We now address the theoretical bounds on the worst-case errors in LP formulations, both
with and without constraints (referenced in §4.2.3 and §4.2.4).

4.3.1 Kernel quadrature without constraints

In the simplest scenario, we assess the worst-case error bounds within the context outlined
in §4.2.3. Here, rather than focusing on an exact quadrature, we consider an approximate
quadrature using a MC estimate with a significantly large number of samples, denoted as

the empirical measure, π̃t := (wN
t ,XN

t ) ∼ πt, where w
N
t

⊤
1 = 1 and wN

t ≥ 0. The empirical
measure represents a practical approximation of the true measure πt, which could be a
discrete distribution with an innumerable number of candidates |X |, or a continuous distri-
bution. This approach provides a versatile KQ method applicable across various samplable
distributions, where the worst-case error is primarily influenced by the Nyström approxima-
tion error on the kernel and the distribution approximation error on the empirical measure.
Studies such as those by Drineas and Mahoney (2005); Kumar et al. (2012); Hayakawa et al.
(2023c) have thoroughly explored error bounds for this approximation:

Theorem 1. If an n-point convex quadrature Qπt,Ct−1(n) satisfies πKQ(φj) = π̃t(φj)
7 for

1 ≤ j ≤ n− 1 and πKQ

(√
Ct−1 − C̃t−1

)
≤ π̃t

(√
Ct−1 − C̃t−1

)
, then we have:

wce[Qπt,Ct−1(n)] ≤ MMDH(πKQ, π̃t) +MMDH(π̃t, πt),

≤ 2 π̃t

(√
Ct−1 − C̃t−1

)
︸ ︷︷ ︸
Nyström approximation

+MMDH(π̃t, πt)︸ ︷︷ ︸
empirical measure

,

6. Lower ϵLP → looser LP inequality constraints → expanding solution space → larger LP objective →
larger expected reward → larger feasibility → safer batch sampling, and vice versa.

7. For brevity, we denote π(f) :=
∫
f(x)dπ(x).
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which is taken from Hayakawa et al. (2023c, Eq. (13)) Notably, if the finite number
of candidates |X | = N is manageable, then π̃t = πt and MMDH(π̃t, πt) = 0, leaving the
Nyström approximation error as the sole determinant of the error bound.

Crucially, this outcome is independent of dimensionality but hinges on the kernel’s spec-
tral decay. Expanding the Nyström samples M diminishes the first term, while increasing
candidate numbers N lessens the second term as it enhances π̃t’s approximation of πt. This
indicates that enlarging N and M as permissible by time constraints can tighten the error
bounds. However, the spectral decay’s impact on maximum information gain in sequential
BO is constrained by dimensionality, implying that the overall efficiency of batch-sequential
algorithms is similarly affected by high-dimensional spaces, much like other BO methods.

Why Empirical Measure? The necessity for an empirical measure might seem super-
fluous when the exact integral Eft−1 [Ẑ] is available for specific kernels, rendering the second
term of the error negligible. There are several justifications for employing an empirical
measure, and we now outline them.

The efficacy and rationale of using an empirical measure includes:
(1) Generality: An empirical measure can be formulated for any combination of

(π,K), extending beyond the scope of traditional BQ methods (Briol et al.,
2019). This is particularly relevant as our πt undergoes sequential updates,
potentially lacking a parametric form over x (e.g., in TS scenarios).

(2) Hypercontractivity: Insights from the study of random convex hulls and
hypercontractivity (Hayakawa et al., 2023b,a) suggest that the requisite num-
ber of N might be substantially lower than the actual search space, lending
empirical support to the practicality of employing an empirical measurea.

(3) Sequential π update: With each iteration, π narrows towards the global
maximum, effectively reducing the number of viable candidates N over time
(as demonstrated in Figures 1 and 2, where batch samples in later iterations
aggregated around similar locations).

(4) Normalisation: The discrete nature of candidates simplifies normalisation,
especially since our LFI πt in Eq.(6) is inherently unnormalised.

a. Still, this is in a slightly different setting and has not been fully understood yet.

4.3.2 Kernel quadrature with constraints

Now consider the setting of constrained optimisation. Here, we introduce a tolerance for
quadrature precision, necessitating an adjustment to the theoretical bound as follows:

Proposition 1. Under the setting in the §4.2.4, let w∗ be the optimal solution of the LP,
and let Xn

t be the subset of XN
t , corresponding to the non-zero entries of w∗ (denoted by

wn
t ). Suppose that X̃

n
t is given by a random subset of Xn

t , where each point x satisfies the
constraints with probability q̃t(x), and let w̃n

t be the corresponding weights. Then, we have

E[w̃n
t
⊤αt(X̃

n
t )] ≥ wn

t
⊤[αt(X

n
t )⊙ q̃t(X

n
t )
]
, (11)
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and, for any function ft−1 in the RKHS with kernel Ct−1,

E
[∣∣∣w̃n

t
⊤ft−1(X̃

n
t )−wn

t
⊤ft−1(X

n
t )
∣∣∣] ≤ (ϵvioKmax + 2ϵnys + ϵLP)∥ft−1∥, (12)

where ∥ft−1∥ is the RKHS norm of ft−1, Kmax := maxx∈XN
t

√
Ct−1(x, x), and ϵvio :=

1 − wN
t

⊤
q̃t(X

N
t ) is the expected violation rate with respect to the empirical measure given

by (wN
t ,XN

t ), and ϵnys := maxx∈XN
t
|C̃t−1(x, x)− Ct−1(x, x)|1/2.

The proof is given in Appendix A. This proposition elucidates that a quantitative ap-
proximation of the two tasks highlighted in §4.2.4 is achievable concurrently. It guarantees
that, at minimum, the expected reward of the original batch is matched while ensuring the
resulting measure π̃KQ (potentially non-probabilistic) conforms to the functions within the
RKHS, all within a predefined error margin. This approach offers a quantitative framework
for navigating the dual challenges of reward maximisation and constraint satisfaction in
constrained optimisation scenarios.

4.3.3 Robustness against misspecified RKHS

Finally, we address the robustness of our approach to misspecified RKHS. In BO, a com-
mon source of misspecification arises from inaccurate estimation in the hyperparameters of
GPs. While the BO community has developed robust strategies (Berkenkamp et al., 2019;
Bogunovic and Krause, 2021; Ziomek et al., 2024), these are predominantly adaptations of
the UCB and do not universally apply across all AFs. Conversely, the KQ community has
thoroughly explored misspecification, offering robust estimations of worst-case errors for a
broad range of conditions (Kanagawa et al., 2016; Oates et al., 2017; Karvonen et al., 2018;
Kanagawa et al., 2020). Notably, the our KQ method also guarantees robustness against
misspecification (Appendix B.4 in Hayakawa et al. (2022), using |πKQ|TV = |π̃t|TV = 1):

Proposition 2. Under the setting in the §4.2.3, let HKmis be the misspecified RKHS and
f̃ ∈ HKmis be a function in the misspecified RKHS, and πKQ be a quadrature rule applied to
a function f /∈ HKmis, leading only to the following bound via triangle equality and standard
integral estimates:∣∣∣∣∣

∫
f(x)dπKQ(x)−

∫
f(x)dπ̃t(x)

∣∣∣∣∣
≤ (|πKQ|TV + |π̃t|TV) sup

x∈X
|f(x)− f̃(x)|+ ∥f̃∥HKmis

wce[Qπ̃t,Kmis(n)]

= 2 sup
x∈X
|f(x)− f̃(x)|+ ∥f̃∥HKmis

wce[Qπ̃t,Kmis(n)].

The first inequality in Proposition 2 highlights the advantage of employing convex
weights within the KQ rule. Non-convex weights can inflate the total variation |πKQ|TV,
potentially resulting in significant integration errors. Unlike traditional BQ, which adopts
negative weights and thus suffer from misspecification challenges (Huszár and Duvenaud,
2012), the use of convex weights as delineated here mitigates such risks at least within
uniform bounds, underscoring the robustness of our KQ approach against RKHS misspeci-
fication.
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4.4 In Practice. How to Solve LP and Apply SOBER

4.4.1 How to solve LP problem

We introduce the following two algorithms to solve the above LP problems. We detail
two algorithms for addressing LP problems: the recombination algorithm for unconstrained
settings (§4.2.3) and the LP solver for constrained scenarios (§4.2.4).

Recombination. The recombination algorithm (Litterer and Lyons, 2012; Tchernychova,
2015; Cosentino et al., 2020; Hayakawa et al., 2022) offers an efficient algorithm to solve
scenarios that meet the following conditions: (i) absence of constraints, (ii) exact solution
requirements (ϵLP = 0), and (iii) a fixed batch size (|Xn

t | = n). Recombination is an ef-
ficient solver for special linear programming task, differing from a general solver like the
simplex method. Recombination leverages Carathéodory’s theorem for fast computation
through mere matrix operations, with further details available in Tchernychova (2015). Its
computational complexity, O(CφN + n3 log(N/n)), where Cφ represents the cost of evalu-
ating (φj)

n−1
j=1 at any given point, is the most efficient for the stated conditions. Given that

typical batch BO settings align with these prerequisites, recombination is the recommended
primary solver.

General LP solver. For broader applications, including those with constraints, a gen-
eral LP solver using the simplex method becomes relevant. In unconstrained scenarios with
adaptive batch sizes, setting ϵLP to a minimal value like 10−8 is recommended to minimise
numerical errors linked to floating-point precision limits. In the presence of constraints,
ϵLP auto-adjusts based on the estimated risk level, ϵLP = ϵvio, eliminating the need for
manual tolerance settings. Additionally, the incorporation of randomised singular value
decomposition (SVD; Halko et al. (2011)) for Nyström approximation enhances compu-
tational speed, with practical performance surpassing the theoretical time complexity of
O(NM + M2 log n + Mn2 log(N/n)) as noted in Hayakawa et al. (2022). This approach
ensures that LP problems, whether constrained or not, can be solved with efficiency and
precision, making it an essential component of the SOBER algorithm’s practical application.

4.4.2 How to sample from πt

Algorithm 2 Sequential importance resampling.

Require: domain prior π0, target distribution πt

1: Initial sampling X̃
N
t ∼ π0:

2: Compute normalised importance weights w̃N
t = Normalise(πt(X̃

N
t )/π0(X̃

N
t ))

3: Maximum likelihood Estimate π̃0 ← MLE(π0, X̃
N
t , w̃N

t )
4: Refined resampling XN

t ∼ π̃0:
5: Compute normalised importance weights wN

t = Normalise(πt(X
N
t )/π̃0(X

N
t ))

6: return empirical measure π̃t = (wN
t ,XN

t )

As elucidated in §4.3.1, we use the empirical measure π̃t(x) to approximate πt. Essen-
tially, constructing empirical measure π̃t(x) = (wN

t ,XN
t ) ∼ πt(x) is sampling from πt. For

directly samplable distributions πt(x), we generate i.i.d. samples from πt(x) and assign
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wN
t as a discrete uniform distribution {wi ∈ wN

t | wi = 1/N,∀i ∈ [N ]}. In cases where
direct sampling is not feasible, the classic sequential importance resampling (SIR) method
(Kitagawa, 1993) becomes invaluable, as detailed in subsequent sections and Algorithm
2. Our Python library simplifies this process, allowing users to easily select the domain
corresponding to their optimisation objectives without diving into the technicalities.

Thompson Sampling. The TS variant of SOBER, primarily for baseline comparison,
incurs a time-intensive sampling process, a challenge shared by other TS-based algorithms
(Nava et al., 2022). Constructing the empirical measure π̃t with TS is straightforward:
draw N exhaustive TS samples and set wN

t as a discrete uniform distribution. Although
recent advancements in fast posterior sampling methods (Wilson et al., 2020; Lin et al.,
2023) slightly mitigate the exhaustive nature of this sampling process, the SOBER-LFI
procedures are markedly simpler and more efficient.

Discrete Domain. Generally, a discrete domain implies a discrete distribution with equal
weights, ν = 1/N

∑N
i=1 δxi . If all candidates X can be enumerated (e.g., in drug discovery,

where all viable candidates are known), using the parametric distribution P(X ) = U(X ),
where U represents the discrete uniform distribution, maintains generality without loss of
precision. Herein, the distribution class generating x ∼ P(X ) is termed the domain prior
π0(x) = P(X ). In combinatorial optimisation of binary variables, for instance, the domain
prior is essentially a Bernoulli distribution with equal weights. For discrete variables with
categories (e.g., choices among {0, 1, 2, 3, 4}), this equates to a categorical distribution with
equal weights, enabling the use of Bernoulli, categorical, or general discrete distributions as
the domain prior π0 through SIR to construct π̃t.

Continuous Domain. The continuous domain presents more complex challenges for
SOBER-LFI due to the absence of a defined parametric form for the domain prior. For
computational simplicity and efficiency, we opt for a Gaussian Mixture Model (GMM)
(Xuan et al., 2001) as the samplable parametric model for the domain prior π0. Given the
universal approximation capabilities of GMM (Stergiopoulos, 2017), it serves as a suitable
proposal distribution for the SIR procedure. Note that our end goal is importance sampling
π̃t, negating the need for an exact match of GMM proposal distribution to πt.

Mixed Domain. In scenarios with a mixture of continuous and discrete variables, assum-
ing independent distributions for each segment is practical. For example, if the initial three
dimensions are continuous and the subsequent two are binary, the domain prior could be
modelled as a product of continuous and discrete distributions π0 ∝ GMM(X:3) · B(X4:5),
where GMM and B represent the GMM and Bernoulli distribution, respectively, and Xk:k′

specifies the input dimensions from k to k′.

Expert Knowledge. Engagement with human experts can yield beliefs about the global
maximum’s location P(x̂∗t ), derived from experience, expertise, or prior knowledge (e.g.,
Hvarfner et al. (2022); Adachi et al. (2024b)). In such instances, this expert model is
directly employed as the domain prior π0, facilitating a tailored approach to leveraging
domain-specific insights in optimisation tasks.

Batch Active Learning and Bayesian Quadrature Tasks. In the context of pool-
based batch active learning (AL), the primary goal is the information gain of the model
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dimensions d domain prior π0

experiments task
syn.
/real

objective cont. disc.
space
X

batch
n

const-
raint L

kernel
K

cont. disc.

Branin-Hoo BO syn. max(f) 2 - cont. = 30 - RBF U(−3, 2) -
Ackley BO syn. log10min(f) 3 20 mixed = 200 - RBF U(−1, 1) Bernoul.
Rosenbrock BO syn. log10min(f) 1 6 mixed = 100 - RBF U(−4, 11) Categor.
Hartmann BO syn. log10max(f) 6 - cont. = 100 - RBF U(0, 1) -
Snekel BO syn. log10max(f) 4 - cont. = 100 - RBF U(0, 10) -

Pest BO real. min(f) - 15 disc. = 200 - RBF - Categor.
MaxSat BO real. min(f) - 28 disc. = 200 - RBF - Bernoul.
Ising BO real. log10min(f) - 24 disc. = 100 - RBF - Bernoul.
SVM BO real. min(f) 3 20 mixed = 200 - RBF U(0, 1) Bernoul.
Malaria BO real. log10min(f) molecule disc. = 100 - Tanimoto - Categor.
Solvent BO real. −max log10 f molecule disc. = 200 - Tanimoto - Categor.

Branin-Hoo cBO syn. max(f) 2 - cont. ≤ 20 2 RBF U(−3, 2) -
Ackley cBO syn. log10min(f) 3 20 mixed ≤ 200 2 RBF U(−1, 1) Bernoul.
Hartmann cBO syn. log10 regret 6 - cont. ≤ 5 2 RBF U(0, 1) -
Pest cBO real. min(f) - 15 disc. ≤ 200 2 RBF - Categor.
Malaria cBO real. log10min(f) molecule disc. ≤ 100 4 Tanimoto - Categor.
FindFixer cBO real. max(f) node graph ≤ 100 3 graph - Categor.
TeamOpt cBO real. log10 regret subgraph graph ≤ 100 3 graph - Categor.

2 RC BQ real.
∫
f(x)dπ0(x) 6 - cont. = 100 - RBF Gaussian -

5 RC BQ real.
∫
f(x)dπ0(x) 12 - cont. = 100 - RBF Gaussian -

Table 2: Experimental Setup. Task: either BO, constrained BO (cBO), or BQ. Syn./real:
synthetic or real-world. Dimensions: the number of dimensions over input space categorised
into continuous (cont.), discrete (disc.). Batch: the fixed batch size = n or upper bound of
adaptive batch size ≤ n. Constraint: the number of constraints L. Prior: the domain prior
π0, Bernoul. and Categor.: Bernoulli and categorical distributions with equal weights.
Special kernels are used: Tanimoto kernel (Ralaivola et al., 2005) for molecules and the
diffusion graph kernel (Zhi et al., 2023) for graphs.

parameters for more accurate prediction. Specifically, within a GP model, this often trans-
lates to batch uncertainty sampling. We usually operate under the assumption that a set
of unlabelled candidates, X , is provided and can be fully enumerated. Consequently, in the
batch AL scenario, our target distribution, πt, is defined as a uniform distribution over the
available candidates, πt := U(X ). Conversely, batch BQ presupposes a prior distribution,
π0, that remains constant throughout the process. Therefore, in the batch BQ framework,
our distribution πt aligns with this predefined prior, πt = π0. In both tasks, the distribution
πt is stationary. As such, the main distinction between batch AL, BQ, and BO lies in mere
definition of πt, and our SOBER framework is applicable for these tasks.

5 Experiments

We now move into the evaluation of our algorithm, SOBER, through both synthetic and
real-world examples. Initially, we empirically analyse our proposed methodologies, focusing
on measure convergence, robustness against misspecified RKHS, scalability, hyperparameter
sensitivity, and adaptability of batch sizes. Subsequently, we juxtapose SOBER’s perfor-
mance in terms of regret convergence with that of popular baselines.

23



Adachi, Hayakawa, Jørgensen, Hamid, Oberhauser, and Osborne

ρ = 0.96 

ρ = 0.96 

ρ = 0.95 

ρ = 0.95 

ρ = 0.98 

ρ = 0.98 
M

V
B

R
SR

100

10-2

100

10-2

100

10-2

1 2 3 4 5 6
iterations

lo
g 

M
D

lo
g 

M
V

lo
g 

B
R

log MDlog MVlog BR

SOBER-LFI
batch TS

Hallucination (EI)

Figure 4: Correlations between Bayesian regret (BR) and measure optimisation. (Left)
the convergence of simple regret (SR), BR, and mean variance (MV) for three batching
methods. (Right) the linear correlations between mean distance (MD), MV, and BR.

Our assessment spans 20 experiments, benchmarked against 17 baselines; 14 baselines
for BO; random, batch TS (Kandasamy et al., 2015), decoupled TS (Wilson et al., 2020),
DPP-TS (Nava et al., 2022), TurBO (Eriksson et al., 2019), GIBBON (Moss et al., 2021),
hallucination (Azimi et al., 2010), local penalisation (LP8; González et al. (2016)), B3O
(Nguyen et al., 2016), cEI (Letham et al., 2019), PESC (Hernández-Lobato et al., 2016),
SCBO (Eriksson and Poloczek, 2021), cTS (Eriksson and Poloczek, 2021), and Proper-
tyDAG (Park et al., 2022), and 3 baselines for BQ; batchWSABI (Wagstaff et al., 2018),
BASQ (Adachi et al., 2022), and logBASQ (Adachi et al., 2023b).

The 20 experimental setups are detailed in Table 2, comprising 11 BO experiments (5
synthetic and 6 real-world data sets), 7 constrained BO experiments (3 synthetic and 4 real-
world data sets), and 2 real-world experiments tailored to BQ. Comprehensive experimental
methodologies are provided in Appendix B. Our implementations leverage PyTorch-based
libraries (Paszke et al., 2019; Gardner et al., 2018; Balandat et al., 2020; Griffiths et al.,
2023), with all tests averaged over 10 iterations and executed in parallel on multicore CPUs
for fair comparison. We note that GPU could further enhance SOBER’s performance.
Experimental outcomes are presented as the mean ± standard error of the mean, adhering
to default SOBER hyperparameters N = 20, 000,M = 500, unless otherwise specified.

To facilitate comparisons in discrete or mixed domains where certain algorithms (e.g.,
TurBO, GIBBON, Hallucination, and LP) encounter challenges due to combinatorial com-
plexities, we employ a thresholding approach, optimising discrete variables as continuous
ones and then categorising solutions through nearest neighbours. For the special yet popular
tasks, such as drug discovery and graph tasks, non-Euclidean spaces or specialised kernels
preclude the application of most algorithms.
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5.1 Measure Convergence Analysis

We empirically investigated the relationship between regret and πt convergence. Recall that
the empirical measure π̃t = (wN

t ,XN
t ) is sampled from πt, and the KQ rule πKQ = (wn

t ,X
n
t )

is the subset further extracted from π̃t. As such, all measures approximate the same dis-
tribution, πt ∼ π̃t ∼ πKQ, with only the level of discretisation differing. We consider the
following two metrics for πt convergence: mean Euclidean distance (MD) |x∗true−Ex[πt(x)]|
and mean variance (MV) Vx[πt(x)], which can be approximated using π̃t(x):

Vx[πt(x)] ≈ wN
t

⊤
diag

[
(XN

t − Ex[π̃t(x)])
⊤(XN

t − E[π̃t(x)])
]
,

where Ex[πt(x)] ≈ Ex[π̃t(x)] = wN
t

⊤
XN

t is the barycenter of πt, MV and MD correspond to
the convergence of πt, with a smaller value indicating convergence to the global maximum.

We compared these two metrics against BR and simple regret, f(x∗true)−maxx∈Xt f(x).
Experiments were conducted using the Ackley (see Table 2) over six iterations with 20
repeats (120 data points). Firstly, the left side in Figure 4 shows a similar convergence
trend for SR, BR, and MV, particularly noting that SOBER-LFI converges surprisingly
quickly. The linear correlation matrix on the right implies that both MD and MV are
highly correlated with BR, clearly explaining that πt convergence in Eq.(5) is a good proxy
for BR. πt (the MC estimate of x̂∗t ) shrinks toward the true global maximum, x∗true, with
smaller variance (more confidence), and both are linearly correlated with BR minimisation.

One potential explanation for the significant performance improvement of SOBER-LFI
is the synergy between the explorative KQ approach and the exploitative LFI synthetic
likelihood. As illustrated in Figure 2, the LFI exhibits greater peakedness around the current
maximum, ŷ∗t , compared to the TS distribution. Such a distribution is likely to result in
smaller MV. Our KQ method is capable of robustly selecting small areas of uncertainty,
even with such a peaked distribution (refer back to Figure 2). In essence, the exploitative
nature of LFI contributes to the reduction of MV, and consequently, to a decrease in BR,
whereas the KQ facilitates robust exploration under peaked distribution.

5.2 Robustness Analysis

Misspecified Domain Prior. We evaluated the robustness of our approach to a mis-
specified domain prior, π0, by introducing noise to the hyperparameters of π0 as depicted in
Figure 5(i). Note that, although noise is added to the π0 hyperparameters, they are quickly
updated via SIR, suggesting that the system should be resilient to initial misspecifications.
Hence, this experiment primarily assesses robustness against skewed initial sample configu-
rations, considering we generate the initial 100 samples by drawing from π0. For continuous
optimisation, we employed a uniform distribution as the non-informative prior (reference)
and a truncated Gaussian distribution as the misspecified (biased) prior. We maintained
a fixed covariance matrix, Id×d, but introduced noise to the mean vector, µπ = σϵ, where
ϵ ∼ U(0, 1) represents uniform noise and σ denotes the noise scale. In the case of binary
optimisation, we used a Bernoulli distribution, with its probability vector treated as the
stochastic variable p = σϵ (p = 0.5 denotes uniform). In both scenarios, as σ approaches

8. Only within the exerimental section, LP refers to local penalisation, and we use LP for linear program-
ming for other sections.
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Figure 5: Robustness analysis on Ackley (n = 200, log10 regret at 10th iteration) (i)
misspecified domain prior: The left and middle experiments are examined misspecified
domain prior for continuous and binary optimisation. (ii) Misspecified RKHS: We added
noise to the GP hyperparameters that were tuned by MLE. In all misspecification cases,
SOBER showed great resilience against misspecification noise.

zero, the system converges to the global maximum, x∗true = [0]d, indicating that a smaller
σ favours the identification of the global maximum. The observed simple regrets remain
nearly constant across different noise scales and significantly outperform i.i.d. batch samples
drawn from the domain prior π0.

Misspecified RKHS. We investigated the robustness against a misspecified RKHS,
specifically misfit GP hyperparameters, as shown in Figure 5(ii). Referring to §4.3.3, the
worst-case error estimate in Proposition 2 is guaranteed to be uniformly bounded. Noise was
introduced to the GP hyperparameters, which were initially optimised using type-II MLE
with the BoTorch optimiser (Balandat et al., 2020). The hyperparameters were adjusted as
θ := θMLE(1 + σθϵ), where ϵ ∼ U(−0.5, 0.5). The dashed lines represent the scenarios with-
out noise (MAP cases). While the regret associated with batch TS (Kandasamy et al., 2015)
worsened and exhibited greater variance with increasing noise scale, SOBER-LFI achieved
a plateau, indicating uniform robustness against the worst-case error. This demonstrates
the susceptibility of TS to model misspecification, as exemplified in Figure 1.

5.3 Scalability Analysis

Dimensional Scalability. We assessed dimensional scalability by comparing our method
against TurBO (Eriksson et al., 2019), a widely recognised method for high-dimensional
BO. Since TurBO is designed solely for continuous domains, we adapted its algorithm by
thresholding (recall §5). In the continuous domain, as shown in Figure 6(a), while TurBO
exhibits superior performance in dimensions exceeding 15, SOBER-LFI is more effective in
lower dimensions. In binary optimisation, SOBER-LFI surpasses all baselines, even in 60
dimensions. This is because the binary space has fewer potential candidates, 2d, than the
continuous space, allowing the hypercontractivity of the random convex hull to ensure that
the empirical measure, π̃t, adequately spans the entire domain.

Computational Complexity. We evaluated the computational overhead for batch queries.
As detailed in §4.4.1, the complexity is O(CφN + n3 log(N/n)). At first glance, the cubic
term related to batch size, n, appears unscalable; however, it is actually competitive, com-
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pared to TS and its variants. This is attributed to our candidate size, N ≫ n, which
makes the linearity in N more impactful than the cubic term in n3 for practical applica-
tions. Figure 6(b) illustrates that SOBER-LFI significantly outpaces exact TS, which relies
on Cholesky decomposition with a complexity of O(N3). The fast variant using random
Fourier features (decoupled TS, Wilson et al. (2020)) achieves linearity with N , similar to
our approach. However, it incurs a larger approximation error than the Nyström approx-
imation (Yang et al., 2012), necessitating more function samples, M , than Nyström. As
Figure 6(b) shows, within the practical range of parameter sets (N = 20, 000, M = 512,
n ≤ 29), our SOBER-LFI achieves fast computation. Yet, the cubic term, n3, escalates
quickly for n > 1, 000, limiting scalability to such batch sizes. Nevertheless, considering
the maximum batch sizes used in high-throughput drug discovery are typically 384 com-
pounds (Carpentier et al., 2016), we argue that SOBER-LFI remains sufficiently scalable
for practical applications.

5.4 Hyperparameter Sensitivity

The hyperparameter sensitivity of SOBER-LFI was examined using the Ackley, focusing on
the effects of AFs (α), batch size (n), the number of Nyström samples (M), and empirical
measure sizes (N). The baseline conditions were set to n = 100, α = 0 (no acquisition
functions as reward), M = 500, and N = 20, 000. For AFs, the information-theoretic AFs
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significantly enhances the convergence rate, whereas UCB/EI show no substantial change.
This can be because MES function gives more dissimilar reward function shape to π (=
PI) than EI/UCB. Notably, our SOBER library integrates seamlessly with the popular
GPyTorch/BoTorch library, allowing users to directly use AF and kernel instances defined
by these libraries. More details can be found in our GitHub tutorials.

Regarding batch size (n), we observed an improvement in the convergence rate pro-
portional to the batch size. Although this increase seems intuitive, it is not consistently
observed in existing baselines (e.g., see Figure 6 in GIBBON (Moss et al., 2021)). For the
Nyström samples (M) and empirical measure sizes (N), larger sample numbers correspond
to faster convergence, reflecting our bound in Theorem 1. Specifically, a larger M reduces
the Nyström approximation error (the first term), and a larger N decreases the empirical
measure approximation error (the second term). This straightforward relationship between
MC estimate error and sample size is not always evident in existing baselines (e.g., max-
value entropy search, MES; Wang and Jegelka (2017), see §2.3 in Takeno et al. (2023)).
However, an increase in sample numbers also results in higher computational overhead, as
discussed in §5.3. Our default settings are competitive for real-world experiments discussed
later, though they can be adjusted to balance the cost of queries (Adachi et al., 2022)9.

5.5 Adaptability Analysis

Within this section, we have explored the ϵLP > 0 setting described in §4.2.4.

9. See guidelines in Appendix 2.2.2 in Adachi et al. (2022)
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Adaptive Batch Sizes. Our initial investigation focused on the effectiveness of adaptive
batch sizes. To facilitate a comparison with B3O (Nguyen et al., 2016), the only other
baseline method employing adaptive batch sizes, we examined batch BO without unknown
constraints, i.e., q̃(x) = 1, albeit with ϵLP > 0. As shown in Figure 8(a), SOBER-LFI,
employing adaptive batch sizes, consistently outperformed the baseline methods across all
experiments. An increase in ϵLP led to a reduction in batch size, which consistently de-
creased over iterations for all values of ϵLP. This pattern indicates that SOBER-LFI ini-
tially requires a larger number of exploratory samples before narrowing its search space for
exploitation. When compared to methods using fixed batch sizes within the same total cost
framework, SOBER-LFI achieved lower regret, surpassing even the original SOBER with
fixed batch sizes. Unlike B3O, which tends towards small batch sizes (around 4), the batch
size of SOBER-LFI is tunable based on n and ϵLP.

Adaptive Safe Exploration. We then examined the influence of the expected violation
rate, ϵvio, in constrained BO, treating it as a time-varying tolerance, ϵvio = ϵLP with ϵLP > 0.
The main findings are depicted in Figure 8(b).

Four key metrics:
(1) The expected reward (LP objective): A proxy for the safety level of our explo-

ration strategies.
(2) The violation rate 1 − |X̃batch|/|Xbatch|: A proxy for the actual safety level

achieved during exploration.
(3) The worst-case error wce[Qπt,Ct−1(|X̃batch|)]: the precision of quadrature.

(4) log determinant log|K(X̃batch, X̃batch)|: a proxy for the batch sample diversity.

We evaluated the impact of ϵLP on these metrics, aligning ϵLP with ϵvio to enable adaptive
exploration in line with specified risk levels, ϵvio, illustrated in Figures 8(b)(i)(ii). As risk
levels increase, ensuring safety becomes a priority, leading to an uptick in the expected
reward and a corresponding reduction in the violation rate, signifying safer exploration
practices. Numerically, a higher risk level correlates with an increased worst-case error,
indicating a relaxation in precision requirements, and a reduced log determinant, suggesting
a decrease in the diversity of batch samples due to the proximity of selected points (XN

t ) to
each other. Conversely, lower risk levels favour a more optimistic and exploratory approach.
Our results affirm that setting ϵLP equal to ϵvio allows our batch exploration strategy to
adeptly adjust to varying risk levels.

Additionally, we observed the evolution of the expected violation rate, ϵvio, throughout
the optimisation process. As depicted in Figure 8(b)(iii), ϵvio starts high and gradually
decreases, highlighting an initial focus on safe data collection before shifting towards broader
exploration. This strategy is reminiscent of ‘safe’ BO approaches like those proposed by
(Sui et al., 2015), which have shown strong empirical performance and theoretical support
(e.g., Figure 4 in Xu et al. (2023)). The inherent adaptability of our method to adjust batch
sizes and tolerance levels showcases its efficiency, particularly as demonstrated by the more
fast convergence compared to fixed tolerance approaches in Figure 8(b)(iv). Interestingly,
the most effective fixed tolerance was ϵLP = 10−3, indicating that SOBER-LFI surpasses
the performance of the exact case (ϵLP = 0) under constraints, even with a fixed tolerance.
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5.6 Discrete and Mixed Variable Experiments

baselines Ackley Rosenbrock Hartmann Shekel Pest MaxSat Ising SVM Malaria Solvent Mean rank

Random -1.92 -1.96 -1.26 -1.17 -1.92 -1.89 -1.64 0.82 1.40 1.49 -
batch TS 2.71 3.10 2.79 2.86 3.00 3.70 3.22 3.36 2.71 2.85 3.1
decoupled TS 2.20 2.04 2.01 2.04 3.17 3.22 3.65 3.90 - - 2.6
DPP-TS 4.85 4.56 4.35 4.62 5.67 4.49 4.73 4.73 - - 7.4
TurBO 3.42 3.06 2.12 3.07 2.91 2.97 3.45 3.58 - - 3.3
GIBBON 4.92 4.18 3.71 3.52 3.72 4.71 4.25 4.41 - - 6.8
Hallucination 4.52 4.09 4.42 3.68 4.68 4.75 4.14 5.05 - - 7.4
LP 5.50 5.48 5.23 4.78 3.84 5.48 5.10 4.53 - - 8.5
SOBER-TS 3.10 3.43 3.16 3.17 3.30 4.01 3.20 3.21 - - 4.1
SOBER-LFI 2.58 2.19 2.08 2.65 2.99 2.96 2.28 2.31 2.43 2.35 1.5

Table 3: Average cumulative wall-clock time for 15 iterations (log10 second).

Figure 9 and Table 3 showcase the convergence performance and the wall-clock time for
sampling overhead at the 15th iteration, respectively. SOBER-LFI surpasses nine baselines
in nine out of ten experiments, demonstrating its versatility and effectiveness across a
wide range of multimodal and noisy functions in continuous, discrete, and mixed spaces.
Although SOBER-LFI did not achieve the top performance on the unimodal Rosenbrock
function—which tends to favour more exploitative algorithms like TurBO—it secured a
strong second place. This performance underscores the efficiency of SOBER-LFI’s strategy
in dynamically narrowing the sampling region around the global maximum. In the realm of
drug discovery, SOBER-LFI distinguished itself by showing fast convergence, areas where
most algorithms falter due to specific kernel and space requirements. The solvent data set,
in particular, highlights scenarios where batch TS quickly converges in early stages but fails
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Lower is better for both metrics.

to escape local maxima, eventually equating its final regret with that of random search.
Conversely, SOBER-LFI avoids such pitfalls via exploratory KQ sampling.

5.7 Constrained Optimisation Experiments

In the domain of constrained BO tasks with adaptive batch sizes, SOBER-LFI stands out
as the sole method offering adaptive batching under constraints. We defined the upper limit
of batch sizes for comparison (as detailed in Table 2). While baseline methods maintain
fixed upper bound batch sizes across iterations, SOBER-LFI adeptly adjusts its batch sizes,
leading to a more efficient use of queries. Consequently, SOBER-LFI typically requires fewer
queries to reach the same iteration T . Figure 10 highlights SOBER-LFI’s robust empirical
performance across various tasks.

5.8 Simulation-based Inference Experiments

SOBER-LFI also demonstrates superior performance against batch BQ baselines in simulation-
based inference tasks, as documented by Adachi et al. (2023b). In these tasks, the prior
variance significantly exceeds that of the likelihood, resulting in a sharply peaked posterior
distribution. This condition renders exploration of the prior’s tail as excessive. While the
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original BASQ method tends toward over-exploration of the prior distribution, leading to
performance plateaus, the logBASQ variant mitigates this issue through log-warp modeling.
Nevertheless, SOBER-LFI outpaces all baselines by a significant margin in both posterior
and evidence inference across all tasks. It achieves this by effectively concentrating π to-
wards the posterior mode, thereby circumventing unnecessary over-exploration.

6 Discussion

We introduced SOBER, a novel quadrature approach to batch BO through probabilistic
lifting, showcasing its versatility and theoretical robustness. Initially, we elucidated the
theoretical underpinnings of SOBER as a KQ method, emphasizing that its worst-case
error bound predominantly stems from the Nyström approximation and empirical measure
approximation errors. Crucially, SOBER maintains bounded errors even in scenarios where
the RKHS is misspecified, thereby ensuring robustness against GP misspecification. The
method’s incorporation of closed-form LFI synthetic likelihood, SIR, and recombination
techniques facilitates versatile, fast, and diverse sampling strategies. Empirical evidence
further verifies that the diminishing variance of πt correlates strongly with BR, suggesting
that the synergistic effect of the exploitative LFI πt and the explorative KQ sampling
constitutes an effective heuristic for addressing the probabilistically lifted dual objective
presented in Eq.(5). Through extensive empirical analysis, we demonstrated SOBER-LFI’s
robustness, scalability, insensitivity to hyperparameters, and adaptivity, further bolstered
by an extensive comparative study across a broad spectrum of real-world applications.

Despite its promising empirical performance, there is a pressing need for deeper theo-
retical analysis to enhance our understanding and identify avenues for improvement. The
practical superiority of subsample-based KQ, relative to theoretical predictions, remains
a puzzle. Theories on random convex hulls and hypercontractivity provide promising in-
sights, although these explanations originate from slightly different contexts. Additionally,
the convergence rate of the KQ method employed is limited to the non-adaptive case (sin-
gle batch selection). This limitation arises because KQ is based on assumptions of a more
general probability measure, such as a non-compact domain. However, Kanagawa and Hen-
nig (2019) established the convergence rate for sequential adaptive BQ within a compact
domain. In BO tasks, the assumption of a compact domain is essential (without it, con-
vergence cannot be guaranteed), indicating that this area of research could potentially lead
to establishing a full convergence rate. Additionally, exploring the implications of SOBER-
LFI in the context of Bayesian cumulative regret convergence rates is pivotal for unraveling
the mechanisms behind its empirical success. However, we wish to highlight that our ad-
dressed issues—misspecified RKHS for general AFs, and adaptive batch sizes for a limited
budget—are not yet accommodated by regret convergence analysis in the existing theoreti-
cal BO literature (refer to §4.2.5 and §4.3.3). Our extensive empirical study, along with the
theoretical bounds we present for worst-case errors, could lay the groundwork for enhanced
theoretical insights. It is also worth noting that SOBER currently does not accommodate
asynchronous batch settings (Kandasamy et al., 2018), a limitation identified in previous
works (Adachi et al., 2022, 2024a). However, given its generality and flexibility, integrat-
ing SOBER with other advanced methods represents a fertile direction for future research,
promising valuable contributions to the field for both practitioners and theoreticians.
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This paper is the journal extension of the non-archival ICML workshop paper (Adachi
et al., 2023a) and AISTATS paper (Adachi et al., 2024a). Although the ICML workshop
paper (Adachi et al., 2023a) has not undergone rigorous peer review, it presents content
similar to our current work but includes only a limited number of experiments and no
theories. The current paper builds upon this ICML workshop paper, providing an in-depth
discussion on how to connect batch Bayesian optimization and Bayesian/kernel quadrature
through a probabilistic lifting technique. In AISTATS paper (Adachi et al., 2024a), we
focused on adaptivity, we posited that the link between quadrature and optimization was
established in an ICML workshop paper (Adachi et al., 2023a).
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. Note that the constraint |w|0 ≤ n is automatically satisfied when
we use the simplex method or its variant. Without this constraint, we have a trivial fea-
sible solution w = wN

t , so, for the optimal solution w∗, we have w⊤
∗
[
αt(X

n
t ) ⊙ q̃t(X

n
t )
]
≥

wn
t
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]
, we obtain the first estimate Eq. (11).

For the latter estimate, we first decompose the error into two parts:
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For the first term, considering each x ∈ Xn
t on whether or not it gets included in X̃
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t , we

have
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where the last inequality follows from the inequality constraint (w −wN
t )⊤q̃t(X

N
t ) ≥ 0 in

the LP. Since |ft−1(x)| = |⟨ft−1, Ct−1(·, x)⟩| ≤ ∥ft−1∥Ct−1(x, x)
1/2 from the reproducing

property of RKHS, we obtain

E
[∣∣∣w̃n

t
⊤ft−1(X̃

n
t )−wn

t
⊤ft−1(X

n
t )
∣∣∣] ≤ ϵvioKmax∥ft−1∥. (14)

Let us then bound the second term of the RHS of Eq. (13). Note that, from the formula
of worst-case error of kernel quadrature (see, e.g., (Hayakawa et al., 2022, Eq. (14))), we
can bound∣∣∣wn

t
⊤ft−1(X

n
t )−wN

t
⊤
ft−1(X

N
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t ,XN
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(recall w∗ has the same dimension as wN
t ). We now want to estimate

(w∗ −wN
t )⊤Ct−1(X

N
t ,XN

t )(w∗ −wN
t ).

Consider approximating Ct−1 by C̃t−1. Since Ct−1− C̃t−1 is positive semi-definite from the
property of Nyström approximation (see, e.g., the proof of (Hayakawa et al., 2022, Corollary
4)), for any x, y ∈ XN

t , we have

|(Ct−1 − C̃t−1)(x, y)| ≤ |(Ct−1 − C̃t−1)(x, x)|1/2|(Ct−1 − C̃t−1)(y, y)|1/2 ≤ ϵ2nys.

Thus, we have
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From the inequality constraint in the LP, we have |(w∗−wN
t )⊤φj(X
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√
λj/(n− 2),

so that Eq. (17) is further bounded as
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By adding the both sides of Eqs. (16) and (18), we obtain

(w∗ −wN
t )⊤Ct−1(X

N
t ,XN

t )(w∗ −wN
t ) ≤ 4ϵ2nys + ϵ2LP ≤ (2ϵnys + ϵLP)

2.

By applying this to Eq. (15), we have
∣∣∣wn

t
⊤ft−1(X

n
t )−wN

t
⊤
ft−1(X

N
t )

∣∣∣ ≤ ∥f∥(2ϵnys + ϵLP).

Combining this with Eqs. (13) and (14) yields the desired inequality Eq. (12).

This proof is mirrored from our previous work (Adachi et al., 2024a).
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Appendix B. Experimental details

Due to the page restriction to be within 35 pages on submission, we defer the details to
our prior papers. While our previous papers and GitHub code work as the explanation to
reproduce our results, we will update the experimental details to here in appendix together
to be self-contained. The experimental details of batch constrained BO is delineated in
our previous work (Adachi et al., 2024a). The batch BQ experiments are detailed in our
previous work (Adachi et al., 2023b). For batch unconstrained BO, we used the constrained
BO tasks without constraints. We explain the details of the rest; Rosenbrock, Shekel,
MaxSat, Ising, SVM, and Solvent:

Synthetic: Rosenbrock function We modified the original Rosenbrock function (Sur-
janovic and Bingham, 2024) into a 7-dimensional function with the mixed spaces of 1 con-
tinuous and 6 discrete variables, following Daulton et al. (2022). The first 1 dimension is
continuous with bounds [−4, 11]1. The other 6 dimensions are discretised to be categorical
variables, with 4 possible values x1 ∈ {−4, 1, 6, 11}.

Synthetic: Shekel function We use Shekel function without any modification from
(Surjanovic and Bingham, 2024), 4 dimensional continuous variables bounded [0, 10]4.

Real-world: Maximum Satisifiability Maximum satisfiability (MaxSat in the main)
is proposed in Oh et al. (2019), which is 28 dimensional binary optimisation problem. The
objective is to find boolean values that maximise the combined weighted satisfied clauses
for the data set provided by Maximum Satisfiability competition 2018. Both code and data
set are used in https://github.com/xingchenwan/Casmopolitan (Wan et al., 2021).

Real-world: Ising Model Sparsification Ising Model Sparsification (Ising in the main)
is proposed in Oh et al. (2019), which is 24 dimensional binary optimisation problem. The
objective is to sparsify an Ising model using the regularised Kullback-Leibler divergence be-
tween a zero-field Ising model and the partition function, considering 4×4 grid of spins with
regularisation coefficient λ = 10−4. Code is in https://github.com/QUVA-Lab/COMBO.

Real-world: Support Vector Machine Feature Selection Support vector machine
feature selection (SVM in the main) is proposed in Daulton et al. (2022), which is 23
dimensional mixed-type input optimisation problem (20 dimensional binary and 3 dimen-
sional continuous variables). The objective is jointly performing feature selection (20 fea-
tures) and hyperparameter optimisation (3 hyperparameters) for a support vector machine
trained in the CTSlice UCI data set (Graf et al., 2011; Dua and Graff, 2017). Code is used
in https://github.com/facebookresearch/bo_pr.

Real-world: Polar solvent for batteries The data set with 133,055 small molecules
represented as 2048-dimensional binary features were optimised and predicted by the quantum-
chemical computations, known as QM9 data set (Ramakrishnan et al., 2014). The target
variable is the dipole moment, which is basically correlated with the solvation capability
in electrolytes in lithium-ion batteries, increasing the ratio of electro-mobile lithium-ions.
The higher the dipole moment becomes, the larger (better) the ionic conductivity does.
The data set is downloaded from http://quantum-machine.org/datasets/. The cod-
ing was done with Gauche (Griffiths et al., 2023). Due to the low expressive capability of
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2048-dimensional binary features, we removed the duplicated candidates that show identical
binary features from the QM9 data set, then applied the batch BO experiments.
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