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Abstract

In this paper we revisit the problem of computing the closure of a set of
attributes, given a set of Armstrong dependencies. This problem is of main
interest in logics, in the relational database model, in lattice theory and in
Formal Concept Analysis as well. We consider here three main closure algo-
rithms, namely Closure, LinClosure and WildClosure, which are combined
with implication bases which may have different characteristics, among which
being “minimal”, e.g., the Duquenne-Guigues Basis, and being “direct”, e.g.,
the Canonical-Direct Unit Basis and the D-basis. The impacts of minimality
and directness on the closure algorithms are then deeply studied also exper-
imentally. The results are extensively analyzed and propose a different and
fresh look at computing the closure of a set of attributes.

This paper has been submitted to the International Journal of Approxi-
mate Reasoning.

Keywords: Functional dependencies, Implications, Horn Clauses, De-
pendency Covers, Closure.



0.1 Introduction
In this paper, we are interested in analyzing different covers or bases of de-
pendencies, their characteristics, the way they are computed and the related
efficiency. A dependency X → Y can be read as X implies Y and follows
the so-called Armstrong axioms [5]. Dependencies are “first class citizens”
in different fields of Computer Science, e.g., Horn clauses in logics, func-
tional dependencies in the relational database model, implications in Formal
Concept Analysis (FCA).

This paper is a follow-up of [8] where we studied three different covers,
namely the minimal cover in relational database theory [24], the Canonical-
Direct Unit Basis in lattice theory [12], and the Duquenne-Guigues Basis aka
canonical basis in FCA [19]. These covers are introduced and characterized
in many different textbooks, e.g., in database theory [24, 25, 1], in logics
[13], in lattice theory [12], and in FCA [18, 17]. Moreover, Marcel Wild in
[31] proposes an extensive and major study about implication bases and the
relations existing between the different fields in which they are used.

The Duquenne-Guigues Basis has become the implication basis of refer-
ence in FCA while the canonical direct basis is of first importance in database
theory [26]. In particular, authors in [9, 10] are interested in the computa-
tion of the Duquenne-Guigues Basis w.r.t. three closure algorithms, namely
Closure, LinClosure, and WildClosure. In this paper we follow these tracks
and we extend this seminal work in several directions, as we analyze not only
the Duquenne-Guigues Basis but as well the Canonical-Direct Unit Basis and
the D-basis [3]. In particular, we try to characterize the behaviors of several
combinations of algorithms and to evaluate the importance for a cover of
being minimal or direct.

As this will be made more precise farther, the construction of a cover
depends on computing the closure closureΣ(X) of a set of attributes X w.r.t.
a set of dependencies Σ thanks to the Armstrong axioms. Moreover, given
a set of dependencies Σ, there may exist different sets of dependencies that
are equivalent modulo Armstrong axioms. Then two extreme cases for covers
can be considered, (i) a cover is minimal when it contains a minimal number
of dependencies, i.e., minimal in order to maintain the equivalence modulo
Armstrong axioms, (ii) a cover is direct if only one pass over the set Σ is suf-
ficient to compute closureΣ(X) for any set of attributes X. For example, the
Duquenne-Guigues Basis is minimal while the Canonical-Direct Unit Basis
and the D-basis are direct.
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To decide what should be the characteristics of the set of dependencies to
be used to perform the computation of closureΣ(X) for a set of attributes X
remains an important problem because the number of dependencies that may
hold in a relatively small dataset can be huge, and because costly operations
are applied to sets of dependencies. Then the debate can be stated in the
following terms: is it better to have a cover with a smaller set of dependencies
that may require more than one pass to compute a closure, or to have a larger
cover ensuring that only one pass is required to compute the closure? To be
complete, the question of the algorithm computing closureΣ(X) should also
be raised.

The first well-known algorithm to compute the closure of a set of at-
tributes w.r.t. a set of dependencies is the Closure Algorithm, which has a
quadratic cost w.r.t. the size of the input, i.e., Σ. The LinClosure Algo-
rithm is an improvement of Closure whose cost is not quadratic but lineal.
Finally, the WildClosure Algorithm is a subsequent improvement of Closure
Algorithm with the same complexity.

Since the asymptotic complexity of LinClosure is lineal w.r.t. size of the
input set of dependencies, it would be obvious that using a minimal basis
would be always the more efficient choice in terms of runtime. However,
in practical terms, in some experiments such as those presented in [9, 10],
LinClosure does not outperform Closure in a systematic way. In addition, the
question of checking whether it is better to use a direct basis (e.g., Canonical-
Direct Unit Basis) or a minimal basis (e.g., Duquenne-Guigues Basis) has not
yet been fully explored. For example, the minimality of an implication basis
has an effective impact on a process such as attribute exploration and its
application to knowledge engineering, see e.g, [7, 6, 29, 27]. In addition, the
fact that an implication basis is direct received a lot of attention in lattice
theory [12, 3, 2] and in FCA [18, 17, 23], while this characteristic is ignored
in database theory even if the Canonical-Direct Unit Basis is the implication
basis of reference. Accordingly, the question that we address and discuss
in this paper is the following: regardless of the hypothetical reasons why a
direct basis is preferred in database theory instead of a minimal basis, what
can be the best choice to effectively compute closureΣ(X)?

The remaining of this paper is organized as follows. In Section 0.2 we
introduce the basic definitions useful in this paper. In Section 0.3 we make
precise and detail three algorithms for computing a closure, namely Closure,
LinClosure, and WildClosure. Then in Section 0.4 we present the character-
istics of bases of dependencies while in Section 0.5 we analyze the possible
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impacts of using a direct basis when computing a closure. Finally, we pro-
pose a series of experiments in Section 0.6 and we discuss the results in
Section 0.6.5 which are not necessarily the ones that could be expected.

0.2 Definitions
In this section we introduce the definitions used in this paper. Although in
most of the cases we provide a single reference, namely [14], these definitions
can be found as well in many different textbooks and papers related to the
database theory, logics, and FCA. All along this paper, we consider a tabular
dataset whose column labels form the set of attributes U , which is the set
of interest in the following. The row labels of the dataset determine the
transactions or the objects whose descriptions are given by the columns.

Given X, Y ⊆ U , the fact that a dependency X → Y is valid or true
depends on the kind of dependency at hand. For example, an instance in
which a Horn clause is true is a set of models, while an instance in which a
functional dependency is valid or holds is a set of rows in a many-valued tab-
ular dataset. Moreover, an instance where an implication is true in a formal
context is a given set of objects. Since in this paper we only focus on the
reasoning based on the Armstrong axioms, the context of the dependencies
is not relevant.

Then, the dependency X → Y holds should be understood as X → Y
holds for all the instances where it is valid or true. In addition, “If X → Y
holds, then XZ → Y Z holds” can be rephrased as “In any instance in which
X → Y is valid, the dependency XZ → Y Z is valid as well”.

Definition 0.2.1 ([14]) Given set of attributes U , for any X, Y, Z ⊆ U , the
Armstrong axioms are:

1. Reflexivity: If Y ⊆ X, then X → Y holds.

2. Augmentation. If X → Y holds, then XZ → Y Z holds.

3. Transitivity. If X → Y and Y → Z hold, then X → Z holds.

The Armstrong axioms allow us to define the closure of a set of dependen-
cies as the iterative application of these axioms over a set of dependencies.
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Definition 0.2.2 ([14]) Σ+ denotes the closure of a set of dependencies Σ
and can be constructed thanks to the iterative application of the Armstrong
axioms over Σ.

This iterative application terminates when no new dependency can be
added, and it is finite. Therefore, Σ+ contains the largest set of dependencies
that hold in all instances in which all the dependencies in Σ hold.

The closure of a set of dependencies induces the definition of the cover of
such a set of dependencies.

Definition 0.2.3 ([14]) The cover or basis of a set of dependencies Σ is
any set Σ′ such that Σ′+ = Σ+.

We define now the closure of a set of attributes X ⊆ U with respect to a
set of dependencies Σ.

Definition 0.2.4 ([14]) The closure of X with respect to a set of dependen-
cies Σ is

closureΣ(X) = X ∪ {Y | X → Y ∈ Σ+ }

i.e., closureΣ(X) is the largest set of attributes Y such that X → Y can be
derived by the iterative application of the Armstrong axioms over the set Σ.

The closure operation returns the largest set of attributes such that Σ |=
X → closureΣ(X). Therefore, the implication problem Σ |= X → Y boils
down to testing whether Y ⊆ closureΣ(X) (see Section 4 in [11]).

Now we introduce two main characteristics of a cover, being direct and
being minimal. Recall that a main debate in this paper is to check the
performance of a direct basis compared to the performance of a minimal
basis when computing closureΣ(X). The definition of a minimal cover is
independent of how closureΣ(X) is computed:

Definition 0.2.5 Let Σ be a set of dependencies. We say that Σmin is a
minimal basis of Σ iff:

1. Σ+ = Σ+
min.

2. Σmin does not include any smaller basis verifying the above property.
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We now give an alternative definition of the closure of a set of attributes,
contrasting Definition 0.2.4. Actually, the main reason is that we need a defi-
nition allowing to reason on the way the three different algorithms presented
in the next section compute such closure.

Definition 0.2.6 ([12]) Let Σ be a set of dependencies and let X ⊆ U be a
set of attributes. A pass over X w.r.t. Σ is defined as:

ΠΣ(X) = X ∪ { b | A ⊆ X and A→ b ∈ Σ }

Then, the closure of a set of attributes X can be defined as follows:

Definition 0.2.7 ([12]) Let Σ be a set of dependencies.

closureΣ(X) = ΠΣ(X) ∪ Π2
Σ(X) ∪ · · · ∪ Πi−1

Σ (X)

where Πi
Σ(X) = ΠΣ(Π

i−1
Σ (X)).

Thus the computing of closureΣ(X) relies first on computing ΠΣ(X),
and then, computing ΠΣ(ΠΣ(X)), and so on, until a fixed point Πi

Σ(X) =
Πi−1

Σ (X) is reached. We can proceed now to define a direct basis:

Definition 0.2.8 ([12]) Let Σ be a set of dependencies. Σ is a direct basis
if for all X ⊆ U :

closureΣ(X) = ΠΣ(X)

Then if we go back to Definition 0.2.6, it comes that Σ is a direct basis
if, for all X ⊆ U : closureΣ(X) = X ∪ { b | A ⊆ X and A → b ∈ Σ }. This
means that only one single pass need to be performed over Σ, collecting the
set { b | A ⊆ X and A → b } and then, joining it to X in order to compute
closureΣ(X).

The notion of direct basis seems to be original to lattice theory and FCA,
but seems to be completely alien to the DB community. We can find refer-
ences to a direct basis in [12] and, earlier, in [18].

0.3 Algorithms Computing the Closure of a Set
of Attributes

In this section, we focus on the most well-known algorithms computing the
closure of a set of attributes X, namely the Closure, LinClosure, and Wild
Closure algorithms.
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Function Closure(X,Σ)
Input : A set of attributes X ⊆ U and a set of implications Σ
Output: closureΣ(X)

1 stable← false
2 while not stable do // Outer loop
3 stable← true
4 forall A→ B ∈ Σ do // Inner loop
5 if A ⊆ X then // deps
6 X ← X ∪B
7 stable← false
8 Σ← Σ \ {A→ B }
9 end

10 end
11 end
12 return X

0.3.1 The Closure Algorithm

Closure is the classical algorithm computing closureΣ(X), which is detailed
in many textbooks, e.g., in [24, 1]. Here we adapt the version proposed in [17]
(Algorithm 14, page 93). In the Closure algorithm, the computing of a given
ΠΣ(X) is performed in lines 4 − 10, and it iterates the loop in line 2 − 11
until a fixed point is found. Once a dependency has been processed in lines
5− 8, it is removed in line 8.

The complexity of this algorithm is discussed in the related references,
and the general consensus is that it is quadratic w.r.t. the input (see [8] for
more details).

0.3.2 The LinClosure Algorithm

An improved version of Closure is the LinClosure algorithm [11]. This algo-
rithm consists of two parts: a preparation part in which the necessary data
structures are computed, and the computation part in which the computing
of closureΣ(X) is performed. In preparation two data structures are con-
structed, the role of which is to ensure that only the dependencies necessary
to compute the closure are considered while the other are ignored:
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(i) for each attribute say x, the first structure records a pointer to all the
dependencies X → Y such that x appears in the left-hand side X,

(ii) for each dependency X → Y , the second structure includes a counter
that records the number of attributes of X already visited during the com-
puting part.

The general idea of the LinClosure algorithm can be checked in examin-
ing the two loops in lines 11− 22. During the execution of the outer loop, X
contains the part of its closure that has been computed so far, i.e., Πi

Σ(X).
Then, for each attribute in x ∈ X, we decrease the counter of all the depen-
dencies A → B such that x ∈ A, i.e., counter[A → B]. When line 16 tests
positive, it means that A ⊆ X for that particular dependency A → B, and,
therefore, B can added to X as part of its closure. In particular, this means
that dependencies not containing a subset of X are not ”used“ as they will
always test negative in line 16.

There is a general consensus about the complexity of LinClosure, which is
of order O(|Σ|) for both the preparation part and the computation part [11].

Here the complexity of the preparation part is not discussed, which is
assumed to be of the same complexity as the rest of the algorithm. One
explanation of this fact appears in the pioneering paper [11], page 47 in
the second paragraph (this paragraph is adapted to fit names in Algorithm
LinClosure):

For each attribute in [update], the [outer] loop follows a constant
number of steps for each occurrence of that attribute on the left
side of an FD in Σ. Similarly, each right side of an FD in Σ is
visited at most once in [the outer loop]. Thus [the outer loop] is
also O(|Σ|) as is the entire Algorithm.

Previously, the authors have concluded that the complexity of the prepa-
ration part is of order O(|Σ|), as well as the second part, hence the end of
the last sentence “is also O(|Σ|) the entire Algorithm”.

0.3.3 The WildClosure Algorithm

Below we present a slightly more compact form of the WildClosure algorithm
borrowed from [10]. The WildClosure Algorithm [30] aims at ensuring that
inside each outer loop all the dependencies A → B fulfilling the condition
A ⊆ X are selected. The algorithm starts with one of the data structures
also present in LinClosure: for each attribute say x there is a list recording
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Function LinClosure(X,Σ)
Input : A set of attributes X ⊆ U and a set of implications Σ
Output: closureΣ(X)

1 forall A→ B ∈ Σ do // Preparation
2 count[A→ B]←| A |
3 if | A |= 0 then
4 X ← X ∪B
5 end
6 forall a ∈ A do
7 list[a]← list[a] ∪ {A→ B }
8 end
9 end

10 update← X

11 while update ̸= ∅ do // Outer loop
12 choose m ∈ update
13 update← update \ {m }
14 forall A→ B ∈ list[m] do // Inner loop
15 count[A→ B]← count[A→ B]− 1
16 if count[A→ B] = 0 then // deps
17 add← B \X
18 X ← X ∪ add
19 update← update ∪ add

20 end
21 end
22 end
23 return X

all the dependencies A → B such that x is contained in A. Then, is selects
all dependencies A → B such that A ⊆ X to be processed in the loop in
lines 12− 15.

The most noticeable and relevant operation of the algorithm is performed
in line 11, where it selects all the dependencies A → B such that A ⊆ X.
We can check that there is no test in WildClosure algorithm in order to
process a dependency: line 12 is a loop over all the dependencies in Σ \ Σ1

without any conditional, unlike line 5 in Closure and line 16 in LinClosure.
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This also means that, at each loop between lines 9 and 17, WildClosure
algorithm computes ΠΣ(X). We will see in Section 0.5.3 that, as in the case
of LinClosure, this implies some relevant consequences.

Regarding the complexity of the algorithm, the author underlines in [30]
that:

Algorithm 1 [Wild Closure] has complexity O(|Σ||U|2), which
is actually the same as the complexity of Algorithm 0 [Closure].
Yet in practice Algorithm 1 [Wild Closure] takes a fraction of the
time of Algorithm 0 [Closure] and also of LinClosure. Philosophy:
Doing few set operations with big sets is better than doing many
set operations with small sets.

This apparent paradox between the asymptotic complexity of an algo-
rithm and its real performance is of interest and will be more deeply discussed
in Section 0.6.

0.4 Three Bases of Dependencies
In this section we briefly present three bases which will be processed by the
three algorithms explained in Section 0.3. Here we consider two direct bases,
namely the Canonical-Direct Unit Basis and the D-basis, and one minimal
basis, namely the Duquenne-Guigues Basis.

0.4.1 The Canonical-Direct Unit Basis

The Canonical-Direct Unit Basis is deeply studied in [12] where different
equivalent characterizations are examined. This basis can be characterized
as follows:

1. All the dependencies in Σ must have one single attribute in the right-
hand side (“unit basis”).

2. Σ is left-reduced.

A dependency X → y is left-reduced if, for all Xi ⊆ X, the dependen-
cies Xi → y do not hold. Stated differently, all the left-hand sides of
the dependencies lying in Σ are minimal.
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Function WildClosure(X,Σ)
Input : A set of attributes X ⊆ U and a set of implications Σ
Output: closureΣ(X)

1 forall m ∈ U do // Preparation
2 forall A→ B ∈ Σ do
3 if m ∈ A then
4 list[m] = list[m] ∪ {A→ B }
5 end
6 end
7 end

8 stable← false
9 while not stable do // Outer loop

10 stable← true
11 Σ1 ←

⋃
m∈U\X list[m]

12 forall A→ B ∈ Σ \ Σ1 do // Inner loop / deps
13 X ← X ∪B
14 stable← false

15 end
16 Σ← Σ1

17 end
18 return X

The Canonical-Direct Unit Basis may contain some redundancy. For
example, while the basis Σ = { a → b, b → c, a → c } is left-reduced, the
dependency a → c is redundant because Σ+ = (Σ \ { a → c })+. The
Canonical-Direct Unit Basis is not necessarily minimal, but it is direct (as
per Definition 0.2.8).

0.4.2 The D-basis

The D-basis is introduced in [3] as a subset of the Canonical-Direct Unit
Basis. Actually, this basis can be constructed by removing some dependencies
from a Canonical-Direct Unit Basis. The formal definition of a D-basis is
based on two properties of a cover, namely (i) the proper cover of an attribute
x ∈ U , and (ii) the minimality of a cover. The definitions used hereafter in
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this subsection are borrowed from [22].
Let (M,φ) be a closure system, which in our case corresponds to (U , closureΣ).

Let us introduce the operator φ∗(X) =
⋃

x∈X φ(x).
Actually, the φ∗(X) operator joins all the closures of elements x ∈ X. It

can be checked that φ∗(X) is a closure operator and that φ∗(X) ⊆ φ(X),
deriving from the fact that a closure operator is increasing.

Definition 0.4.1 A set X ⊆ U is a proper cover of x ∈ U if x ∈ φ(X) \
φ∗(X).

Definition 0.4.1 allows to define a minimality relation between all proper
covers of x ∈ U .

Definition 0.4.2 A proper cover Y for x is minimal if for any other proper
cover Z for x, Z ⊆ φ∗(Y ) implies Y ⊆ Z.

Based on this definition of minimality, a D-basis can be defined as follows:

Definition 0.4.3 A D-basis is formed by the following two sets of dependen-
cies:

1. { y → x | x ∈ φ(y) \ y and y ∈ U },

2. {X → y | X is a minimal proper cover for x }.

Is the D-basis a direct basis? The authors write in [3]: While the D-basis
is not direct in this meaning of this term [this refers to Definition 0.2.8], the
closures can still be computed in a single iteration of the basis, provided the
basis was put in a specific order prior to computation .

In particular, this is why the D-basis is called “ordered direct implica-
tion basis”. Contrasting the Canonical-Direct Unit Basis, here the order is
relevant (see for example [31]).

0.4.3 The Duquenne-Guigues Basis

The Duquenne-Guigues Basis [19, 18], also called the Canonical Basis in the
FCA community, is the basis relying on pseudo-closed sets [18, 17]. This
basis is also presented in [24], where it is called the Minimum Cover. Below
we first recall the definition of a pseudo-closed set of attributes and then the
definition of the Duquenne-Guigues Basis.
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Definition 0.4.4 Let Σ be a set of dependencies, and U the related set of
attributes. X ⊆ U is pseudo-closed if:

1. X ̸= closureΣ(X), i.e., X is not closed.

2. If Y ⊂ X is a proper subset of X and is pseudo-closed, then closureΣ(Y ) ⊆
X.

Definition 0.4.5 The Duquenne-Guigues Basis of a set of dependencies
Σ is defined as:

{X → closureΣ(X) | X ⊆ U and X pseudo-closed }

The Duquenne-Guigues Basis is not direct, but it is minimal and non-
redundant.

0.5 Impact of a Direct Basis on the Three Al-
gorithms

In this section we discuss the impact of a direct basis on the three algo-
rithms computing a closure presented in Section 0.3. By impact we mean
the possibility of improving the performance of those algorithms by taking
advantage of the fact that a basis is direct. We explain, for each algorithm,
what changes can be performed depending on Σ being a Canonical-Direct
Unit Basis or a D-basis.

The discussion in this section is centered about the cases in which we can
safely perform one single outer pass in the three previous algorithms. In the
following Subsection 0.5.1, we discuss how two different kinds of direct bases
appeared (see Definition 0.2.8), and the possible improvements in the three
algorithms. In principle, a direct base contains enough information to ensure
that one single pass is needed for computing a closure. Then the idea is to
ensure that the outer loop of all three algorithms is performed just once. and
prevent it from performing a second pass that would not modify the closure
already calculated. One could argue that this potential improvement is not
necessary since the basis is direct and at most two passes of the outer loop
are necessary: one to effectively compute closureΣ(X) and a second pass to
check that no more dependencies are needed to be processed. This is true,
but yet, we find relevant to avoid this second loop in all cases, whenever
possible.
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0.5.1 Impact on Closure

How can we optimize Closure when the input is a Canonical-Direct Unit
Basis? We present the algorithm Optimized Closure:
Function OptimizedClosure(X,Σ)
Input : A set of attributes X ⊆ U and a Canonical-Direct Unit

Basis Σ
Output: closureΣ(X)

1 result← ∅
2 forall A→ B ∈ Σ do
3 if A ⊆ X then
4 result← result ∪B
5 Σ← Σ \ {A→ B }
6 end
7 end
8 return X ∪ result

This algorithm differs from Closure in two things: (1) it only performs
one pass over Σ, and this is why the outer loop has been removed, and (2) it
accumulates the result in the variable result, and it does not add anything
to X every time a dependency is processed. This last step is necessary in
order to prevent the processing of unnecessary dependencies, as the following
simple example shows:

Example 0.5.1 Let us suppose that we have the following Canonical-Direct
Unit Basis: Σ = { a→ b, b→ c, a→ c }. If we want to compute closureΣ(a),
algorithm Closure would first start with X = a. Then, in line 6 it would
execute X = X ∪ b (because of a → b), thus X = ab. Because of b → c it
would add c to X, and, finally, because of a → c it would also add c to X.
This means that Closure has used all dependencies in Σ.

However, Optimized Closure would also start with X = a, but then, it
would process a → b and accumulate b to the variable result, it would not
process b → c and, finally, it would process a → c and add c to result.
Finally, it would return X ∪ result = abc = clo(a), but only processing 2
dependencies instead of 3.

It is straightforward to check that the loop of Optimized Closure between
lines 2 and 7 computes result =

⋃
{B | A→ B ∈ Σ and A ⊆ X }, and that
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in line 8 X ∪
⋃
{B | A → B ∈ Σ and A ⊆ X } is returned, which is the

definition of a direct basis as per Definition 0.2.8.
Does Optimized Closure compute correctly closureΣ if Σ is a D-basis?

The answer is no and we present a counterexample.

Example 0.5.2 Let us suppose that we have the following reduced and clar-
ified formal context:

K a b c d
o1 × ×
o2 × ×
o3 ×
o4 ×

The D-basis for this context is: Σ = { d→ c, bc→ a, ad→ b, ab→ c, bc→
d, ab → d }. defined on the set of attributes U = { a, b, c, d }. Let us suppose
that we want to compute closureΣ(bd) with Optimized Closure. The algorithm
will end in line 7 with result = { a, b, c }, which is not the right result. This is
because the variable X is not updated every time the test in line 3 is true. In
fact, this disadvantage appears also when we try to improve LinClosure and
WildClosure, and it does not appear when processing the Canonical-Direct
Unit Basis because the latter also contains the dependency bd→ a.

Therefore, we cannot use Optimized Closure when Σ is a D-basis.
However, according to [3]: In contrast [to the Duquenne-Guigues Basis ],
the computation of the closure of any input set, by the D-basis or canonical
direct unit basis [Canonical-Direct Unit Basis ], is done simply in one loop
of this algorithm [Closure ]. This means that Closure can be optimized not
by performing the two improvements implemented in Optimized Closure but
just the first one: ensuring that only one pass of Σ is performed. We do
this by simply adding the line stable← true between lines 10 and 11 in the
original Closure algorithm.

0.5.2 Impact on LinClosure

Can we apply the same two optimizations implemented in Optimized Closure
to LinClosure? Compared to Closure, the outer loop of LinClosure scans not
per dependency but per attribute: once the left-hand side of a dependency is
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checked as a subset of X, then the right-hand side is added to closureΣ(X).
This means that performing just one single outer pass may not yield the
correct computation of closureΣ. But the second improvement, i.e., not ac-
cumulating the result in a variable different from X in the inner loop, may
be implemented, as we will show it here after. Recall that one outer loop
of Closure is equivalent to the computing of Πi

Σ(X), i.e., when Σ is a direct
base, the computing may stop after one outer loop. By contrast, this is not
the case in LinClosure, because at the end of the outer loop (line 22), the
computing of Πi

Σ(X) may not be finished. We do this by removing A way
to speed up LinClosure when Σ is a direct basis is to remove line 19, i.e.,
update ← update ∪ add. The idea is, when Σ is a Canonical-Direct Unit
Basis, to ensure that only those dependencies A→ B such that A ⊆ X test
positive in line 16, and the removal of line 19 ensures this –as we will see–
and prevents to potentially process dependencies whose left-hand side are
not included in X but are included in closureΣ(X). Actually line 19 adds
attributes to variable update that belong to some right-hand sides of depen-
dencies processed in lines 16 to 20 that are not in X (line 17). But when Σ is
a Canonical-Direct Unit Basis, only the dependencies whose left-hand side is
contained in X should be processed, i.e., X

⋃
{B | A ⊆ X and A→ B ∈ Σ },

but not the dependencies lying in X ∪ Πi
Σ.

We now prove that the removal of line 19 in LinClosure when Σ is a
Canonical-Direct Unit Basis effectively computes closureΣ(X).

Proposition 0.5.1 If LinClosure is modified by removing line 19 and if
Σ is a Canonical-Direct Unit Basis, then LinClosure effectively computes
closureΣ(X).

Proof 0.5.1 We should ensure that the right-hand sides of all the dependen-
cies whose left-hand side is contained in X are added to closureΣ(X).

Firstly, we check that all dependencies whose left-hand side is a subset of
X are processed in lines 16 to 20. Let us consider a dependency A → B in
Σ such that A ⊆ X. The variable update contains all the attributes of X
as indicated in line 10. In line 12 and 13 an attribute is picked in update
(i.e., X) and then removed from update. It should be noticed that update
is modified only in line 13 since line 19 is supposed to be removed. The
outer loop in lines 11− 22 ensures that all the attributes in update (X) are
processed one by one at each loop. In the inner loop, lines 14−21, LinClosure
marks all dependencies whose left-hand side contains at least one attribute
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in update (line 15). Since all attributes in X are processed in the outer loop
and since A ⊆ X, this means that count[A → B] goes necessarily to 0, and
therefore, line 17 is executed, i.e., the right-hand side of A→ B is added to
closureΣ(X).

At the end of the algorithm, variable X contains X ∪
⋃
{B | A ⊆

X and A → B ∈ Σ }. Since Σ is a Canonical-Direct Unit Basis, Defini-
tion 0.2.8 concludes this proof.

However, if Σ is a D-basis, then, LinClosure may not yield a correct result,
as shown in the next counterexample.

Example 0.5.3 We continue with Example 0.5.2, where the D-basis Σ =
{ d → c, bc → a, ad → b, ab → c, bc → d, ab → d }. The computation of
closureΣ(bd) goes as follows: in line 12, m = b, and in the first pass of the
inner loop (lines 14− 21) the counters of bc→ a, ab→ c, bc→ d and ab→ d
are decremented to 1, but the test in line 16 is negative in all these cases. In
the second loop of the outer loop we have that m = d, and in the inner loop
the counter of d→ c is decremented to 0, which means that the attribute c is
added to the variable update –recall that line 19 is assumed to be removed–
and the counter of ad→ b is decremented to 1. The returned value would be,
then, abc, which is not the correct answer for closureΣ(bd).

This means that we can remove line 19 from LinClosure when Σ is a
Canonical-Direct Unit Basis, but this is not possible when Σ is a D-
basis.

0.5.3 Impact on the WildClosure Algorithm

The structures of LinClosure and WildClosure are very similar. The draw-
back that WildClosure tries to solve w.r.t. LinClosure is to ensure that at
each pass of the outer loop all the dependencies A → B such that A ⊆ X
are directly processed, i.e., it is not necessary to perform the test line 16 in
LinClosure or the containment test line 5 in Closure.

As previously, we want to ensure that WildClosure algorithm performs
only one single pass of the outer loop. Contrasting LinClosure, the outer
loop in WildClosure is equivalent to the outer loop of Closure, making things
easier. Then the improvement consists in adding the instruction stable ←
true between lines 16 and 17.
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Proposition 0.5.2 If the instruction stable ← true is added between lines
16 and 17 in WildClosure algorithm and if Σ is a Canonical-Direct Unit Ba-
sis, then, WildClosure computes closureΣ(X).

Proof 0.5.2 The key line of WildClosure algorithm is line 11, where are
selected all the dependencies whose left-hand side contains an attribute not
present in X. Actually, if there is an attribute a ∈ A in A → B such that
a /∈ X, then it is impossible that A ⊆ X. Therefore, line 11 of WildClosure
ensures that all the dependencies used in the inner loop in lines 12− 15 are
such that {B | A ⊆ X and A → B ∈ Σ }. Consequently, the right-hand
sides of these dependencies are added to X in line 13 and thus WildClosure
algorithm computes X ∪

⋃
{B | A ⊆ X and A → B ∈ Σ }. Since Σ is

assumed to be a Canonical-Direct Unit Basis, Definition 0.2.8 concludes this
proof.

The answer to the question “what happens if the base of dependencies is a
D-basis?” is again negative as in the case of LinClosure. The counterexample
presented for Closure and LinClosure can be reused here.

Example 0.5.4 Let us consider the same set of dependencies as in Exam-
ple 0.5.2, i.e., Σ = { d→ c, bc→ a, ad→ b, ab→ c, bc→ d, ab→ d }, and let
us compute closureΣ(bd) with WildClosure algorithm.

Let us compute closureΣ(bd), which is abcd, assuming that only one pass
of the outer loop is necessary. In line 11, Σ1 contains the following depen-
dencies: Σ1 = { bc → a, ad → b, ab → c, bc → d, ab → d } implying that
Σ \ Σ1 = { d → c }. Then, at the end of the first outer loop, it comes that
X = { b, c, d } ≠ closureΣ(X) = { a, b, c, d }.

As in the case of LinClosure, we can improve WildClosure if Σ is a
Canonical-Direct Unit Basis, but it is not possible if Σ is a D-basis.

0.6 Experiments
In this section, we first explain in Section 0.6.1 the previous experiments re-
lated to the comparison of the different bases and algorithms used to compute
closureΣ. In Section 0.6.2 we make clear the goals of our experiments and how
they generalize that previous work. In Sections 0.6.3 and 0.6.4 we present
the analyzed datasets and some technicalities. Finally, in Section 0.6.5 and
the followings we show and comment the obtained results.
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0.6.1 Experiments: Previous Work

Although many papers and textbooks discuss both Closure and LinClosure
algorithms, we were not able to find much work devoted to the comparison of
the evaluation of their performance. We guess that this is related to the con-
sensus stating that LinClosure being a linear and Closure being a quadratic
algorithm, this implies that the former is preferable in all cases. Some papers
compare the performance of both algorithms indirectly, as in [15], where the
authors compare different algorithms for eliminating redundancy in sets of
functional dependencies with different algorithms combining both Closure
and LinClosure. We have also realized that although there are alternatives
to the three algorithms that we compare here, they have not managed to
become as popular as Closure and, in fact, we also should say that Wild-
Closure algorithm has not become a popular alternative. Other alternatives
computing closureΣ are proposed in [28] (see Algorithm 3.2 that is based
on an attribute-fd graph), and in [4]. In the latter an original algorithm is
based on a set of axioms different of Armstrong’s. Authors also performed an
empirical comparison of their approach which outperforms LinClosure w.r.t.
computation time by a significant factor in the majority of cases.

In the FCA community there are many different papers that are related
indirectly to the computation of closureΣ and, hence, to the performance
of Closure, LinClosure and WildClosure Algorithms. These papers mostly
deal with the computation of the Duquenne-Guigues Basis with Closure, or
improved versions, e.g., [20], [21], [17], and [23].

Finally, two other papers have directly tested and compared the three
algorithms dealing with the computation of closureΣ using different bases,
namely [10] and [3]. Below we review the experiments performed in these
two papers. as they are close to the present experiments.

The first set of experiments in [10] compares the performance of Clo-
sure, LinClosure and WildClosure for the computation of closureΣ with the
Duquenne-Guigues Basis. The results show that Algorithm 1 [Closure] was
the fastest and Algorithm 2 [LinClosure] was the slowest, which could be
explained by the cost of the initialization step of LinClosure. WildClosure
ranks between Closure and LinClosure considering both synthetic and real
datasets.

Two different data sources are used: random formal contexts and real
datasets from the UCI repository 1. In both cases, they extract the Duquenne-

1https://archive.ics.uci.edu/
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Guigues Basis, which is used as an input to compute closureΣ with all three
algorithms. According to the authors, the results show that Algorithm 1 [Clo-
sure ] was the fastest and Algorithm 2 [LinClosure ] was the slowest, even
though it has the best asymptotic complexity. WildClosure ranks between
Closure and LinClosure in both synthetic and real datasets. The authors
explain that the reason why Closure outperforms LinClosure may be partly
explained by the large overhead of the initialization step.

In another set of experiments, the authors fix a given number of depen-
dencies (1000) and compute closureΣ(X) with random X, where the size of
the set of attributes varies from 5, 000 to 100, 000. In this case again, the
execution time of Closure remains practically constant w.r.t. an increasing
number of attributes, whereas the time grows linearly in both LinClosure
and WildClosure. The authors argue that [T]he reason is that Algorithm 1
[Closure ] is quadratic in the number of implications, which is constant in
this experiment.

Here a comment is of order: the asymptotic complexity of Closure is
quadratic w.r.t. the size of Σ, but also is multiplied by the size of the attribute
set U (see [8] Section 4.1 for a more detailed explanation). For instance, in
[17] this complexity is min(|U| × |Σ|, |Σ|2).

In [3], authors perform two types of experiments. The first one consists
in testing the performance of Closure, forward chaining algorithm –an algo-
rithm used in Logics to check the satisfiability of Horn formulas [16]–, and
WildClosure. They generate different D-basis including 5 to 8 attributes, and
compare the execution time of each algorithm. It appears that Closure out-
performed WildClosure in all these tests with a small number of attributes,
but the results also show that the difference in performance between both al-
gorithms decreased when the number of attributes increases. One important
remark is that the authors ensured that Closure performed only one single
pass of Σ. In another experiment authors generate different random closure
systems and then compute the Duquenne-Guigues Basis and the D-basis,
and compare the performance of both bases when computing closureΣ using
Closure.

The results show that D-basis checks less dependencies than Duquenne-
Guigues Basis on the average in experiments where the number of attributes
is 6 and 7.
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0.6.2 Goals of the Present Experiments

We take as a departure point the experiments performed in both [10] and [3].
Due to their specific objectives, these papers do not perform a full comparison
of the three algorithms w.r.t. the three bases, about execution time and
number of processed dependencies. In addition, from our standpoint, there
is a metric that is relevant and that should be taken into account, namely,
the cost of the attribute operations. Thus, this paper aims at generalizing
these former experiments and proposes the following novelties:

1. Comparing the performance of all three possible combinations of the
three algorithms computing closureΣ, i.e., Closure, LinClosure and
WildClosure, with the three different bases, i.e., Canonical-Direct Unit
Basis, D-basis and Duquenne-Guigues Basis.

2. Comparing the three involved algorithms when Σ is a direct basis w.r.t.
the improvements discussed in Section 0.5.

3. Analyzing the results w.r.t. different metrics, i.e., execution time, num-
ber for processed dependencies, and number of attribute operations.

4. Performing experiments over a large set of real data, and as well syn-
thetic datasets.

0.6.3 Datasets

We divide the datasets that are analyzed into three different categories.
Real datasets (real). We have analyzed a group of 19 datasets from

the UC Irvine Machine Learning Repository 2. These datasets (Table 1) have
been processed in order to obtain, for each of them, a reduced and clarified
formal context. For all these datasets, we have computed the closure of all
possible sets of attributes, i.e., 2|U| sets of attributes.

Big Real Datasets (big). From the same UCI repository we have
analyzed 5 datasets, also processed into reduced and clarified formal con-
texts (Table 2). The difference with the previous datasets relies on the large
number of attributes and of objects. We have not been able to compute the
closure of all possible sets of attributes. Instead, for each dataset we have
computed the closure of a range of attribute sets, as explained in .1.

2https://archive.ics.uci.edu/

20



Dataset |G| |M | |Σcdb| |ΣdBasis| |ΣDG| Dataset |G| |M | |Σcdb| |ΣdBasis| |ΣDG|
abalone 240 9 137 137 100 house-votes-84 25523 17 53 53 53
adult 9553 14 46 46 46 letter 119607 17 61 61 61
breast-cancer-wisconsin 837 11 46 46 43 mushroom 19655 22 3583 3583 1721
bridges 643 12 126 125 88 page-blocks 202 11 135 135 69
congress 25523 17 53 53 53 pen-recognition 22126 17 30463 30463 15885
echocardiogram 291 12 526 526 269 tic-tac-toe 1002 10 18 18 18
ecoli 71 8 46 46 46 waveform 592 22 24002 24002 24002
flights 20 500k 281 12 69 51 49 wine 113 14 1374 1374 1106
glass 104 10 160 160 120 zoo 1119 18 284 283 163
hepatitis 6071 20 8250 8250 2730

Table 1: Group of datasets real from the UCI Repository with the number
of objects |G| and attributes |M | of their reduced and clarified formal con-
texts. |Σcdb|: size of the Canonical-Direct Unit Basis. |ΣdBasis|: size of the
D-basis. |ΣDG|: size of the Duquenne-Guigues Basis.

Dataset |G| |M | |Σcdb| |ΣdBasis| |ΣDG| Dataset |G| |M | |Σcdb| |ΣdBasis| |ΣDG|
automobile 2767 26 4176 4040 1848 flight 1856 19 2473 1533 889
fd-reduced-1k 26 26 7483 5551 5551 soybean 826 21 4606 3752 585
fd-reduced-30 349 26 54363 35445 35445

Table 2: Big datasets from the UCI Repository with the number of objects
|G| and attributes |M | of their reduced and clarified formal contexts. |Σcdb|:
size of the Canonical-Direct Unit Basis. |ΣdBasis|: size of the D-basis. |ΣDG|:
size of the Duquenne-Guigues Basis.

Synthetic Datasets (synthetic). We have also analyzed a group of
synthetic formal contexts that have been computed with the combination of
all possible values of the parameters shown in Table 3.

Attribute Range Step
Objects 8 - 14 1
Attributes 10 - 26 1
Frequency 0.2 - 0.8 0.1

Table 3: Parameters for the computation of synthetic. Frequency: pa-
rameter of the Bernouilli distribution used to compute 0’s and 1’s.

Afterwards, all formal contexts have been clarified and reduced, which
could, eventually, imply a reduction in their dimensions. For all these datasets,
we have computed the closure of all possible sets of attributes, i.e., 2|U| sets
of attributes.
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0.6.4 Methodology

Closure LinClosure WildClosure
Canonical Direct Optimized Closure Improved by removing Improved by adding

line 19 stable ← true
D-basis Improved by ensuring No changes No changes

one outer loop
DG-Basis No changes No changes No changes

Table 4: Combinations of basis and algorithms used in the experiments.

We have used a custom algorithm in order to compute the Canonical-
Direct Unit Basis and the Duquenne-Guigues Basis for each dataset. The
computation of the D-basis has been performed with the npar/dbasis algo-
rithm 3. The combinations of bases plus algorithms that were tested are given
in Table 4. Finally, we added the following counters to all the algorithms
(which are also shown in the pseudocodes):

1. deps counts the number of times a dependency is processed, i.e., is used
to compute closureΣ(X) (line 6 in Closure, line 16 in LinClosure). In
WildClosure this counter is equivalent to inner.

2. attributes counts the number of attributes involved in the different
computations performed in each algorithm. In Closure this is the con-
cern of lines 5 and 6, in LinClosure lines 17, 18 and 19, and in WildClo-
sure line 13. In these cases we exactly count the number of attributes
lying in each set involved.

3. time counts the number of milliseconds spent in the computation of
closureΣ(X). It should be noticed that this counter only counts the
milliseconds strictly used for computing closureΣ each time this func-
tion is called.

We have not counted the preparation part of LinClosure in lines 1 − 9,
nor the preparation part in WildClosure in lines 2 − 7 (which needs to be
performed just once). In Closure, line 8, i.e., Σ← Σ \ {A→ B }, in which a
dependency is removed after it has been used, has been implemented with a
bitvector indicating whether a dependency has been used or not. Obviously,

3https://gitlab.com/npar/dbasis

22

https://gitlab.com/npar/dbasis


Figure 1: Comparison of the performance of each algorithm w.r.t. their
optimized versions when processing the Canonical-Direct Unit Basis in real
datasets. The values have been normalized to the interval (0,100).

after each call to Closure this vector needs to be reset to true in all of its
values. This has not been counted in the execution time of Closure.

All these decisions were taken in order to be accurate on the counting of
execution time for both algorithms.

All tests were executed in the cluster facilities at the High Performance
Computing at the UPC 4, which ensures that each execution is performed
in an isolated environment with a dedicated CPU and memory. For each
dataset, a single program has computed the closures of all the combinations
<Basis, Algorithm> analyzed here, providing a guarantee that all combina-
tions are computed in the same conditions.

0.6.5 Results

First of all, we consider the following question: how relevant are the im-
provements performed on Optimized Closure, LinClosure and WildClosure?
Figures 1, 2 and 3 show that the difference between Closure and Optimized
Closure is salient, with a difference of different orders of magnitude in all
cases.

In the rest of the experiments, for each group of datasets (real, big and
synthetic), we have summed up all the results of each metric, i.e., pro-
cessed dependencies, processed attributes, and running time, and for each

4https://rdlab.cs.upc.edu/hpc/
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Figure 2: Comparison of the performance of each algorithm w.r.t. their
optimized versions when processing the Canonical-Direct Unit Basis in big
datasets. The values have been normalized to the interval (0,100).

Figure 3: Comparison of the performance of each algorithm w.r.t. their op-
timized versions when processing the Canonical-Direct Unit Basis in syn-
thetic datasets. The values have been normalized to the interval (0,100).

combination <Basis, Algorithm>, and we have plotted the results in Fig-
ures 4, 6, and 8.

Let us explain the contents of these plots in assuming that we are cal-
culating closureΣ with one combination <Basis, Algorithm>, and that we
are processing real. For each dataset in real = {D1, D2, . . . , D19 }, we
computed the closure closureΣ(X) for all X ∈ 2U , and we summed all the
processed dependencies, i.e., deps(Di) =

∑
X∈2U deps(closureΣ(X)), where

deps(closureΣ(X)) denotes the number of processed dependencies when com-
puting closureΣ(X). Obviously, here Σ is the base of the dependencies that
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hold in Di. Finally, we summed all
∑

Di∈real deps(Di). We did it for all
combinations of basis and algorithm, leading to a grand total for each of the
nine combinations of <Basis, Algorithm>. We normalized these grand totals
to the interval (0, 100) and plotted it.

We computed also the evolution of these metrics w.r.t. the number of
attributes. We grouped all the datasets with the same number of attributes
and computed the average for each metric. We plotted the results in Fig-
ures 5, 7 and 9. Here we only compare the most performing combinations
<Basis, Algorithm> for each basis.

We also computed a ranking table recording how many times each com-
bination <Basis, Algorithm> was the best performer in the computation
of each metric. These results are presented in Tables 5, 6 and 7. In par-
ticular, let us consider Table 5. Each column is a combination of <Basis,
Algorithm>, and each row is one of the computed metrics. For example, the
score of the metric Processed Dependencies (first row) and the first combi-
nation (column <Canonical-Direct Unit Basis,Closure >) is 19. This means
that the combination <Canonical-Direct Unit Basis,Closure > was the best
performer when computing Processed Attributes in 19 real datasets.
Since the total number of datasets in real is 19, each row must sum, at
least, 19, but it may be bigger, since there can be more than one winning
combination.

For the sake of completeness we present all numerical results in different
tables in .2, .3 and .4.

0.6.6 Results on Real Datasets

Firstly, in the whole set real, the average size of the D-basis and the
Duquenne-Guigues Basis w.r.t. the Canonical-Direct Unit Basis are, respec-
tively, 99% and 67%, i.e., the sizes of the Duquenne-Guigues Basis are, on
average, the 67% of the sizes of the Canonical-Direct Unit Basis. In fact,
in six datasets, all three bases have the same size. Secondly, it should be
noticed that all the algorithms computing a Canonical-Direct Unit Basis are
optimized, giving an a priori advantage to combinations involving Canonical-
Direct Unit Basis.

Figure 4 shows the totals for real datasets. Regarding the number
of processed dependencies, we remark that all the combinations involving
the Canonical-Direct Unit Basis clearly benefit from the optimizations per-
formed. On the other hand, the number of processed attributes shows that
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Figure 4: Totals for the analyzed measures for each combination (Base ×
Algorithm) in real datasets. The values have been normalized to the
interval (0,100).

Figure 5: Performance of the best combinations of (Base × Algorithm) for
the analyzed metrics w.r.t. the number of attributes in real datasets. The
values have been normalized to the interval (0,100).

WildClosure is, by far, the less consuming option, followed by LinClosure.
The fact that Closure performs less attribute operations than LinClosure
when processing the D-basis can be explained by the fact that in that partic-
ular case, Closure processes less dependencies than LinClosure. The execu-
tion time also shows that the combinations with WildClosure are the most
performing in all cases. In the rest of the cases, the running time seems to be
more correlated to the processed attributes than to the processed dependen-
cies. This may suggest that the number of attribute operations is a metric
to be considered when explaining the performance of these algorithms.
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Canonical D-Basis DG-basis
Attribute CLO LIN WILD CLO LIN WILD CLO LIN WILD
Processed Dependencies 19 19 19 1 1 1 1 1 1
Processed Attributes 0 0 19 0 0 1 0 0 1
Running Time 0 0 17 0 0 1 0 0 1

Table 5: Best performance in the real datasets for each pair
base+algorithm for the 5 metrics. The total number of databases is 19 (for
each metric there can be more than one minimal combination).

Figure 5 shows that <Canonical-Direct Unit Basis, WildClosure > re-
mains steady for datasets up to 20 attributes, in comparison to the two
other combinations, which, in turn, show a more substantial increase from
20 attributes on.

These results are coherent with Table 5, showing that in most cases,
<Canonical-Direct Unit Basis, WildClosure > is the most performing com-
bination. The only exceptions are three cases for the running time, in which
<D-basis, WildClosure > is the best combination.

0.6.7 Results on Big Datasets

Firstly, we remark that the average sizes of the D-basis and the Duquenne-
Guigues Basis w.r.t. the Canonical-Direct Unit Basis are, respectively, 89%
and 41%. This means that processing with the Duquenne-Guigues Basis may
be more beneficial, while for the D-basis the difference is not so significant.

The results on big are shown in Figure 6. Regarding processed depen-
dencies and running time, the results are similar to the ones explained for
real, with the combination <Canonical-Direct Unit Basis, WildClosure >
being still the best performer. A slight difference appears for processed at-
tributes in the combinations <Canonical-Direct Unit Basis,LinClosure > and
<Canonical-Direct Unit Basis, WildClosure >, where LinClosure outper-
forms WildClosure.

This tendency can also be observed in Table 6, where one combination of
<Duquenne-Guigues Basis,WildClosure > is the most performing. It involves
the dataset soy-bean-small, where the proportion of the size of the Canonical-
Direct Unit Basis versus the Duquenne-Guigues Basis is 12%, i.e., the largest
by far in big.

It should also be noticed that the performance regarding the number of
attributes presented in Figure 7 shows a steady increase of <Canonical-Direct
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Figure 6: Totals for the analyzed measures for each combination (Base × Al-
gorithm) in big datasets. The values have been normalized to the interval
(0,100).

Canonical D-Basis DG-basis
Attribute CLO LIN WILD CLO LIN WILD CLO LIN WILD
Processed Dependencies 4 4 4 0 0 0 1 1 1
Processed Attributes 0 2 2 0 0 0 0 1 0
Running Time 0 0 4 0 0 0 0 0 1

Table 6: Best performance in the big datasets for each pair base+algorithm
for the 5 metrics. The total number of databases is 5 (for each metric there
can be more than one minimal combination).

Figure 7: Performance of the best combinations of (Base × Algorithm) for
the analyzed metrics w.r.t. the number of attributes in big datasets. The
values have been normalized to the interval (0,100).
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Figure 8: Totals for the analyzed measures for each combination (Base ×
Algorithm) in synthetic datasets. The values have been normalized to
the interval (0,100).

Canonical D-Basis DG-basis
Attribute CLO LIN WILD CLO LIN WILD CLO LIN WILD
Processed Dependencies 409 409 409 10 0 0 176 176 176
Processed Attributes 0 0 410 0 0 1 0 0 184
Running Time 0 0 336 0 0 0 0 0 259

Table 7: Best performance in the synthetic datasets for each pair
base+algorithm for the 5 metrics. The total number of databases is 595
(for each metric there can be more than one minimal combination).

Unit Basis,WildClosure > and <Duquenne-Guigues Basis,WildClosure >
w.r.t. the rest of the combinations.

0.6.8 Results on Synthetic Datasets

Here, the average sizes of the D-basis and the Duquenne-Guigues Basis w.r.t.
the Canonical-Direct Unit Basis are, respectively, 77% and 55%. Considering
synthetic, we can check in Figure 8 that the combinations involving the
Duquenne-Guigues Basis and all the algorithms are now, in total, the most
performing in all three metrics. However, in Table 7, the majority of winning
combinations are still related to <Canonical-Direct Unit Basis,WildClosure
>. This indicates that in some cases the combinations with Duquenne-
Guigues Basis outperforms by a large margin those with Canonical-Direct
Unit Basis, and that in the opposite cases the difference is not so large.

One could argue that when the Duquenne-Guigues Basis is substantially
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Figure 9: Performance of the best combinations of (Base× Algorithm) for the
analyzed metrics w.r.t. the number of attributes in synthetic datasets.
The values have been normalized to the interval (0,100).

smaller than a Canonical-Direct Unit Basis, then, it is expected that the
former performs better than the latter. Then the question is in which pro-
portion? When the proportion p, i.e., the size of Canonical-Direct Unit Basis
divided by the size of Duquenne-Guigues Basis, is 8 ≤ p Duquenne-Guigues
Basis outperforms Canonical-Direct Unit Basis in all cases. When 3 ≤ p ≤ 8,
then p only explains around 60% of the cases. Yet, there are cases with an
inferior proportion where the performance of the Duquenne-Guigues Basis is
still better. This suggests that even if this proportion may explain some of
these cases, it is not the only variable to be involved.

Figure 9 shows that for |Σ| ≤ 17 the performance of all combinations is
similar. Afterwards Duquenne-Guigues Basis and Canonical-Direct Unit Ba-
sis have a similar behaviour whereas D-basis performance increases dramati-
cally. We may notice that the growth from |Σ| ≥ 20 seems to be exponential,
while it decays when |Σ| ≥ 26.

0.7 Discussion
We have performed exhaustive experiments over different datasets in order
to answer different questions. The first is: Is it better to use a direct basis or
a a minimal basis to compute closureΣ? In general terms, the results show
that the Canonical-Direct Unit Basis with optimizations is the best option in
real and big, whereas in synthetic a Duquenne-Guigues Basis shows
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the better performance. The variable which better explains this behaviour
is, obviously, the proportion between the size of both basis, but this is not
the only explanation. Here, the fact that the Canonical-Direct Unit Basis
is combined with optimized algorithms is crucial, otherwise the best options
would be in all cases the Duquenne-Guigues Basis. This can be clearly seen in
Figures 1, 2 and 3, where the non-optimized versions would be outperformed
by the combinations with the Duquenne-Guigues Basis. This makes the
Duquenne-Guigues Basis a very valuable alternative to the Canonical-Direct
Unit Basis in different applications. Meanwhile the D-basis was not favored
for two reasons, (i) it could not be computed by improved versions of the
algorithms, and, (ii) the difference in size was not big enough to outperform
any other combination. To sum up, the D-basis did not enjoy the same
benefits of being direct as Canonical-Direct Unit Basis, nor enjoy the benefits
of being smaller as Duquenne-Guigues Basis.

Regarding the algorithms, WildClosure–improved or not– is the most per-
forming (virtually) in all combinations. It can be argued that the fact that
we are using very specific basis may influence this performance, this is, if
instead of using Canonical-Direct Unit Basis, D-basis or Duquenne-Guigues
Basis we were using some other (random?) basis, the outcome would have
been different. We can’t answer this question. Firstly, both LinClosure
and WildClosure have shown the best behavior in terms of the number of
processed dependencies (obviously expected). Secondly, the performance of
LinClosure w.r.t. number of attributes processed is worst than that of Wild-
Closure. This two elements may explain the systematic difference in the
execution time of both algorithms. Actually, this fact validates the comment
of the author of WildClosure which is transcribed at the end of Section 0.3.3.

The classical algorithm Closure is competitive when it is optimized (Op-
timized Closure) or semi-optimized, as when combined with D-basis. For
instance, it shows an overall better running time than LinClosure when pro-
cessing the D-basis and the Duquenne-Guigues Basis.

In fact, as we have previously mentioned, it seems that the execution
time seems to be more correlated to the attribute operations than to the
number of processed dependencies. It also can be argued that the execution
time is very sensitive to the implementation, with which we fully agree. We
have tried to be fair with all algorithms, and implement them using the same
data structures, but it does not mean that our implementation of LinClosure
may not be improved. We only can reason on the evidence provided by our
results, which show that the total number of processed dependencies is the
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same for both LinClosure and WildClosure, and that the divergence seems
to appear in processed attributes.

To sum up, we may remark that, (1) the improvements performed when
processing a Canonical-Direct Unit Basis make the choice of this basis prefer-
able in some instances, but not in all of them, (2) the amount of attribute
operations may be relevant w.r.t. the running time of the algorithm, (3)
the Duquenne-Guigues Basis may be a suitable and efficient alternative to
the Canonical-Direct Unit Basis in some setups, but this needs to be further
investigated, and (4) the peculiar structure of D-basis does not allow to per-
form many improvements, implying that the performance stays far behind
both Canonical-Direct Unit Basis and Duquenne-Guigues Basis.

0.8 Conclusions
The notion of being direct for a cover seems to be foreign to the DB com-
munity, but it is clearly present in lattice theory and in FCA. This dif-
ference somehow parallels that of the most common basis in each commu-
nity: whereas in the DB community all state-of-the-art algorithms mining
functional dependencies are computing the Canonical-Direct Unit Basis, the
Duquenne-Guigues Basis is central in the FCA community. Each basis en-
joys different –and somehow contradictory– properties: the Canonical-Direct
Unit Basis is direct and the Duquenne-Guigues Basis is minimal. In this
paper, we discussed which one of these two properties may be more decisive
when computing closureΣ. We compared the performance of these two bases
in combining three of the most well-known algorithms computing a closure.
To take into account the fact of being direct and to be consistent in the
comparison of the full potential of both bases, we improved these three algo-
rithms when the input is the Canonical-Direct Unit Basis. We also compared
these two bases to the D-basis, which is not minimal and enjoys the property
of being direct.

Our results have shown that the Canonical-Direct Unit Basis may com-
pete with the Duquenne-Guigues Basis thanks to the improvements brought
in to the algorithms computing closureΣ, and that although the number of
processed dependencies has been the de facto standard to discuss, the com-
plexity of these algorithms, the number of operations on attributes appeared
also as a relevant factor to be considered. We also realized that the D-basis
is not an alternative in any case, maybe due to the fact that we were not
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able to find examples where the size of the D-basis was considerably smaller
than the size of the Canonical-Direct Unit Basis.

These results bring up the following questions: (i) can we determine with
precision what are the relevant metrics that may decide when a Duquenne-
Guigues Basis will be more performing that a Canonical-Direct Unit Basis?
We have mentioned that the size is one of them, but this does not explain
all the cases and, (ii) can we explain more precisely the influence of the
operations on attributes in order to understand the actual performance of
all three algorithms? Although this paper tries and partially answers some
of these questions, we still think that the study of the performance of these
bases should continue.
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.1 Computation of Closures for the Big Datasets
For each dataset in Table 2 we have computed the closure with all combi-
nations of a number of attribute sets X ⊆ U with a given frequency (this
is: the probability of having a given attribute in that set is 0.1). The list of
number of sets and frequencies is in Table 8. For instance, this table says
that we have computed 10, 000 sets with a probability 0.1, etc.

Sets 10K 20K 30K 40K 50K 40K 30K 20K 10K
Frequency 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1

Table 8: Number of closures and their frequencies computed for each big
dataset.
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.2 Experiments with Real Datasets

Processed Dependencies Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
abalone 9 137 4,256 4,256 4,256 137 13,376 30,576 30,576 100 22,362 22,362 22,362
adult 14 46 25,600 25,600 25,600 46 27,620 28,556 28,556 46 28,556 28,556 28,556
breast-cancer-wisconsin 11 46 9,760 9,760 9,760 46 13,924 14,532 14,532 43 13,996 13,996 13,996
bridges 12 126 45,184 45,184 45,184 125 130,996 210,090 210,090 88 149,363 149,363 149,363
congress-votes 17 53 5,248 5,248 5,248 53 6,033 6,147 6,147 53 6,147 6,147 6,147
echocardiogram 12 526 220,928 220,928 220,928 526 844,550 1,701,742 1,701,742 269 871,771 871,771 871,771
ecoli 8 46 2,080 2,080 2,080 46 2,906 4,322 4,322 46 4,322 4,322 4,322
flights 20 500k 12 69 45,824 45,824 45,824 51 59,952 73,329 73,329 49 70,825 70,825 70,825
glass 10 160 25,664 25,664 25,664 160 64,899 104,270 104,270 120 79,975 79,975 79,975
hepatitis 20 8250 40,146,301 40,146,301 40,146,301 8250 197,937,704 398,620,818 398,620,818 2730 131,918,652 131,918,652 131,918,652
house-votes-84 17 53 5,248 5,248 5,248 53 6,033 6,147 6,147 53 6,147 6,147 6,147
letter 17 61 2,240 2,240 2,240 61 2,240 2,240 2,240 61 2,240 2,240 2,240
mushroom 22 3583 42,401,713 42,401,713 42,401,713 3583 92,114,537 120,482,269 120,482,269 1721 66,096,065 66,096,065 66,096,065
page-blocks 10 135 15,680 15,680 15,680 135 38,932 72,423 72,423 69 40,037 40,037 40,037
pen-recognition 17 30463 37,626,368 37,626,368 37,626,368 30463 797,945,288 2,161,555,214 2,161,555,214 15885 1,137,152,337 1,137,152,337 1,137,152,337
tic-tac-toe 10 18 72 72 72 18 288 360 360 18 360 360 360
waveform 22 24002 935,838,999 935,838,999 935,838,999 24002 2,967,583,156 4,663,660,606 4,663,660,606 24002 4,663,660,606 4,663,660,606 4,663,660,606
wine 14 1374 3,430,400 3,430,400 3,430,400 1374 11,224,253 22,290,574 22,290,574 1106 17,942,810 17,942,810 17,942,810
zoo 18 284 4,775,936 4,775,936 4,775,936 283 34,160,220 35,243,954 35,243,954 163 21,244,708 21,244,708 21,244,708
Average 14.32 3,654.32 56,033,026.37 56,033,026.37 56,033,026.37 3,653.26 215,904,047.74 389,689,903.63 389,689,903.63 2,453.79 317,858,488.37 317,858,488.37 317,858,488.37

Table 9: Totals of the measure Processed Dependencies for all real
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.

Processed Attributes Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
abalone 9 137 642,670 71,385 35,301 137 792,213 568,872 269,429 100 861,921 410,714 197,705
adult 14 46 9,552,523 518,556 257,284 46 9,691,885 648,524 286,404 46 12,954,265 647,118 288,123
breast-cancer-wisconsin 11 46 939,720 158,555 78,421 46 1,047,207 297,267 126,909 43 1,672,144 258,271 117,285
bridges 12 126 5,545,480 933,384 461,612 125 7,457,890 5,282,520 2,381,510 88 9,347,703 3,668,299 1,668,181
congress-votes 17 53 132,655,295 147,001 73,085 53 132,699,290 176,512 86,601 53 134,617,601 176,512 86,601
echocardiogram 12 526 22,173,693 5,077,471 2,529,480 526 35,159,262 44,913,136 19,958,094 269 32,141,145 21,920,919 10,267,876
ecoli 8 46 90,361 27,272 13,458 46 107,749 67,674 30,366 46 208,737 67,077 30,332
flights 20 500k 12 69 2,873,916 850,186 420,518 51 2,754,047 1,535,590 683,523 49 5,194,400 1,499,148 658,414
glass 10 160 1,471,992 473,734 235,115 160 2,188,987 2,306,507 973,695 120 2,914,050 1,720,244 758,641
hepatitis 20 8250 7,808,101,115 1,575,946,487 787,788,973 8250 12,966,658,256 16,414,801,259 7,874,351,588 2730 6,808,745,482 5,330,144,435 2,564,982,670
house-votes-84 17 53 132,655,295 147,001 73,085 53 132,700,470 176,512 86,601 53 134,617,601 176,512 86,601
letter 17 61 163,021,707 66,277 32,997 61 163,033,940 67,584 32,997 61 163,866,019 67,584 32,997
mushroom 22 3583 14,176,252,115 1,427,400,693 713,497,559 3583 16,140,189,328 4,237,779,900 2,039,463,765 1721 18,063,471,147 2,311,701,537 1,114,924,873
page-blocks 10 135 1,264,898 265,707 131,529 135 1,712,409 1,379,829 655,551 69 1,630,397 752,878 353,967
pen-recognition 17 30463 61,745,162,923 1,253,902,086 626,648,511 30463 84,552,185,155 77,829,875,411 36,491,350,032 15885 85,241,002,493 39,289,014,325 19,195,092,139
tic-tac-toe 10 18 240,192 1,392 682 18 242,872 7,542 3,554 18 246,236 7,542 3,562
waveform 22 24002 90,957,167,084 41,155,276,963 20,576,799,833 24002 164,964,021,905 229,669,366,112 99,926,362,986 24002 224,034,789,490 229,678,147,337 102,585,149,913
wine 14 1374 252,229,902 94,758,079 47,322,596 1374 453,572,029 690,859,413 303,173,233 1106 590,204,163 553,496,891 250,300,845
zoo 18 284 1,116,100,136 135,645,229 67,190,818 283 2,001,499,400 1,305,688,423 594,172,388 163 1,846,038,241 783,835,415 348,561,050
Average 14.32 3,654.32 9,290,954,790.37 2,402,719,339.89 1,201,241,624.05 3,653.26 14,819,353,383.89 17,379,252,557.21 7,750,234,169.79 2,453.79 17,741,290,696.58 14,630,405,934.63 6,635,450,619.74

Table 10: Totals of the measure Processed Attributes for all real
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.
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Running Time Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
abalone 9 137 7.50 2.10 1.54 137 9.46 11.11 4.99 100 10.24 8.19 3.77
adult 14 46 80.58 25.46 20.07 46 84.84 28.81 23.81 46 105.08 29.69 24.10
breast-cancer-wisconsin 11 46 15.76 5.41 4.07 46 16.74 9.00 6.36 43 23.94 9.04 6.48
bridges 12 126 62.48 19.14 13.68 125 79.11 80.36 40.06 88 92.24 59.16 30.66
congress-votes 17 53 800.03 330.94 202.08 53 806.35 330.22 204.36 53 810.24 326.76 201.30
echocardiogram 12 526 378.84 111.64 76.64 526 537.54 853.83 359.86 269 462.87 444.84 193.56
ecoli 8 46 2.93 1.01 0.70 46 2.58 2.46 1.41 46 4.41 2.56 1.44
flights 20 500k 12 69 49.48 41.95 13.91 51 80.62 40.48 25.30 49 74.47 48.15 24.50
glass 10 160 34.31 17.36 8.02 160 87.46 78.18 73.43 120 75.03 51.48 38.99
hepatitis 20 8250 37,390.10 17,917.10 9,891.58 8250 57,813.80 109,878.00 47,157.80 2730 30,538.70 36,709.70 16,425.80
house-votes-84 17 53 895.67 383.03 214.75 53 820.83 421.79 247.84 53 862.46 509.13 218.58
letter 17 61 901.40 453.94 257.06 61 839.77 424.34 218.53 61 873.96 485.88 233.40
mushroom 22 3583 69,862.80 27,857.80 12,572.50 3583 75,676.00 55,107.20 34,264.20 1721 81,469.60 27,773.50 17,165.90
page-blocks 10 135 25.94 9.07 6.00 135 32.00 38.73 19.78 69 30.94 20.92 10.98
pen-recognition 17 30463 302,374.00 105,994.00 53,093.10 30463 399,765.00 647,315.00 267,251.00 15885 387,928.00 336,843.00 145,346.00
tic-tac-toe 10 18 4.49 1.57 1.26 18 4.64 1.87 1.34 18 4.65 1.76 1.29
waveform 22 24002 483,737.00 208,834.00 132,619.00 24002 742,195.00 1,217,360.00 556,247.00 24002 950,059.00 1,140,670.00 495,799.00
wine 14 1374 2,139.31 776.18 507.31 1374 3,139.92 5,667.09 2,386.24 1106 3,758.11 4,482.14 1,863.88
zoo 18 284 6,860.40 2,059.09 1,335.50 283 10,468.90 10,071.40 5,032.12 163 9,770.72 6,194.12 3,163.35
Average 14.32 3,654.32 47,664.37 19,202.15 11,096.78 3,653.26 68,024.24 107,774.73 48,082.39 2,453.79 77,208.14 81,824.74 35,829.10

Table 11: Totals of the measure Running Time for all real datasets.
In bold are the minimal values. The last line contains the average of each
measure: the sum of all values for each pair (Base × Algorithm) divided by
the number of datasets.
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DB Base Algorithm deps attrib outer inner time (ms) |Σ| |U|

tic-tac-toe

Canonical
Closure (op) 72 240,192 1,023 18,414 4.49 18 10
Linclosure (op) 72 1,392 5,120 73,728 1.57 18 10
WildsClosure (op) 72 682 1,023 72 1.26 18 10

D-Basis
Closure (op) 288 242,872 1,023 18,414 4.64 18 10
Linclosure 360 7,542 5,148 74,016 1.87 18 10
WildsClosure 360 3,554 1,061 360 1.34 18 10

DG-Basis
Closure (op) 360 246,236 1,059 18,558 4.65 18 10
Linclosure 360 7,542 5,148 74,016 1.76 18 10
WildsClosure 360 3,562 1,061 360 1.29 18 10

ecoli

Canonical
Closure (op) 2,080 90,361 255 11,730 2.93 46 8
Linclosure (op) 2,080 27,272 1,024 15,232 1.01 46 8
WildsClosure (op) 2,080 13,458 255 2,080 0.70 46 8

D-Basis
Closure (op) 2,906 107,749 255 11,730 2.58 46 8
Linclosure 4,322 67,674 1,380 18,060 2.46 46 8
WildsClosure 4,322 30,366 613 4,322 1.41 46 8

DG-Basis
Closure (op) 4,322 208,737 587 20,876 4.41 46 8
Linclosure 4,322 67,077 1,380 25,708 2.56 46 8
WildsClosure 4,322 30,332 683 4,322 1.44 46 8

adult

Canonical
Closure (op) 25,600 9,552,523 16,383 753,618 80.58 46 14
Linclosure (op) 25,600 518,556 114,688 2,007,040 25.46 46 14
WildsClosure (op) 25,600 257,284 16,383 25,600 20.07 46 14

D-Basis
Closure (op) 27,620 9,691,885 16,383 753,618 84.84 46 14
Linclosure 28,556 648,524 118,676 2,024,544 28.81 46 14
WildsClosure 28,556 286,404 22,092 28,556 23.81 46 14

DG-Basis
Closure (op) 28,556 12,954,265 21,817 965,088 105.08 46 14
Linclosure 28,556 647,118 118,676 2,094,554 29.69 46 14
WildsClosure 28,556 288,123 22,342 28,556 24.10 46 14

congress-votes

Canonical
Closure (op) 5,248 132,655,295 131,071 6,946,763 800.03 53 17
Linclosure (op) 5,248 147,001 1,114,112 36,765,696 330.94 53 17
WildsClosure (op) 5,248 73,085 131,071 5,248 202.08 53 17

D-Basis
Closure (op) 6,033 132,699,290 131,071 6,946,763 806.35 53 17
Linclosure 6,147 176,512 1,114,943 36,775,066 330.22 53 17
WildsClosure 6,147 86,601 132,809 6,147 204.36 53 17

DG-Basis
Closure (op) 6,147 134,617,601 132,717 7,027,343 810.24 53 17
Linclosure 6,147 176,512 1,114,943 36,775,066 326.76 53 17
WildsClosure 6,147 86,601 132,809 6,147 201.30 53 17

house-votes-84

Canonical
Closure (op) 5,248 132,655,295 131,071 6,946,763 895.67 53 17
Linclosure (op) 5,248 147,001 1,114,112 36,765,696 383.03 53 17
WildsClosure (op) 5,248 73,085 131,071 5,248 214.75 53 17

D-Basis
Closure (op) 6,033 132,700,470 131,071 6,946,763 820.83 53 17
Linclosure 6,147 176,512 1,114,943 36,775,066 421.79 53 17
WildsClosure 6,147 86,601 132,809 6,147 247.84 53 17

DG-Basis
Closure (op) 6,147 134,617,601 132,717 7,027,343 862.46 53 17
Linclosure 6,147 176,512 1,114,943 36,775,066 509.13 53 17
WildsClosure 6,147 86,601 132,809 6,147 218.58 53 17

letter

Canonical
Closure (op) 2,240 163,021,707 131,071 7,995,331 901.40 61 17
Linclosure (op) 2,240 66,277 1,114,112 47,513,600 453.94 61 17
WildsClosure (op) 2,240 32,997 131,071 2,240 257.06 61 17

D-Basis
Closure (op) 2,240 163,033,940 131,071 7,995,331 839.77 61 17
Linclosure 2,240 67,584 1,114,395 47,513,600 424.34 61 17
WildsClosure 2,240 32,997 131,637 2,240 218.53 61 17

DG-Basis
Closure (op) 2,240 163,866,019 131,637 8,027,617 873.96 61 17
Linclosure 2,240 67,584 1,114,395 47,513,600 485.88 61 17
WildsClosure 2,240 32,997 131,637 2,240 233.40 61 17

Table 12: Total values of real datasets per all analyzed measures: number
of dependencies processed, number of operations on attributes, outer loops,
inner loops and computation time in miliseconds. |Σ|: size of the base. |U|:
number of attributes 40
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breast-cancer-wisconsin

Canonical
Closure (op) 9,760 939,720 2,047 94,162 15.76 46 11
Linclosure (op) 9,760 158,555 11,264 172,032 5.41 46 11
WildsClosure (op) 9,760 78,421 2,047 9,760 4.07 46 11

D-Basis
Closure (op) 13,924 1,047,207 2,047 94,162 16.74 46 11
Linclosure 14,532 297,267 12,977 184,256 9.00 46 11
WildsClosure 14,532 126,909 3,853 14,532 6.36 46 11

DG-Basis
Closure (op) 13,996 1,672,144 3,853 145,387 23.94 43 11
Linclosure 13,996 258,271 12,977 203,424 9.04 43 11
WildsClosure 13,996 117,285 4,365 13,996 6.48 43 11

flights 20 500k

Canonical
Closure (op) 45,824 2,873,916 4,095 282,555 49.48 69 12
Linclosure (op) 45,824 850,186 24,576 401,408 41.95 69 12
WildsClosure (op) 45,824 420,518 4,095 45,824 13.91 69 12

D-Basis
Closure (op) 59,952 2,754,047 4,095 208,845 80.62 51 12
Linclosure 73,329 1,535,590 33,726 363,886 40.48 51 12
WildsClosure 73,329 683,523 11,746 73,329 25.30 51 12

DG-Basis
Closure (op) 70,825 5,194,400 10,825 415,104 74.47 49 12
Linclosure 70,825 1,499,148 33,726 378,520 48.15 49 12
WildsClosure 70,825 658,414 12,034 70,825 24.50 49 12

bridges

Canonical
Closure (op) 45,184 5,545,480 4,095 515,970 62.48 126 12
Linclosure (op) 45,184 933,384 24,576 1,032,192 19.14 126 12
WildsClosure (op) 45,184 461,612 4,095 45,184 13.68 126 12

D-Basis
Closure (op) 130,996 7,457,890 4,095 511,875 79.11 125 12
Linclosure 210,090 5,282,520 34,736 1,404,976 80.36 125 12
WildsClosure 210,090 2,381,510 9,713 210,090 40.06 125 12

DG-Basis
Closure (op) 149,363 9,347,703 9,507 601,150 92.24 88 12
Linclosure 149,363 3,668,299 34,736 1,158,680 59.16 88 12
WildsClosure 149,363 1,668,181 11,509 149,363 30.66 88 12

page-blocks

Canonical
Closure (op) 15,680 1,264,898 1,023 138,105 25.94 135 10
Linclosure (op) 15,680 265,707 5,120 228,352 9.07 135 10
WildsClosure (op) 15,680 131,529 1,023 15,680 6.00 135 10

D-Basis
Closure (op) 38,932 1,712,409 1,023 138,105 32.00 135 10
Linclosure 72,423 1,379,829 7,769 343,183 38.73 135 10
WildsClosure 72,423 655,551 2,845 72,423 19.78 135 10

DG-Basis
Closure (op) 40,037 1,630,397 2,792 129,232 30.94 69 10
Linclosure 40,037 752,878 7,769 150,210 20.92 69 10
WildsClosure 40,037 353,967 3,036 40,037 10.98 69 10

abalone

Canonical
Closure (op) 4,256 642,670 511 70,007 7.50 137 9
Linclosure (op) 4,256 71,385 2,304 147,968 2.10 137 9
WildsClosure (op) 4,256 35,301 511 4,256 1.54 137 9

D-Basis
Closure (op) 13,376 792,213 511 70,007 9.46 137 9
Linclosure 30,576 568,872 3,087 195,815 11.11 137 9
WildsClosure 30,576 269,429 1,035 30,576 4.99 137 9

DG-Basis
Closure (op) 22,362 861,921 961 63,988 10.24 100 9
Linclosure 22,362 410,714 3,087 142,283 8.19 100 9
WildsClosure 22,362 197,705 1,079 22,362 3.77 100 9

glass

Canonical
Closure (op) 25,664 1,471,992 1,023 163,680 34.31 160 10
Linclosure (op) 25,664 473,734 5,120 233,472 17.36 160 10
WildsClosure (op) 25,664 235,115 1,023 25,664 8.02 160 10

D-Basis
Closure (op) 64,899 2,188,987 1,023 163,680 87.46 160 10
Linclosure 104,270 2,306,507 8,624 376,972 78.18 160 10
WildsClosure 104,270 973,695 2,788 104,270 73.43 160 10

DG-Basis
Closure (op) 79,975 2,914,050 2,746 194,477 75.03 120 10
Linclosure 79,975 1,720,244 8,624 310,169 51.48 120 10
WildsClosure 79,975 758,641 2,924 79,975 38.99 120 10

Table 13: Total values of real datasets per all analyzed measures: number
of dependencies processed, number of operations on attributes, outer loops,
inner loops and computation time in miliseconds. |Σ|: size of the base. |U|:
number of attributes
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zoo

Canonical
Closure (op) 4,775,936 1,116,100,136 262,143 74,448,612 6,860.40 284 18
Linclosure (op) 4,775,936 135,645,229 2,359,296 196,083,712 2,059.09 284 18
WildsClosure (op) 4,775,936 67,190,818 262,143 4,775,936 1,335.50 284 18

D-Basis
Closure (op) 34,160,220 2,001,499,400 262,143 74,186,469 10,468.90 283 18
Linclosure 35,243,954 1,305,688,423 3,622,889 304,467,236 10,071.40 283 18
WildsClosure 35,243,954 594,172,388 712,305 35,243,954 5,032.12 283 18

DG-Basis
Closure (op) 21,244,708 1,846,038,241 684,009 84,963,633 9,770.72 163 18
Linclosure 21,244,708 783,835,415 3,622,889 172,339,639 6,194.12 163 18
WildsClosure 21,244,708 348,561,050 756,007 21,244,708 3,163.35 163 18

echocardiogram

Canonical
Closure (op) 220,928 22,173,693 4,095 2,153,970 378.84 526 12
Linclosure (op) 220,928 5,077,471 24,576 3,676,160 111.64 526 12
WildsClosure (op) 220,928 2,529,480 4,095 220,928 76.64 526 12

D-Basis
Closure (op) 844,550 35,159,262 4,095 2,153,970 537.54 526 12
Linclosure 1,701,742 44,913,136 43,087 6,369,798 853.83 526 12
WildsClosure 1,701,742 19,958,094 11,456 1,701,742 359.86 526 12

DG-Basis
Closure (op) 871,771 32,141,145 11,211 1,587,134 462.87 269 12
Linclosure 871,771 21,920,919 43,087 4,038,451 444.84 269 12
WildsClosure 871,771 10,267,876 13,244 871,771 193.56 269 12

wine

Canonical
Closure (op) 3,430,400 252,229,902 16,383 22,510,242 2,139.31 1374 14
Linclosure (op) 3,430,400 94,758,079 114,688 31,342,592 776.18 1374 14
WildsClosure (op) 3,430,400 47,322,596 16,383 3,430,400 507.31 1374 14

D-Basis
Closure (op) 11,224,253 453,572,029 16,383 22,510,242 3,139.92 1374 14
Linclosure 22,290,574 690,859,413 227,575 62,180,227 5,667.09 1374 14
WildsClosure 22,290,574 303,173,233 48,918 22,290,574 2,386.24 1374 14

DG-Basis
Closure (op) 17,942,810 590,204,163 47,887 19,656,652 3,758.11 1106 14
Linclosure 17,942,810 553,496,891 227,575 57,775,494 4,482.14 1106 14
WildsClosure 17,942,810 250,300,845 49,084 17,942,810 1,863.88 1106 14

mushroom

Canonical
Closure (op) 42,401,713 14,176,252,115 194,303 696,187,649 69,862.80 3583 22
Linclosure (op) 42,401,713 1,427,400,693 2,597,369 2,571,680,313 27,857.80 3583 22
WildsClosure (op) 42,401,713 713,497,559 194,303 42,401,713 12,572.50 3583 22

D-Basis
Closure (op) 92,114,537 16,140,189,328 194,303 696,187,649 75,676.00 3583 22
Linclosure 120,482,269 4,237,779,900 3,002,944 3,067,841,700 55,107.20 3583 22
WildsClosure 120,482,269 2,039,463,765 560,134 120,482,269 34,264.20 3583 22

DG-Basis
Closure (op) 66,096,065 18,063,471,147 532,670 802,630,637 81,469.60 1721 22
Linclosure 66,096,065 2,311,701,537 3,002,944 1,429,868,871 27,773.50 1721 22
WildsClosure 66,096,065 1,114,924,873 579,394 66,096,065 17,165.90 1721 22

hepatitis

Canonical
Closure (op) 40,146,301 7,808,101,115 48,575 400,743,750 37,390.10 8250 20
Linclosure (op) 40,146,301 1,575,946,487 600,761 1,480,968,379 17,917.10 8250 20
WildsClosure (op) 40,146,301 787,788,973 48,575 40,146,301 9,891.58 8250 20

D-Basis
Closure (op) 197,937,704 12,966,658,256 48,575 400,743,750 57,813.80 8250 20
Linclosure 398,620,818 16,414,801,259 969,302 2,257,167,229 109,878.00 8250 20
WildsClosure 398,620,818 7,874,351,588 145,708 398,620,818 47,157.80 8250 20

DG-Basis
Closure (op) 131,918,652 6,808,745,482 144,673 163,888,402 30,538.70 2730 20
Linclosure 131,918,652 5,330,144,435 969,302 826,125,786 36,709.70 2730 20
WildsClosure 131,918,652 2,564,982,670 193,463 131,918,652 16,425.80 2730 20

waveform

Canonical
Closure (op) 935,838,999 90,957,167,084 194,303 4,663,660,606 483,737.00 24002 22
Linclosure (op) 935,838,999 41,155,276,963 2,597,369 8,453,500,560 208,834.00 24002 22
WildsClosure (op) 935,838,999 20,576,799,833 194,303 935,838,999 132,619.00 24002 22

D-Basis
Closure (op) 2,967,583,156 164,964,021,905 194,303 4,663,660,606 742,195.00 24002 22
Linclosure 4,663,660,606 229,669,366,112 4,274,666 14,200,829,058 1,217,360.00 24002 22
WildsClosure 4,663,660,606 99,926,362,986 582,908 4,663,660,606 556,247.00 24002 22

DG-Basis
Closure (op) 4,663,660,606 224,034,789,490 388,606 4,663,660,606 950,059.00 24002 22
Linclosure 4,663,660,606 229,678,147,337 4,274,666 14,200,829,058 1,140,670.00 24002 22
WildsClosure 4,663,660,606 102,585,149,913 582,908 4,663,660,606 495,799.00 24002 22

Table 14: Total values of real datasets per all analyzed measures: number
of dependencies processed, number of operations on attributes, outer loops,
inner loops and computation time in miliseconds. |Σ|: size of the base. |U|:
number of attributes
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pen-recognition

Canonical
Closure (op) 37,626,368 61,745,162,923 131,071 3,992,815,873 302,374.00 30463 17
Linclosure (op) 37,626,368 1,253,902,086 1,114,112 13,662,224,384 105,994.00 30463 17
WildsClosure (op) 37,626,368 626,648,511 131,071 37,626,368 53,093.10 30463 17

D-Basis
Closure (op) 797,945,288 84,552,185,155 131,071 3,992,815,873 399,765.00 30463 17
Linclosure 2,161,555,214 77,829,875,411 1,719,176 20,766,485,149 647,315.00 30463 17
WildsClosure 2,161,555,214 36,491,350,032 336,291 2,161,555,214 267,251.00 30463 17

DG-Basis
Closure (op) 1,137,152,337 85,241,002,493 334,992 3,350,711,286 387,928.00 15885 17
Linclosure 1,137,152,337 39,289,014,325 1,719,176 11,889,063,541 336,843.00 15885 17
WildsClosure 1,137,152,337 19,195,092,139 375,747 1,137,152,337 145,346.00 15885 17

Table 15: Total values of real datasets per all analyzed measures: number
of dependencies processed, number of operations on attributes, outer loops,
inner loops and computation time in miliseconds. |Σ|: size of the base. |U|:
number of attributes

.3 Experiments with Big Datasets

Processed Dependencies Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
automobile 26 4176 146,338,203 146,338,203 146,338,203 4040 275,630,561 484,182,775 484,182,775 1848 241,209,353 241,209,353 241,209,353
fd-reduced-30 26 54363 2,513,337,795 2,513,337,795 2,513,337,795 35445 4,392,161,319 8,598,892,056 8,598,892,056 35445 8,598,892,056 8,598,892,056 8,598,892,056
flight 1k 30c-sub 19 2473 78,497,133 78,497,133 78,497,133 1533 136,876,994 230,797,163 230,797,163 889 136,272,183 136,272,183 136,272,183
horse 28 128726 1,777,335,359 1,777,335,359 1,777,335,359 128726 5,349,880,831 13,103,894,345 13,103,894,345 40969 4,406,604,018 4,406,604,018 4,406,604,018
soybean-small 21 4606 98,068,246 98,068,246 98,068,246 3752 198,915,220 273,652,299 273,652,299 585 48,919,716 48,919,716 48,919,716

Average 24.00 38,868.80 922,715,347.20 922,715,347.20 922,715,347.20 34,699.20 2,070,692,985.00 4,538,283,727.60 4,538,283,727.60 15,947.20 2,686,379,465.20 2,686,379,465.20 2,686,379,465.20

Table 16: Totals of the measure Processed Dependencies for all big
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.

Processed Attributes Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
automobile 26 4176 20,751,907,433 7,012,286,575 6,485,511,016 4040 27,761,426,778 24,423,087,681 17,520,620,895 1848 28,218,557,975 11,884,575,773 9,985,088,787
fd-reduced-30 26 54363 266,858,354,116 130,628,000,139 94,775,417,559 35445 306,399,080,378 494,505,663,710 237,920,818,017 35445 488,145,904,155 494,422,888,141 243,095,983,862
flight 1k 30c-sub 19 2473 9,699,721,505 2,913,711,424 3,177,277,727 1533 9,186,719,212 9,409,096,637 6,144,580,877 889 10,888,660,602 5,218,195,239 4,343,105,671
horse 28 128726 722,948,915,645 95,737,616,809 183,342,486,997 128726 956,723,760,792 730,825,820,743 583,831,000,283 40969 721,629,052,556 239,046,260,694 227,521,918,246
soybean-small 21 4606 20,252,151,381 3,915,010,918 5,936,668,041 3752 21,554,884,878 11,983,512,765 12,941,572,827 585 7,439,811,864 1,981,127,453 2,362,347,768
Average 24.00 38,868.80 208,102,210,016.00 48,041,325,173.00 58,743,472,268.00 34,699.20 264,325,174,407.60 254,229,436,307.20 171,671,718,579.80 15,947.20 251,264,397,430.40 150,510,609,460.00 97,461,688,866.80

Table 17: Totals of the measure Processed Attributes for all big
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.
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Running Time Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
automobile 26 4176 130,315.84 49,165.77 33,975.41 4040 154,351.41 162,763.93 93,454.99 1848 139,327.49 87,023.36 50,922.78
fd-reduced-30 26 54363 1,871,959.80 807,552.77 485,580.11 35445 1,675,370.80 3,561,460.30 1,274,132.10 35445 2,430,707.90 2,909,001.50 1,202,128.60
flight 1k 30c-sub 19 2473 64,336.54 23,621.68 15,806.26 1533 51,933.07 67,070.25 34,146.21 889 53,860.44 42,195.91 22,146.86
horse 28 128726 2,746,040.00 2,044,557.00 608,416.50 128726 3,249,807.00 6,730,818.10 2,208,924.40 40969 2,250,584.90 1,831,404.17 828,612.60
soybean-small 21 4606 138,485.57 53,499.65 33,963.21 3752 133,929.09 122,048.52 74,087.06 585 42,873.50 21,113.99 14,833.41

Average 24.00 38,868.80 990,227.55 595,679.37 235,548.30 34,699.20 1,053,078.27 2,128,832.22 736,948.95 15,947.20 983,470.85 978,147.79 423,728.85

Table 18: Totals of the measure Running Time for all big datasets.
In bold are the minimal values. The last line contains the average of each
measure: the sum of all values for each pair (Base × Algorithm) divided by
the number of datasets.
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automobile

Canonical
Closure (op) 146,338,203 20,751,907,433 250,000 1,044,000,000 130,315.84 4176 26
Linclosure (op) 146,338,203 7,012,286,575 3,249,034 2,112,128,825 49,165.77 4176 26
WildsClosure (op) 146,338,203 6,485,511,016 250,000 146,338,203 33,975.41 4176 26

D-Basis
Closure (op) 275,630,561 27,761,426,778 250,000 1,010,000,000 154,351.41 4040 26
Linclosure 484,182,775 24,423,087,681 5,006,083 2,967,106,679 162,763.93 4040 26
WildsClosure 484,182,775 17,520,620,895 729,932 484,182,775 93,454.99 4040 26

DG-Basis
Closure (op) 241,209,353 28,218,557,975 750,069 929,919,023 139,327.49 1848 26
Linclosure 241,209,353 11,884,575,773 5,006,083 2,346,340,130 87,023.36 1848 26
WildsClosure 241,209,353 9,985,088,787 1,000,983 241,209,353 50,922.78 1848 26

fd-reduced-30

Canonical
Closure (op) 2,513,337,795 266,858,354,116 250,000 13,590,750,000 1,871,959.80 54363 26
Linclosure (op) 2,513,337,795 130,628,000,139 3,248,008 20,372,603,062 807,552.77 54363 26
WildsClosure (op) 2,513,337,795 94,775,417,559 250,000 2,513,337,795 485,580.11 54363 26

D-Basis
Closure (op) 4,392,161,319 306,399,080,378 250,000 8,861,250,000 1,675,370.80 35445 26
Linclosure 8,598,892,056 494,505,663,710 6,322,353 25,847,006,545 3,561,460.30 35445 26
WildsClosure 8,598,892,056 237,920,818,017 740,023 8,598,892,056 1,274,132.10 35445 26

DG-Basis
Closure (op) 8,598,892,056 488,145,904,155 691,275 9,422,196,309 2,430,707.90 35445 26
Linclosure 8,598,892,056 494,422,888,141 6,322,353 25,873,833,433 2,909,001.50 35445 26
WildsClosure 8,598,892,056 243,095,983,862 740,044 8,598,892,056 1,202,128.60 35445 26

flight 1k 30c-sub

Canonical
Closure (op) 78,497,133 9,699,721,505 250,000 618,250,000 64,336.54 2473 19
Linclosure (op) 78,497,133 2,913,711,424 2,375,729 1,300,942,602 23,621.68 2473 19
WildsClosure (op) 78,497,133 3,177,277,727 250,000 78,497,133 15,806.26 2473 19

D-Basis
Closure (op) 136,876,994 9,186,719,212 250,000 383,250,000 51,933.07 1533 19
Linclosure 230,797,163 9,409,096,637 3,821,047 1,225,304,532 67,070.25 1533 19
WildsClosure 230,797,163 6,144,580,877 734,482 230,797,163 34,146.21 1533 19

DG-Basis
Closure (op) 136,272,183 10,888,660,602 711,857 409,047,989 53,860.44 889 19
Linclosure 136,272,183 5,218,195,239 3,821,047 1,220,706,377 42,195.91 889 19
WildsClosure 136,272,183 4,343,105,671 922,688 136,272,183 22,146.86 889 19

horse

Canonical
Closure (op) 1,777,335,359 722,948,915,645 250,000 32,181,500,000 2,746,040.00 128726 28
Linclosure (op) 1,777,335,359 95,737,616,809 3,500,841 114,643,191,658 2,044,557.00 128726 28
WildsClosure (op) 1,777,335,359 183,342,486,997 250,000 1,777,335,359 608,416.50 128726 28

D-Basis
Closure (op) 5,349,880,831 956,723,760,792 250,000 32,181,500,000 3,249,807.00 128726 28
Linclosure 13,103,894,345 730,825,820,743 5,393,860 175,140,719,609 6,730,818.10 128726 28
WildsClosure 13,103,894,345 583,831,000,283 702,255 13,103,894,345 2,208,924.40 128726 28

DG-Basis
Closure (op) 4,406,604,018 721,629,052,556 696,855 20,750,799,614 2,250,584.90 40969 28
Linclosure 4,406,604,018 239,046,260,694 5,393,860 71,665,462,000 1,831,404.17 40969 28
WildsClosure 4,406,604,018 227,521,918,246 911,633 4,406,604,018 828,612.60 40969 28

soybean-small

Canonical
Closure (op) 98,068,246 20,252,151,381 250,000 1,151,500,000 138,485.57 4606 21
Linclosure (op) 98,068,246 3,915,010,918 2,625,217 3,204,601,264 53,499.65 4606 21
WildsClosure (op) 98,068,246 5,936,668,041 250,000 98,068,246 33,963.21 4606 21

D-Basis
Closure (op) 198,915,220 21,554,884,878 250,000 938,000,000 133,929.09 3752 21
Linclosure 273,652,299 11,983,512,765 3,618,799 3,337,284,572 122,048.52 3752 21
WildsClosure 273,652,299 12,941,572,827 719,874 273,652,299 74,087.06 3752 21

DG-Basis
Closure (op) 48,919,716 7,439,811,864 702,207 327,457,529 42,873.50 585 21
Linclosure 48,919,716 1,981,127,453 3,618,799 635,608,309 21,113.99 585 21
WildsClosure 48,919,716 2,362,347,768 903,216 48,919,716 14,833.41 585 21

Table 19: Total values of big datasets per all analyzed measures: number
of dependencies processed, number of operations on attributes, outer loops,
inner loops and computation time in miliseconds. |Σ|: size of the base. |U|:
number of attributes
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.4 Experiments with Synthetic Datasets

Processed Dependencies Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
freq-20 8 94 5,212,799,106 5,212,799,106 5,212,799,106 73 10,401,808,819 15,546,041,657 15,546,041,657 70 8,015,214,361 8,015,214,361 8,015,214,361
freq-30 9 97 9,891,631,345 9,891,631,345 9,891,631,345 89 21,908,681,341 32,423,482,207 32,423,482,207 60 7,937,914,879 7,937,914,879 7,937,914,879
freq-40 9 83 15,029,411,207 15,029,411,207 15,029,411,207 59 36,902,580,328 57,555,592,285 57,555,592,285 45 9,249,194,332 9,249,194,332 9,249,194,332
freq-50 10 96 13,087,833,980 13,087,833,980 13,087,833,980 65 33,597,965,565 52,368,712,857 52,368,712,857 36 6,300,888,371 6,300,888,371 6,300,888,371
freq-60 9 83 11,405,747,857 11,405,747,857 11,405,747,857 62 29,120,747,130 47,391,539,025 47,391,539,025 34 5,838,397,926 5,838,397,926 5,838,397,926
freq-70 10 46 4,881,897,956 4,881,897,956 4,881,897,956 37 13,134,647,361 20,565,631,711 20,565,631,711 28 3,360,502,662 3,360,502,662 3,360,502,662
freq-80 9 7 1,031,814,069 1,031,814,069 1,031,814,069 7 1,733,387,643 2,571,312,784 2,571,312,784 7 1,045,011,165 1,045,011,165 1,045,011,165
Average 9.14 72.29 8,648,733,645.71 8,648,733,645.71 8,648,733,645.71 56.00 20,971,402,598.14 32,631,758,932.29 32,631,758,932.29 40.00 5,963,874,813.71 5,963,874,813.71 5,963,874,813.71

Table 20: Totals of the measure Processed Dependencies for all syn-
thetic datasets. In bold are the minimal values. The last line contains
the average of each measure: the sum of all values for each pair (Base ×
Algorithm) divided by the number of datasets.

Processed Attributes Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
freq-20 8 94 359,187,495,023 224,481,835,032 147,537,030,145 73 525,728,453,710 749,890,638,698 347,411,681,585 70 364,684,847,087 382,745,032,146 180,654,708,036
freq-30 9 97 805,373,304,005 445,764,672,798 300,594,032,465 89 1,187,725,800,419 1,624,334,889,699 766,682,485,051 60 376,496,589,311 390,946,866,597 185,389,205,775
freq-40 9 83 1,367,129,516,657 684,812,209,279 482,059,526,380 59 2,086,884,002,945 2,875,262,340,711 1,381,768,113,430 45 446,521,171,237 451,305,943,635 217,788,155,643
freq-50 10 96 1,341,919,564,966 610,168,404,249 442,539,057,582 65 1,982,075,056,002 2,652,744,304,735 1,297,922,612,193 36 314,720,728,052 303,763,838,808 151,858,388,563
freq-60 9 83 1,315,681,986,990 526,300,944,900 408,842,511,054 62 1,783,087,145,002 2,382,128,252,077 1,189,020,362,964 34 299,632,667,233 272,419,088,073 141,923,352,880
freq-70 10 46 631,490,842,023 219,141,302,079 183,812,027,247 37 826,110,409,012 1,018,549,191,066 530,354,436,506 28 186,870,975,924 154,353,838,383 84,566,497,823
freq-80 9 7 119,547,382,552 41,284,120,229 35,461,561,625 7 108,683,234,073 113,064,200,651 65,849,100,911 7 66,363,837,720 42,486,991,737 25,935,545,769

Average 9.14 72.29 848,618,584,602.29 393,136,212,652.29 285,835,106,642.57 56.00 1,214,327,728,737.57 1,630,853,402,519.57 797,001,256,091.43 40.00 293,612,973,794.86 285,431,657,054.14 141,159,407,784.14

Table 21: Totals of the measure Processed Attributes for all synthetic
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.

Running Time Canonical D-Basis DG-basis
DB |U| |Σ| CLO LIN WILD |Σ| CLO LIN WILD |Σ| CLO LIN WILD
freq-20 8 94 2,271,764.54 943,877.34 653,738.83 73 2,653,558.74 3,686,859.71 1,687,783.04 70 1,778,722.39 1,834,836.12 821,769.40
freq-30 9 97 4,714,365.25 2,095,123.18 1,400,932.87 89 5,566,623.20 8,478,313.82 3,864,571.61 60 1,805,848.36 1,959,385.85 917,928.39
freq-40 9 83 7,281,439.73 3,197,068.20 2,119,279.66 59 9,067,399.45 14,590,305.71 6,452,559.01 45 2,045,320.30 2,199,257.24 1,043,838.34
freq-50 10 96 6,850,468.95 3,034,666.16 1,970,513.29 65 8,538,367.96 13,717,193.64 5,928,738.60 36 1,468,953.57 1,561,211.67 746,062.45
freq-60 9 83 6,802,694.42 2,865,914.20 1,926,675.01 62 7,735,828.56 12,476,680.80 5,514,010.59 34 1,425,048.03 1,487,465.73 733,641.72
freq-70 10 46 3,184,726.06 1,331,646.39 923,214.90 37 3,498,613.55 5,433,222.89 2,467,409.12 28 876,832.28 874,062.93 450,919.64
freq-80 9 7 624,769.76 262,888.33 171,354.61 7 503,048.26 670,720.93 326,988.77 7 311,473.50 278,028.99 139,858.06

Average 9.14 72.29 4,532,889.82 1,961,597.69 1,309,387.03 56.00 5,366,205.67 8,436,185.36 3,748,865.82 40.00 1,387,456.92 1,456,321.22 693,431.14

Table 22: Totals of the measure Running Time for all synthetic
datasets. In bold are the minimal values. The last line contains the average
of each measure: the sum of all values for each pair (Base × Algorithm)
divided by the number of datasets.
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DB Base Algorithm deps attrib outer inner time (ms) |Σ| |U|

freq-20

Canonical
Closure (op) 5,212,799,106 359,187,495,023 7,466,795 19,851,314,800 2,271,764.54 94 8
Linclosure (op) 5,212,799,106 224,481,835,032 78,270,450 26,307,220,814 943,877.34 94 8
WildsClosure (op) 5,212,799,106 147,537,030,145 7,466,795 5,212,799,106 653,738.83 94 8

D-Basis
Closure (op) 10,401,808,819 525,728,453,710 7,466,795 15,557,583,456 2,653,558.74 73 8
Linclosure 15,546,041,657 749,890,638,698 145,459,682 37,381,193,721 3,686,859.71 73 8
WildsClosure 15,546,041,657 347,411,681,585 22,441,247 15,546,041,657 1,687,783.04 73 8

DG-Basis
Closure (op) 8,015,214,361 364,684,847,087 20,233,952 8,485,697,523 1,778,722.39 70 8
Linclosure 8,015,214,361 382,745,032,146 145,459,682 17,050,158,455 1,834,836.12 70 8
WildsClosure 8,015,214,361 180,654,708,036 22,747,745 8,015,214,361 821,769.40 70 8

freq-30

Canonical
Closure (op) 9,891,631,345 805,373,304,005 10,685,291 41,174,839,100 4,714,365.25 97 9
Linclosure (op) 9,891,631,345 445,764,672,798 122,853,482 65,472,750,909 2,095,123.18 97 9
WildsClosure (op) 9,891,631,345 300,594,032,465 10,685,291 9,891,631,345 1,400,932.87 97 9

D-Basis
Closure (op) 21,908,681,341 1,187,725,800,419 10,685,291 32,477,776,381 5,566,623.20 89 9
Linclosure 32,423,482,207 1,624,334,889,699 218,427,276 88,847,339,853 8,478,313.82 89 9
WildsClosure 32,423,482,207 766,682,485,051 32,127,653 32,423,482,207 3,864,571.61 89 9

DG-Basis
Closure (op) 7,937,914,879 376,496,589,311 28,359,788 8,509,809,701 1,805,848.36 60 9
Linclosure 7,937,914,879 390,946,866,597 218,427,276 17,954,010,728 1,959,385.85 60 9
WildsClosure 7,937,914,879 185,389,205,775 33,254,314 7,937,914,879 917,928.39 60 9

freq-40

Canonical
Closure (op) 15,029,411,207 1,367,129,516,657 15,801,131 69,717,808,385 7,281,439.73 83 9
Linclosure (op) 15,029,411,207 684,812,209,279 184,435,058 121,029,394,838 3,197,068.20 83 9
WildsClosure (op) 15,029,411,207 482,059,526,380 15,801,131 15,029,411,207 2,119,279.66 83 9

D-Basis
Closure (op) 36,902,580,328 2,086,884,002,945 15,801,131 57,774,124,924 9,067,399.45 59 9
Linclosure 57,555,592,285 2,875,262,340,711 327,507,245 171,941,582,414 14,590,305.71 59 9
WildsClosure 57,555,592,285 1,381,768,113,430 47,575,664 57,555,592,285 6,452,559.01 59 9

DG-Basis
Closure (op) 9,249,194,332 446,521,171,237 43,922,403 10,239,543,580 2,045,320.30 45 9
Linclosure 9,249,194,332 451,305,943,635 327,507,245 22,374,436,212 2,199,257.24 45 9
WildsClosure 9,249,194,332 217,788,155,643 51,732,610 9,249,194,332 1,043,838.34 45 9

freq-50

Canonical
Closure (op) 13,087,833,980 1,341,919,564,966 12,961,963 65,425,420,845 6,850,468.95 96 10
Linclosure (op) 13,087,833,980 610,168,404,249 159,713,580 128,296,212,267 3,034,666.16 96 10
WildsClosure (op) 13,087,833,980 442,539,057,582 12,961,963 13,087,833,980 1,970,513.29 96 10

D-Basis
Closure (op) 33,597,965,565 1,982,075,056,002 12,961,963 52,849,340,835 8,538,367.96 65 10
Linclosure 52,368,712,857 2,652,744,304,735 274,280,989 172,777,536,899 13,717,193.64 65 10
WildsClosure 52,368,712,857 1,297,922,612,193 39,111,159 52,368,712,857 5,928,738.60 65 10

DG-Basis
Closure (op) 6,300,888,371 314,720,728,052 37,104,654 7,237,165,395 1,468,953.57 36 10
Linclosure 6,300,888,371 303,763,838,808 274,280,989 17,910,084,098 1,561,211.67 36 10
WildsClosure 6,300,888,371 151,858,388,563 45,680,682 6,300,888,371 746,062.45 36 10

freq-60

Canonical
Closure (op) 11,405,747,857 1,315,681,986,990 16,681,579 65,214,649,092 6,802,694.42 83 9
Linclosure (op) 11,405,747,857 526,300,944,900 202,654,289 135,592,084,930 2,865,914.20 83 9
WildsClosure (op) 11,405,747,857 408,842,511,054 16,681,579 11,405,747,857 1,926,675.01 83 9

D-Basis
Closure (op) 29,120,747,130 1,783,087,145,002 16,681,579 48,396,878,299 7,735,828.56 62 9
Linclosure 47,391,539,025 2,382,128,252,077 349,306,575 168,212,549,694 12,476,680.80 62 9
WildsClosure 47,391,539,025 1,189,020,362,964 51,255,239 47,391,539,025 5,514,010.59 62 9

DG-Basis
Closure (op) 5,838,397,926 299,632,667,233 49,492,755 7,188,486,390 1,425,048.03 34 9
Linclosure 5,838,397,926 272,419,088,073 349,306,575 19,346,354,085 1,487,465.73 34 9
WildsClosure 5,838,397,926 141,923,352,880 64,932,810 5,838,397,926 733,641.72 34 9

freq-70

Canonical
Closure (op) 4,881,897,956 631,490,842,023 13,367,915 31,271,743,958 3,184,726.06 46 10
Linclosure (op) 4,881,897,956 219,141,302,079 161,508,945 70,384,656,875 1,331,646.39 46 10
WildsClosure (op) 4,881,897,956 183,812,027,247 13,367,915 4,881,897,956 923,214.90 46 10

D-Basis
Closure (op) 13,134,647,361 826,110,409,012 13,367,915 22,224,621,507 3,498,613.55 37 10
Linclosure 20,565,631,711 1,018,549,191,066 268,462,834 82,094,195,538 5,433,222.89 37 10
WildsClosure 20,565,631,711 530,354,436,506 42,518,890 20,565,631,711 2,467,409.12 37 10

DG-Basis
Closure (op) 3,360,502,662 186,870,975,924 40,183,894 4,835,014,164 876,832.28 28 10
Linclosure 3,360,502,662 154,353,838,383 268,462,834 13,480,844,928 874,062.93 28 10
WildsClosure 3,360,502,662 84,566,497,823 53,804,682 3,360,502,662 450,919.64 28 10

Table 23: Total values of synthetic datasets per all analyzed measures:
number of dependencies processed, number of operations on attributes, outer
loops, inner loops and computation time in miliseconds. |Σ|: size of the base.
|U|: number of attributes
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DB Base Algorithm deps attrib outer inner time (ms) |Σ| |U|

freq-80

Canonical
Closure (op) 1,031,814,069 119,547,382,552 10,167,211 6,283,975,037 624,769.76 7 9
Linclosure (op) 1,031,814,069 41,284,120,229 114,968,946 12,981,549,441 262,888.33 7 9
WildsClosure (op) 1,031,814,069 35,461,561,625 10,167,211 1,031,814,069 171,354.61 7 9

D-Basis
Closure (op) 1,733,387,643 108,683,234,073 10,167,211 3,530,986,829 503,048.26 7 9
Linclosure 2,571,312,784 113,064,200,651 180,917,881 10,773,796,644 670,720.93 7 9
WildsClosure 2,571,312,784 65,849,100,911 33,885,956 2,571,312,784 326,988.77 7 9

DG-Basis
Closure (op) 1,045,011,165 66,363,837,720 30,572,033 2,178,372,067 311,473.50 7 9
Linclosure 1,045,011,165 42,486,991,737 180,917,881 4,721,590,468 278,028.99 7 9
WildsClosure 1,045,011,165 25,935,545,769 40,169,486 1,045,011,165 139,858.06 7 9

Table 24: Total values of synthetic datasets per all analyzed measures:
number of dependencies processed, number of operations on attributes, outer
loops, inner loops and computation time in miliseconds. |Σ|: size of the base.
|U|: number of attributes
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