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2 PROJECTIONS OF HOPF BRACES

Introduction

The study of non-degenerate set-theoretical solutions of the Yang-Baxter equation with the in-
volutive property is the origin of the notion of brace introduced by W. Rump in [27]. A brace is an
abelian group (G, .) with another group structure (G, ⋆) satisfying for all g, h, t ∈ G the following
condition:

g ⋆ (h.t) ⋆ g = (g ⋆ h).(g ⋆ t)

In [14] we can find an equivalent notion of brace and, taking inspiration from it, recently, L.
Guarnieri and L. Vendramin introduced in [17] a generalization of braces, called skew braces, as a
tool to find non-degenerate bijective solutions of the Yang-Baxter equation not necessarily involutive.
Following the definition of L. Guarneri and L. Vendramin, a skew brace is a group (G, .) with an
additional group structure (G, ⋆) satisfying

g ⋆ (h.t) = (g ⋆ h).g−1.(g ⋆ t),

for all g, h, t ∈ G, and it is easy to see that Rump’s braces are examples of skew braces.
In this way, the latest extension of the notion of brace was proposed by I. Angiono, C. Galindo

and L. Vendramin in [5] with the name of Hopf braces. Hopf braces are the quantum version of
skew braces, provide solutions of the Yang-Baxter equation and, as was pointed by the authors,
give the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. If
(H, ǫ, δ) is a coalgebra, a Hopf brace structure over H consist on the following data: A Hopf algebra
structure

H1 = (H, 1, ·, ǫ, δ, λ),

and a Hopf algebra structure
H2 = (H, 1◦, ◦, ǫ, δ, s)

satisfying the following compatibility:

g ◦ (h.k) = (g1 ◦ h).λ(g2).(g3 ◦ k), g, h, k ∈ H.

In any Hopf brace, 1◦ = 1 and, in this introduction, we will denote a Hopf brace by H = (H1,H2)
or also, in a more reduced form, as H.

Bearing in mind that the notion of Hopf brace is closely linked to that of Hopf algebra, recently,
A. Agore proposed in [1] a method to construct new examples of Hopf braces working with matched
pairs of Hopf algebras (A,H, ⊲, ⊳) where H is cocommutative. Finally, as has been proved in [5] (see
also [18] and [16]) there exists a strong connection between Hopf braces and invertible 1-cocycles
that induces a categorical equivalence between the categories of Hopf braces and bijective 1-cocycles.

On the other hand, in the category of vector spaces over a field K, a well known result by D. E.
Radford gives the conditions for the tensor product of two Hopf algebras Z ⊗ X (equipped with
smash product algebra and smash coproduct coalgebra) to be a Hopf algebra, and characterizes such
objects via bialgebra projections (see [26]). S. Majid in [25] interpreted this result in the modern
context of braided categories and stated that there is a categorical equivalence between the category
of Hopf algebras in the category of left-left Yetter-Drinfeld modules over X and the category of Hopf
algebra projections for X. The concrete details of this equivalence are the following: Let X be a
Hopf algebra and let (X,Y, f, h) be a Hopf algebra projection over X, i.e., Y is a Hopf algebra,
f : X → Y and h : Y → X are morphisms of Hopf algebras and the following identity holds
h ◦ f = idX . Let I(qY ) be the image of the idempotent morphism qY : Y → Y defined by the
convolution product of the identity of Y and the composition f ◦ λX ◦ h where λX is the antipode
of X. Then, the object I(qY ) (the algebra of coinvariants) is a Hopf algebra in the category of
left-left Yetter-Drinfeld modules over X denoted by X

XYD. Conversely, if A is a Hopf algebra in
X
XYD, let Y = A ◮◭ X be the smash (co)product (co)algebra, i.e., Y is the bosonization of A (see
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Proposition 4.15 in [24]). Then Y = A ◮◭ X is a Hopf algebra and, if 1A is the unit of A and εA
its counit, f : X → Y , f(x) = 1A ⊗ x, and h : Y → X, h(a⊗ x) = εA(a)x, are morphisms of Hopf
algebras such that h ◦ f = idX . These constructions are mutually inverse in the following way: For
any Hopf algebra projection (X,Y, f, h), there exists an isomorphism of Hopf algebras between Y

and I(qY ) ◮◭ X and, for any Hopf algebra A in X
XYD, A = I(qA◮◭X). Later, Bespalov proved the

same results for braided categories with split idempotents in [6] and, in collaboration with Drabant,
he continued the development of Radford and Majid theory in this setting (see [8], [9] and [7]).

In [13], D. Bulacu and E. Nauwelaerts explained in detail how the above ideas can be generalized
to quasi-Hopf algebras, and in [4], J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González
Rodríguez obtain a similar categorical equivalence for weak Hopf algebras in a braided monoidal
setting. Continuing in this line of generalization, the study of projections of Hopf braces begins in
the work of H. Zhu in [30] where a method to build Hopf braces is given based on the new notion
of left-compatible H-module. Following the work of H. Zhu, if H is a Hopf brace, a left H1-module
(M,⊲) is called a left module over the Hopf brace H if (M,◮) is a left H2-module and the following
identities

(i) g ◮ (h ⊲ m) = [(g1 ◦ h) · λ(g2)] ⊲ (g3 ◮ m),
(ii) g1 ◮ m⊗ g2 = (g1 · λ(g3))] ⊲ (g4 ◮ m)⊗ g2,

hold for all g, h ∈ H and m ∈M .
It is a relevant fact that the condition (ii) is used by H. Zhu to prove that the category of left

modules over the Hopf brace H is monoidal and, if H is cocommutative, (ii) always hold. However,
this condition presents one problem: In a general context the trivial object (H, ⊲ = ·,◮= ◦) it is
not an example of left module over the Hopf brace H.

Taking into account the above, in [30] the author also introduce the definitions of subbialgebra
and left compatible module over a Hopf brace. These notions are the foundations that support the
definition of left Yetter-Drinfeld module for a Hopf brace introduced in [30, Definition 4.7] and also
an analogue of Radford’s result about Hopf algebras (see Remark 4.32). Subsequently in [31], H.
Zhu and Z. Ying expanded the study of the projection problem for Hopf braces introducing the
notion of compatible Hopf brace: Roughly speaking, if H is a Hopf algebra with bijective antipode,
a Hopf brace R in the category of left-left Yetter-Drinfeld modules over H is called compatible if
R⊗H equipped with smash product algebra and smash coproduct coalgebra is a Hopf brace. Then,
the main result proved in [31] asserts the following: Let H be a Hopf algebra with bijective antipode
and let A = (A1, A2) be a Hopf brace with a projection (H,A, f, h) such that f(g) · a = f(g) ◦ a for
all g ∈ H and a ∈ A. Then, there exists a compatible Hopf brace R such that A is isomorphic to
the smash product algebra and smash coproduct coalgebra of R with H as Hopf braces. However,
as it is proved in Example 3.5 of the present paper, Yetter-Drinfeld modules in the sense of H. Zhu
has a trivial coaction in the cocommutative case.

Taking into account the final lines of the last paragraph, the main motivation of this paper is
to give a different approach to the study of projections of Hopf braces based on the notion of left
module for a Hopf brace introduced by R. González Rodríguez in [15, Definition 2.10]. Note that [15,
Definition 2.10] is weaker than the one introduced in [30] and permits to include (H, ⊲ = ·,◮= ◦)
as an example of left module over the Hopf brace H. Moreover, in the cocommutative setting, [30,
Definition 3.1] and [15, Definition 2.10] are equivalent. Using the quoted notion of left module, we
introduce a suitable category of Yetter-Drinfeld modules for a Hopf brace that allows the study of
Hopf braces projections and the bosonization process for these algebraic "Hopf" objects in a generic
and global way at least in the cocommutative case.

The paper is organized as follows. In the first section we recall the basic notions that we will need
in the rest of the article and we will review the bosonization process in a strict braided monoidal
setting. Section 2 is devoted to studying Hopf braces and their categories of modules (following [15])
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in a braided setting. In Section 3, we define the category of modules Yetter-Drinfeld associated to a
Hopf brace H, denoted by H

H
YD, and we prove that, if the base category is symmetric and the Hopf

brace is cocommutative, this category is braided monoidal. In the last section we introduce the
categories of projections, strong projections and vi-strong projection, i = 1, 2, 3, 4, over H and we
prove that for any projection there exists two idempotents with the same image that will play the role
of algebra of coinvariants. Also, in Theorem 4.9, we prove that strong projections provide examples
of left modules and we show that some constructions of [1] give examples of v1-strong projections
for Hopf braces. Moreover, in Theorem 4.15 we determine the conditions under which a Hopf brace
A in H

H
YD is bosonizable in the following sense: A is bosonizable if when we apply the bosonization

process to A, the new object A ◮◭ H is a Hopf brace in the base category. Taking all this into
account, in Theorem 4.16 we show that (H,A ◮◭ H, x = ηA⊗H, y = εA⊗H) is a v1-strong projection
of Hopf braces and moreover, if a projection of Hopf braces is v1-strong, its algebra of coinvariants
is an object in H

H
YD (see Theorem 4.12). On the other hand, we prove that, if a projection is

v2-strong, its algebra of coinvariants determines a Hopf brace in H

H
YD (see Theorem 4.23), if a

projection is v3-strong, its algebra of coinvariants determines a bosonizable Hopf brace in H

H
YD (see

Theorem 4.26) and, finally, if a projection of Hopf braces (H,D, x, y) is v4-strong and I(qD) is the
Hopf brace associated to its algebra of coinvariants, the Hopf brace I(qD) ◮◭ H is isomorphic to D

(see Theorem 4.29). Therefore, as a consequence of these theorems, in Corollary 4.31 we prove that
the categories of v4-strong projections of Hopf braces with H fixed and the category of bosonizable
Hopf braces in H

H
YD are equivalent. Finally, note that (H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H) is an

example of vi-strong projection of Hopf braces, i = 2, 3, 4, when A is a bosonizable Hopf brace (see
Theorems 4.22, 4.25 and 4.28).

1. Preliminaries

In this paper we will work in a monoidal setting. Following [23], recall that a monoidal category
is a category C together with a functor ⊗ : C × C → C, called tensor product, an object K of C,
called the unit object, and families of natural isomorphisms

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ), rM :M ⊗K →M, lM : K ⊗M →M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying the Pentagon
Axiom and the Triangle Axiom, i.e.,

aM,N,P⊗Q ◦ aM⊗N,P,Q = (idM ⊗ aN,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N,P ⊗ idQ),

(idM ⊗ lN ) ◦ aM,K,N = rM ⊗ idN ,

where for each object X in C, idX denotes the identity morphism of X. A monoidal category is
called strict if the constraints of the previous paragraph are identities. It is a well-known fact (see
for example [21]) that every non-strict monoidal category is monoidal equivalent to a strict one.
Then we can assume without loss of generality that the category is strict. This lets us to treat
monoidal categories as if they were strict and, as a consequence, the results proved in an strict
setting hold for every non-strict symmetric monoidal category, for example the category F-Vect of
vector spaces over a field F, or the category R-Mod of left modules over a commutative ring R. For
simplicity of notation, given objects M , N , P in C and a morphism f : M → N , in most cases we
will write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

A braiding for a strict monoidal category C is a natural family of isomorphisms

cM,N :M ⊗N → N ⊗M

subject to the conditions

cM,N⊗P = (N ⊗ cM,P ) ◦ (cM,N ⊗ P ), cM⊗N,P = (cM,P ⊗N) ◦ (M ⊗ cN,P ).
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A strict braided monoidal category C is a strict monoidal category with a braiding. These
categories were introduced by Joyal and Street in [19] (see also [20]) motivated by the theory of
braids and links in topology. Note that, as a consequence of the definition, the equalities cM,K =
cK,M = idM hold, for all object M of C. If the braiding satisfies that cN,M ◦ cM,N = idM⊗N , for all
M , N in C, we will say that C is symmetric. In this case, we call the braiding c a symmetry for the
category C.

Throughout this paper C denotes a strict braided monoidal category with tensor product ⊗, unit
object K and braiding c. Following [10], we also assume that every idempotent morphism in C

splits, i.e., for any morphism q : X → X such that q ◦ q = q, there exist an object I(q), called the
image of q, and morphisms i : I(q) → X, p : X → I(q) such that q = i ◦ p and p ◦ i = idI(q). The
morphisms p and i will be called a factorization of q. Note that I(q), p and i are unique up to
isomorphism. The categories satisfying this property constitute a broad class that includes, among
others, the categories with epi-monic decomposition for morphisms and categories with equalizers
or coequalizers.

Definition 1.1. An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K →
A (unit), µA : A⊗A→ A (product) are morphisms in C such that µA◦(A⊗ηA) = idA = µA◦(ηA⊗A),
µA◦(A⊗µA) = µA◦(µA⊗A). Given two algebras A = (A, ηA, µA) and B = (B, ηB , µB), a morphism
f : A→ B in C is an algebra morphism if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB .

If A, B are algebras in C, the tensor product A⊗B is also an algebra in C where ηA⊗B = ηA⊗ηB
and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

Definition 1.2. A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and
εD : D → K (counit), δD : D → D⊗D (coproduct) are morphisms in C such that (εD ⊗D) ◦ δD =
idD = (D ⊗ εD) ◦ δD, (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. If D = (D, εD, δD) and E = (E, εE , δE)
are coalgebras, a morphism f : D → E in C is a coalgebra morphism if (f ⊗ f) ◦ δD = δE ◦ f ,
εE ◦ f = εD.

Given D, E coalgebras in C, the tensor product D⊗E is a coalgebra in C where εD⊗E = εD⊗εE
and δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Definition 1.3. Let D = (D, εD, δD) be a coalgebra and let A = (A, ηA, µA) be an algebra.
By H(D,A) we denote the set of morphisms f : D → A in C. With the convolution operation
f ∗ g = µA ◦ (f ⊗ g) ◦ δD, H(D,A) is an algebra where the unit element is ηA ◦ εD = εD ⊗ ηA.

Definition 1.4. Let A be an algebra. The pair (M,ϕM ) is a left A-module if M is an object in
C and ϕM : A ⊗M → M is a morphism in C satisfying ϕM ◦ (ηA ⊗M) = idM , ϕM ◦ (A ⊗ ϕM ) =
ϕM ◦ (µA⊗M). Given two left A-modules (M,ϕM ) and (N,ϕN ), f :M → N is a morphism of left
A-modules if ϕN ◦ (A⊗ f) = f ◦ ϕM .

The composition of morphisms of left A-modules is a morphism of left A-modules. Then left
A-modules form a category that we will denote by AMod.

Let D be a coalgebra. The pair (M,ρM ) is a left D-comodule if M is an object in C and
ρM :M → D⊗M is a morphism in C satisfying (εD⊗M)◦ρM = idM , (D⊗ρM )◦ρM = (δD⊗M)◦ρM .
Given two left D-comodules (M,ρM ) and (N, ρN ), f : M → N is a morphism of left D-comodules
if (D ⊗ f) ◦ ρM = ρN ◦ f .

The composition of morphisms of left D-comodules is a morphism of left C-comodules. Then left
D-comodules form a category that we will denote by DComod.

Definition 1.5. We say that X is a bialgebra in C if (X, ηX , µX) is an algebra, (X, εX , δX) is a coal-
gebra, and εX and δX are algebra morphisms (equivalently, ηX and µX are coalgebra morphisms).
Moreover, if there exists a morphism λX : X → X in C, called the antipode of X, satisfying that
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λX is the inverse of idX in H(X,X), i.e.,

(1) idX ∗ λX = ηX ◦ εX = λX ∗ idX ,

we say that X is a Hopf algebra. A morphism of Hopf algebras is an algebra-coalgebra morphism.
Note that, if f : X → Y is a Hopf algebra morphism the following equality holds:

λY ◦ f = f ◦ λX .

With the composition of morphisms in C we can define a category whose objects are Hopf algebras
and whose morphisms are morphisms of Hopf algebras. We denote this category by Hopf.

A Hopf algebra is commutative if µX ◦cX,X = µX and cocommutative if cX,X ◦δX = δX . It is easy
to see that in both cases λX ◦ λX = idX and then λX is an isomorphism with inverse λ−1

X = λX .

If X is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative

(2) λX ◦ µX = µX ◦ (λX ⊗ λX) ◦ cX,X , δX ◦ λX = cX,X ◦ (λX ⊗ λX) ◦ δX ,

and leaves the unit and counit invariant, i.e.,

(3) λX ◦ ηX = ηX , εX ◦ λX = εX .

Also X becomes a left X-module by the adjoint action which is defined by

ϕadX = µX ◦ (µX ⊗ λX) ◦ (X ⊗ cX,X) ◦ (δX ⊗X),

and a left X-comodule by the adjoint coaction

ρadX = (µX ⊗X) ◦ (X ⊗ cX,X) ◦ (δX ⊗ λX) ◦ δX .

In the following definition we recall the notions of left (co)module (co)algebra. The notions of
right (co)module (co)algebra are similar.

Definition 1.6. Let X be a Hopf algebra. An algebra A is said to be a left X-module algebra if
(A,ϕA) is a left X-module and ηA, µA are morphisms of left X-modules, i.e.,

(4) ϕA ◦ (X ⊗ ηA) = εX ⊗ ηA, ϕA ◦ (X ⊗ µA) = µA ◦ ϕA⊗A,

where ϕA⊗A = (ϕA⊗ϕA) ◦ (X ⊗ cX,A⊗A) ◦ (δX ⊗A⊗A) is the left action on A⊗A. For example,
X with the adjoint action ϕadX is a left X-module algebra.

On the other hand, A is said to be a left X-comodule algebra if (A, ρA) is a left X-comodule and
ηA and µA are morphisms of left X-comodules, i.e.,

(5) ρA ◦ ηA = ηX ⊗ ηA, ρA ◦ µA = (X ⊗ µA) ◦ ρA⊗A

where ρA⊗A = (µX ⊗A⊗A) ◦ (X ⊗ cA,X ⊗A) ◦ (ρA ⊗ ρA) is the coaction on A⊗A.
In a similar way we can define the notion of left X-module coalgebra and left X-comodule

coalgebra. Then, a coalgebra B is said to be a left X-module coalgebra if (B,ϕB) is a left X-
module and εB and δB are morphisms of left X-modules, i.e.,

εB ◦ ϕB = εX ⊗ εB , δB ◦ ϕB = ϕB⊗B ◦ (X ⊗ δB).

Finally, a coalgebra B is said to be a left X-comodule coalgebra if (B, ρB) is a left X-comodule
and εB and δB are morphisms of left X-comodules, i.e.,

(6) (X ⊗ εB) ◦ ρB = ηX ⊗ εB , (X ⊗ δB) ◦ ρB = ρB⊗B ◦ δB .

For example, X with the adjoint coaction ρadX is a left X-comodule coalgebra.
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If (A,ϕA) is a left X-module algebra,

A♯X = (A⊗X, ηA♯X = ηA ⊗ ηX , µA♯X = (µA ⊗ µX) ◦ (A⊗ΨX
A ⊗X))

where ΨX
A = (ϕA ⊗X) ◦ (X ⊗ cX,A) ◦ (δX ⊗A), is an algebra called the smash product of A and X.

Similarly, if (B, ρB) is a left X-comodule coalgebra, we can define the coalgebra smash coproduct
of B and X as

B ∝ X = (B ⊗X, εB∝X = εB ⊗ εX , δB∝X = (B ⊗ ΩBX ⊗X) ◦ (δB ⊗ δX)),

where ΩBX = (µX ⊗B) ◦ (X ⊗ cB,X) ◦ (ρB ⊗X).

Definition 1.7. Let X be a Hopf algebra in C. We shall denote by X

X
YD the category of left

Yetter-Dinfeld modules over X. More concretely, a triple M = (M,ϕM , ρM ) is an object in X

X
YD if

(M,ϕM ) is a left X-module, (M,ρM ) is a left X-comodule and the following identity

(µX ⊗M) ◦ (X ⊗ cM,X) ◦ ((ρM ◦ ϕM )⊗X) ◦ (X ⊗ cX,M ) ◦ (δX ⊗M)

= (µX ⊗ ϕM ) ◦ (X ⊗ cX,X ⊗M) ◦ (δX ⊗ ρM ).

holds. The morphisms in X

X
YD are morphisms of left modules and comodules.

For example, for any Hopf algebra X, (X,ϕadX , ρX = δX), (X,ϕX = µX , ρ
ad
X ) are left Yetter-

Drinfeld modules over X. Also, any left X-module (M,ϕM ) over a cocommutative Hopf algebra
X is a Yetter-Drinfeld module with the trivial left coaction ρM = ηX ⊗ M . Finally, the triple
(M,ϕM = εX ⊗M,ρM = ηX ⊗M) is a left Yetter-Drinfeld module for all Hopf algebra X.

The category X

X
YD is strict monoidal with the usual tensor product in C. For M , N in X

XYD,
M ⊗N has the tensor module and comodule structures given by

ϕM⊗N = (ϕM ⊗ ϕN ) ◦ (X ⊗ cX,M ⊗N) ◦ (δX ⊗M ⊗N)

and
ρM⊗N = (µX ⊗M ⊗N) ◦ (X ⊗ cM,X ⊗N) ◦ (ρM ⊗ ρN ).

If the antipode of X is an isomorphism, X

X
YD is a braided monoidal category where the braiding

tM,N : M ⊗N → N ⊗N, is given by tM,N = (ϕN ⊗M) ◦ (X ⊗ cM,N ) ◦ (ρM ⊗N). It is immediate
to see that tM,N is natural and it is an isomorphism with inverse

t−1
M,N = c−1

M,N ◦ (ϕN ⊗M) ◦ (λ−1
X ⊗N ⊗M) ◦ (c−1

X,N ⊗M) ◦ (N ⊗ ρM ).

Then, if X is a Hopf algebra with λX isomorphism, a Hopf algebra in X

X
YD is an object (A,ϕA, ρA)

in X

X
YD such that it is an algebra-coalgebra in C with an endomorphism λA : A→ A satisfying the

following: (A,ϕA) is a left X-module (co)algebra, (A, ρA) is a left X-comodule (co)algebra, λA is a
morphism of left X-modules and left X-comodules, for εA, δA the following identities

εA ◦ ηA = idK , εA ◦ µA = εA ⊗ εA, ηA ⊗ ηA = δA ◦ ηA,

δA ◦ µA = (µA ⊗ µA) ◦ (A⊗ tA,A ⊗A) ◦ (δA ⊗ δA),

hold and, finally, λA is the inverse of idA in H(A,A). Then, the Hopf algebra X with ϕX = εX ⊗X
and ρX = ηX ⊗X is a Hopf algebra in X

X
YD. Note that in this case tX,X = cX,X .

In the following paragraphs of this section we briefly summarize some results from [2], [25] and
[26] about projections of Hopf algebras and the bosonization process in a monoidal setting.

Definition 1.8. A projection of Hopf algebras in C is a 4-tupla (X,Y, f, h) where X, Y are Hopf
algebras, and f : X → Y , h : Y → X are Hopf algebra morphisms such that h ◦ f = idX .

A morphism between projections of Hopf algebras (X,Y, f, h) and (X ′, Y ′, f ′, h′) is a pair (r, s),
where r : X → X ′, s : Y → Y ′ are Hopf algebra morphisms such that

s ◦ f = f ′ ◦ r, r ◦ h = h′ ◦ s.
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With the obvious composition of morphisms we can define a category whose objects are Hopf
algebra projections and whose morphisms are morphisms of Hopf algebra projections. We denote
this category by P(Hopf).

It is obvious that there exists a functor P : Hopf → P(Hopf) defined on objects by

P(X) = (X,X, idX , idX)

and on morphisms by P(f) = (f, f).

Let (X,Y, f, h) be an object in P(Hopf). The morphism qY = idY ∗ (f ◦ λX ◦ h) is idempotent
and, as a consequence, there exist an epimorphism pY , a monomorphism iY , and an object I(qY )
such that qY = iY ◦ pY and pY ◦ iY = idI(qY ). As a consequence,

✲
✲
✲I(qY ) Y Y ⊗X

iY (Y ⊗ h) ◦ δY

Y ⊗ ηX

is an equalizer diagram and I(qY ) is a left X-module algebra where the algebra structure is defined
by

(7) ηI(qY ) = pY ◦ ηY , µI(qY ) = pY ◦ µY ◦ (iY ⊗ iY ),

i.e., ηI(qY ) is the unique morphism such that iY ◦ ηI(qY ) = ηY and µI(qY ) is the unique morphism
such that

(8) iY ◦ µI(qY ) = µY ◦ (iY ⊗ iY ).

The action ϕI(qY ) : X ⊗ I(qY ) → I(qY ) is ϕI(qY ) = pY ◦ µY ◦ (f ⊗ iY ), and then ϕI(qY ) is the
unique morphism such that

iY ◦ ϕI(qY ) = ϕadY ◦ (f ⊗ iY ).

On the other hand,

✲
✲

✲

µY ◦ (Y ⊗ f)

Y ⊗ εX

pY
Y ⊗X Y I(qY )

is a coequalizer diagram and, as a consequence, I(qY ) is a left X-comodule coalgebra with

(9) εI(qY ) = εY ◦ iY , δI(qY ) = (pY ⊗ pY ) ◦ δY ◦ iY

and coaction ρI(qY ) : I(qY ) → X ⊗ I(qY ) defined by ρI(qY ) = (h⊗ pY ) ◦ δY ◦ iY .
In this case εI(qY ) is the unique morphism such that εI(qY ) ◦ pY = εY , δI(qY ) is the unique

morphism such that
δI(qY ) ◦ pY = (pY ⊗ pY ) ◦ δY ,

and the coaction ρI(qY ) is the unique morphism satisfying

ρI(qY ) ◦ pY = (h⊗ pY ) ◦ ρ
ad
Y .

The algebra-coalgebra I(qY ), with the action ϕI(qY ) and the coaction ρI(qY ), is a Hopf algebra in
X

X
YD with antipode λI(qY ) = ϕI(qY ) ◦ (X ⊗ (pY ◦ λY ◦ iY )) ◦ ρI(qY ).

Also, using that iY is an equalizer morphism and pY is a coequalizer, we obtain the following
identities:

(10) pY ◦ µY ◦ (Y ⊗ qY ) = pY ◦ µY , (Y ⊗ qY ) ◦ δY ◦ iY = δY ◦ iY .

For the Hopf algebra I(qY ) in X

X
YD we can apply the monoidal version of the construction intro-

duced by Radford in [26], and extended to the quantum setting by Majid [25], producing a Hopf
algebra I(qY ) ◮◭ X in C, called by Majid the bosonization of I(qY ), with the following structure:
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The Hopf algebra I(qY ) ◮◭ X is the smash product I(qY )♯X as algebra, the smash coproduct
I(qY ) ∝ X as coalgebra, and the antipode is defined by

λI(qY )◮◭X = ΨX
I(qY ) ◦ (λX ⊗ λI(qY )) ◦Ω

I(qY )
X .

Moreover,

(11) νY = (pY ⊗ h) ◦ δY : Y → I(qY ) ◮◭ X

is a Hopf algebra isomorphism with inverse with inverse ν−1
Y = µY ◦ (iY ⊗ f) : I(qY ) ◮◭ X → Y.

The existence of the previous isomorphism is the main tool to obtain a categorical equivalence
between the category of Hopf algebras in X

X
YD and the category of Hopf algebra projections associ-

ated to a fixed X with invertible antipode. This categorical equivalence is a corollary of the more
general result proved in [4] for weak Hopf algebras.

Finally, note that iY is a coalgebra morphism iff

(12) (qY ⊗ Y ) ◦ δY ◦ iY = δY ◦ iY .

Equivalently, iY is a coalgebra morphism iff ρI(qY ) = ηX ⊗ I(qY ) (see [2]). Therefore in this case,
εI(qY )◮◭X = εI(qY ) ⊗ εX , δI(qY )◮◭X = δI(qY )⊗X and λI(qY )◮◭X = ΨX

I(qY ) ◦ (λX ⊗ λI(qY )) ◦ cI(qY ),X .

Note that, if Y is cocommutative, condition (12) always holds. This fact was proved by Sweedler
in [29] for projections of Hopf algebras in a category of vector spaces. On the other hand, there
exist examples where iY it is not a coalgebra morphism (see [11] for the complete details). In any
case, if iY is a coalgebra morphism, we have that I(qY ) is a Hopf algebra in C because ρI(qY ) is
trivial.

Similarly, pY is an algebra morphism iff

(13) pY ◦ µY ◦ (qY ⊗ Y ) = pY ◦ µY .

Equivalently, pY is an algebra morphism iff ϕI(qY ) = εX ⊗ I(qY ) (see [2]). Therefore in this case,

ηI(qY )◮◭X = ηI(qY ) ⊗ ηX , µI(qY )◮◭X = µI(qY )⊗X and λI(qY )◮◭X = cX,I(qY ) ◦ (λX ⊗ λI(qY )) ◦ Ω
I(qY )
X .

Also, if pY is an algebra morphism, we have that I(qY ) is a Hopf algebra in C because ϕI(qY ) is
trivial.

Finally, we have the following result.

Lemma 1.9. Let (X,Y, f, h) be an object in P(Hopf). If Y is cocommutative, the morphism qY is
a coalgebra morphism. Also, under these conditions, the following equality

(14) iY ◦ λI(qY ) = λY ◦ iY .

holds.

Proof. Trivially qY preserves the counit. On the other hand,

δY ◦ qY
= µY⊗Y ◦ (δY ⊗ (δY ◦ f ◦ λX ◦ h)) ◦ δY (by the condition of algebra morphism for δY )

= µY⊗Y ◦(δY ⊗(((f ◦λX ◦h)⊗(f ◦λX ◦h))◦δY ))◦δY (by (2), the condition of Hopf algebra morphisms

for f and h and the cocommutativity of δY )

= ((µY ◦ (Y ⊗ (f ◦λX ◦h)))⊗ (µY ◦ (Y ⊗ (f ◦λX ◦h))))◦ (Y ⊗ (cY,Y ◦δY )⊗Y )◦ (Y ⊗ δY )◦δY
(by the coassociativity of δY and the naturality of c)

= (qY ⊗ qY ) ◦ δY (by the coassociativity and cocommutativity of δY )

holds, and as a consequence qY is a coalgebra morphism.
If Y is cocommutative we have that ρI(qY ) = ηX⊗I(qY ) and this implies that λI(qY ) = pY ◦λY ◦iY .

Then,

iY ◦ λI(qY )
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= qY ◦ λY ◦ iY (by λI(qY ) = pY ◦ λY ◦ iY )

= µY ◦ (λY ⊗ (f ◦ h ◦ λY ◦ λY )) ◦ δY ◦ iY (by (2), the condition of Hopf algebra morphisms for f and h

and the cocommutativity of δY )

= µY ◦ (λY ⊗ (f ◦ h)) ◦ δY ◦ iY (by λY ◦ λY = idY )

= µY ◦ (λY ⊗ (f ◦ ηX)) ◦ iY (by the equalizer condition for iY )

= λY ◦ iY (by the unit properties).

�

2. Modules for Hopf braces

The main objective of this section is to present the main properties of the modules, in the sense
of [15], associated with a Hopf brace. We begin the section with the definition of Hopf brace in a
braided monoidal category C.

Definition 2.1. Let H = (H, εH , δH) be a coalgebra in C. Let’s assume that there are two algebra
structures (H, η1H , µ

1
H), (H, η

2
H , µ

2
H) defined on H and suppose that there exist two endomorphism

of H denoted by λ1H and λ2H . We will say that

(H, η1H , µ
1
H , η

2
H , µ

2
H , εH , δH , λ

1
H , λ

2
H)

is a Hopf brace in C if:

(i) H1 = (H, η1H , µ
1
H , εH , δH , λ

1
H) is a Hopf algebra in C.

(ii) H2 = (H, η2H , µ
2
H , εH , δH , λ

2
H) is Hopf algebra in C.

(iii) The following equality holds:

µ2H ◦ (H ⊗ µ1H) = µ1H ◦ (µ2H ⊗ ΓH1) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H),

where

ΓH1 = µ1H ◦ (λ1H ⊗ µ2H) ◦ (δH ⊗H).

Following [15], a Hopf brace will be denoted by H = (H1,H2) or in a simpler way by H.

The previous definition is the general notion of Hopf brace in a braided monoidal setting. If
we restrict it to a category of Yetter-Drinfeld modules over a Hopf algebra which antipode is an
isomorphism we obtain the definition of braided Hopf brace introduced by H. Zhu and Z. Ying in
[31, Definition 2.1].

Definition 2.2. If H is a Hopf brace in C, we will say that H is cocommutative if δH = cH,H ◦ δH ,
i.e., H1 and H2 are cocommutative Hopf algebras in C.

Note that by [28, Corollary 5], if H is a cocommutative Hopf algebra in the braided monoidal
category C, the identity

(15) cH,H ◦ cH,H = idH⊗H

holds.

Definition 2.3. Given two Hopf braces H and B in C, a morphism x in C between the two underlying
objects is called a morphism of Hopf braces if both x : H1 → B1 and x : H2 → B2 are algebra-
coalgebra morphisms.

Hopf braces together with morphisms of Hopf braces form a category which we denote by HBr.

Theorem 2.4. There exists a functor between the categories Hopf and HBr.
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Proof. If H is a Hopf algebra, Htriv = (H,H, ηH , µH , ηH , µH , εH , δH , λH , λH) is an object in HBr.
On the other hand, if x : H → B is a morphism of Hopf algebras, we have that the pair (x, x) is a
morphism in HBr between Htriv and Btriv. Therefore, there exists a functor

H′ : Hopf → HBr

defined on objects by H′(H) = Htriv and on morphisms by H′(x) = (x, x). �

Let H be a Hopf brace in C. Then
η1H = η2H ,

holds and, by [5, Lemma 1.7], in this braided setting the equality

(16) ΓH1 ◦ (H ⊗ λ1H) = µ1H ◦ ((λ1H ◦ µ2H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

also holds. Moreover, in our braided context [5, Lemma 1.8] and [5, Remark 1.9] hold and then we
have that (H, η1H , µ

1
H) is a left H2-module algebra with action ΓH1 and µ2H admits the following

expression:

(17) µ2H = µ1H ◦ (H ⊗ ΓH1) ◦ (δH ⊗H).

Finally, taking into account that every Hopf brace is an example of Hopf truss, by [12, Theorem
6.4], we have that (H, η1H , µ

1
H) is also a left H2-module algebra with action

Γ′

H1
= µ1H ◦ (µ2H ⊗ λ1H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

because the symmetry is not needed in the proof as in the case of ΓH1 .
Finally, by the naturality of c and the coassociativity of δH , we obtain that

µ1H ◦ (µ2H ⊗ ΓH1) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

= µ1H ◦ (Γ′

H1
⊗ µ2H) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

and then (iii) of Definition 2.1 is equivalent to

(18) µ2H ◦ (H ⊗ µ1H) = µ1H ◦ (Γ′

H1
⊗ µ2H) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H).

Therefore, the equality

µ2H = µ1H ◦ (Γ′

H1
⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

holds.

Lemma 2.5. Let H be a Hopf brace in C. If H is cocommutative, ΓH1 is a coalgebra morphism.

Proof. Trivially εH ◦ ΓH1 = εH ⊗ εH . Moreover,

δH ◦ ΓH1

= µH1⊗H1 ◦ (((λ
1
H ⊗ λ1H) ◦ cH,H ◦ δH)⊗ (µH2⊗H2 ◦ (δH ⊗ δH))) ◦ (δH ⊗H) (by the condition of

coalgebra morphisms for µ1
H

and µ2
H

and (2))

= (ΓH1 ⊗ ΓH1) ◦ δH⊗H (by the naturality of c and the cocommutativity and coassociativity conditions)

�

Lemma 2.6. Let H be a Hopf brace in C. If H is cocommutative, Γ′

H1
is a coalgebra morphism.

Proof. As in the case of ΓH1 , trivially εH ◦ Γ′

H1
= εH ⊗ εH . Moreover,

δH ◦ Γ′

H1

= µH1⊗H1 ◦ ((µH2⊗H2 ◦ (δH ⊗ δH))⊗ ((λ1H ⊗ λ1H) ◦ δH)) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
(by the condition of coalgebra morphisms for µ1

H
and µ2

H
, (2) and cocommutativity of δH )

= ((µ1H◦(µ2H⊗λ1H))⊗(µ1H◦(µ2H⊗λ1H)))◦(H⊗H⊗cH,H⊗H⊗H)◦(H⊗cH,H⊗(cH,H◦cH,H)⊗H)
◦(δH ⊗ cH,H ⊗ cH,H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H)(by the naturality of c)



12 PROJECTIONS OF HOPF BRACES

= ((µ1H ◦(µ2H⊗λ1H))⊗(µ1H ◦(µ2H⊗λ1H)))◦(H⊗H⊗cH,H⊗H⊗H)◦(H⊗cH,H⊗H⊗H⊗H)
◦(δH ⊗ cH,H ⊗ cH,H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H)(by (15))

= ((µ1H ◦(µ2H⊗λ1H))⊗(µ1H ◦(µ2H⊗λ1H)))◦(H⊗((cH,H⊗H)◦(H⊗cH,H)◦((cH,H ◦δH )⊗H))
⊗cH,H) ◦ (δH ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by the naturality of c and the coassociativity condition)

= (Γ′

H1
⊗ Γ′

H1
) ◦ δH⊗H (by the naturality of c and the cocommutativity and coassociativity conditions)

�

Following [15] we recall the notion of left module for a Hopf brace.

Definition 2.7. Let H be a Hopf brace. A left H-module is a triple (M,ψ1
M , ψ

2
M ), where (M,ψ1

M )
is a left H1-module, (M,ψ2

M ) is a left H2-module and the following identity

(19) ψ2
M ◦ (H ⊗ ψ1

M ) = ψ1
M ◦ (µ2H ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M)

holds, where
ΓM = ψ1

M ◦ (λ1H ⊗ ψ2
M ) ◦ (δH ⊗M).

Given two left H-modules (M,ψ1
M , ψ

2
M ) and (N,ψ1

N , ψ
2
N ), a morphism f : M → N is called

a morphism of left H-modules if f is a morphism of left H1-modules and left H2-modules. Left
H-modules with morphisms of left H-modules form a category which we denote by HMod.

Example 2.8. Let H be a Hopf brace. The triple (H,µ1H , µ
2
H) is an example of left H-module.

Also, if K is the unit object of C, (K,ψ1
K = εH , ψ

2
K = εH) is a left H-module called the trivial

module. Moreover, (H,ψ1
H = εH ⊗H,ψ2

H = µ2H) is an object in HMod and we have a functor

T : H2
Mod → HMod

defined on objects by T((M,ψM )) = (M,ψ1
M = εH ⊗ M,ψ2

M = ψM ) and by the identity on
morphisms. In this setting, there exists a forgetful functor

W : HMod → H2
Mod

defined on objects by W((M,ψ1
M , ψ

2
M )) = (M,ψ2

M ) and by the identity on morphisms. Obviously,
W ◦ T = id

H2
Mod.

Let H = (H, ηH , µH , εH , δH , λH) be a Hopf algebra. Then (H,µH , µH) is an example of left
H-module for the Hopf brace Htriv. Also, if (M,ψM ) is a left H-module, the triple (M,ψM , ψM ) is
a left Htriv-module. Then, we have a functor

J : HMod → Htriv
Mod

defined on objects by J((M,ψM )) = (M,ψM , ψM ) and by the identity on morphisms. Also, there
exists a forgetful functor

U : Htriv
Mod → HMod

defined on objects by U((M,ψ1
M , ψ

2
M )) = (M,ψ1

M ) and by the identity on morphisms. Then,
U ◦ J = id

HMod holds trivially.

Remark 2.9. As was pointed in [15], Definition 2.7 is weaker than the one introduced by H. Zhu in
[30]. For this author, if H is a Hopf brace, a left H-module is a triple (M,ψ1

M , ψ
2
M ), where (M,ψ1

M )
is a left H1-module, (M,ψ2

M ) is a left H2-module, and the equalities (19) and

(20) (ψ2
M ⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M) = (ψ1

M ⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗ ΓM ) ◦ (δH ⊗M)

hold (see [30, Definition 3.1, Lemma 3.2]). Thus, for an arbitrary Hopf brace H, a left H-module in
the sense of Zhu is a left H-module in our sense. Moreover, if H is cocommutative, (20) hold for any
left H-module as in Definition 2.7. As a consequence, in the cocommutative setting, [30, Definition
3.1] and Definition 2.7 are equivalent.
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For every Hopf algebra H, the first example of a left module over H is the algebra H taking as
action the product µH . In the case that we intend to introduce a coherent definition of left module
for a Hopf brace H, the same should still be true for H. If we work with Definition 2.7, trivially,
(H,µ1H , µ

2
H) is a left H-module but if we work with the definition introduced by Zhu the triple

(H,µ1H , µ
2
H) is a left H-module iff

(21) (µ2H ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) = (µ1H ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ ΓH1) ◦ (δH ⊗H)

holds. If equality (21) is satisfied, the following identity

(22) (µ1H ⊗H) ◦ (H ⊗ ((ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (δH ⊗H)

= (µ1H ⊗H) ◦ (H ⊗ ((ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))) ◦ (δH ⊗H)

holds because of (17), the naturality of c and the coassociativity of δH . Then, composing in (22)
with ((λ1H ⊗H) ◦ δH)⊗H on the right and with µ1H ⊗H on the left we obtain the identity

(µ1H ⊗H) ◦ ((λ1H ∗ idH)⊗ ((ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (δH ⊗H)

= (µ1H ⊗H) ◦ ((λ1H ∗ idH)⊗ ((ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))) ◦ (δH ⊗H).

This implies that

(ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) = (ΓH1 ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H)

holds. Therefore, if (H,µ1H , µ
2
H) is a left H-module in the sense of Zhu and the category C is

symmetric (for example, the category of vector spaces over a field K), we have that (H,ΓH1) is in
the cocommutativity class of H (see [3] for the definition) and, obviously, this does not always have
to happen. In other words, under certain circumstances, for example, the lack of cocommutativity,
the category of left modules over a Hopf brace introduced by Zhu could have as its only objects the
base object of the category C and its tensor products with the trivial action.

Remark 2.10. Using the naturality of c and the coassociativity of δH , it is easy to show that (19)
is equivalent to

(23) ψ2
M ◦ (H ⊗ ψ1

M ) = ψ1
M ◦ (Γ′

H1
⊗ ψ2

M ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M).

Lemma 2.11. Let H be a Hopf brace and let (M,ψ1
M , ψ

2
M ) be a left H-module. Then, the following

equality holds:

(24) ΓM ◦ (H ⊗ ψ1
M ) = ψ1

M ◦ (ΓH1 ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M).

Also, (M,ΓM ) is a left H2-module.

Proof. Let (M,ψ1
M , ψ

2
M ) be a left H-module.Then the equality (24) follows from:

ΓM ◦ (H ⊗ ψ1
M )

= ψ1
M ◦ (λ1H ⊗ (ψ1

M ◦ (µ2H ⊗ΓM) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M))) ◦ (δH ⊗H ⊗H) (by (19))

= ψ1
M ◦ (ΓH1 ⊗ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M)(by the coassociativity of δH and the condition

of left H1-module for M).

On the other hand, trivially ΓM ◦ (ηH ⊗M) = idM and

ΓM ◦ (H ⊗ ΓM )
= ΓM ◦ (H ⊗ (ψ1

M ◦ (λ1H ⊗ ψ2
M ) ◦ (δH ⊗M))) (by definition of ΓM )

= ψ1
M ◦ (ΓH1 ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((λ1H ⊗ ψ2

M ) ◦ (δH ⊗M))) (by (24))

= ψ1
M ◦ ((ΓH1 ◦ (H ⊗ λ1H))⊗ ΓM) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((H ⊗ ψ2

M ) ◦ (δH ⊗M))) (by

naturality of c)

= ψ1
M ◦ ((µ1H ◦ ((λ1H ◦ µ2H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗ (ψ1

M ◦ (λ1H ⊗ ψ2
M ) ◦ (δH ⊗M)))

◦(H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((H ⊗ ψ2
M ) ◦ (δH ⊗M))) (by (16) and the definition of ΓM )
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= ψ1
M ◦((µ1H ◦((λ1H ◦µ2H)⊗ (µ1H ◦(H⊗λ1H)))⊗ (ψ2

M ◦(µ2H⊗M)))◦(H ⊗cH,H⊗δH⊗H⊗M)
◦(δH ⊗ cH,H ⊗H ⊗M) ◦ (δH ⊗ δH ⊗M) (by the condition of left H1 and H2-module for M and the

associativity of µ1
H

)

= ψ1
M ◦((µ1H ◦((λ1H ◦µ2H)⊗(µ1H ◦(H⊗λ1H)))⊗(ψ2

M ◦(µ2H⊗M)))◦(((H ⊗cH,H⊗H⊗H⊗H)
◦(δH ⊗ cH,H ⊗H ⊗H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H))⊗M) (by naturality of c)

= ψ1
M ◦((µ1H ◦((λ1H ◦µ2H)⊗(idH ∗λ1H))◦(H⊗cH,H )◦(δH⊗H))⊗(ψ2

M ◦(µ2H⊗M)))◦(δH⊗H⊗M)
(by naturality of c and coassociativity of δH )

= ψ1
M ◦ (λ1H ⊗ ψ2

M ) ◦ (((µ2H ⊗ µ2H) ◦ δH⊗H)⊗M) (by (1) and unit and counit properties)

= ΓM ◦ (µ2H ⊗M) (by the condition of coalgebra morphism for µ2
H

)

Therefore, (M,ΓM ) is a left H2-module. �

Theorem 2.12. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category of left modules over H is symmetric monoidal
with unit object the trivial left module over H.

Proof. Let (M,ψ1
M , ψ

2
M ), (N,ψ1

N , ψ
2
N ) be objects in HMod. The tensor product is defined by (M ⊗

N,ψ1
M⊗N , ψ

2
M⊗N ) where ψ1

M⊗N and ψ2
M⊗N are the corresponding module tensor structures. In

fact, (M ⊗N,ψ1
M⊗N ) is a left H1-module, (M ⊗N,ψ2

M⊗N ) is a left H2-module due to the monoidal
character of the category of modules over a Hopf algebra. On the other hand, the identity

(25) ΓM⊗N = (ΓM ⊗ ΓN ) ◦ (H ⊗ cH,M ⊗N) ◦ (δH ⊗M ⊗N)

holds because

ΓM⊗N

= ((ψ1
M ◦ (H ⊗ ψ2

M ))⊗ (ψ1
N ◦ (H ⊗ ψ2

N ))) ◦ (H ⊗ ((H ⊗ cH,M ⊗H) ◦ (cH,H ⊗ cH,M ))⊗N)
◦(((((λ1H ⊗ λ1H) ◦ δH)⊗ δH) ◦ δH)⊗M ⊗N) (by (2), the cocommutativity of δH and the naturality of

c)

= ((ψ1
M ◦ (λ1H ⊗ψ2

M ))⊗ (ψ1
N ◦ (λ1H ⊗ψ2

N ))) ◦ (H ⊗ ((H ⊗ cH,M ⊗H) ◦ (H ⊗H ⊗ cH,M))⊗N)
◦(((H ⊗ (cH,H ◦ δH)⊗H) ◦ (δH ⊗H) ◦ δH)⊗M ⊗N)(by coassociativity of δH and the naturality

of c)

= (ΓM ⊗ΓN ) ◦ (H ⊗ cH,M ⊗N) ◦ (δH ⊗M ⊗N) (by the coassociativity and cocommutativity of δH and

the naturality of c)

Then

ψ1
M⊗N ◦ (µ2H ⊗ ΓM⊗N ) ◦ (H ⊗ cH,H ⊗M ⊗N) ◦ (δH ⊗H ⊗M ⊗N)

= (ψ1
M ⊗ ψ1

N ) ◦ (H ⊗ cH,M ⊗N) ◦ (((µ2H ⊗ µ2H) ◦ δH⊗H)⊗ ((ΓM ⊗ ΓN ) ◦ (H ⊗ cH,M ⊗N)
◦(δH ⊗M ⊗N))) ◦ (((H ⊗ cH,H) ◦ (δH ⊗H))⊗M ⊗N) (by (25) and the condition of coalgebra

morphism of µ2
H

)

= ((ψ1
M ◦ (µ2H ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M))⊗ (ψ1

N ◦ (µ2H ⊗ ΓN ) ◦ (H ⊗ cH,H ⊗N)))
◦(H⊗((H⊗H⊗cH,M⊗H⊗H)◦(H⊗cH,H⊗cH,M⊗H)◦((cH,H ◦δH)⊗cH,H⊗cH,M ))⊗N)
◦(((δH⊗H)◦δH)⊗δH⊗M⊗N) (by the coassociativity of δH , the naturality of c and cH,H◦cH,H = idH⊗H)

= ((ψ2
M ◦ (H ⊗ ψ1

M ))⊗ (ψ1
N ◦ (µ2H ⊗ ΓN ) ◦ (H ⊗ cH,H ⊗N)))

◦(H ⊗ ((H ⊗ cH,M ⊗H ⊗H) ◦ (cH,H ⊗ cH,M ⊗H) ◦ (H ⊗ cH,H ⊗ cH,M ))⊗N)
◦(((δH ⊗H) ◦ δH)⊗ δH ⊗M ⊗N) (by (19) for M , the coassociativity and cocommutativity of δH )

= ((ψ2
M ◦ (H ⊗ ψ1

M ))⊗ (ψ2
N ◦ (H ⊗ ψ1

N ))) ◦ (H ⊗ ((H ⊗ cH,M ⊗H) ◦ (cH,H ⊗ cH,M ))⊗N)
◦(δH ⊗ δH ⊗M ⊗N) (by the coassociativity of δH , the naturality of c and (19) for N)

= ψ2
M⊗N ◦ (H ⊗ ψ1

M⊗N ) (by the naturality of c).

The unit object is (K,ψ1
K = εH , ψ

2
K = εH) and the natural isomorphism of symmetry is c because,

if H is cocommutative and C is symmetric, c is a morphism of left modules over H. �
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3. Yetter-Drinfeld modules for Hopf braces

The first goal of this section is to introduce a suitable notion of Yetter-Drinfeld module for a Hopf
brace that can be useful in the study of Hopf brace projections. To do it, previously it is necessary
to define some intermediate objects called weak left Yetter-Drinfeld modules.

Definition 3.1. Let H be a Hopf brace in C. A weak left Yetter-Drinfeld module over H is a
quadruple (M,ψ1

M , ψ
2
M , ρM ) such that

(i) (M,ψ1
M , ψ

2
M ) ∈ HMod.

(ii) (M,ψ1
M , ρM ) ∈ H1

H1
YD.

(iii) (M,ψ2
M , ρM ) ∈ H2

H2
YD.

(iv) The following equality

(µ1H ⊗M) ◦ (H ⊗ cM,H) ◦ (ρM ⊗H) = (µ2H ⊗M) ◦ (H ⊗ cM,H) ◦ (ρM ⊗H)

holds.

With the obvious morphisms, i.e., morphisms of left H-modules and left H-comodules, weak left
Yetter-Drinfeld modules over H form a category that we will denote by H

H
WYD.

Theorem 3.2. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category H

H
WYD is monoidal.

Proof. Let (M,ψ1
M , ψ

2
M , ρM ), (N,ψ1

N , ψ
2
N , ρN ) be objects in H

H
WYD. Then the tensor product is

defined by
(M ⊗N,ψ1

M⊗N , ψ
2
M⊗N , ρM⊗N ).

where, by (iv) of Definition 3.1,

ρM⊗N = (µ1H⊗M⊗N)◦(H⊗cM,H⊗N)◦(ρM ⊗ρN ) = (µ2H⊗M⊗N)◦(H⊗cM,H⊗N)◦(ρM ⊗ρN ).

By Theorem 2.12 we have that (M ⊗N,ψ1
M⊗N , ψ

2
M⊗N ) is an object in HMod. Moreover by the

monoidal structure of the categories of Yetter-Drinfeld modules associated to a Hopf algebra we
have that (M ⊗N,ψ1

M⊗N , ρM⊗N ) belongs to H1

H1
YD and (M ⊗N,ψ2

M⊗N , ρM⊗N ) ∈
H2

H2
YD. Finally,

(iv) of Definition (3.1) also holds because

(µ1H ⊗M) ◦ (H ⊗ cM⊗N,H) ◦ (ρM⊗N ⊗H)
= (µ1H⊗M⊗N)◦(H⊗cM,H⊗N)◦(ρM ⊗ ((µ1H⊗N)◦(H⊗cN,H)◦(ρN ⊗H))) (by associativity

of µ1
H

and naturality of c)

= (µ2H ⊗M ⊗N) ◦ (H ⊗ cM,H ⊗N) ◦ (ρM ⊗ ((µ2H ⊗N) ◦ (H ⊗ cN,H) ◦ (ρN ⊗H))) (by (iv) of

Definition 3.1 for M and N)

= (µ2H ⊗M) ◦ (H ⊗ cM⊗N,H) ◦ (ρM⊗N ⊗H) (by associativity of µ2
H

and naturality of c).

Finally, it is easy to show that the unit object is (K,ψ1
K = εH , ψ

2
K = εH , ρK = ηH).

�

Definition 3.3. Let H be a Hopf brace in C. We define the category of left Yetter-Drinfeld modules
over H, denoted by H

H
YD, as the full subcategory of H

H
WYD whose objects (M,ψ1

M , ψ
2
M , ρM ) satisfy

that
t2M,N = (ψ2

N ⊗M) ◦ (H ⊗ cM,N ) ◦ (ρM ⊗N)

is a morphism of left H1-modules for all (N,ψ1
N , ψ

2
N , ρN ) ∈

H

H
WYD

Remark 3.4. 1) Note that, under the conditions of the previous definition, t2M,N is a morphism of
left H2-modules because (M,ψ2

M , ρM ) and (N,ψ2
N , ρN ) are left Yetter-Drinfeld modules over H2.

Moreover, if the antipode of H2 is an isomorphism, t2M,N is the braiding of the category H2
H2

YD.
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2) Let H be a cocommutative Hopf brace in C. Then, by Example 2.8, (15), the unit-counit
properties and the naturality of c, we have that

(H,ψ1
H = εH ⊗H,ψ2

H = µ2H , ρH = ηH ⊗H)

is an object in H

H
YD.

Then, if C is symmetric, using similar arguments to the previous paragraph we can assure that
there exists a functor

S : H2
Mod → H

HYD

defined on objects by S((M,ψM )) = (M,ψ1
M = εH ⊗M,ψ2

M = ψM , ρM = ηH ⊗M) and by the
identity on morphisms. Also, as in Example 2.8, there exists a forgetful functor

V : H

HYD → H2
Mod

defined on objects by V((M,ψ1
M , ψ

2
M , ρM )) = (M,ψ2

M ) and by the identity on morphisms. Obvi-
ously, V ◦ S = id

H2
Mod.

3) Assume that H is a cocommutative Hopf brace in C. From the previous point we know that

(H,ψ1
H = εH ⊗H,ψ2

H = µ2H , ρH = ηH ⊗H)

is an object in the category H

H
YD. Let (M,ψ1

M , ψ
2
M , ρM ) be an object in the same category. Thus,

by definition,

t2M,H = (µ2H ⊗M) ◦ (H ⊗ cM,H) ◦ (ρM ⊗H)

is a morphism of left H1-modules. This fact is equivalent to the following equality

ψ1
H⊗M ◦ (H ⊗ t2M,H) = t2M,H ◦ ψ1

M⊗H

and, using the naturality of c and the properties of the counit, we can prove that the previous
identity is equivalent to

(26) (µ2H ⊗H) ◦ (H ⊗ cM,H) ◦ (((H ⊗ ψ1
M ) ◦ (cH,H ⊗M) ◦ (H ⊗ ρM ))⊗H)

= (µ2H ⊗H) ◦ (H ⊗ cM,H) ◦ ((ρM ◦ ψ1
M )⊗H).

Therefore, composing on the right of (26) with H ⊗M ⊗ ηH , we obtain that

(27) (H ⊗ ψ1
M ) ◦ (cH,H ⊗M) ◦ (H ⊗ ρM ) = ρM ◦ ψ1

M ,

or, in other words, (M,ψ1
M , ρM ) is a Long dimodule. This category was introduced by Long in

[22] to study the Brauer group of H-dimodule algebras for a commutative and cocommutative Hopf
algebra H. Later, the notion was extended by considering two arbitrary Hopf algebras H and B,
introducing the category of left-left H-B-Long dimodules, denoted by B

H
Long. In this category

the objects are triples (M,ϕM , ρM ) such that (M,ϕM ) is a left H-module and (M,ρM ) is a left
B-comodule satisfying the axiom

(28) ρM ◦ ϕM = (B ⊗ ϕM ) ◦ (cH,B ⊗M) ◦ (H ⊗ ρM ),

The morphisms in B

H
Long are morphisms of left H-modules and left B-comodules.

Then, in our setting, taking into account that (27) is exactly (28) for H = B = H1, we have a
functor

L : H

HYD → H1

H1
Long

defined on objects by L((M,ψ1
M , ψ

2
M , ρM )) = (M,ψ1

M , ρM ) and by the identity on morphisms.
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Example 3.5. In [30], Haixin Zhu gives a definition of a Yetter-Drinfeld category making use of
the notion of the Hopf brace subbialgebra. Recall that in [30] the base category is a category of
vector spaces over a fixed field K. In this context, a subbialgebra H ′ of a Hopf brace H ([30,
Definition 4.1]) is a subbialgebra H ′ of H1 (i.e., if jH′ : H ′ → H is the inclusion morphism, jH′ is
an algebra-coalgebra morphism) such that

(29) µ1H ◦ (jH′ ⊗H) = µ2H ◦ (jH′ ⊗H).

Note, by (29), H ′ also is a subbialgebra of H2 because

µ2H ◦ (jH′ ⊗ jH′) = µ1H ◦ (jH′ ⊗ jH′) = jH′ ◦ µH′ .

Once the subbialgebra is defined, the author considers the so-called compatible modules (see [30,
Definition 4.5]), that are modules (M,ψ1

M , ψ
2
M ) over H, in the sense of Remark 2.9, satisfying

ψ1
M ◦ (jH′ ⊗M) = ψ2

M ◦ (jH′ ⊗M).

Now, the objects of the category of Yetter-Drinfeld modules H
′

H
YD are compatible left modules

over H that have a comodule structure ρM :M → H ⊗M such that (see [30, Definition 4.7]):

(i) ρM (m) ∈ H ′ ⊗M, ∀ m ∈M ,
(ii) (M,ψ1

M , ρM ) ∈ H1

H1
YD,

(iii) (M,ψ2
M , ρM ) ∈ H2

H2
YD.

Observe that the first condition, together with (29), imply (iv) of Definition 3.1. And as was
observed in Remark 2.9, any module in the sense of [30] is a module in the sense of Definition 2.7.
Finally, the morphisms of the category H′

H
YD are morphisms of left H-modules and of H-comodules,

as stated in Definition 3.1. Thus, H
′

H
YD is a full subcategory of H

H
WYD.

Note that, if (M,ψ1
M , ψ

2
M , ρM ) and (N,ψ1

N , ψ
2
N , ρN ) are objects in H′

H
YD and the antipodes of H1

and H2 are isomorphisms, by the condition of compatible module and (i), we have that t1M,N = t2M,N

where tiM,N is the braiding of Hi

Hi
YD for i = 1, 2. Therefore, t2M,N is a morphism of left H1-modules,

and this implies that H
′

H
YD is a full subcategory of H

H
YD.

On the other hand, if H ′ is a subbialgebra of H, (i) holds trivially for ρH = ηH ⊗ H and, as a
consequence, if we assume the cocommutativity condition for H,

(H,ψ1
H = εH ⊗H,ψ2

H = µ2H , ρH = ηH ⊗H)

is an object in H′

H
YD. Then, taking into account that we know that t1M,H = t2M,H holds for any

(M,ψ1
M , ψ

2
M , ρM ) in H′

H
YD, the identities

(30) cM,H = (εH ⊗ cM,H) ◦ (ρM ⊗H) = (µ2H ⊗M) ◦ (H ⊗ cM,H) ◦ (ρM ⊗H)

also hold and, as a consequence, composing on the right with M ⊗ ηH , we obtain that

ρM = ηH ⊗M.

Thus, under cocommutative conditions the coaction is trivial and then H′

H
YD and HMod are

isomorphic categories.
The previous categorical isomorphism implies that the definition introduced in [30] does not

provide a consistent non-trivial theory of Yetter-Drinfeld modules for Hopf braces. Note that the
condition of cocommutativity is used systematically in [30] and [31].

Theorem 3.6. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category H

H
YD is braided monoidal.
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Proof. To prove the theorem we only need to show that if (M,ψ1
M , ψ

2
M , ρM ) and (N,ψ1

N , ψ
2
N , ρN )

are objects in H

H
YD and (P,ψ1

P , ψ
2
P , ρP ) is an object in H

H
WYD we have that t2M⊗N,P is a morphism

of left H1-modules. Indeed:

ψ1
P⊗M⊗N ◦ (H ⊗ t2M⊗N,P )

= ((ψ1
P⊗M ◦ (H ⊗ t2M,P ))⊗ ψ1

N ) ◦ (H ⊗M ⊗ cH,P ⊗N) ◦ (((H ⊗ cH,M ) ◦ (δH ⊗M))⊗ t2N,P )
(by the naturality of c and the coassociativity of δH )

= ((t2M,P ◦ ψ1
M⊗P )⊗ ψ1

N ) ◦ (H ⊗M ⊗ cH,P ⊗N) ◦ (((H ⊗ cH,M ) ◦ (δH ⊗M))⊗ t2N,P ) (by the

condition of morphism of left H1-modules for t2
M,P

)

= (t2M,P ⊗N) ◦ (ψ1
M ⊗ (ψ1

P⊗N ◦ (H ⊗ t2N,P ))) ◦ (((H ⊗ cH,M ) ◦ (δH ⊗M)) ⊗N ⊗ P ) (by the

naturality of c and the coassociativity of δH)

= t2M⊗N,P ◦ ψ1
M⊗N⊗P (by the condition of morphism of left H1-modules for t2

N,P
).

�

Notation 3.7. Under the conditions of the previous theorem we know that the braiding of H

H
YD is

t2, i.e., the braiding of H2

H2
YD. Taking into account this fact, from this moment and to simplify the

notation the braiding of the category H

H
YD will be denoted by t.

To finish this section we will prove that if H is a cocommutative Hopf brace in a symmetric
monoidal category, H

H
YD can be seen as a type of categorical center. To fix the notation and make

the reading more self-contained we will first remember the notion of center of a monoidal category.

Definition 3.8. Let D be a strict monoidal category with tensor product ⊠ and unit object I. The
center (or left center) Z(D) is the category with the following objects and morphisms: An object is
a pair (M, τM,−), with M ∈ D and τM,− : M ⊠ − → − ⊠M a natural isomorphism satisfying the
following condition for all N,P ∈ D:

(31) τM,N⊠P = (N ⊠ τM,P ) ◦ (τM,N ⊠ P ).

A morphism between (M, τM,−) and (M ′, τM ′,−) consists on a morphism f : M → M ′ in D such
that

(32) (N ⊠ f) ◦ τM,N = τM ′,N ◦ (f ⊠N).

for all N ∈ D.
Note that, as a consequence of the strict character of D, we have that τM,I = idM for all M ∈ D.
The center Z(D) is a strict braided monoidal category. The tensor product is

(M, τM,−)⊠ (M ′, τM ′,−) = (M ⊠M ′, τM⊠M ′,−)

with
τM⊠M ′,N = (τM,N ⊠M ′) ◦ (M ⊠ τM ′,N)

and the unit object is (I, τI,− = idD).
The braiding is given by

τM,M ′ : (M, τM,−)⊠ (M ′, τM ′,−) → (M ′, τM ′,−)⊠ (M, τM,−).

Example 3.9. Let X be a Hopf algebra in C. The category of leftX-modules is a monoidal category
where the tensor product of two objects (M,ψM ), (N,ψN ) is defined by (M⊗N,ψM⊗N ) with ψM⊗N

the tensor module structure. The unit object is (K,ψK = εX). Then, Z(XMod) is a strict braided
monoidal category where the objects can be identified with triples (M,ψM , τM,−) where (M,ψM )
is an object in XMod and τM,N : M ⊗N → N ⊗M is a family of natural isomorphisms in XMod

satisfying (31). Also in this case the morphisms in Z(XMod) are morphisms in XMod satisfying
(32).
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Definition 3.10. Let X be a Hopf algebra in C. We define the small center of XMod as the full
subcategory SZ(XMod) of Z(XMod) with objects (M,ψM , τM,−) satisfying

(33) τM,N = (ψN ⊗M) ◦ (X ⊗ cM,N ) ◦ ((τM,X ◦ (M ⊗ ηX))⊗N),

for all (N,ψN ) in XMod.
Note that, if (M,ψM , τM,−), (M ′, ψM ′ , τM ′,−) are objects in the category SZ(XMod), the tensor

product (M ⊗M ′, ψM⊗M ′ , τM⊗M ′,−) also is. Indeed, let (N,ψN ) in XMod, then:

(ψN ⊗M ⊗M ′) ◦ (X ⊗ cM⊗M ′,N) ◦ ((τM⊗M ′,X ◦ (M ⊗M ′ ⊗ ηX))⊗N))
= (ψN ⊗M ⊗M ′) ◦ (X ⊗ cM,N ⊗M ′) ◦ (τM,X ⊗ cM ′,N ) ◦ (M ⊗ (τM ′,X ◦ (M ′ ⊗ ηX))⊗N)

(by definition of τM⊗M′,−)

= (ψN⊗M⊗M ′)◦(µX⊗cM,N⊗M ′)◦(X⊗cM,X⊗cM ′,N )◦((τM,X ◦(M⊗ηX))⊗X⊗M ′⊗N)
◦(M ⊗ (τM ′,X ◦ (M ′ ⊗ ηX))⊗N)(by (33) for (X, µX))

= ((ψN ◦ (X ⊗ ψN ))⊗M ⊗M ′) ◦ (X ⊗X ⊗ cM,N ⊗M ′) ◦ (X ⊗ cM,X ⊗ cM ′,N )
◦((τM,X ◦ (M ⊗ ηX))⊗ (τM ′,X ◦ (M ′ ⊗ ηX))⊗N)(by the condition of left X-module for N)

= (((ψN⊗M)◦(X⊗cM,N )◦((τM,X ◦(M⊗ηX))⊗N))⊗M ′)◦(M⊗((ψN⊗M ′)◦(X⊗cM ′,N )
◦((τM ′,X ◦ (M ′ ⊗ ηX))⊗N)))(by naturality of c)

= τM⊗M ′,N (by (33) for (N,ψN )).
Therefore SZ(XMod) is a braided monoidal subcategory of Z(XMod). As a consequence, the

inclusion functor is a braided strong monoidal functor.

Example 3.11. In the previous definition, if C is the category of R-modules over a commutative
ring R, the equality (33) always holds as was proved in [21, Theorem XIII.5.2]. Then, in this setting,
SZ(XMod) = Z(XMod).

Theorem 3.12. Let X be a Hopf algebra in C such that λX is an isomorphism. Then the category
SZ(XMod) is isomorphic to the category of left Yetter-Drinfeld modules over X as braided monoidal
categories.

Proof. By (33) the proof follows the one proposed in [21, Theorem XIII.5.2]. Then, we will restrict
the proof of this Theorem to a brief description of the connecting functors. Take (M,ψM , τM,−) in
SZ(XMod). The morphism ρM = τM,X ◦(M⊗ηX) makes (M,ρM ) in a left X-comodule and, by (33),
we obtain that (M,ψM , ρM ) is a left Yetter-Drinfeld module over X. Conversely, if (N,ψN , ρN ) is a
left Yetter-Drinfeld module over X, the natural isomorphism is defined by τN,P = tN,P where tN,P
is the braiding of X

X
YD and (P,ψP , ρP ) is an arbitrary object in X

X
YD. �

Let H be a cocommutative Hopf brace in symmetric monoidal category C. By Theorem 3.2, we
know that the category of left H

H
WYD is a monoidal category. Then, Z(H

H
WYD) is a strict braided

monoidal category where the objects can be identified with quadruples (M,ψ1
M , ψ

2
M , ρM , τM,−)

where (M,ψ1
M , ψ

2
M , ρM ) is an object in H

H
WYD and

τM,N :M ⊗N → N ⊗M

is a family of natural isomorphisms in H

H
WYD satisfying (31). Also in this case, the morphisms in

Z(H
H
WYD) are morphisms in H

H
WYD satisfying (32). Note that, in this setting, τM,N is a morphism

of left H1-modules, left H2-modules and left H-comodules.

Definition 3.13. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
We define the small center of H

H
WYD as the full subcategory SZ(H

H
WYD) of Z(H

H
WYD) with objects

(M,ψ1
M , ψ

2
M , ρM , τM,−) satisfying

(34) ρM = τM,H ◦ (M ⊗ ηH),

(35) τM,N = (ψ2
N ⊗M) ◦ (H ⊗ cM,N ) ◦ ((τM,H ◦ (M ⊗ ηH))⊗N)
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for all (N,ψ1
N , ψ

2
N , ρN ) in H

H
WYD.

Note that, as in the Hopf algebra case, if (M,ψ1
M , ψ

2
M , ρM , τM,−), (M ′, ψ1

M ′ , ψ2
M ′ , ρM ′ , τM ′,−) are

objects in the category SZ(H
H
WYD), the tensor product (M⊗M ′, ψ1

M⊗M ′ , ψ2
M⊗M ′ , ρM⊗M ′ , τM⊗M ′,−)

also is. Then, SZ(H
H
WYD) is a braided monoidal subcategory of Z(H

H
WYD). As a consequence, the

inclusion functor is a braided strong monoidal functor.

Theorem 3.14. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
Then the categories H

H
YD and SZ(H

H
WYD) are isomorphic as braided monoidal categories.

Proof. The proof follows directly from the definitions of the categories H

H
YD and SZ(H

H
WYD) because

if (M,ψ1
M , ψ

2
M , ρM , τM,−) is an object in SZ(H

H
WYD), we have that (M,ψ1

M , ψ
2
M , ρM ) is an object in

H

H
YD. Conversely, if (V, ψ1

V , ψ
2
V , ρV ) is an object in H

H
YD, we obtain that (V, ψ1

V , ψ
2
V , ρV , τV,− = t2V,−)

is an object in SZ(H
H
WYD). Then it is easy to prove that this correspondence defines a pair of inverse

functors and the braided monoidal isomorphism. �

4. Projections of Hopf braces

As emphasized in the introduction of this paper, the notions of Yetter-Drinfeld module and
projection of Hopf algebras are strongly linked. In the following pages we will try to study this
connection in the context of Hopf braces. Once the notion of Yetter-Drinfeld module for a Hopf
brace was introduced in Definition 3.3, in the following definition we present the notion of projection
for Hopf braces.

Definition 4.1. A projection of Hopf braces in C is a 4-tuple (H,D, x, y), where H, D are Hopf
braces in C, x : H → D, y : D → H are morphisms of Hopf braces in C and the following equality
y ◦ x = idH holds.

A morphism between two projections of Hopf braces (H,D, x, y) and (H′,D′, x′, y′) is a pair (z, t)
where z : H → H

′, t : D → D
′ are morphisms in HBr and the following equalities hold:

(36) x′ ◦ z = t ◦ x, y′ ◦ t = z ◦ y.

With this morphisms and the previous objects we can define the category of projections of Hopf
braces. We will denote this category by P(HBr).

Note that (36) implies that

(37) z = y′ ◦ t ◦ x.

Remark 4.2. If (H,D, x, y) is a projection of Hopf braces in C, we have two projections of Hopf
algebras (H1,D1, x, y) and (H2,D2, x, y). Then, with q1D and q2D we will denote the associated
idempotent morphisms. Note that, if q1D = i1D ◦ p1D and q2D = i2D ◦ p2D, with p1D ◦ i1D = idI(q1

D
) and

p2D ◦ i2D = idI(q2
D
), we have that

✲
✲
✲I(qkD) D D ⊗H

ikD
(D ⊗ y) ◦ δD

D ⊗ ηH

is an equalizer diagram for k ∈ {1, 2} and, as a consequence, we can assume that i1D = i2D and
I(q1D) = I(q2D). Then, p1D ◦ i1D = idI(q1

D
) = p2D ◦ i1D and, composing with p1D and p2D we obtain the

equalities

(38) p2D = p1D ◦ q2D, p1D = p2D ◦ q1D.
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Therefore,

(39) q1D = q2D ◦ q1D, q2D = q1D ◦ q2D

also hold.

Notation 4.3. Taking into account the previous remark, in what follows we will denote the mor-
phism i1D = i2D by iD and the objects I(q1D) = I(q2D) by I(qD).

Remark 4.4. Note that, by (38) and (8), we have that

µ1I(qD) = p1D ◦ µ1D ◦ (iD ⊗ iD) = p2D ◦ q1D ◦ µ1D ◦ (iD ⊗ iD) = p2D ◦ µ1D ◦ (iD ⊗ iD),

and, similarly,
µ2I(qD) = p1D ◦ µ2D ◦ (iD ⊗ iD).

Theorem 4.5. Let (H,D, x, y) be a projection of Hopf braces where D is cocommutative. Then, the
following equality

(40) (q1D ⊗D) ◦ δD ◦ iD = (q2D ⊗D) ◦ δD ◦ iD

holds where q1D and q2D are the idempotent morphisms introduced in Remark 4.2.

Proof. If (H,D, x, y) is a projection of Hopf braces with D cocommutative, by Lemma 1.9, we have
that q1D is a coalgebra morphism. Then,

(q2D ⊗D) ◦ δD ◦ q1D
= ((q2D ◦ q1D)⊗ q1D) ◦ δD (by the condition of coalgebra morphism for q1

D
)

= (q1D ⊗ q1D) ◦ δD (by (39))

= (q1D ⊗D) ◦ δD ◦ q1D (by the condition of coalgebra morphism for q1
D

and q1
D

◦ q1
D

= q1
D

)

holds, and as a consequence, composing with iD, we obtain (40). �

Remark 4.6. Note that, if (40) holds, using (10) and (39), we obtain that

(41) (q1D ⊗ q1D) ◦ δD ◦ iD = (q2D ⊗ q1D) ◦ δD ◦ iD = (q2D ⊗ q2D) ◦ δD ◦ iD

holds. Then, the idempotent morphisms q1D and q2D induce the same coproduct in I(qD). By
Theorem 4.5, this is the situation that occurs when (H,D, x, y) is a projection of Hopf braces with
D cocommutative.

In the following theorem we will prove that, under cocommutative conditions, projections of Hopf
braces induces new Hopf braces.

Theorem 4.7. Let (H,D, x, y) be a projection of Hopf braces with D cocommutative. Then,

I(qD) = (I(qD), ηI(qD), µ
1
I(qD), η

2
I(qD), µ

2
I(qD), εI(qD), δI(qD), λ

1
I(qD), λ

2
I(qD))

is a Hopf brace in C where:

(42) ηI(qD) = p1D ◦ ηD = p2D ◦ ηD,

(43) µ1I(qD) = p1D ◦ µ1D ◦ (iD ⊗ iD),

(44) µ2I(qD) = p2D ◦ µ2D ◦ (iD ⊗ iD),

(45) εI(qD) = εD ◦ iD,

(46) δI(qD) = (p1D ⊗ p1D) ◦ δD ◦ iD = (p2D ⊗ p2D) ◦ δD ◦ iD,

(47) λ1I(qD) = p1D ◦ λ1D ◦ iD,
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(48) λ2I(qD) = p2D ◦ λ2D ◦ iD.

Proof. First note that ηI(qD) = p1D ◦ηD = p2D ◦ηD holds because η1
I(qD) is the unique morphism such

that iD ◦ η1
I(qD) = ηD and η2

I(qD) is the unique morphism such that iD ◦ η2
I(qD) = ηD. Thus, from

now on, we will use ηI(qD) to denote the morphism η1
I(qD) = η2

I(qD). Also, by the cocommutativity
of D, we can assure that (46) holds. Therefore, by the general theory of Hopf algebra projections
(I(qD), ηI(qD), µ

1
I(qD), εI(qD), δI(qD), λ

1
I(qD)) and (I(qD), ηI(qD), µ

2
I(qD), εI(qD), δI(qD), λ

2
I(qD)) are Hopf

algebras in C because the cocommutativity condition implies that ρI(qD) = ηH ⊗ I(qD).
On the other hand, the equality

(49) iD ◦ ΓI(qD)1
= ΓD1 ◦ (iD ⊗ iD)

holds because

iD ◦ ΓI(qD)1

= µ1D ◦ ((iD ◦ λI(qD))⊗ (iD ◦ µ2
I(qD))) ◦ (δI(qD) ⊗ I(qD)) (by (8))

= µ1D ◦ ((λ1D ◦ iD)⊗ (µ2D ◦ (iD ⊗ iD))) ◦ (δI(qD) ⊗ I(qD)) (by (8) and (14))

= µ1D ◦ ((λ1D ◦ q1D)⊗ (µ2D ◦ (q1D ⊗ iD))) ◦ ((δD ◦ iD)⊗ I(qD)) (by (9))

= ΓD1 ◦ (iD ⊗ iD) (by the condition of coalgebra morphism for q1D),

and then we have that the identities

ΓI(qD)1
= p1D ◦ ΓD1 ◦ (iD ⊗ iD) = p2D ◦ ΓD1 ◦ (iD ⊗ iD)

hold. As a consequence,

µ1
I(qD) ◦ (µ

2
I(qD) ⊗ ΓI(qD)1

) ◦ (I(qD)⊗ cI(qD),I(qD) ⊗ I(qD)) ◦ (δI(qD) ⊗ I(qD)⊗ I(qD))

= p1D◦µ
1
D◦((iD◦µ

2
I(qD))⊗(iD◦ΓI(qD)1

))◦(I(qD)⊗cI(qD),I(qD)⊗I(qD))◦(δI(qD)⊗I(qD)⊗I(qD))
(by (8))

= p1D ◦ µ1D ◦ (µ2D ⊗ ΓD1) ◦ (D ⊗ cD,D ⊗D) ◦ (((iD ⊗ iD) ◦ δI(qD))⊗ iD ⊗ iD) (by (8), (49) and

naturality of c)

= p1D ◦ µ1D ◦ (µ2D ⊗ ΓD1) ◦ (D ⊗ cD,D ⊗D) ◦ (((q1D ⊗ q1D) ◦ δD ◦ iD)⊗ iD ⊗ iD) (by (9))

= p1D ◦ µ1D ◦ (µ2D ⊗ ΓD1) ◦ (D ⊗ cD,D ⊗D) ◦ ((δD ◦ iD)⊗ iD ⊗ iD) (by the condition of coalgebra

morphism for q1D)

= p1D ◦ µ2D ◦ (D ⊗ µ1D) ◦ (iD ⊗ iD ⊗ iD) (by (iii) of Definition 2.1)

= µ2
I(qD) ◦ (I(qD)⊗ µ1

I(qD)) (by (8))

hold and I(qD) is a Hopf brace. �

Definition 4.8. Let (H,D, x, y) be a projection of Hopf braces in C. We will say that it is strong
if (40) and

(50) p1D ◦ µ2D ◦ (x⊗D) = p2D ◦ µ2D ◦ (x⊗ q1D)

hold.
Note that (50) implies that

(51) p1D ◦ µ2D ◦ (x⊗ iD) = p2D ◦ µ2D ◦ (x⊗ iD)

holds.
Strong projections with morphisms of projections of Hopf braces form a category that we will

denote by SP(HBr). In other words, SP(HBr) is the full subcategory of P(HBr) whose objects are
strong projections.

Note that, by (38), the equality (51) is equivalent to

p1D ◦ µ2D ◦ (x⊗ iD) = p1D ◦ q2D ◦ µ2D ◦ (x⊗ iD).
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Theorem 4.9. Let (H,D, x, y) be a strong projection of Hopf braces. Then,

(I(qD), ψ
1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD), ψ

2
I(qD) = p2D ◦ µ2D ◦ (x⊗ iD))

is a left H-module and the product µ1
I(qD) defined in ( 43) is a morphism of left H2-modules.

Then, if

ΨH2

I(qD) = (ψ2
I(qD) ⊗H) ◦ (H ⊗ cH,I(qD)) ◦ (δH ⊗ I(qD)),

the following equality holds:

(52) (µ1I(qD) ⊗H) ◦ (I(qD)⊗ΨH2

I(qD)) ◦ (Ψ
H2

I(qD) ⊗ I(qD)) = ΨH2

I(qD) ◦ (H ⊗ µ1I(qD)).

Finally, if H is cocommutative and

ΨH1

I(qD) = (ψ1
I(qD) ⊗H) ◦ (H ⊗ cH,I(qD)) ◦ (δH ⊗ I(qD)),

we have that

(53) (I(qD)⊗µ
1
H)◦(Ψ

H1

I(qD)⊗µ
2
H)◦(H⊗ΨH2

I(qD)⊗H)◦(((Γ′

H1
⊗H)◦(H⊗cH,H)◦(δH⊗H))⊗I(qD)⊗H)

= (I(qD)⊗ µ2H) ◦ (Ψ
H2

I(qD) ⊗ µ1H) ◦ (H ⊗ΨH1

I(qD) ⊗H)

holds.

Proof. If (H,D, x, y) is a strong projection of Hopf braces

(I(qD), ψ
1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD), ψ

2
I(qD) = p2D ◦ µ2D ◦ (x⊗ iD))

is an object in HMod. Indeed, first note that by the general theory of Hopf algebra projections we
have that (I(qD), ψ

1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD)) is an object in H1Mod and by similar arguments we

can assure that (I(qD), ψ2
I(qD) = p2D ◦µ2D ◦ (x⊗ iD)) is an object in H2Mod. Finally, (19) follows by:

ψ1
I(qD) ◦ (µ

2
H ⊗ ΓI(qD)) ◦ (H ⊗ cH,H ⊗ I(qD)) ◦ (δH ⊗H ⊗ I(qD))

= p1D ◦µ1D ◦ (µ2D ⊗ΓD1) ◦ (D⊗ cD,D⊗D) ◦ ((δD ◦x)⊗x⊗ iD) (by the condition of morphism of Hopf

algebras for x, (10) and the the naturality of c)

= p1D ◦ µ2D ◦ (x⊗ (µ1D ◦ (x⊗ iD))) (by (iii) of Definition 2.1)

= ψ1
I(q2

D
)
◦ (H ⊗ ψ1

I(qD)) (by (50)).

The product µ1
I(qD) is a morphism of left H2-modules because:

µ1
I(qD) ◦ (ψ

2
I(qD) ⊗ ψ2

I(qD)) ◦ (H ⊗ cH,I(qD) ⊗ I(qD)) ◦ (δH ⊗ I(qD)⊗ I(qD))

= p1D◦µ1D◦((q1D◦µ2D◦(x⊗iD))⊗(µ2D◦(x⊗i1D)))◦(H⊗cH,I(qD)⊗I(qD))◦(δH⊗I(qD)⊗I(qD))
(by (51) and (10))

= p1D ◦ µ1D ◦ ((q1D ◦ µ2D ◦ (D ⊗ iD))⊗ (µ2D ◦ (D ⊗ iD))) ◦ (D ⊗ cD,I(qD) ⊗ I(qD))
◦((δD ◦ x)⊗ I(qD)⊗ I(qD)) (by the condition of coalgebra morphism for x and the naturality of c)

= p1D ◦µ1D ◦((µ1D ◦(µ2D⊗(x◦λ1H ◦µ2H ◦(y⊗H))))◦(D⊗cD,D⊗D)◦(δD⊗((D⊗y)◦δD ◦ iD)))
⊗(µ2D ◦ (D ⊗ iD))) ◦ (D ⊗ cD,I(qD) ⊗ I(qD)) ◦ ((δD ◦ x)⊗ I(qD)⊗ I(qD)) (by the condition of

algebra morphism for y and the condition of coalgebra morphism for µ2
D

)

= p1D ◦ µ1D ◦ ((µ1D ◦ (µ2D ⊗ (x ◦ λ1H ◦ y) ◦ (D ⊗ cD,D) ◦ (δD ⊗ iD)))⊗ (µ2D ◦ (D ⊗ iD)))
◦(D⊗ cD,I(qD)⊗ I(qD)) ◦ ((δD ◦x)⊗ I(qD)⊗ I(qD)) (in this equality we used that iD is the equalizer

morphism of (D ⊗ y) ◦ δD and D ⊗ ηH )

= p1D ◦ µ1D ◦ (µ2D ⊗ ΓD1) ◦ (D ⊗ cD,D ⊗D) ◦ ((δD ◦ x)⊗ iD ⊗ iD) (by the condition of Hopf algebra

morphism for x, y ◦ x = idH and the naturality of c)

= p1D ◦ µ2D ◦ (x⊗ (µ1D ◦ (iD ⊗ iD))) (by (iii) od Definition 2.1)

= ψ2
I(qD) ◦ (H ⊗ µ1

I(qD)) (by (51) and (8)).

On the other hand, (52) follows by
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(µ1
I(qD) ⊗H) ◦ (I(qD)⊗ΨH2

I(qD)) ◦ (Ψ
H2

I(qD) ⊗ I(qD))

= ((µ1
I(qD) ◦ (ψ

2
I(qD) ⊗ ψ2

I(qD)) ◦ (H ⊗ cH,I(qD) ⊗ I(qD)) ◦ (δH ⊗ I(qD)⊗ I(qD))) ⊗H)

◦(H ⊗ I(qD)⊗ cH,I(qD)) ◦ (H ⊗ cH,I(qD) ⊗ I(qD)) ◦ (δH ⊗ I(qD)⊗ I(qD)) (by the naturality of

c and the coassociativity of δH )

= ((ψ2
I(qD) ◦ (H ⊗ µ1

I(qD)))⊗H) ◦ (H ⊗ I(qD)⊗ cH,I(qD)) ◦ (H ⊗ cH,I(qD) ⊗ I(qD))

◦(δH ⊗ I(qD)⊗ I(qD)) (by the condition of morphism of left H2-modules for µ1
I(qD)

)

= ΨH2

I(qD) ◦ (H ⊗ µ1
I(qD)) (by the naturality of c).

Finally, the proof of (53) is the following:

(I(qD)⊗ µ1H) ◦ (Ψ
H1

I(qD) ⊗ µ2H) ◦ (H ⊗ΨH2

I(qD) ⊗H)

◦(((Γ′

H1
⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗ I(qD)⊗H)

= (ψ1
I(qD) ⊗ µ1H) ◦ (H ⊗ cH,I(qD) ⊗H)

◦(((Γ′

H1
⊗ Γ′

H1
) ◦ δH⊗H)⊗ ((ψ2

I(qD) ⊗ µ2H) ◦ (H ⊗ cH,I(qD) ⊗H) ◦ (δH ⊗ I(qD)⊗H)))

◦(H ⊗ cH,H ⊗ I(qD)⊗H) ◦ (δH ⊗H ⊗⊗I(qD)⊗H) (by Lemma 2.6)

= ((ψ1
I(qD) ◦ (Γ

′

H1
⊗ ψ2

I(qD)) ◦ (H ⊗ cH,H ⊗ I(qD)))⊗ (µ1H ◦ (Γ′

H1
⊗ µ2H) ◦ (H ⊗ cH,H ⊗H)))

◦(H ⊗H ⊗ ((H ⊗ cH,I(qD) ⊗H) ◦ (cH,H ⊗ cH,I(qD)) ◦ (H ⊗ cH,H ⊗ I(qD))) ⊗H ⊗H)
◦(((δH⊗δH)◦δH)⊗((H⊗cH,I(qD))◦(δH⊗I(qD)))⊗H) (by the naturality of c, the cocommutativity

of δH and cH,H ◦ cH,H = idH )

= ((ψ1
I(qD) ◦ (Γ

′

H1
⊗ ψ2

I(qD)) ◦ (H ⊗ cH,H ⊗ I(qD)) ◦ (δH ⊗H ⊗ I(qD))) ⊗ (µ1H ◦ (Γ′

H1
⊗ µ2H)

◦(H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H))) ◦ (H ⊗ ((H ⊗ cH,I(qD) ⊗H) ◦ (cH,H ⊗ cH,I(qD)))⊗H)
◦(δH ⊗ δH ⊗ I(qD)⊗H) (by the naturality of c)

= ((ψ2
I(qD)◦(H⊗ψ1

I(qD)))⊗(µ2H ◦(H⊗µ1H)))◦(H⊗((H⊗cH,I(qD )⊗H)◦(cH,H⊗cH,I(qD)))⊗H)

◦(δH ⊗ δH ⊗ I(qD)⊗H) (by (23) for I(qD) and (18))

= (I(qD)⊗ µ2H) ◦ (Ψ
H2

I(qD) ⊗ µ1H) ◦ (H ⊗ΨH1

I(qD) ⊗H) (by the naturality of c).

�

Remark 4.10. Let (H,D, x, y) be a projection of Hopf braces. The idempotent morphisms q1D and
q2D induce the same coaction on I(qD) because, by (10) and (38), we have that

ρ1I(qD) = (y ⊗ p1D) ◦ δD ◦ iD = (y ⊗ (p1D ◦ q2D)) ◦ δD ◦ iD = (y ⊗ p2D) ◦ δD ◦ iD = ρ2I(qD).

Then, in the following, we will denote this coaction by ρI(qD).

Definition 4.11. Let (H,D, x, y) be a strong projection of Hopf braces in C. We will say that it is
v1-strong if

(54) (µ1H ⊗ I(qD)) ◦ (H ⊗ cI(qD),H) ◦ (ρI(qD) ⊗H) = (µ2H ⊗ I(qD)) ◦ (H ⊗ cI(qD),H) ◦ (ρI(qD) ⊗H),

holds and the morphism

(55) (ψ2
N ⊗ I(qD)) ◦ (H ⊗ cI(qD),N ) ◦ (ρI(qD) ⊗N) : I(qD)⊗N → N ⊗ I(qD)

is a morphism of left H1-modules for all (N,ψ1
N , ψ

2
N , ρN ) ∈

H

H
WYD.

These projections with morphisms of projections of Hopf braces form a category that we will
denote by V1SP(HBr), i.e., V1SP(HBr) is the full subcategory of SP(HBr) whose objects are v1-
strong projections.

Theorem 4.12. Let (H,D, x, y) be a v1-strong projection of Hopf braces. Then, the triple

(I(qD), ψ
1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD), ψ

2
I(qD) = p2D ◦ µ2D ◦ (x⊗ iD), ρI(qD) = (y ⊗ p1D) ◦ δD ◦ iD)

is an object in H

H
YD.
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Proof. By Theorem 4.9, we know that

(I(qD), ψ
1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD), ψ

2
I(qD) = p2D ◦ µ2D ◦ (x⊗ iD))

is a left H-module. Also, by Remark 4.10, the coaction ρI(qD) does not depend on q1D and q2D.
On the other hand, by the general theory of Hopf algebra projections, (I(qD), ψ1

I(qD), ρI(qD)) is a

left Yetter-Drinfeld module over H1 and, similarly, (I(qD), ψ2
I(qD), ρI(qD)) is a left Yetter-Drinfeld

module over H2. Finally, (iv) of Definition 3.1 and the H1-linearity of the morphism defined in (55)
follows directly from the condition of v1-strong projection. �

Example 4.13. In [1] we can find constructions for Hopf braces by means of using matched pairs
of Hopf algebras in a category of vector spaces over a field F or, in a more general setting, in a
symmetric monoidal category C that we will assume strict without loss of generality. Recall that a
matched pair of Hopf algebras in C is a system (A,H,ϕA, ψH), where A and H are Hopf algebras,
A is a left H-module coalgebra with action ϕA : H ⊗A→ A, H is a right A-module coalgebra with
action ψH : H ⊗A→ H and the following conditions hold:

ϕA ◦ (H ⊗ ηA) = εH ⊗ ηA,

ψH ◦ (ηH ⊗A) = ηH ⊗ εA,

ϕA ◦ (H ⊗ µA) = µA ◦ (A⊗ ϕA) ◦ (Ψ
H
A ⊗A),

ψH ◦ (µH ⊗A) = µH ◦ (ψH ⊗H) ◦ (H ⊗ΨH
A ),

(ψH ⊗ ϕA) ◦ δH⊗A = cA,H ◦ΨH
A ,

where ΨH
A = (ϕA ⊗ ψH) ◦ δH⊗A.

If (A,H,ϕA, ψH) is a matched pair of Hopf algebras, the double cross product A ⊲⊳ H of A with
H is the Hopf algebra built on the object A⊗H with product

µA⊲⊳H = (µA ⊗ µH) ◦ (A⊗ΨH
A ⊗H)

and tensor product unit, counit, coproduct and antipode

λA⊲⊳H = ΨH
A ◦ (λH ⊗ λA) ◦ cA,H

where λH is the antipode of H and λA is the antipode of A.
Let A be a Hopf algebra and H be a cocommutative Hopf brace. If (A,H1, ϕA, ψH1) is a matched

pair of Hopf algebras, (A,ϕ2
A) is a left H2-module algebra-coalgebra,

ΓH2
A = (ϕ2

A ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A),

and the equalities
ϕ2
A ◦ (H ⊗ ϕA)

= ϕA ◦ ((µ1H ◦ (H ⊗ λ1H))⊗ ϕ2
A) ◦ (H ⊗ δH ⊗A) ◦ (((µ2H ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗A),

µ2H ◦ (H ⊗ ψH1)

= µ1H ◦(ψH1⊗H)◦((µ1H ◦(H⊗λ1H))⊗ΓH2
A )◦(H⊗δH⊗A)◦(((µ2H⊗H)◦(H⊗cH,H)◦(δH⊗H))⊗A),

hold, by [1, Theorem 2.5], we have that the tensor product A⊗H with the products

µ1A⊲⊳H = (µA ⊗ µ1H) ◦ (A⊗ΨH1
A ⊗H),

µ2A⊲⊳H = µA♯H2 = (µA ⊗ µ2H) ◦ (A⊗ ΓH2
A ⊗H),

tensor product unit, counit, coproduct and antipodes

λ1A⊲⊳H = ΨH1
A ◦ (λ1H ⊗ λA) ◦ cA,H , λ2A⊲⊳H = ΓH2

A ◦ (λ2H ⊗ λA) ◦ cA,H ,

is a Hopf brace that we will denote by A ⊲⊳ H.
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If in the previous construction we consider the particular case where ψH1 = H ⊗ εA we obtain
that (H, A ⊲⊳ H, x = ηA ⊗H, y = εA ⊗H) is a projection of Hopf braces where

qA⊲⊳H = q1A⊲⊳H = q2A⊲⊳H = A⊗ (ηH ◦ εH).

Therefore, I(q1A⊲⊳H) = I(q2A⊲⊳H) = A,

p1A⊲⊳H = p2A⊲⊳H = A⊗ εH ,

and
i1A⊲⊳H = i2A⊲⊳H = A⊗ ηH .

As a consequence of the previous facts, it is easy to show that (40), (50) and (54) hold because
in this setting

ρI(qA⊲⊳H ) = (y ⊗ p1A⊲⊳H) ◦ δA⊲⊳H ◦ i1A⊲⊳H = ηH ⊗A.

As a consequence, we have that

cA,N = (ψ2
N ⊗ I(qA⊲⊳H) ◦ (H ⊗ cI(qA⊲⊳H ),N ) ◦ (ρI(qA⊲⊳H ) ⊗N)

and, using the cocommutativity condition, we obtain that it is a morphism of left H1-modules for
all (N,ψ1

N , ψ
2
N , ρN ) ∈

H

H
WYD. Then (H, A ⊲⊳ H, x = ηA ⊗H, y = εA ⊗H) is a v1-strong projection

of Hopf braces such that the object I(qA⊲⊳H) is the Hopf brace Atriv introduced in Theorem 2.4
because ηI(qA⊲⊳H ) = ηA, µ1

I(qA⊲⊳H ) = µ2
I(qA⊲⊳H ) = µA, εI(qA⊲⊳H ) = εA, δI(qA⊲⊳H) = δA and λ1

I(qA⊲⊳H) =

λ2
I(qA⊲⊳H ) = λA.
On the other hand, by Theorem 4.12, we know that I(qA⊲⊳H) with the two actions

ψ1
I(qA⊲⊳H) = p1A⊲⊳H ◦ µ1A⊲⊳H ◦ (x⊗ i1A⊲⊳H) = ϕA, ψ2

I(qA⊲⊳H) = p2A⊲⊳H ◦ µ2A⊲⊳H ◦ (x⊗ i1A⊲⊳H) = ϕ2
A,

and trivial coaction ρI(qA⊲⊳H ) = ηH ⊗ A is an object in H

H
YD. Moreover, by the general theory of

Hopf algebra projections, (A, ηA, µA, εA, δA, λA) is a Hopf algebra in H1
H1

YD and in H2
H2

YD. Therefore,
ηA, µA, εA, δA, λA are morphisms of left H1-modules, left H2-modules and left H-comodules. As
a consequence of these facts we obtain that Atriv is a Hopf brace in H

H
YD because in this case the

braiding tA,A in H

H
YD is the symmetry isomorphism cA,A. Finally, note that the previous assertions

imply that (A,ϕA) is not only a left H1-module coalgebra but also a left H1-module algebra.

Remark 4.14. Let’s assume that C is symmetric. Let (H,D, x, y) be a strong projection of Hopf
braces with D cocommutative. Then, the Hopf brace I(qD), introduced in Theorem 4.7, with the
actions of the previous theorem is an object in H

H
YD where ρI(qD) = ηH ⊗ I(qD). Note that in

this case, for all (N,ψ1
N , ψ

2
N , ρN ) ∈

H

H
WYD, tI(qD),N = cI(qD),N is a morphism of left H1-modules

because if D is cocommutative, the Hopf brace H is cocommutative.

In the following theorem we present the conditions that permit to obtain, using the bossonization
process, Hopf braces in C working with Hopf braces in the category of Yetter-Drinfeld modules
associated to a cocommutative Hopf brace H in C.

Theorem 4.15. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C

and let A be a Hopf brace in H

H
YD. Let ΨH1

A : H ⊗ A → A ⊗ H, ΨH2
A : H ⊗ A → A ⊗ H and

ΩAH : A⊗H → H ⊗A be the morphisms defined by

ΨH1
A = (ψ1

A ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A), ΨH2
A = (ψ2

A ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A),

ΩAH = (µ1H ⊗A) ◦ (H ⊗ cA,H) ◦ (ρA ⊗H).

Then, A ◮◭ H = ((A ◮◭ H)1, (A ◮◭ H)2), where

ηA◮◭H = ηA ⊗ ηH , εA◮◭H = εA ⊗ εH ,
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µ1A◮◭H = (µ1A ⊗ µ1H) ◦ (A⊗ΨH1
A ⊗H), µ2A◮◭H = (µ2A ⊗ µ2H) ◦ (A⊗ΨH2

A ⊗H),

δA◮◭H = (A⊗ ΩAH ⊗H) ◦ (δA ⊗ δH),

and
λ1A◮◭H = ΨH1

A ◦ (λ1H ⊗ λ1A) ◦Ω
A
H , λ2A◮◭H = ΨH2

A ◦ (λ2H ⊗ λ2A) ◦ Ω
A
H ,

is a Hopf brace in C if, and only if, the following equalities hold:

(56) (A⊗ µ1H) ◦ (Ψ
H1
A ⊗ µ2H) ◦ (H ⊗ΨH2

A ⊗H) ◦ (((Γ′

H1
⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗A⊗H)

= (A⊗ µ2H) ◦ (Ψ
H2
A ⊗ µ1H) ◦ (H ⊗ΨH1

A ⊗H),

(57) ΨH2
A ◦ (H ⊗ µ1A) = (µ1A ⊗H) ◦ (A⊗ΨH2

A ) ◦ (ΨH2
A ⊗A),

(58) (µ1A ⊗H) ◦ (A⊗ΨH1
A ) ◦ (A⊗ ((Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ρA ⊗H ⊗A))) ◦ (δA ⊗H ⊗A)

= (µ2A ⊗H) ◦ (A⊗ΨH1
A ).

Proof. First of all prove some equalities that we will need in the proof. More concretely, we will
prove that the following equalities hold:

(59) ΩAH ◦ (ηA ⊗H) = H ⊗ ηA

(60) ΩAH ◦ (A⊗ ηH) = ρA

(61) δA◮◭H ◦ (ηA ⊗H) = (A⊗H ⊗ ηA ⊗H) ◦ (ηA ⊗ δH),

(62) δA◮◭H ◦ (A⊗ ηH) = ((A⊗ ρA) ◦ δA)⊗ ηH ,

(63) (ΩAH ⊗A) ◦ (A⊗ ΩAH) ◦ (δA ⊗H) = (H ⊗ δA) ◦Ω
A
H ,

(64) (H ⊗ ΩAH)⊗ (ΩAH ⊗H) ◦ (A⊗ δH) = (δH ⊗A) ◦ ΩAH ,

(65) ΨHi

A ◦ (ηH ⊗A) = A⊗ ηH , i = 1, 2,

(66) ΨHi

A ◦ (H ⊗ ηA) = ηA ⊗H, i = 1, 2,

(67) µiA◮◭H ◦ (A⊗ ηH ⊗A⊗H) = µiA ⊗H, i = 1, 2,

(68) µiA◮◭H ◦ (A⊗H ⊗ ηA ⊗H) = A⊗ µiH , i = 1, 2,

(69) (µiA ⊗H) ◦ (A⊗ΨHi

A ) ◦ (ΨHi

A ⊗A) = ΨHi

A ◦ (H ⊗ µiA), , i = 1, 2,

(70) (A⊗ µiH) ◦ (Ψ
Hi

A ⊗H) ◦ (H ⊗ΨHi

A ) = ΨHi

A ◦ (µiH ⊗A), i = 1, 2,

(71) (ΨHi

A ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A) = (A⊗ δH) ◦Ψ
Hi

A i = 1, 2,

(72) (ΨH2
A ⊗A) ◦ (H ⊗ cA,A) ◦ (Ω

A
H ⊗A) = (A⊗ ΩAH) ◦ (tA,A ⊗H) ◦ (A⊗ΨH2

A ),

(73) Γ(A◮◭H)1 = (A⊗µ1H)◦((Ψ
H1
A ◦(λ1H⊗ΓA1)◦(Ω

A
H⊗A))⊗µ2H)◦(A⊗((H⊗ΨH2

A )◦(δH⊗A))⊗H),

(74) Γ(A◮◭H)1 ◦ (ηA ⊗H ⊗A⊗H) = (A⊗ µ1H) ◦ (Ψ
H1
A ⊗ µ2H) ◦ (λ

1
H ⊗ΨH2

A ⊗H) ◦ (δH ⊗A⊗H).

The equality (59) follows from (5), the naturality of the braiding and the unit properties. The
proof of (60) follows from the naturality of the braiding and the unit properties. The equality (61)
is a consequence of (59) and (62) follows from (60). On the other hand, we have that
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(ΩAH ⊗A) ◦ (A⊗ ΩAH) ◦ (δA ⊗H)
= (µ1H ⊗A⊗A) ◦ (H ⊗ cA,H ⊗A) ◦ (H ⊗A⊗ cA,H) ◦ (((µ

1
H ⊗A⊗A) ◦ (H ⊗ cA,H ⊗A)

◦(ρA ⊗ ρA) ◦ δA)⊗H) (by the naturality of c and the associativity of µ1
H

)

= (µ1H ⊗A⊗A) ◦ (H ⊗ cA,H ⊗A) ◦ (H ⊗A⊗ cA,H) ◦ (((H ⊗ δA) ◦ ρA)⊗H) (by (6))

= (H ⊗ δA) ◦ Ω
A
H (by the naturality of c)

and then, (63) holds. Also,

(H ⊗ ΩAH)⊗ (ΩAH ⊗H) ◦ (A⊗ δH)
= (µ1H ⊗ µ1H ⊗A) ◦ (H ⊗ cH,H ⊗ cA,H) ◦ (δH ⊗ cA,H ⊗H) ◦ (ρA ⊗ δH) (by the naturality of c

and the comodule condition for A)

= (((µ1H ⊗ µ1H) ◦ δH⊗H)⊗A) ◦ (H ⊗ cA,H) ◦ (ρA ⊗H) (by the naturality of c)

= (δH ⊗A) ◦ΩAH (by the condition of coalgebra morphism for µ1
H

)

hold, and we obtain (64). The proof of (65) follows by the condition of coalgebra morphism for ηH ,
the naturality of c and the condition of left module for A. The equality (66) is a consequence of the
naturality of c , the condition of left module algebra for A and the counit properties. The proof of
(67) is a consequence of (65) and (68) follows from (66). The identity (69) holds because

(µiA ⊗H) ◦ (A⊗ΨHi

A ) ◦ (ΨHi

A ⊗A)

= ((µiA ◦ (ψiA ⊗ ψiA) ◦ (H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A))⊗H) ◦ (H ⊗A⊗ cH,A)
◦(H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A) (by the naturality of c and the coassociativity of δH )

= ((ψiA ◦ (H ⊗ µiA))⊗H) ◦ (H ⊗A⊗ cH,A) ◦ (H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A) (by (4))

= ΨHi

A ◦ (H ⊗ µiA) (by the naturality of c)

and (70) follows by

(A⊗ µiH) ◦ (Ψ
Hi

A ⊗H) ◦ (H ⊗ΨHi

A )

= ((ψiA ◦ (µiH ⊗A))⊗ µiH) ◦ (H ⊗H ⊗ cH,A⊗H) ◦ (H ⊗ cH,H ⊗ cH,A) ◦ (δH ⊗ δH ⊗A) (by the

naturality of c and the condition of left module for A)

= (ψiA ⊗H) ◦ (H ⊗ cH,A) ◦ (((µ
i
H ⊗ µiH) ◦ δH⊗H)⊗A) (by the naturality of c)

= ΨHi

A ◦ (µiH ⊗A) (by the condition of coalgebra morphism for µi
H

).

By the coassociativity of δH and the naturality of c we obtain (71). The proof for the equality
(72) is the following:

(ΨH2
A ⊗A) ◦ (H ⊗ cA,A) ◦ (Ω

A
H ⊗A)

= (((ψ2
A⊗H)◦(H⊗cH,A))⊗A)◦(((µ

2
H⊗µiH)◦δH⊗H )⊗cA,A)◦(H⊗cA,H⊗A)◦(ρA⊗H⊗A)

(by the condition of algebra morphism for δH )

= ((ψ2
A◦(µ

2
H⊗A))⊗µ2H⊗A)⊗(H⊗H⊗((cH,A⊗H)◦(H⊗cH,A))⊗A)◦(H⊗H⊗H⊗H⊗cA,A)

◦(H ⊗ ((cH,H ⊗ cA,H) ◦ (H ⊗ cA,H ⊗H) ◦ (ρA ⊗ δH))⊗A) ◦ (ρA ⊗H ⊗A) (by the naturality

of c and the condition of comodule for A)

= ((ψ2
A ◦ (H ⊗ψ2

A))⊗ΩAH) ◦ (H ⊗H ⊗ cA,A⊗H) ◦ (H ⊗ cA,H ⊗ cH,A) ◦ (ρA ⊗ δH ⊗A) (by the

naturality of c and the condition of left module for A)

= (A⊗ ΩAH) ◦ (tA,A ⊗H) ◦ (A⊗ΨHi

A ) (by the naturality of c)

and (73) follows by (63) and (69). Finally, (74) follows by (73), (59) and the unit properties.
Taking into account the previous equalities, we will prove the theorem. Firstly, let’s assume that

A ◮◭ H is a Hopf brace in C. Then, (iii) of Definition 2.1 holds for A ◮◭ H, i.e., we have that the
following equality:

(75) µ1A◮◭H ◦ (µ2A◮◭H ⊗ Γ(A◮◭H)1) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H) ◦ (δA◮◭H ⊗A⊗H ⊗A⊗H)

= µ2A◮◭H ◦ (A⊗H ⊗ µ1A◮◭H).

Then composing in (75) with ηA ⊗H ⊗ ηA ⊗H ⊗A⊗H we have
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µ1A◮◭H ◦ (µ2A◮◭H ⊗ Γ(A◮◭H)1) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H) ◦ (δA◮◭H ⊗A⊗H ⊗A⊗H)
◦(ηA ⊗H ⊗ ηA ⊗H ⊗A⊗H)

= (A⊗µ1H)◦ (Ψ
H1
A ⊗H)◦ (µ2H ⊗Γ(A◮◭H)1)◦ (((H ⊗ cA,H⊗H)◦ (ΩAH ⊗ cH,H)◦ (ηA⊗ δH⊗H))

⊗A⊗H)(by the naturality of c, the unit properties, (66) and the coalgebra morphism condition for ηA)

= (A⊗ µ1H) ◦ (Ψ
H1
A ⊗H) ◦ (µ2H ⊗ (Γ(A◮◭H)1 ◦ (ηA ⊗H ⊗A⊗H))) ◦ (H ⊗ cH,H ⊗A⊗H)

◦(δH ⊗H ⊗A⊗H) (by the naturality of c and (59))

= (A⊗µ1H) ◦ (Ψ
H1
A ⊗H) ◦ (µ2H ⊗ ((A⊗µ1H) ◦ (Ψ

H1
A ⊗µ2H) ◦ (λ

1
H ⊗ΨH2

A ⊗H) ◦ (δH ⊗A⊗H)))
◦(H ⊗ cH,H ⊗A⊗H) ◦ (δH ⊗H ⊗A⊗H) (by (74))

= (A⊗µ1H)◦(((A⊗µ1H)◦(Ψ
H1
A ⊗H)◦(H⊗ΨH1

A ))⊗µ2H)◦(((µ
2
H⊗λ1H)◦(H⊗cH,H)◦(δH⊗H))

⊗ΨH2
A ⊗H) ◦ (H ⊗ cH,H ⊗A⊗H) ◦ (δH ⊗H ⊗A⊗H) (by the naturality of c, the coassociativity

of δH and the associativity of µ1H )

= (A⊗µ1H) ◦ (Ψ
H1
A ⊗µ2H) ◦ (H ⊗ΨH2

A ⊗H) ◦ (((Γ′

H1
⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗A⊗H)

(by (70))

and, on the other hand, using the unit properties

µ2A◮◭H ◦ (A⊗H ⊗ µ1A◮◭H) ◦ (ηA ⊗H ⊗ ηA ⊗H ⊗A⊗H)

= (A⊗ µ2H) ◦ (Ψ
H2
A ⊗ µ1H) ◦ (H ⊗ΨH1

A ⊗H)

Therefore (56) holds.
If we compose with ηA⊗H ⊗A⊗ ηH ⊗A⊗ ηH in (75), by the unit properties and (65) we obtain

µ2A◮◭H ◦ (A⊗H ⊗ µ1A◮◭H) ◦ (ηA ⊗H ⊗A⊗ ηH ⊗A⊗ ηH)

= ΨH2
A ◦ (H ⊗ µ1A)

and, on the other hand,

µ1A◮◭H ◦ (µ2A◮◭H ⊗ Γ(A◮◭H)1) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H) ◦ (δA◮◭H ⊗A⊗H ⊗A⊗H)
◦(ηA ⊗H ⊗A⊗ ηH ⊗A⊗ ηH)

= (µ1A⊗µ
1
H)◦(A⊗((A⊗µ1H)◦(Ψ

H1
A ⊗H)◦(H⊗ΨH1

A ))⊗H)◦(ΨH2
A ⊗((λ1H⊗ΨH2

A )◦(δH⊗A)))
◦(H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A)(by the naturality of c, the unit properties, the coalgebra morphism

condition for ηA, the associativity of µ1H , (59), (74) and the unit properties)

= (µ1A⊗µ1H) ◦ (A⊗ (ΨH1
A ◦ ((idH ∗λ1H)⊗A))⊗H) ◦ (A⊗H⊗ΨH2

A ) ◦ (((A⊗ δH) ◦Ψ
H2
A )⊗A)

(by (70) and (71))

= (µ1A ⊗H) ◦ (A⊗ΨH2
A ) ◦ (ΨH2

A ⊗A)(by the unit properties, (1) and (65)).

Therefore the equality (57) holds.
Finally, the proof for (58) is the following: Composing with A⊗ ηH ⊗ ηA ⊗H ⊗A⊗ ηH in (75),

by the unit properties and (67), we obtain

µ2A◮◭H ◦ (A⊗H ⊗ µ1A◮◭H) ◦ (A⊗ ηH ⊗ ηA ⊗H ⊗A⊗ ηH)

= (µ2A ⊗H) ◦ (A⊗ΨH1
A )

and, on the other hand,

µ1A◮◭H ◦ (µ2A◮◭H ⊗ Γ(A◮◭H)1) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H) ◦ (δA◮◭H ⊗A⊗H ⊗A⊗H)
◦(A⊗ ηH ⊗ ηA ⊗H ⊗A⊗ ηH)

= (µ1A⊗µ1H) ◦ (A⊗ΨH1
A ⊗H) ◦ (A⊗H ⊗ ((A⊗µ1H) ◦ ((Ψ

H1
A ◦ (λ1H ⊗ΓA1) ◦ (Ω

A
H ⊗A))⊗H)

◦(A⊗H⊗ΨH2
A )◦(A⊗δH ⊗A)))◦(A⊗ ((µ2H ⊗A⊗H)◦(H⊗cA,H⊗H)◦(ρA⊗cH,H))⊗A)

◦(δA ⊗ ηH ⊗H ⊗A)(by the naturality of c, (68), the condition of coalgebra morphism of ηH , (60),(73)

and the unit properties)

= (µ1A⊗H)◦ (A⊗ ((A⊗µ1H )◦ (ΨH1
A ⊗H)◦ (H ⊗ΨH1

A )))◦ (A⊗µ2H ⊗ ((λ1H ⊗ΓA1)◦ (ρA⊗A)))
◦(A⊗H ⊗ cA,H ⊗A) ◦ (((A⊗ ρA) ◦ δA)⊗H ⊗A)(by the naturality of c, the condition of coalgebra
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morphism for ηH , the unit properties, (60) and (65))

= (µ1A⊗H)◦(A⊗ΨH1
A )◦(A⊗((Γ′

H1
⊗ΓA1)◦(H⊗cA,H⊗A)◦(ρA⊗H⊗A)))◦(δA⊗H⊗A)(by

the naturality of c, the comodule condition for A and (70))

Conversely, let’s assume that (56), (57) and (58) hold. By the bosonization process we know that

(A ◮◭ H)1 = (A⊗H, ηA◮◭H , µ
1
A◮◭H , εA◮◭H , δA◮◭H , λ

1
A◮◭H)

and
(A ◮◭ H)2 = (A⊗H, ηA◮◭H , µ

2
A◮◭H , εA◮◭H , δA◮◭H , λ

2
A◮◭H)

are Hopf algebras in C. Then, to finish the proof we only need to show that (iii) of Definition 2.1
holds for A ◮◭ H. Indeed, first note that if (58) holds, we have that

(76) (ΓA1 ⊗H) ◦ (A⊗ΨH1
A ) = ΨH1

A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ρA ⊗H ⊗A)

also holds because

(ΓA1 ⊗H) ◦ (A⊗ΨH1
A )

= (µ1A⊗H)◦(λ1A⊗((µ1A⊗H)◦(A⊗ΨH1
A )◦(A⊗((Γ′

H1
⊗ΓA1)◦(H⊗cA,H⊗A)◦(ρA⊗H⊗A)))

◦(δA ⊗H ⊗A))) ◦ (δA ⊗H ⊗A) (by (58))

= ΨH1
A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ρA ⊗H ⊗A)(by the coassociativity of δA, the associativity)

of µ1
A

, (1) and the unit and counit properties).

Then, as a consequence of (76), we can prove the identity

(77) (ΓA1 ⊗H) ◦ (A⊗ (ΨH1
A ◦ (Γ′

H1
⊗A))) = ΨH1

A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ΩAH ⊗H ⊗A)

because

ΨH1
A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ΩAH ⊗H ⊗A)

= ΨH1
A ◦ (Γ′

H1
⊗ΓA1) ◦ (H ⊗ ((Γ′

H1
⊗A) ◦ (H ⊗ cA,H) ◦ (cA,H ⊗H))⊗A) ◦ (ρA⊗H ⊗H ⊗A)

(by the condition of H2-module with action Γ′
H1

for H1 )

= ΨH1
A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ρA ⊗ Γ′

H1
⊗A) (by the naturality of c)

= (ΓA1 ⊗H) ◦ (A⊗ (ΨH1
A ◦ (Γ′

H1
⊗A))) (by (76)).

Therefore,

µ1A◮◭H ◦ (µ2A◮◭H ⊗ Γ(A◮◭H)1) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H) ◦ (δA◮◭H ⊗A⊗H ⊗A⊗H)

= (µ1A ⊗ µ1H) ◦ (A⊗ ((A⊗ µ1H) ◦ (Ψ
H1
A ⊗H) ◦ (H ⊗ΨH1

A ))⊗H) ◦ (µ2A◮◭H ⊗ λ1H ⊗ ΓA1 ⊗ µ2H)

◦(A⊗H ⊗ cH⊗A,A⊗H ⊗ΨH2
A ⊗H) ◦ (A⊗ ((H ⊗ΩAH) ◦ (Ω

A
H ⊗H) ◦ (A⊗ δH))⊗ ((A⊗ cH,H)

◦(cH,A ⊗H))⊗A⊗H) ◦ (δA ⊗ δH ⊗A⊗H ⊗A⊗H)(by the naturality of c, coassociativity of δH ,

associativity of µ1
H

and (73))

= (µ1A⊗µ1H)◦ (µ
2
A⊗ (ΨH1

A ◦ ((µ1H ◦ (µ2H ⊗λ1H)◦ (H ⊗ cH,H))⊗ΓA1))⊗µ
2
H)◦ (A⊗ ((ΨH2

A ⊗H)

◦(H ⊗ cH,A) ◦ (δH ⊗A))⊗ cA,H ⊗ΨH2
A ⊗H) ◦ (A⊗H ⊗ cA,A ⊗ cH,H ⊗A⊗H)

◦(A⊗ ΩAH ⊗ cH,A ⊗H ⊗A⊗H) ◦ (δA ⊗ δH ⊗A⊗H ⊗A⊗H) (by (64) and (70))

= (µ1A⊗µ
1
H)◦(µ

2
A⊗(ΨH1

A ◦(Γ′

H1
⊗ΓA1)◦(H⊗cA,H⊗A))⊗µ2H)◦(A⊗((ΨH2

A ⊗A)◦(H⊗cA,A)

◦(ΩAH ⊗A))⊗ ((H⊗ΨH2
A )◦ (cH,H ⊗A))⊗H)◦ (δA⊗ ((H⊗ cH,A)◦ (δH ⊗A))⊗H⊗A⊗H)

(by (71))

= (µ1A ⊗ µ1H) ◦ (µ
2
A ⊗ (ΨH1

A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ΩAH ⊗H ⊗A))⊗ µ2H)

◦(A⊗ tA,A ⊗H ⊗ ((H ⊗ΨH2
A ) ◦ (cH,H ⊗A)) ⊗H)

◦(δA ⊗ ((ΨH2
A ⊗H) ◦ (H ⊗ cH,A)) ◦ (δH ⊗A))⊗H ⊗A⊗H) (by (72))

= (µ1A ⊗ µ1H) ◦ (µ
2
A ⊗ ((ΓA1 ⊗H) ◦ (A⊗ (ΨH1

A ◦ (Γ′

H1
⊗A)))) ⊗ µ2H)

◦(A⊗ tA,A ⊗H ⊗ ((H ⊗ΨH2
A ) ◦ (cH,H ⊗A))⊗H) ◦ (δA ⊗ ((A⊗ δH) ◦Ψ

H2
A )⊗H ⊗A⊗H)

(by (71) and (77))
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= (µ2A ⊗H) ◦ (A⊗ ((µ1A ⊗ µ2H) ◦ (A⊗ΨH2
A ⊗ µ1H) ◦ (Ψ

H2
A ⊗ΨH1

A ⊗H))) (by the (iii) of Definition

2.1 for A and (56))

= µ2A◮◭H ◦ (A⊗H ⊗ µ1A◮◭H)(by (57))

�

Theorem 4.16. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a Hopf brace in H

H
YD satisfying ( 56), ( 57) and ( 58). Then,

(H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H)

is a v1-strong projection of Hopf braces.

Proof. First note that if A be a Hopf brace in H

H
YD we have that x and y are Hopf brace morphisms

and y ◦ x = idH . On the other hand, by (60), (3), (66), (6), the unit properties, the naturality of c
and (1) we have that

q1A◮◭H = A⊗ (ηH ◦ εH) = q2A◮◭H .

Then,
p1A◮◭H = p2A◮◭H = A⊗ εH , i1A◮◭H = i2A◮◭H = A⊗ ηH

and
I(q1A◮◭H) = I(q2A◮◭H) = A.

Then, we have an unique idempotent that we can denote by qA◮◭H and, also, with pA◮◭H and
iA◮◭H we will denote the associated projection and injection respectively.

Therefore, by a routine calculus we have that

ηI(qA◮◭H ) = ηA, µ1I(qA◮◭H ) = µ1A, µ2I(qA◮◭H ) = µ2A

εI(qA◮◭H ) = εA, δI(qA◮◭H ) = δA,

λ1I(qA◮◭H ) = λ1A, λ2I(qA◮◭H ) = λ2A

and
ψ1
I(qA◮◭H ) = ψ1

A, ψ2
I(qA◮◭H ) = ψ2

A, ρI(qA◮◭H ) = ρA.

On the other hand, the condition (40) holds because q1A◮◭H = q2A◮◭H . Finally, (50) holds trivially
and (54) and the leftH1-linearity condition of the morphism defined in (55) follow from the following
facts: I(q2A◮◭H) = A, ρI(qA◮◭H ) = ρA and (A,ψ1

A, ψ
2
A, ρA) is an object in H

H
YD.

�

Remark 4.17. Note that in the conditions of Theorem 4.15, if (58) holds, we proved that (76)
holds. Moreover, using (17), it is easy to show that if (76) holds we can obtain (58). Therefore (76)
and (58) are equivalent.

Definition 4.18. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C

and let A be a Hopf brace in H

H
YD. We will say that A is bosonizable if satisfies (56), (57) and (58).

These Hopf braces with morphisms of Hopf braces in H

H
YD form a category that we will denote

by B-HBr(H
H
YD).

Definition 4.19. Let (H,D, x, y) be a v1-strong projection of Hopf braces in C. We will say that
it is v2-strong if λ1

I(qD) is a morphism of left H2-modules, µ2
I(qD) and λ2

I(qD) are morphisms of left
H1-modules and the following equalities

(78) µ1I(qD) ◦ δI(qD) = (µ1I(qD) ⊗ µ1I(qD)) ◦ (I(qD)⊗ tI(qD),I(qD) ⊗ I(qD)) ◦ (δI(qD) ⊗ δI(qD)),

(79) p1D ◦ µ1D ◦ (αD ⊗ µ2D) ◦ (D ⊗ cD,D ⊗D) ◦ ((δD ◦ iD)⊗ iD ⊗ iD) = µ2I(qD) ◦ (I(qD)⊗ µ1I(qD))
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hold, where
αD = µ1D ◦ ((q2D ◦ µ2D)⊗ rD) ◦ (D ⊗ cD,D)⊗ (δD ⊗D)

and
rD = q1D ◦ µ1D ◦ ((x ◦ y)⊗ λ1D) ◦ δD ◦ q1D.

These projections with morphisms of projections of Hopf braces form a category that we will
denote by V2SP(HBr), i.e., V2SP(HBr) is the full subcategory of V1SP(HBr) whose objects are v2-
strong projections.

Remark 4.20. If rD is the morphism introduced in the previous definition, it’s easy to show that

rD = µ1D ◦ ((x ◦ y)⊗ λ1D) ◦ δD.

Remark 4.21. In the conditions of the previous definition we have that

(µ1I(qD) ⊗ µ1I(qD)) ◦ (I(qD)⊗ t1I(qD),I(qD) ⊗ I(qD)) ◦ (δI(qD) ⊗ δI(qD))

= (µ1I(qD) ⊗ µ1I(qD)) ◦ (I(qD)⊗ t2I(qD),I(qD) ⊗ I(qD)) ◦ (δI(qD) ⊗ δI(qD)),

because I(qD) is a Hopf algebra in the category of left Yetter-Drinfeld modules over H1 and by
t2
I(qD),I(qD) = tI(qD),I(qD).

Theorem 4.22. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in H

H
YD. Then,

(H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H)

is a v2-strong projection of Hopf braces.

Proof. Note that, by Theorem 4.16 we have that (H,A ◮◭ H, x = ηA⊗H, y = εA⊗H) is a v1-strong
projection of Hopf braces. On the other hand, (78) holds because (A, ηA, µ

1
A, εA, δA) is a bialgebra

in H

H
YD. Also, using the properties of εH and the naturality of c, we have the identity

(80) (A⊗ εH) ◦ µ
i
A◮◭H = (µiA ◦ (A⊗ ψiA))⊗ εH , i = 1, 2.

On the other hand, by the coassociativity of δA and the condition of left H-comodule coalgebra of
A, we obtain that

(81) (A⊗ ΩAH ⊗A) ◦ (δA ⊗ ρA) ◦ δA = (A⊗ ((H ⊗ δA) ◦ ρA)) ◦ δA.

As a consequence of these facts we can obtain the following formulations for the morphisms rA◮◭H
and αA◮◭H :

(82) rA◮◭H = λ1A ⊗ (ηH ◦ εH),

(83) αA◮◭H = (µ1A ◦(µ
2
A⊗λ

1
A)◦(A⊗((ψ2

A⊗A)◦(H⊗cA,A)◦(Ω
A
H⊗A)))◦(δA⊗H⊗A)⊗(ηH ◦εH ).

Indeed, (82) follows by

rA◮◭H
= (A⊗ (ηH ◦ εH)) ◦Ψ

H1
A ◦ ((idH ∗ λ1H)⊗ λ1A) ◦ Ω

A
H ◦ (A⊗ (ηH ◦ εH)) (by the unit and counit

properties, (64) and (70))

= (A⊗ (ηH ◦ εH)) ◦Ψ
H1
A ◦ ((ηH ◦ εH)⊗ λ1A) ◦ Ω

A
H ◦ (A⊗ (ηH ◦ εH))(by (1))

= ((εH ⊗ λ1A) ◦ ρA)⊗ (ηH ◦ εH) (by the condition of algebra morphism for εH , (60) and (65))

= λ1A ⊗ (ηH ◦ εH) (by the comodule condition for A)

and, by (80), the unit and counit properties and (67), we obtain (83).
Then,

p1A◮◭H ◦ µ1A◮◭H ◦ (αA◮◭H ⊗ µ2A◮◭H) ◦ (A⊗H ⊗ cA⊗H,A⊗H ⊗A⊗H)
◦((δA◮◭H ◦ i1A◮◭H)⊗ i1A◮◭H ⊗ i1A◮◭H)
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= µ1A ◦ ((µ1A ◦ ((µ2A ◦ (A⊗ ψ2
A))⊗ λ1A))⊗ µ2A) ◦ (A⊗H ⊗ ((cA,A ⊗A) ◦ (A⊗ cA,A))⊗A)

◦(((A⊗ ΩAH ⊗A) ◦ (δA ⊗ ρA) ◦ δA)⊗A⊗A) (by the condition of algebra morphism for εH , (60) and

(65))

= µ1A ◦ (µ2A ⊗ ΓA1) ◦ (A⊗ tA,A ⊗A) ◦ (δA ⊗A⊗A) (by (81))

= µ2A ◦ (A⊗ µ1A) (by (iii) of Definition 2.1 for A)

= µ2
I(q1

A◮◭H
)
◦ (I(q1A◮◭H)⊗ µ1

I(q1
A◮◭H

)
) (by the identities of the proof of Theorem 4.16)

and, as a consequence, (H,A ◮◭ H, x = ηA ⊗ H, y = εA ⊗ H) is a v2-strong projection of Hopf
braces. Note that, λ1A is a morphism of left H2-modules, µ2A and λ2A are morphisms of left H1-
modules because A is a Hopf brace in H

H
YD. �

Theorem 4.23. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C. Let
(H,D, x, y) be a v2-strong projection of Hopf braces. Then,

I(qD) = (I(qD), ηI(qD), µ
1
I(qD), µ

2
I(qD), εI(qD), δI(qD), λ

1
I(qD), λ

2
I(qD))

is a Hopf brace in H

H
YD, where ηI(qD) is defined as in ( 42), µ1

I(qD) as in ( 43), µ2
I(qD) as in ( 44),

εI(qD) as in ( 45), δI(qD) as in ( 46),

λ1I(qD) = ψ1
I(qD) ◦ (H ⊗ (p1D ◦ λ1D ◦ iD)) ◦ ρI(qD),

and
λ2I(qD) = ψ2

I(qD) ◦ (H ⊗ (p2D ◦ λ2D ◦ iD)) ◦ ρI(qD),

being ψ1
I(qD), ψ

2
I(qD) and ρI(qD) the actions and the coaction introduced in Theorem 4.12.

Proof. By Theorem 4.12 we know that the triple

(I(qD), ψ
1
I(qD) = p1D ◦ µ1D ◦ (x⊗ iD), ψ

2
I(qD) = p2D ◦ µ2D ◦ (x⊗ iD), ρI(qD) = (y ⊗ p1D) ◦ δD ◦ iD)

is an object in H

H
YD. Also, by the theory of Hopf algebra projections,

(I(qD), ηI(qD), µ
1
I(qD), εI(qD), δI(qD), λ

1
I(qD))

is a Hopf algebra in H1
H1

YD and

(I(qD), ηI(qD), µ
2
I(qD), εI(qD), δI(qD), λ

2
I(qD))

is a Hopf algebra in H2
H2

YD. Moreover, by Theorem 4.9 and the conditions of the theorem, we know
that ηI(qD), µ

1
I(qD), µ

2
I(qD), εI(qD), δI(qD), λ

1
I(qD) and λ2

I(qD) are morphisms in H

H
YD. Therefore, by

(78),

(I(qD), ηI(qD), µ
1
I(qD), εI(qD), δI(qD), λ

1
I(qD)), (I(qD), ηI(qD), µ

2
I(qD), εI(qD), δI(qD), λ

2
I(qD))

are Hopf algebras in H

H
YD.

Then, to finish the proof we only need to check that (iii) of Definition 2.1 holds for I(qD) in
H

H
YD. Indeed, first note that using the coalgebra morphism condition for y, the algebra morphism

condition for x, the associativity of µiD, the coassociativity of δD, (1) and the unit and counit
properties, we obtain that

(84) qiD ∗ (x ◦ y) = idD, i = 1, 2.

Then,

µ1
I(qD) ◦ (µ

2
I(qD) ⊗ ΓI(qD)1

) ◦ (I(qD)⊗ tI(qD),I(qD) ⊗ I(qD)) ◦ (δI(qD) ⊗ I(qD)⊗ I(qD))

= p1D◦µ
1
D◦(D⊗(µ1D◦(rD⊗µ

2
D)◦(δD⊗D)))◦(((q2D◦µ2D)⊗D)◦(q2D⊗((µ2D⊗D)◦((x◦y)⊗cD,D))

◦(D ⊗ δD ⊗D))⊗D) ◦ ((δD ◦ iD)⊗ iD ⊗ iD) (by (7), (8), (9), (10) and (41))
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= p1D ◦ µ1D ◦ (D ⊗ (µ1D ◦ (rD ⊗ µ2D) ◦ (δD ⊗D))) ◦ ((((q2D ◦ µ2D)⊗D) ◦ ((q2D ∗ (x ◦ y))⊗ cD,D)
◦(δD ⊗D))⊗D) ◦ (iD ⊗ iD ⊗ iD) (by the associativity of µ2

D
and the coassociativity of δD)

= p1D ◦ µ1D ◦ (αD ⊗ µ2D) ◦ (D ⊗ cD,D ⊗D) ◦ ((δD ◦ iD)⊗ iD ⊗ iD) (by (84), the naturality of c, the

associativity of µ1
D

and the coassociativity of δD)

= µ2
I(qD) ◦ (I(qD)⊗ µ1

I(qD)) (by (79))

and, as a consequence, I(qD) is a Hopf brace in H

H
YD. �

Definition 4.24. Let (H,D, x, y) be a v2-strong projection of Hopf braces in C. We will say that it
is v3-strong if the following equality

(85) ((p1D ◦ µ1D)⊗H) ◦ (D ⊗ cH,D) ◦ (γD⊗H ⊗ µ2D) ◦ (D ⊗ cD,H ⊗D) ◦ ((δD ◦ iD)⊗H ⊗ iD)

= ((p1D ◦ βD)⊗H)) ◦ (iD ⊗ (((q1D ◦ µ1D ◦ (x⊗D))⊗H) ◦ (H ⊗ cH,D) ◦ (δH ⊗ iD)))

holds, where

γD⊗H = (µ1D ⊗H) ◦ (x⊗ cH,D) ◦ ((δH ◦ Γ′

H1
)⊗ rD) ◦ (y ⊗ cD,H) ◦ (δD ⊗H),

βD = µ1D ◦ (rD ⊗ µ2D) ◦ (δD ⊗D)

and rD is the morphism introduced in Definition 4.19.
These projections with morphisms of projections of Hopf braces form a category that we will

denote by V3SP(HBr), i.e., V3SP(HBr) is the full subcategory of V2SP(HBr) whose objects are v3-
strong projections.

Theorem 4.25. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in H

H
YD. Then,

(H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H)

is a v3-strong projection of Hopf braces.

Proof. By Theorem 4.22 we only need to show that (85) holds. First note that, by the unit and
counit properties, the naturality of c and (71) we have that

(86) γ(A◮◭H)⊗H = (A⊗ δH) ◦Ψ
H1
A ◦ (Γ′

H1
⊗ λ1A) ◦ (H ⊗ cA,H) ◦ (Ω

A
H ⊗H),

(87) βA◮◭H = (ΓA1 ⊗ µ2H) ◦ (A⊗ΨH2
A ⊗H).

Then,

((p1A◮◭H◦µ1A◮◭H)⊗H)◦(A⊗H⊗cH,A⊗H)◦(γ(A◮◭H)⊗H⊗µ2A◮◭H)◦(A⊗H⊗cA⊗H,H⊗A⊗H)

◦((δA◮◭H ◦ i1A◮◭H)⊗H ⊗ i1A◮◭H)

= (µ1A⊗H)◦(A⊗ΨH1
A )◦(ΨH1

A ⊗A)◦(Γ′

H1
⊗λ1A⊗µ

2
A)◦(H⊗cA,H⊗A⊗A)◦(H⊗A⊗cA,H⊗A)

◦(((ΩAH ⊗A) ◦ (A⊗ ρA) ◦ δA)⊗H ⊗A) (by the condition of coalgebra morphism for ηH , the unit and

counit properties, the naturality of c, (60) and (86))

= ΨH1
A ◦ (Γ′

H1
⊗ ΓA1) ◦ (H ⊗ cA,H ⊗A) ◦ (ρA ⊗H ⊗A) (by the condition of comodule coalgebra, the

naturality of c and (69))

= (ΓA1 ⊗H) ◦ (A⊗ΨH1
A ) (by (76)))

= ((p1A◮◭H ◦ βA◮◭H)⊗H)) ◦ (i1A◮◭H ⊗ (((q1A◮◭H ◦µ1A◮◭H ◦ (x⊗A⊗H))⊗H) ◦ (H ⊗ cH,A⊗H)

◦(δH⊗i1A◮◭H))) (by (87), (82), the condition of algebra morphism for εH , the condition of coalgebra morphism

for ηH , the unit and counit properties, the naturality of c and (60)).

Therefore, (H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H) is a v3-strong projection of Hopf braces. �
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Theorem 4.26. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
Let (H,D, x, y) be a v3-strong projection of Hopf braces. Then, the Hopf brace I(qD), introduced in
Theorem 4.23, is bosonizable.

Proof. By Theorem 4.23 we know that I(qD) is a Hopf brace in H

H
YD. Also, by Theorem 4.9 we

have that (56) and (57) hold. Then to finish the proof, by Remark 4.17, we only need to show that
(76) holds. Indeed,

ΨH1

I(qD) ◦ (Γ
′

H1
⊗ ΓI(qD)1) ◦ (H ⊗ cI(qD),H ⊗ I(qD)) ◦ (ρI(qD) ⊗H ⊗ I(qD))

= ((p1D ◦ µ1D)⊗H) ◦ (D ⊗ cH,D) ◦ (((x⊗H) ◦ δH ◦ Γ′

H1
◦ (y ⊗H))⊗ βD) ◦ (D ⊗ cD,H ⊗D)

◦((δD ◦ iD)⊗H ⊗ iD) (by (10) and (8))

= ((p1D ◦ µ1D)⊗H) ◦ (D⊗ cH,D) ◦ (γD⊗H ⊗ µ2D) ◦ (D⊗ cD,H ⊗D) ◦ ((δD ◦ iD)⊗H ⊗ iD) (by

the naturality of c, the associativity of µ1
D

and coassociativity of δD)

= ((p1D ◦ βD)⊗H)) ◦ (i1D ⊗ (((q1D ◦ µ1D ◦ (x⊗D))⊗H) ◦ (H ⊗ cH,D) ◦ (δH ⊗ i1D))) (by (85)))

= (ΓI(qD)1 ⊗H) ◦ (I(qD)⊗ΨH1

I(qD)) (by (10) and (8)).

Thus, I(qD) is bosonizable.
�

Definition 4.27. Let (H,D, x, y) be a v3-strong projection of Hopf braces in C. We will say that it
is v4-strong if q1D = q2D.

These projections with morphisms of projections of Hopf braces form a category that we will
denote by V4SP(HBr), i.e., V4SP(HBr) is the full subcategory of V3SP(HBr) whose objects are v4-
strong projections. With H V4SP(HBr) we will denote the subcategory of V4SP(HBr) whose objects
are v4-strong projections with H fixed and whose morphisms are the ones with the first component
equal to the identity of H.

Theorem 4.28. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in H

H
YD. Then,

(H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H)

is a v4-strong projection of Hopf braces.

Proof. The proof follows by the identities of the proof of Theorem 4.16. �

Theorem 4.29. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C. Let
(H,D, x, y) be a v4-strong projection of Hopf braces. Then, the Hopf brace I(qD) ◮◭ H is isomorphic
to D.

Proof. If (H,D, x, y) is a v4-strong projection of Hopf braces, we have that p1D = p2D. Then, by the
general theory of Hopf algebra projections (see (11)), νD = ν1D = (p1D⊗y)◦δD = (p2D⊗y)◦δD = ν2D
and, as a consequence, it is a Hopf algebra isomorphism between (I(qD) ◮◭ H)1 and D1 and
between (I(qD) ◮◭ H)2 and D2. Therefore, νD is a Hopf brace isomorphism between I(qD) ◮◭ H

and D. �

Remark 4.30. In the conditions of the previous theorem we have the equality

(88) µ1D ◦ (iD ⊗ x) = µ2D ◦ (iD ⊗ x)

because µ1D ◦ (iD ⊗ x) is the inverse of ν1D and µ2D ◦ (iD ⊗ x) is the inverse of ν2D.

Corollary 4.31. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
The categories H V4SP(HBr) and B-HBr(H

H
YD) are equivalent.
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Proof. By theorems 4.26 and 4.28 it is easy to show that there exists two functors

Fcoinv : H V4SP(HBr) → B HBr(HHYD), Gb : B HBr(HHYD) → H V4SP(HBr),

defined on objects by

Fcoinv((H,D, x, y)) = I(qD), Gb(A) = (H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H)

and on morphisms by the following: Let (idH , t) : (H,D, x, y) → (H,D′, x′, y′) be a morphism in
H V4SP(HBr). Taking into account that q1D = q2D, we will denote the idempotent morphism by qD,
the injection by iD, the projection by pD and the image by I(qD). Define

tD := pD′ ◦ t ◦ iD : I(qD) → I(qD′)

Then, using that t is Hopf algebra morphisms and (36), we have that

✲

✲

P
P
P
PPq ✏

✏
✏
✏✏✶

P
P
P
PPq ✏

✏
✏
✏✏✶

❄

❄❄

D D

I(qD)

D′ D′

qD

pD iD

t

tD

t

qD′

pD′ iD′I(qD′)

is a commutative diagram and, as a consequence, by a similar proof that the one used in [4,
Theorem 3.4], we can obtain that tD is Hopf algebra morphism in Hi

Hi
YD for i = 1, 2. Therefore, tD

is a morphism of Hopf braces in H

H
YD and we define

Fcoinv((idH , t)) = tD.

On the other hand, if s : A → A
′ is a morphism in B-HBr(H

H
YD), the pair (idH , s⊗H) is a morphism

between (H,A ◮◭ H, x = ηA ⊗H, y = εA ⊗H) and (H,A′ ◮◭ H, x = ηA′ ⊗H, y = εA′ ⊗H). Then,
we define

Gb(s) := (idH , s⊗H).

Finally, following the same techniques used in the proof of [4, Theorem 3.4] and the isomorphism
of Theorem 4.29, we can assure that Fcoinv and Gb induce an equivalence of categories because for
all (H,D, x, y) we have that

(H,D, x, y) ≃ (H, I(qD) ◮◭ H, x = ηI(qD) ⊗H, y = εI(qD) ⊗H) = (Gb ◦ Fcoiv)((H,D, x, y))

and, for all A, (Fcoinv ◦ Gb)(A) = A. �

Remark 4.32. In [30, Theorem 5.4] the author works with a projection of Hopf braces (H,D, x, y)
such that I(qD) = I(q2D) and proves that there exists a Hopf brace structure on the tensor product
I(qD)⊗H isomorphic to D. If we study the proof in detail, we see that the author uses the identity
ν1D◦(ν

2
D)

−1 = idI(qD)⊗H where ν1D = (p1D⊗y)◦δD and ν2D = (p2D⊗y)◦δD are the isomorphisms defined
in (11). Then, ν1D = ν2D and this implies that q1D = q2D (note that this condition is not assumed in
the statement of the theorem). Also, ν1D = ν2D implies that their inverses are the same and then
(88) also holds. Moreover, in the statement it is not assumed either that δ1

I(qD)◮◭H = δ2
I(qD)◮◭H

and, however, this is also used. Therefore, assuming a correct formulation of the conditions for [30,
Theorem 5.4], in this theorem all that is done is to transfer the Hopf brace structure from D to
I(qD)⊗H using the isomorphism νD.
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