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2 PROJECTIONS OF HOPF BRACES

INTRODUCTION

The study of non-degenerate set-theoretical solutions of the Yang-Baxter equation with the in-
volutive property is the origin of the notion of brace introduced by W. Rump in [27]. A brace is an
abelian group (G,.) with another group structure (G, *) satisfying for all g, h,t € G the following
condition:

g (ht)xg=(g9*h).(gx1)

In [I4] we can find an equivalent notion of brace and, taking inspiration from it, recently, L.
Guarnieri and L. Vendramin introduced in [17] a generalization of braces, called skew braces, as a
tool to find non-degenerate bijective solutions of the Yang-Baxter equation not necessarily involutive.
Following the definition of L. Guarneri and L. Vendramin, a skew brace is a group (G,.) with an
additional group structure (G, *) satisfying

g (ht) = (gxh).g” (g 1),
for all g, h,t € GG, and it is easy to see that Rump’s braces are examples of skew braces.

In this way, the latest extension of the notion of brace was proposed by I. Angiono, C. Galindo
and L. Vendramin in [5] with the name of Hopf braces. Hopf braces are the quantum version of
skew braces, provide solutions of the Yang-Baxter equation and, as was pointed by the authors,
give the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. If
(H,€,6) is a coalgebra, a Hopf brace structure over H consist on the following data: A Hopf algebra
structure

Hy = (H7 17 € 57 A)v
and a Hopf algebra structure
H2 = (H7 107 O, €, 57 S)
satisfying the following compatibility:
go(h.k) = (g10h).\g2)-(g3 0 k), g.h,k € H.

In any Hopf brace, 1, = 1 and, in this introduction, we will denote a Hopf brace by H = (H;, Hs)
or also, in a more reduced form, as H.

Bearing in mind that the notion of Hopf brace is closely linked to that of Hopf algebra, recently,
A. Agore proposed in [1] a method to construct new examples of Hopf braces working with matched
pairs of Hopf algebras (A, H,>, <) where H is cocommutative. Finally, as has been proved in [5] (see
also [I8] and [16]) there exists a strong connection between Hopf braces and invertible 1-cocycles
that induces a categorical equivalence between the categories of Hopf braces and bijective 1-cocycles.

On the other hand, in the category of vector spaces over a field K, a well known result by D. E.
Radford gives the conditions for the tensor product of two Hopf algebras Z @ X (equipped with
smash product algebra and smash coproduct coalgebra) to be a Hopf algebra, and characterizes such
objects via bialgebra projections (see [20]). S. Majid in [25] interpreted this result in the modern
context of braided categories and stated that there is a categorical equivalence between the category
of Hopf algebras in the category of left-left Yetter-Drinfeld modules over X and the category of Hopf
algebra projections for X. The concrete details of this equivalence are the following: Let X be a
Hopf algebra and let (X,Y, f,h) be a Hopf algebra projection over X, i.e., Y is a Hopf algebra,
f:X = Yand h: Y — X are morphisms of Hopf algebras and the following identity holds
ho f =idx. Let I(qy) be the image of the idempotent morphism gy : Y — Y defined by the
convolution product of the identity of Y and the composition f o Ax o h where Ax is the antipode
of X. Then, the object I(gy) (the algebra of coinvariants) is a Hopf algebra in the category of
left-left Yetter-Drinfeld modules over X denoted by %YD. Conversely, if A is a Hopf algebra in
XYD, let Y = A 4 X be the smash (co)product (co)algebra, i.e., Y is the bosonization of A (see
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Proposition 4.15 in [24]). Then Y = A »« X is a Hopf algebra and, if 14 is the unit of A and €4
its counit, f: X =Y, f(x) =14®z, and h: Y — X, h(a ® ) = e4(a)z, are morphisms of Hopf
algebras such that ho f = idx. These constructions are mutually inverse in the following way: For
any Hopf algebra projection (X,Y, f,h), there exists an isomorphism of Hopf algebras between Y
and I(qy) 4 X and, for any Hopf algebra 4 in ¥YD, A = I(qapax)- Later, Bespalov proved the
same results for braided categories with split idempotents in [6] and, in collaboration with Drabant,
he continued the development of Radford and Majid theory in this setting (see [8], [9] and [7]).

In [13], D. Bulacu and E. Nauwelaerts explained in detail how the above ideas can be generalized
to quasi-Hopf algebras, and in [4], J. N. Alonso Alvarez, J. M. Fernandez Vilaboa and R. Gonzalez
Rodriguez obtain a similar categorical equivalence for weak Hopf algebras in a braided monoidal
setting. Continuing in this line of generalization, the study of projections of Hopf braces begins in
the work of H. Zhu in [30] where a method to build Hopf braces is given based on the new notion
of left-compatible H-module. Following the work of H. Zhu, if H is a Hopf brace, a left H-module
(M,>) is called a left module over the Hopf brace H if (M, ») is a left Ho-module and the following
identities

(i) g » (h>m) = [(g10h) - A(g2)] > (g3 » m),
(i) g1 » m® g2 = (g1 - A(g3))] > (94 » M) ® g2,
hold for all g,h € H and m € M.

It is a relevant fact that the condition (ii) is used by H. Zhu to prove that the category of left
modules over the Hopf brace H is monoidal and, if H is cocommutative, (ii) always hold. However,
this condition presents one problem: In a general context the trivial object (H,> = -, »= o) it is
not an example of left module over the Hopf brace H.

Taking into account the above, in [30] the author also introduce the definitions of subbialgebra
and left compatible module over a Hopf brace. These notions are the foundations that support the
definition of left Yetter-Drinfeld module for a Hopf brace introduced in [30, Definition 4.7] and also
an analogue of Radford’s result about Hopf algebras (see Remark [£32]). Subsequently in [31], H.
Zhu and Z. Ying expanded the study of the projection problem for Hopf braces introducing the
notion of compatible Hopf brace: Roughly speaking, if H is a Hopf algebra with bijective antipode,
a Hopf brace R in the category of left-left Yetter-Drinfeld modules over H is called compatible if
R ® H equipped with smash product algebra and smash coproduct coalgebra is a Hopf brace. Then,
the main result proved in [31] asserts the following: Let H be a Hopf algebra with bijective antipode
and let A = (A4, A2) be a Hopf brace with a projection (H, A, f, h) such that f(g)-a = f(g) oa for
all g € H and a € A. Then, there exists a compatible Hopf brace R such that A is isomorphic to
the smash product algebra and smash coproduct coalgebra of R with H as Hopf braces. However,
as it is proved in Example of the present paper, Yetter-Drinfeld modules in the sense of H. Zhu
has a trivial coaction in the cocommutative case.

Taking into account the final lines of the last paragraph, the main motivation of this paper is
to give a different approach to the study of projections of Hopf braces based on the notion of left
module for a Hopf brace introduced by R. Gonzalez Rodriguez in [I5], Definition 2.10|. Note that [15]
Definition 2.10] is weaker than the one introduced in [30] and permits to include (H,> = -, »= o)
as an example of left module over the Hopf brace H. Moreover, in the cocommutative setting, [30]
Definition 3.1] and [15, Definition 2.10| are equivalent. Using the quoted notion of left module, we
introduce a suitable category of Yetter-Drinfeld modules for a Hopf brace that allows the study of
Hopf braces projections and the bosonization process for these algebraic "Hopf" objects in a generic
and global way at least in the cocommutative case.

The paper is organized as follows. In the first section we recall the basic notions that we will need
in the rest of the article and we will review the bosonization process in a strict braided monoidal
setting. Section 2 is devoted to studying Hopf braces and their categories of modules (following [15])
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in a braided setting. In Section 3, we define the category of modules Yetter-Drinfeld associated to a
Hopf brace H, denoted by %YD, and we prove that, if the base category is symmetric and the Hopf
brace is cocommutative, this category is braided monoidal. In the last section we introduce the
categories of projections, strong projections and v;-strong projection, ¢ = 1,2,3,4, over H and we
prove that for any projection there exists two idempotents with the same image that will play the role
of algebra of coinvariants. Also, in Theorem .9 we prove that strong projections provide examples
of left modules and we show that some constructions of [I] give examples of vi-strong projections
for Hopf braces. Moreover, in Theorem [L.15] we determine the conditions under which a Hopf brace
A in %YD is bosonizable in the following sense: A is bosonizable if when we apply the bosonization
process to A, the new object A »« H is a Hopf brace in the base category. Taking all this into
account, in Theorem .16l we show that (H, A wa H,xz = na®H,y = ¢4®H) is a vi-strong projection
of Hopf braces and moreover, if a projection of Hopf braces is vi-strong, its algebra of coinvariants
is an object in %YD (see Theorem [I2)). On the other hand, we prove that, if a projection is
vo-strong, its algebra of coinvariants determines a Hopf brace in %YD (see Theorem [1.23)), if a
projection is vs-strong, its algebra of coinvariants determines a bosonizable Hopf brace in %YD (see
Theorem [.26]) and, finally, if a projection of Hopf braces (H, D, z,y) is v4-strong and I(¢p) is the
Hopf brace associated to its algebra of coinvariants, the Hopf brace I(qp) »« H is isomorphic to D
(see Theorem [£.29]). Therefore, as a consequence of these theorems, in Corollary €31l we prove that
the categories of v4-strong projections of Hopf braces with H fixed and the category of bosonizable
Hopf braces in %YD are equivalent. Finally, note that (H,A »a H,z =4 @ H,y =4 ® H) is an
example of v;-strong projection of Hopf braces, i = 2,3,4, when A is a bosonizable Hopf brace (see

Theorems [4.22] and {.28)).

1. PRELIMINARIES

In this paper we will work in a monoidal setting. Following [23], recall that a monoidal category
is a category C together with a functor ® : C x C — C, called tensor product, an object K of C,
called the unit object, and families of natural isomorphisms

CLM7N7PZ(M®N)®P—>M®(N®P), ry MK —->M, ly: KM — M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying the Pentagon
Axiom and the Triangle Axiom, i.e.,

am,N,PeQ © aMeN,P,Q = (idy ® an,pq) © amNepPQ © (amN P @ idg),

(idy @UInv) o an, g N =1rm Qidy,

where for each object X in C, idx denotes the identity morphism of X. A monoidal category is
called strict if the constraints of the previous paragraph are identities. It is a well-known fact (see
for example [21]) that every non-strict monoidal category is monoidal equivalent to a strict one.
Then we can assume without loss of generality that the category is strict. This lets us to treat
monoidal categories as if they were strict and, as a consequence, the results proved in an strict
setting hold for every non-strict symmetric monoidal category, for example the category F-Vect of
vector spaces over a field F, or the category R-Mod of left modules over a commutative ring R. For
simplicity of notation, given objects M, N, P in C and a morphism f: M — N, in most cases we
will write P ® f for idp ® f and f ® P for f ® idp.

A braiding for a strict monoidal category C is a natural family of isomorphisms
euN:MN = N®M
subject to the conditions

cuNep = (N ®cprp) o (epun ® P), emen,p = (cup @ N)o (M & cn,p).
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A strict braided monoidal category C is a strict monoidal category with a braiding. These
categories were introduced by Joyal and Street in [19] (see also [20]) motivated by the theory of
braids and links in topology. Note that, as a consequence of the definition, the equalities cyrx =
cx,m = tdpr hold, for all object M of C. If the braiding satisfies that cy 1 o cy v = idyrgn, for all
M, N in C, we will say that C is symmetric. In this case, we call the braiding ¢ a symmetry for the
category C.

Throughout this paper C denotes a strict braided monoidal category with tensor product ®, unit
object K and braiding c¢. Following [10], we also assume that every idempotent morphism in C
splits, i.e., for any morphism ¢ : X — X such that g o ¢ = ¢, there exist an object I(q), called the
image of ¢, and morphisms 7 : I(q) — X, p: X — I(q) such that ¢ =iop and poi = idy). The
morphisms p and 7 will be called a factorization of q. Note that I(g), p and i are unique up to
isomorphism. The categories satisfying this property constitute a broad class that includes, among
others, the categories with epi-monic decomposition for morphisms and categories with equalizers
or coequalizers.

Definition 1.1. An algebra in Cis a triple A = (A, 74, 14) where A is an object in Cand 4 : K —
A (unit), pg : AQA — A (product) are morphisms in C such that pa0(A®n4) = ida = pao(na®A),
pao(A®pua) = pao(pa®A). Given two algebras A = (A, na, na) and B = (B,np, up), a morphism
f:A— Bin Cis an algebra morphism if pgo (f ® f) = fopua, fona=ng.

If A, B are algebras in C, the tensor product A® B is also an algebra in C where nagp = 14 ® np
and pagp = (fta ®@ pip) o (A® cpa ® B).

Definition 1.2. A coalgebra in C is a triple D = (D,ep,dp) where D is an object in C and
ep: D — K (counit), dp : D — D ® D (coproduct) are morphisms in C such that (ep ® D) odp =
idp = (D ® 5D) odp, (5D &® D) odp = (D &® 5D) odp. If D = (D,eD,ép) and FF = (E,eE,éE)
are coalgebras, a morphism f : D — E in C is a coalgebra morphism if (f ® f)odp = dgo f,
EE © f =E€p.

Given D, E coalgebras in C, the tensor product D ® F is a coalgebra in C where epgp = ep ®ep
and 0pgr = (D ®cpp® E)o (dp ® 0E).

Definition 1.3. Let D = (D,ep,dp) be a coalgebra and let A = (A,na,u4) be an algebra.
By H(D, A) we denote the set of morphisms f : D — A in C. With the convolution operation
frg=pao(f®g)odp, H(D,A) is an algebra where the unit element is n4 oep =ep @ n4.

Definition 1.4. Let A be an algebra. The pair (M, ¢)/) is a left A-module if M is an object in
Cand ¢y : A® M — M is a morphism in C satisfying ¢pr o (na @ M) = idy, oy o (A® par) =
oo (ppa® M). Given two left A-modules (M, ¢pr) and (N, ¢n), f: M — N is a morphism of left
A-modules if oy 0 (A® f) = fopun.

The composition of morphisms of left A-modules is a morphism of left A-modules. Then left
A-modules form a category that we will denote by aMod.

Let D be a coalgebra. The pair (M, pys) is a left D-comodule if M is an object in C and
py 2 M — D®M is a morphism in C satisfying (ep®@M )opnr = idyr, (D®par)opar = (0p&@M)opyy.
Given two left D-comodules (M, pyr) and (N, py), f: M — N is a morphism of left D-comodules
if (D® f)opym =pnolf.

The composition of morphisms of left D-comodules is a morphism of left C-comodules. Then left
D-comodules form a category that we will denote by pComod.

Definition 1.5. We say that X is a bialgebra in Cif (X, nx, ux) is an algebra, (X,ex,dx) is a coal-
gebra, and ex and Jx are algebra morphisms (equivalently, nx and px are coalgebra morphisms).
Moreover, if there exists a morphism Ax : X — X in C, called the antipode of X, satisfying that
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Ax is the inverse of idx in H(X, X), ie.,
(1) idx x \x =nx oex = Ax xidx,

we say that X is a Hopf algebra. A morphism of Hopf algebras is an algebra-coalgebra morphism.
Note that, if f: X — Y is a Hopf algebra morphism the following equality holds:

Ay o f=folx.

With the composition of morphisms in C we can define a category whose objects are Hopf algebras
and whose morphisms are morphisms of Hopf algebras. We denote this category by Hopf.

A Hopf algebra is commutative if yux ocx x = px and cocommutative if cx x 0dx = dx. It is easy
to see that in both cases Ax o Ax = idx and then Ax is an isomorphism with inverse )\)_(1 = \x.

If X is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative
(2) Axopux =puxo(Ax ® Ax)ocx,x, dxolx =cx,xo(Ax ®Ax)odyx,
and leaves the unit and counit invariant, i.e.,

(3) Ax onx =nx, Ex0Ax =E€x.
Also X becomes a left X-module by the adjoint action which is defined by
P¥ = nx o (ux ® Ax) o (X @ ex,x) o (6x ® X),
and a left X-comodule by the adjoint coaction
P38 = (ux ® X) o (X ® cx.x) o (0x ® Ax) 0 dx.

In the following definition we recall the notions of left (co)module (co)algebra. The notions of
right (co)module (co)algebra are similar.

Definition 1.6. Let X be a Hopf algebra. An algebra A is said to be a left X-module algebra if
(A, p4) is a left X-module and 74, pa are morphisms of left X-modules, i.e.,

(4) pa0 (X ®na)=ex ®na, pao(X @ pua)=pa0paga,

where paga = (Pa @ pa)o (X ®ecx a®A)o(dx ® A® A) is the left action on A® A. For example,
X with the adjoint action gpg”g is a left X-module algebra.

On the other hand, A is said to be a left X-comodule algebra if (A, p4) is a left X-comodule and
na and pa are morphisms of left X-comodules, i.e.,
(5) paonA=1nx @na, paopa= (X ®pua)opaga

where paga = (tx ® A® A) o (X ® cax ® A) o (pa ® pa) is the coaction on A ® A.

In a similar way we can define the notion of left X-module coalgebra and left X-comodule
coalgebra. Then, a coalgebra B is said to be a left X-module coalgebra if (B, ¢p) is a left X-
module and ep and dp are morphisms of left X-modules, i.e.,

epoyp =ex ®ep, dpoyp = Ypgpo (X ®ip).

Finally, a coalgebra B is said to be a left X-comodule coalgebra if (B, pg) is a left X-comodule
and ep and §p are morphisms of left X-comodules, i.e.,

(6) (X ®ep)opp =1nx ®ep, (X ®0B)opp = ppegBooiB.

For example, X with the adjoint coaction pgg is a left X-comodule coalgebra.
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If (A,pa) is a left X-module algebra,
AfX = (A® X, nagx =04 @ nx, frazx = (A ® px) o (A® ¥} ® X))

where U = (pa ® X)o (X ®cx,a)o(6x ® A), is an algebra called the smash product of A and X.
Similarly, if (B, pp) is a left X-comodule coalgebra, we can define the coalgebra smash coproduct
of B and X as

Box X =(B® X, epux =€ ®ex,08xx = (B® QY @ X) o (0p ©0x)),
where QF = (ux ® B) o (X ® cp x) o (pp ® X).

Definition 1.7. Let X be a Hopf algebra in C. We shall denote by §YD the category of left
Yetter-Dinfeld modules over X. More concretely, a triple M = (M, ¢ar, par) is an object in ;EYD if
(M, @) is a left X-module, (M, ppr) is a left X-comodule and the following identity

(nx @ M) o (X ®cnx)o((pmoom) ®X)o (X ®cxm)o (dx @ M)

= (ux ® pm) o (X ®ex,x ® M) o (0x @ pu).-
holds. The morphisms in ;EYD are morphisms of left modules and comodules.

For example, for any Hopf algebra X, (X,¢% px = 0x), (X,px = px,pd) are left Yetter-
Drinfeld modules over X. Also, any left X-module (M, pys) over a cocommutative Hopf algebra
X is a Yetter-Drinfeld module with the trivial left coaction ppy = nx ® M. Finally, the triple
(M,pp =ex @ M,pyr =nx @ M) is a left Yetter-Drinfeld module for all Hopf algebra X.

The category )>§YD is strict monoidal with the usual tensor product in C. For M, N in §YD,
M ® N has the tensor module and comodule structures given by

omen = (e @ pn) o (X ®cxm @ N)o (6x @ M ® N)
and
pueN = (bx @ M @ N)o (X ® ey x @ N) o (py @ pn).
If the antipode of X is an isomorphism, §YD is a braided monoidal category where the braiding
tunN:MRN — N®N,is given by tyy v = (on @ M) o (X @ cpn) o (pmr @ N). It is immediate
to see that tjs v is natural and it is an isomorphism with inverse

t]_V[l’N:c]_V[l’No(gpN®M)o()\;(1®N®M)O(C;<}N®M)O(N®pM).

Then, if X is a Hopf algebra with Ax isomorphism, a Hopf algebra in ;EYD is an object (A, pa,pA)
in )>§YD such that it is an algebra-coalgebra in C with an endomorphism A4 : A — A satisfying the
following: (A, p4) is a left X-module (co)algebra, (A, pa) is a left X-comodule (co)algebra, A4 is a
morphism of left X-modules and left X-comodules, for €4, d4 the following identities

gAOMA=1idy, EAO A =EAREA NARNA = 04014,
daopa=(na®@pa)o(ARtas® A)o(6a®da),
hold and, finally, A4 is the inverse of id4 in H(A, A). Then, the Hopf algebra X with px =ex ® X
and px = nx ® X is a Hopf algebra in §YD. Note that in this case tx x = cx x.

In the following paragraphs of this section we briefly summarize some results from [2], [25] and
[26] about projections of Hopf algebras and the bosonization process in a monoidal setting.

Definition 1.8. A projection of Hopf algebras in C is a 4-tupla (X,Y, f, h) where X, Y are Hopf
algebras, and f: X — Y, h:Y — X are Hopf algebra morphisms such that ho f = idx.

A morphism between projections of Hopf algebras (X,Y, f,h) and (X', Y, f' ') is a pair (r,s),
where 7 : X — X', 5:Y — Y’ are Hopf algebra morphisms such that

sof=for, roh="hos.
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With the obvious composition of morphisms we can define a category whose objects are Hopf
algebra projections and whose morphisms are morphisms of Hopf algebra projections. We denote
this category by P(Hopf).

It is obvious that there exists a functor P : Hopf — P(Hopf) defined on objects by

P(X) = (X, X,idx,idx)
and on morphisms by P(f) = (f, f).
Let (X,Y, f,h) be an object in P(Hopf). The morphism ¢y = idy * (f o Ax o h) is idempotent

and, as a consequence, there exist an epimorphism py, a monomorphism iy, and an object I(gy)
such that gy = iy o py and py oiy = idj(,,). As a consequence,
(Y ® h) o (5y
Y Y®X
Y ®nx

ly

I(qy)

is an equalizer diagram and I(gy) is a left X-module algebra where the algebra structure is defined
by
(7) Ni(ay) =Py ONY,s  [i(qy) = Py © fty © (iy ®iy),
i.e., Ny(qy) 15 the unique morphism such that iy o ny,) = ny and gy, is the unique morphism
such that
(8) iy © f(gy) = My © (iy ®iy).
The action @4,y @ X @ I(qy) = I(qy) is ¢1(gy) = Py © piy © (f @iy ), and then @y, is the
unique morphism such that
. _ ad .
Yy ©PI(gy) = Py © (f ®@iy).

On the other hand,
py o (Y ® f)

by

Y

Y oX I(qy)

Y®ex

is a coequalizer diagram and, as a consequence, I(qy) is a left X-comodule coalgebra with
(9) €1(gy) = EY Oy, Op(gy) = (Py @ py) 0y 0 iy

and coaction pr(g,) : I(qy) = X ® I(qy) defined by pr(q,) = (h ®@ py) o by o iy.
In this case €74y is the unique morphism such that e74,) o py = €y, dy(4) is the unique
morphism such that
01(qy) ©PY = (py ® py) o dy,
and the coaction py(g,,) is the unique morphism satisfying

Pr(ay) © Py = (h @ py) o p§.
The algebra-coalgebra I(gy ), with the action ¢y, ) and the coaction py (4., is a Hopf algebra in

);YD with antipode )‘I(qy) = QI(gy) © (X ® (py oAy oiy))o PI(gy)-
Also, using that iy is an equalizer morphism and py is a coequalizer, we obtain the following
identities:

(10) pyopyo(Y®qy)=pyopuy, (Y ®gqy)odyoiy=7dyoiy.

For the Hopf algebra I(gy) in §YD we can apply the monoidal version of the construction intro-
duced by Radford in [26], and extended to the quantum setting by Majid [25], producing a Hopf
algebra I(qy) »4 X in C, called by Majid the bosonization of I(gy), with the following structure:
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The Hopf algebra I(qy) »4 X is the smash product I(gy)fX as algebra, the smash coproduct
I(gy) o< X as coalgebra, and the antipode is defined by

I
Al(gy)paX = \I/;((qy) o(Ax ® )‘I(qy)) o QX(qY)'
Moreover,
(11) vy = (py @ h)ody : Y — I(qy) »a X

is a Hopf algebra isomorphism with inverse with inverse V;l =puyo(ly®f):I(qgy) 4 X =Y.
The existence of the previous isomorphism is the main tool to obtain a categorical equivalence
between the category of Hopf algebras in §YD and the category of Hopf algebra projections associ-
ated to a fixed X with invertible antipode. This categorical equivalence is a corollary of the more
general result proved in [4] for weak Hopf algebras.
Finally, note that iy is a coalgebra morphism iff

(12) (QY®Y)O(5inY:5iny.
Equivalently, iy is a coalgebra morphism iff ;) = nx ® I(qy) (see [2]). Therefore in this case,
El(gyraX = El(ay) @ EX, Or(gyrax = Or(gy)ex A Ar(gyax = P, © (Ax @ Ar(gy)) © Cr(gy) x-
Note that, if Y is cocommutative, condition (I2]) always holds. This fact was proved by Sweedler
in [29] for projections of Hopf algebras in a category of vector spaces. On the other hand, there
exist examples where iy it is not a coalgebra morphism (see [II] for the complete details). In any
case, if iy is a coalgebra morphism, we have that I(qy) is a Hopf algebra in C because PI(gy) 18

trivial.
Similarly, py is an algebra morphism iff

(13) pyopyo(qgy ®Y) =py opuy.

Equivalently, py is an algebra morphism iff ¢;(4,) = ex ® I(gy) (see [2]). Therefore in this case,

I
Mgy X = TM(ay) @ NXs [id(gypaX = H1(gy)ox A Ay peax = Cx.1(gy) © (Ax ® Ag(gy)) © Q7.

Also, if py is an algebra morphism, we have that I(qy) is a Hopf algebra in C because ¢y (4, is
trivial.
Finally, we have the following result.

Lemma 1.9. Let (X,Y, f,h) be an object in P(Hopf). If Y is cocommutative, the morphism qy is
a coalgebra morphism. Also, under these conditions, the following equality

(14) iy e} )‘I(qy) == )\y (¢} iy.
holds.

Proof. Trivially gy preserves the counit. On the other hand,
dy o qy
= UygY © (5}/ ® (5Y o f oAx o h)) o dy (by the condition of algebra morphism for &y)
= Uygy © (5Y (9 (((f oAxo h) &® (f oAxo h)) ody )) 00y (by @), the condition of Hopf algebra morphisms
for f and h and the cocommutativity of §y)
— (v o (Y ® (fox 0h)) @ (uy oY & (f o Ax 01)))) o (¥ ® (exy 08y) &Y ) o (¥ @ by ) o by
(by the coassociativity of dy and the naturality of c)
= (qY ® qY) o dy (by the coassociativity and cocommutativity of dy)

holds, and as a consequence gy is a coalgebra morphism.
If Y is cocommutative we have that PI(gy) = NX ®1(qy) and this implies that )\I(qy) = py oAy oiy.
Then,

Ty © M(gy)
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= qy 0 Ay o iy (by A(gy) =Py © Ay 0iy)

= Uy o ()\y ® (f oho )\y o )\y)) o (Sy o iy (by (@), the condition of Hopf algebra morphisms for f and h
and the cocommutativity of dy-)

=y o (Ay ® (foh)) ody oiy (by Ay oAy =idy)

= Uy © ()\y X (f ¢ T]X)) 0ty (by the equalizer condition for iy)

= Ay 01y (by the unit properties).

2. MODULES FOR HOPF BRACES

The main objective of this section is to present the main properties of the modules, in the sense
of [15], associated with a Hopf brace. We begin the section with the definition of Hopf brace in a
braided monoidal category C.

Definition 2.1. Let H = (H,epy,0m) be a coalgebra in C. Let’s assume that there are two algebra
structures (H, 77}{, u}{), (H, 77?1, /ﬁ{) defined on H and suppose that there exist two endomorphism
of H denoted by /\}LI and /\%I. We will say that

(Ha 77}{7#}%77?—[7#%{7611751{7)‘}{7)‘%{)
is a Hopf brace in C if:

(i) Hi = (H,n}, uk,em,0m,\L) is a Hopf algebra in C.
i 2= (H,n%, 1%, €H,0H, is Hopf algebra in C.
Hy = (H,n%, 13, €, 01, A%) is Hopf algeb C
(iii) The following equality holds:

o (H® py) = ppro (ph @ Try) o (H @ eyp @ H) o (0 © H ® H),
where
Pity = iy o Ny @ ) o (63 @ H).
Following [15], a Hopf brace will be denoted by H = (H;, H2) or in a simpler way by H.
The previous definition is the general notion of Hopf brace in a braided monoidal setting. If
we restrict it to a category of Yetter-Drinfeld modules over a Hopf algebra which antipode is an

isomorphism we obtain the definition of braided Hopf brace introduced by H. Zhu and Z. Ying in
[31l Definition 2.1].

Definition 2.2. If H is a Hopf brace in C, we will say that H is cocommutative if 0 = ¢, i 0 0m,
i.e., Hy and Hy are cocommutative Hopf algebras in C.

Note that by [28, Corollary 5|, if H is a cocommutative Hopf algebra in the braided monoidal
category C, the identity

(15) CH,H © CH,H = idHoH
holds.

Definition 2.3. Given two Hopf braces H and B in C, a morphism x in C between the two underlying
objects is called a morphism of Hopf braces if both x : H; — By and x : Hy — By are algebra-
coalgebra morphisms.

Hopf braces together with morphisms of Hopf braces form a category which we denote by HBr.

Theorem 2.4. There exists a functor between the categories Hopf and HBr.
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Proof. If H is a Hopf algebra, Hy.;, = (H, H, Ny forr, Mers E S €H, O, A, Air) 1s an object in HBr.
On the other hand, if 2 : H — B is a morphism of Hopf algebras, we have that the pair (z,z) is a
morphism in HBr between Hy,.;, and By.;,. Therefore, there exists a functor

H" : Hopf — HBr
defined on objects by H'(H) = Hy;, and on morphisms by H'(z) = (z, ). O
Let H be a Hopf brace in C. Then

M = N,
holds and, by [5, Lemma 1.7|, in this braided setting the equality
(16) Ty o (H® Ay) = g o (A o pdy) © H) o (H @ cp) o (9 © H)

also holds. Moreover, in our braided context [5, Lemma 1.8] and [5, Remark 1.9] hold and then we
have that (H, n}{, ,u}{) is a left Hy-module algebra with action I'y, and /ﬁ{ admits the following
expression:

(17) 1y = plyo (H@ i) o (6 @ H).
Finally, taking into account that every Hopf brace is an example of Hopf truss, by [12 Theorem
6.4], we have that (H,n};, pl;) is also a left Ho-module algebra with action
o= o (Wl @ Ay) o (H®cpm) o (0n @ H)

because the symmetry is not needed in the proof as in the case of I'p;,.
Finally, by the naturality of ¢ and the coassociativity of dz7, we obtain that

pro (ph @Tw,) o (H®egn® H) o (65 @ H® H)
= utro Ty, @ pu3) o (H®@cpy @ H)o (0p ® H® H)
and then (iii) of Definition 2] is equivalent to
(18) piro (H® pg) = pgr o (U, @ piy) o (H @ e ® H) o (65 @ H ® H).
Therefore, the equality
i = pgpo Uy, ® H) o (H® ey ) o (6 ® H)
holds.

Lemma 2.5. Let H be a Hopf brace in C. If H is cocommutative, I'y, is a coalgebra morphism.

Proof. Trivially efy o 'y, = e ® €. Moreover
y 1 9y
ool
— 1 1 "
= UH,@H, © ((()\H (9 )\H) ©CH,H © 51{) &® (,UH2®H2 o (5[{ &® 5H))) o (5H &® H) (by the condition of
coalgebra morphisms for ,u}{ and 'U‘%I and (@)
= (F Hi ®I Hl) od HeH (by the naturality of ¢ and the cocommutativity and coassociativity conditions)

O
Lemma 2.6. Let H be a Hopf brace in C. If H is cocommutative, F’Hl s a coalgebra morphism.

Proof. As in the case of I'y,, trivially ey o I‘le = ey ®eg. Moreover,
5H o F}ﬁ
= pme © (me, © (01 ® 01)) ® (A ® Ayy) 0 0n)) o (H ® cum) o (0n ® H)

(by the condition of coalgebra morphisms for “}I and “%Iv @) and cocommutativity of dzr)
= (po(uf @A) @ (po(uf @A) )o(HO H® ey s H@ H)o(H®en, n @ (cu mocn,in) O H)
O(5H QcHH & CH,H) o (H X 5H®H) o (6H (= H)(by the naturality of c)
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((npro(ur @A) @ (npg o (nf @A) o(HOH@eyp @ HR H)o(H@cyn @ HOH® H)
o(0n ® e ® cm) © (H ® dpen) o (0g © H)(by ([@E)

(g 0 (BF R XN)) @ (g 0 (0 ® Ay))) o (H @ (e @ H) o (H @ e ) o (e, 00m) © H))
®CH7H) o (5[{ X CHH® H) o (51{ ® 5H) (by the naturality of ¢ and the coassociativity condition)

= (FIIJI ® F/Hl) o4 HeoH (by the naturality of ¢ and the cocommutativity and coassociativity conditions)

O
Following [I5] we recall the notion of left module for a Hopf brace.

Definition 2.7. Let H be a Hopf brace. A left H-module is a triple (M, v}, 1%3%,), where (M, 1))
is a left Hy-module, (M,13,) is a left Ho-module and the following identity

(19) Yo (H®Py) = a0 (uh ©Ta) o (H © ey ® M) o (6y ® H ® M)
holds, where
Tar =0 (A @ 93y) o (6 @ M).
Given two left H-modules (M,1,,42%,) and (N, vk, 9% ), a morphism f : M — N is called

a morphism of left H-modules if f is a morphism of left Hi-modules and left Hso-modules. Left
H-modules with morphisms of left H-modules form a category which we denote by gMod.

Example 2.8. Let H be a Hopf brace. The triple (H, ,u}{,,u%]) is an example of left H-module.
Also, if K is the unit object of C, (K,v} = e, v% = ep) is a left H-module called the trivial
module. Moreover, (H, ¢11LI =eg®H, 1/)?{ = ,u%{) is an object in gMod and we have a functor

T: HQMOd — HMOd

defined on objects by T((M,vn)) = (M, ¥y, = eg ® M,3, = vp) and by the identity on
morphisms. In this setting, there exists a forgetful functor

W : yMod — p,Mod
defined on objects by W((M, v}, 12,)) = (M,+3,) and by the identity on morphisms. Obviously,
WoT= idH2Mod-
Let H = (H,ng, H,e0m,0m, A\ir) be a Hopf algebra. Then (H, pg,pm) is an example of left

H-module for the Hopf brace Hy,.;,,. Also, if (M, ) is a left H-module, the triple (M, ¥ns,¥ar) is
a left Hy,;-module. Then, we have a functor

J: yMod — HterOd

defined on objects by J((M,¢nr)) = (M,v¥n, %) and by the identity on morphisms. Also, there
exists a forgetful functor

U: HterOd — yMod

defined on objects by U((M,},,43,)) = (M,v},) and by the identity on morphisms. Then,
UoJ =id, Mod holds trivially.

Remark 2.9. As was pointed in [I5], Definition [2.71is weaker than the one introduced by H. Zhu in
[30]. For this author, if H is a Hopf brace, a left H-module is a triple (M, },,%3,), where (M, v},)
is a left Hi-module, (M,13,) is a left Ho-module, and the equalities (I9) and

(20) (Wi ®H)o (H®chn)o (6 ® M) = (1hy ® H) o (H® cya)o (0g @Ta)o (g ® M)

hold (see [30, Definition 3.1, Lemma 3.2]). Thus, for an arbitrary Hopf brace H, a left H-module in
the sense of Zhu is a left H-module in our sense. Moreover, if H is cocommutative, ([20) hold for any
left H-module as in Definition 27l As a consequence, in the cocommutative setting, [30, Definition
3.1] and Definition 2.7] are equivalent.
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For every Hopf algebra H, the first example of a left module over H is the algebra H taking as
action the product pg. In the case that we intend to introduce a coherent definition of left module
for a Hopf brace H, the same should still be true for H. If we work with Definition 2.7, trivially,
(H, ptr, p%) is a left H-module but if we work with the definition introduced by Zhu the triple
(H, pk;, 1?%) is a left H-module iff

21)  (ph@H)o(H®cuu)o (6 ®H) = (uy®H)o(H®chm)o 6y ®Tw)o 0y ® H)
holds. If equality (2I)) is satisfied, the following identity
(22) (uyy @ H) o (H @ (T, © H) o (H ® e ) o (0u @ H))) o (0u @ H)

= (g ® H) o (H® (P, ® H) o (H® c) o (e 0 ) ® H))) o (6 © H)
holds because of (I7), the naturality of ¢ and the coassociativity of 7. Then, composing in (22)
with (AL, ® H) 0o dy) ® H on the right and with u}; ® H on the left we obtain the identity

(g @ H) o (N *idg) @ (P, @ H) o (H® cprp) o (0 ® H))) o (5 @ H)

= (uy ®@ H) o (A *idy) @ (T, ® H) o (H ® cprr) © (e, © 6) ® H))) o (5 @ H).
This implies that

(PHl ®H)O(H®CH’H)O(5H®H) = (PHl ®H)o(H®CH,H)O((CH,H05H)®H)

holds. Therefore, if (H,puk;, p%) is a left H-module in the sense of Zhu and the category C is
symmetric (for example, the category of vector spaces over a field K), we have that (H,Tg,) is in
the cocommutativity class of H (see [3] for the definition) and, obviously, this does not always have
to happen. In other words, under certain circumstances, for example, the lack of cocommutativity,
the category of left modules over a Hopf brace introduced by Zhu could have as its only objects the
base object of the category C and its tensor products with the trivial action.

Remark 2.10. Using the naturality of ¢ and the coassociativity of dp, it is easy to show that (19)
is equivalent to

(23) P o (H@py) =ps 0 (T, @ ¥3y) o (H® e @ M) o (65 @ H® M).

Lemma 2.11. Let H be a Hopf brace and let (M, 1/)]1\/[,¢%4) be a left H-module. Then, the following
equality holds:

(24) Tapro(H@Yh) =v¢ho(Cs @Ta)o(H®cgy®M)o (g ® H® M),
Also, (M,Tpp) is a left Hy-module.

Proof. Let (M, 1}, 43%,) be a left H-module.Then the equality (@24)) follows from:

Lo o (H @1yy)

=¥y Ay ® (Vyg 0 (ngy ®Ty) o (H® e ® M) o (0 © H® M))) o (6 @ H ® H) (by (D)

= lb]lw o (PHl & PM) o (H Keg,g @ M) o ((5[{ RQH® M)(by the coassociativity of 6 and the condition
of left Hi-module for M).

On the other hand, trivially I'y; o (ng ® M) = idp; and

Tpro (H ® FM)

=Ipo0 (H & (T/)}V[ o (/\}{ & ¢%J) o (5H & M))) (by definition of T'ps)

=Vyo (U @Ty) o (H®cpu ® M) o (0 @ (A ® ¥i) © (6 @ M))) (by @D)

=Yy 0 (Cry o (HOAY)) @ Ty)o (H@epn @ M) o (5g @ (H®@¢3,) o (0n @ M))) (by
naturality of c)

= pr 0 (g o (Mg ondy) @ H) o (H @ cy) o (0 © H)) @ (Y 0 (N @ ¥3y) © (6 ® M)))
O(H K CcHH X M) o ((5]—[ & ((H & 1/1%/[) o ((5[{ & M))) (by (@6)) and the definition of I'js)
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= 30 (g o (A opdy) ® (uyy o (H@A))) @ (V3 0 (g @ M))) o (H @ @ 0p @ H& M)
O(5H QcH & H® M) o (5H ROy ® M) (by the condition of left H; and Hs-module for M and the
associativity of i)

=ty o (g © (N o ) @ (g o (H @ Ay))) @ (3 0 (uy © M) o (H @ ey @ HO H@ H)
O(5H & CHH QR H® H) o (H & 6H®H) o ((5]—[ ® H)) & M) (by naturality of c)

= Ppro((ppro((Agopi) @ (idu*Ny))o(H @y, )o(6n @ H))@ (43,0 (pgr@M)))o(dnen © M)

(by naturality of ¢ and coassociativity of dp)

= 1/)}\/[ o ()‘11‘I () ¢%/I) o (((,u%] ® ,u%]) o 5H®H) &® M) (by (@) and unit and counit properties)

=I'pyo (N%{ X M) (by the condition of coalgebra morphism for p2;)

Therefore, (M,I'ys) is a left Hy-module. O

Theorem 2.12. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category of left modules over H is symmetric monoidal
with unit object the trivial left module over H.

Proof. Let (M, ¢}, 42%,), (N, ,9%) be objects in gMod. The tensor product is defined by (M ®
N, w}w(@ Nﬂ/’%/[@ ~) Where w}w(@ N and 1/1%/@ n are the corresponding module tensor structures. In
fact, (M @ N, ¢}, y) is a left Hyi-module, (M ® N, 3, ) is a left Ho-module due to the monoidal
character of the category of modules over a Hopf algebra. On the other hand, the identity

(25) PM®N:(PM®FN)O(H@CH,M@)N)O((;H@M@N)
holds because

I'ven

= ((¥ar © (H®93,)) @ (¥ o (H®9R))) o (H @ (H @ crvr @ H) o (i ® e m)) @ N)
O((((()\}{ & )\}{) o 5H) & 5H) o (5]—[) QM ® N) (by @), the cocommutativity of dy and the naturality of
c)

= (Va0 My @9y)) @ (y 0 Ay ®¥R))) o (H @ (H@ ey @ H) o (H® H@ ca ) @ N)
O(((H & (CH,H o 5H) & H) o ((5]{ X H) o 5H) QM N)(by coassociativity of g and the naturality
of ¢)

= (FM (= PN) o (H Kegm & N) o (5H QM ® N) (by the coassociativity and cocommutativity of §p and
the naturality of c)

Then

Vhron © (W3 @ Tyen) o (H @ crg @ M ® N)o (g @ H® M ® N)
= (vy @ ¢y) o (H @ e @ N) o (i @ piy) 0 dmon) © (T @ Tw) o (H @ e ® N)
O(5H QMR N))) ¢} (((H (4 CH,H) o (51{ [ H)) QMR N) (by (28] and the condition of coalgebra

morphism of p2;)

= ((pro (g @Tm) o (H@eyn @ M) @ (Yy o (uf @ Tny) o (H® cyg @ N)))

(
(((5H®H)O(5H)®5H®M®N) (by the coassociativity of 677, the naturality of c and ¢y, gocy, g = idpgm)
(Vo (H@9y) @ (dy o (uh @Tn) o (H® cpp @ N)))
(H® ((H@C}LM ®H®H) o (CH,H ®CH,M®H) o (H®CH7H ®CH,M)) ®N)
((((5}] ® H) o 5H) ROFAIM® N) (by (@A) for M, the coassociativity and cocommutativity of dzr)
(W30 (H@vy)) @ (W o (H@yy))) o (H@ (H®cum @ H)o (cun @ cnm)) @ N)
O(5H RO QMR N) (by the coassociativity of dp, the naturality of ¢ and ([I9) for N)
= ¢12\4®N o (H & 1/}%/[®N) (by the naturality of c).

The unit object is (K, w}( =€y, 1/1% = ¢y) and the natural isomorphism of symmetry is ¢ because,

if H is cocommutative and C is symmetric, ¢ is a morphism of left modules over H. O
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3. YETTER-DRINFELD MODULES FOR HOPF BRACES

The first goal of this section is to introduce a suitable notion of Yetter-Drinfeld module for a Hopf
brace that can be useful in the study of Hopf brace projections. To do it, previously it is necessary
to define some intermediate objects called weak left Yetter-Drinfeld modules.

Definition 3.1. Let H be a Hopf brace in C. A weak left Yetter-Drinfeld module over H is a
quadruple (M, ¢}, 4%, par) such that
(i) (M, 4y, 97) € &HMOd-
.o 1
(i) (M,vapm) € HiYD.
(iii) (M, 43, pa) € [2YD.
(iv) The following equality
(upr ® M) o (H @ carmr) o (par ® H) = (ugr @ M) o (H ® earur) o (pur © H)
holds.

With the obvious morphisms, i.e., morphisms of left H-modules and left H-comodules, weak left
Yetter-Drinfeld modules over H form a category that we will denote by %WYD.

Theorem 3.2. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category %WYD 18 monoidal.

Proof. Let (M, ¢}, 0%, par), (N, bk, ¥%, pn) be objects in FWYD. Then the tensor product is
defined by
(M @ N, $iron: Yiren: pren)-
where, by (iv) of Definition [3],
pren = (@M N)o(H@ ey m@N)o(pn@pn) = (1 @M@ N)o(H@ea,r @ N)o(pm & py)-
By Theorem we have that (M @ N,¢},on, ¥30y) is an object in gMod. Moreover by the
monoidal structure of the categories of Yetter-Drinfeld modules associated to a Hopf algebra we
have that (M ® N, ¢%/I®N’pM®N) belongs to :1YD and (M ® N, 7/)]2\4®N,pM®N) € :zYD. Finally,
(iv) of Definition (B.I]) also holds because
(up ® M) o (H® cuen,m) © (puen @ H)
= (Mh@M@N)O(H@CMJ{@N)O(pM®((M}I(@N)O(H@CN,H)O(pN(@H))) (by associativity
of p}; and naturality of c)
= (@M@ N)o(H®cyn®N)o(pm @ (1 @ N)o(H®cnu) o (pn @ H))) by (iv) of
Definition Bl for M and N)
= (,u%[ ® M) o (H &® CM®N,H) o (PM@N ® H) (by associativity of 2, and naturality of c).

Finally, it is easy to show that the unit object is (K, w}( =e¢q, w%( =ei, PK = NH)-
O

Definition 3.3. Let H be a Hopf brace in C. We define the category of left Yetter-Drinfeld modules
over H, denoted by %YD, as the full subcategory of %WYD whose objects (M, ¥}, v3,, par) satisfy
that

t?\/I,N = (3 @ M) o (H® epn) o (py @ N)
is a morphism of left Hj-modules for all (N, le\/= 1/1]2\,, PN) € %WYD

Remark 3.4. 1) Note that, under the conditions of the previous definition, t?\/l, ~ is a morphism of
left Ho-modules because (M, 43,, par) and (N, 9%, pn) are left Yetter-Drinfeld modules over H.
Moreover, if the antipode of Hs is an isomorphism, t?\/f y is the braiding of the category gZYD.
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2) Let H be a cocommutative Hopf brace in C. Then, by Example 28 (I5]), the unit-counit
properties and the naturality of ¢, we have that

(H, ¢} = en @ Hbl = piy, pa = nu @ H)

is an object in %YD.
Then, if C is symmetric, using similar arguments to the previous paragraph we can assure that
there exists a functor

S: y,Mod — fYD
defined on objects by S((M,¥)) = (M}, = eg @ M,¢3, = ¥, pur = ng @ M) and by the
identity on morphisms. Also, as in Example 2.8] there exists a forgetful functor

V: YD — p,Mod

defined on objects by V((M, ¥}, %3, pm)) = (M,13,) and by the identity on morphisms. Obvi-
ously, VoS = idHQMod-
3) Assume that H is a cocommutative Hopf brace in C. From the previous point we know that
(H, ¢y = en @ H,%f = pir, pr = i © H)
is an object in the category %YD. Let (M, w}w, 1/1%/[, pu) be an object in the same category. Thus,
by definition,
thm = (i @ M) o (H @ eam) o (pu @ H)

is a morphism of left Hi-modules. This fact is equivalent to the following equality

1 2 2 1
Vaem © (H @ty ) =t m o Yymen

and, using the naturality of ¢ and the properties of the counit, we can prove that the previous
identity is equivalent to

(26) (uf @ H) o (H® ) o (H®y) o (cau @ M) o (H®py)) @ H)

= (ujy @ H) o (H® enrm) o ((par 0 ¥3y) © H).
Therefore, composing on the right of (26) with H ® M ® ng, we obtain that

(27) (H @) o (e © M) o (H ® par) = par © ¥iy,

or, in other words, (M, w}w, py) is a Long dimodule. This category was introduced by Long in
[22] to study the Brauer group of H-dimodule algebras for a commutative and cocommutative Hopf
algebra H. Later, the notion was extended by considering two arbitrary Hopf algebras H and B,
introducing the category of left-left H-B-Long dimodules, denoted by ELong. In this category
the objects are triples (M, par, par) such that (M, pps) is a left H-module and (M, ppr) is a left
B-comodule satisfying the axiom

(28) proom = (B®a)o(cap®M)o(H® py),

The morphisms in ELong are morphisms of left H-modules and left B-comodules.
Then, in our setting, taking into account that (27) is exactly [28) for H = B = H;, we have a
functor

L: HYD — [i'Long

defined on objects by L((M, ¥}, %3, par)) = (M, 4}, par) and by the identity on morphisms.
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Example 3.5. In [30], Haixin Zhu gives a definition of a Yetter-Drinfeld category making use of
the notion of the Hopf brace subbialgebra. Recall that in [30] the base category is a category of
vector spaces over a fixed field K. In this context, a subbialgebra H’ of a Hopf brace H (|30}
Definition 4.1]) is a subbialgebra H' of H; (i.e., if jy» : H' — H is the inclusion morphism, jg is
an algebra-coalgebra morphism) such that

(29) pir© (i ® H) = pig o (jur @ H).
Note, by ([29), H' also is a subbialgebra of Hy because

1y o (jur ® jur) = pgg o (Jur @ jur) = jur o pumr.

Once the subbialgebra is defined, the author considers the so-called compatible modules (see [30)],
Definition 4.5]), that are modules (M,1},,43,) over H, in the sense of Remark 2.9 satisfying

Yag o (G ® M) =iy o (jrr @ M).

Now, the objects of the category of Yetter-Drinfeld modules ﬁ/YD are compatible left modules

over H that have a comodule structure pps : M — H ® M such that (see [30, Definition 4.7]):
(i) pm(m) e H @ M, Vm e M,
(ii) (M, ¥}, par) € 11YD,

(i) (M, %3, o) € [2YD.

Observe that the first condition, together with (29), imply (iv) of Definition 31l And as was
observed in Remark [20] any module in the sense of [30] is a module in the sense of Definition 2.7l
Finally, the morphisms of the category EHH/YD are morphisms of left H-modules and of H-comodules,
as stated in Definition B.Il Thus, H'}/YD is a full subcategory of %WYD.

Note that, if (M,¥1,,93,, par) and (N, 9k, ¥%, pn) are objects in FH’YD and the antipodes of H
and Hj are isomorphisms, by the condition of compatible module and (i), we have that t}\/l, N= t?\/l, N

where t§\4, y is the braiding of ::YD for i = 1,2. Therefore, t?\/.f, n is a morphism of left Hq-modules,
and this implies that E/YD is a full subcategory of %YD.
On the other hand, if H' is a subbialgebra of H, (i) holds trivially for py = ny ® H and, as a
consequence, if we assume the cocommutativity condition for H,
(H ¢y = en © H,9F = piy, pu = @ H)

is an object in E'H,YD. Then, taking into account that we know that t}w, g = t%w, g holds for any
(M, 3,03, par) in FH,YD, the identities

(30) e = (n @cpm)o (py @ H) = (u7r ® M) o (H ® emm) © (pv @ H)
also hold and, as a consequence, composing on the right with M ® ng, we obtain that
Py =N @ M.

Thus, under cocommutative conditions the coaction is trivial and then EHH/YD and pgMod are
isomorphic categories.

The previous categorical isomorphism implies that the definition introduced in [30] does not
provide a consistent non-trivial theory of Yetter-Drinfeld modules for Hopf braces. Note that the
condition of cocommutativity is used systematically in [30] and [31].

Theorem 3.6. Let’s assume that C is symmetric with natural isomorphism of symmetry c. Let H
be a cocommutative Hopf brace in C. Then the category %YD 1s braided monoidal.
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Proof. To prove the theorem we only need to show that if (M, 1,43, par) and (N, ¥k, %%, pn)
are objects in %YD and (P, w}g, w%, pp) is an object in %WYD we have that t?\/1®N7P is a morphism
of left Hi-modules. Indeed:
Vponren © (H @ 3oy p)
= ((Wpgr o (H@ 3 p)) @ ¥p) o (HOM @ cyp @ N)o (H®cmum) o (0n @ M) @ty p)
(by the naturality of ¢ and the coassociativity of dz)
= (By.p o Vhyop) ® U)o (HE M cp © N) o ((H ® crrar) o (0 © M) @ p) (b the
condition of morphism of left H1-modules for t?w, p)
= (Byp @ N) o (1 ® (hgy o (H & p)) o (H ® carar) (55 @ M)) & N © P) (b the
naturality of ¢ and the coassociativity of dg)

= t?V[@N,P o Tp]l\/[®N®P (by the condition of morphism of left Hi-modules for t?\r,P)'
(]

Notation 3.7. Under the conditions of the previous theorem we know that the braiding of %YD is
t2, i.e., the braiding of :;YD. Taking into account this fact, from this moment and to simplify the
notation the braiding of the category %YD will be denoted by t.

To finish this section we will prove that if H is a cocommutative Hopf brace in a symmetric
monoidal category, %YD can be seen as a type of categorical center. To fix the notation and make
the reading more self-contained we will first remember the notion of center of a monoidal category.

Definition 3.8. Let D be a strict monoidal category with tensor product X and unit object I. The
center (or left center) Z(D) is the category with the following objects and morphisms: An object is
a pair (M, 7y,—), with M € D and 7py— : M X — — — K M a natural isomorphism satisfying the
following condition for all N, P € D:

(31) Tv,Ngp = (N W71 p) o (Tar,y X P).

A morphism between (M, 7p,—) and (M’ 7p ) consists on a morphism f : M — M’ in D such
that

(32) (N&f)OTM,N:TM/7NO(f®N).

for all N € D.
Note that, as a consequence of the strict character of D, we have that 7)1 = idys for all M € D.
The center Z(D) is a strict braided monoidal category. The tensor product is

(M, TM7_) X (M’, TM/7_) = (M X M,, TMgM/’_)
with
Tvmmr N = (Tun B M) o (M R 7pp N)
and the unit object is (I, 77— = idp).
The braiding is given by
TM,M' - (M, TM’_) X (M/, TM/7_) — (M/, TM/7_) X (M, TM7_).

Example 3.9. Let X be a Hopf algebra in C. The category of left X-modules is a monoidal category
where the tensor product of two objects (M, ¥ar), (N, ¥n) is defined by (M @ N, Ypren) with Yyren
the tensor module structure. The unit object is (K, ¢k = ex). Then, Z(xMod) is a strict braided
monoidal category where the objects can be identified with triples (M, s, Tas,—) where (M, )

is an object in xMod and Tarny : M @ N — N ® M is a family of natural isomorphisms in xMod
satisfying (3I)). Also in this case the morphisms in Z(xMod) are morphisms in xMod satisfying

32).
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Definition 3.10. Let X be a Hopf algebra in C. We define the small center of xMod as the full
subcategory SZ(xMod) of Z(xMod) with objects (M, ¥ar, Tar,—) satisfying

(33) ™MN = (VN @ M) o (X @ cun) o ((Tarx © (M ®@1x)) @ N),
for all (N,¢n) in xMod.
Note that, if (M, ¥ar, Tar,—), (M’ pr, T —) are objects in the category SZ(xMod), the tensor
product (M @ M', Yyemr, Tmemr,—) also is. Indeed, let (IV,9n) in xMod, then:
(v @ M @ M') o (X @ eprgmr,n) © (Tvenr,x © (M @ M' @ nx)) ® N))
=(WNnOMOM)o(X®cun®@M)o(tyx @car n)o (M (Tar x o (M @nx)) ®N)
(by definition of Tpse a7, —)
= (WNOMOM" )o(ux @cpn@M ) o(X@cpx @cepr n)o((Tar,xo(Menx)) @XM @N)
o(M @ (tpr,x o (M ®@nx)) @ N)(by @B3) for (X, ux))
= (N0 (X @YN)OMOM)o (XX @cyny @ M) o (X ®cux ®cyr )
O((T]\/[,X o (M X nx)) X (TM’,X o (M/ (= Tlx)) X N)(by the condition of left X-module for N)
= (bn@M)o(X@emn)o((Taxo(M@nx))@N))@M')o(M®((Yny@M')o(X®cr,N)
O((TM’,X o (M/ (= Tlx)) X N)))(by naturality of c)
= TmeM’',N(by @B3) for (N,¥n)).-
Therefore SZ(xMod) is a braided monoidal subcategory of Z(xMod). As a consequence, the
inclusion functor is a braided strong monoidal functor.

Example 3.11. In the previous definition, if C is the category of R-modules over a commutative
ring R, the equality (33) always holds as was proved in [21, Theorem XIII.5.2]. Then, in this setting,
SZ(xMod) = Z(xMod).

Theorem 3.12. Let X be a Hopf algebra in C such that Ax is an isomorphism. Then the category

SZ(xMod) is isomorphic to the category of left Yetter-Drinfeld modules over X as braided monoidal
categories.

Proof. By (B3) the proof follows the one proposed in |21, Theorem XIII.5.2]. Then, we will restrict
the proof of this Theorem to a brief description of the connecting functors. Take (M, s, Tar,—) in
SZ(xMod). The morphism pyr = 7ar,x o (M ®@7x) makes (M, pps) in a left X-comodule and, by (33),
we obtain that (M, s, par) is a left Yetter-Drinfeld module over X. Conversely, if (N, ¥y, pn) is a
left Yetter-Drinfeld module over X, the natural isomorphism is defined by 7w p =ty p where ty p
is the braiding of XYD and (P,%p, pp) is an arbitrary object in XYD. O

Let H be a cocommutative Hopf brace in symmetric monoidal category C. By Theorem B.2] we
know that the category of left %WYD is a monoidal category. Then, Z(%WYD) is a strict braided
monoidal category where the objects can be identified with quadruples (M, ¢%4,1/)]2V[,,0M,7'M,_)
where (M, ¥}, 43, prr) is an object in BWYD and

MN:M®N—>NoM

is a family of natural isomorphisms in %WYD satisfying (BI). Also in this case, the morphisms in
Z(ZWYD) are morphisms in HWYD satisfying ([B2). Note that, in this setting, 7as, v is a morphism
of left Hqi-modules, left Ho-modules and left H-comodules.

Definition 3.13. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
We define the small center of EWYD as the full subcategory SZ(AWYD) of Z(HWYD) with objects

(M, b3, 35 pars Ti,—) satisfying

(35) TN = (W ®@ M) o (H® epn) o (T, o (M @ np)) ® N)
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for all (N, ¥k, %%, pn) in %WYD.

Note that, as in the Hopf algebra case, if (M, 1}, %3, par, Tar—), (M’,w]lv[,,q/}%,,pM/,TM/,_) are
objects in the category SZ(RWYD), the tensor product (M ® M, ¢%/[®M’v ¢%/[®M” PMM' s TMOM',—)
also is. Then, SZ(EWYD) is a braided monoidal subcategory of Z(AWYD). As a consequence, the
inclusion functor is a braided strong monoidal functor.

Theorem 3.14. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
Then the categories YD and SZ(AWYD) are isomorphic as braided monoidal categories.

Proof. The proof follows directly from the definitions of the categories %YD and SZ(%WYD) because
if (M, %, 9%, par, Ta,—) is an object in SZ(EWYD), we have that (M, 1,12, par) is an object in
%YD. Conversely, if (V, 1/1‘1/, zb%,, pv) is an object in %YD7 we obtain that (V, 1/1‘1/, zb%,, PV, Ty, — = t%,’_)
is an object in SZ(%WYD). Then it is easy to prove that this correspondence defines a pair of inverse
functors and the braided monoidal isomorphism. O

4. PROJECTIONS OF HOPF BRACES

As emphasized in the introduction of this paper, the notions of Yetter-Drinfeld module and
projection of Hopf algebras are strongly linked. In the following pages we will try to study this
connection in the context of Hopf braces. Once the notion of Yetter-Drinfeld module for a Hopf
brace was introduced in Definition [3.3] in the following definition we present the notion of projection
for Hopf braces.

Definition 4.1. A projection of Hopf braces in C is a 4-tuple (H,D,z,y), where H, D are Hopf
braces in C, z : H — D, y : D — H are morphisms of Hopf braces in C and the following equality
y o x = idy holds.

A morphism between two projections of Hopf braces (H, D, z,y) and (H', D', 2, y) is a pair (z,t)
where z : H — H', ¢t : D — D’ are morphisms in HBr and the following equalities hold:

(36) Poz=tox, yot=zoy.

With this morphisms and the previous objects we can define the category of projections of Hopf
braces. We will denote this category by P(HBr).
Note that (B8] implies that

(37) z=y otou.

Remark 4.2. If (H,D,z,y) is a projection of Hopf braces in C, we have two projections of Hopf
algebras (Hy, D1, z,y) and (Hg, Dy, x,y). Then, with qlD and q%) we will denote the associated
idempotent morphisms. Note that, if qjlj = i}j o p}j and q% = z% o p%, with p}j o z'}j = idl(q},) and
phoil = idp(g2 ), we have that
. i* (D®y)odp
I(qp) D D®H
D ®nu

is an equalizer diagram for k € {1,2} and, as a consequence, we can assume that i}) = 2'2D and
I(qh) = I(¢%). Then, p} oil, = idl(qb) = p% o ik and, composing with p}, and p?, we obtain the
equalities

(38) Ph=DPhodqh, DPh=DHoqh
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Therefore,
(39) gp =4dpoap, b =4p°dp
also hold.
Notation 4.3. Taking into account the previous remark, in what follows we will denote the mor-
phism i}, = %, by ip and the objects I(g}) = I(q%) by I(gp).
Remark 4.4. Note that, by (38) and (&), we have that

i(qp) = PD © 1p © (ip @ ip) = ph o qp o up © (ip ®ip) = ph o pp o (ip @ ip),

and, similarly,
M%(qD) = pp o pp o (ip @ip).
Theorem 4.5. Let (H,DD,z,y) be a projection of Hopf braces where D is cocommutative. Then, the
following equality
(40) (ap ® D)o dpoip = (g ®D)odpoip
holds where q}) and q% are the idempotent morphisms introduced in Remark [£.2]

Proof. 1f (H, D, z,y) is a projection of Hopf braces with D cocommutative, by Lemma [[L9) we have
that qjlj is a coalgebra morphism. Then,
(¢p ® D) o dp o qp
= ((q% o q})) ® qlD) 0 dp (by the condition of coalgebra morphism for qt)
= (4p ® ap) © 6p (by G)
= (q}) (= D) odpo qlD (by the condition of coalgebra morphism for ¢}, and ¢}, o ¢}, = ¢},)

holds, and as a consequence, composing with ip, we obtain (40). U
Remark 4.6. Note that, if (40) holds, using (I0) and (B9]), we obtain that
(41) (ap @ ap) 0 dpoip = (4 @ qp) ©dp oip = (4 ® 4p) ° dp o ip

holds. Then, the idempotent morphisms q}) and q% induce the same coproduct in I(gp). By
Theorem [ this is the situation that occurs when (H, D, z,y) is a projection of Hopf braces with
D cocommutative.

In the following theorem we will prove that, under cocommutative conditions, projections of Hopf
braces induces new Hopf braces.

Theorem 4.7. Let (H, D, x,y) be a projection of Hopf braces with D cocommutative. Then,
1 2 2 1 2
I(gp) = (I(qD)777[((1[;)7:uI(qD)vn[(qD)7M[(qD)vel(qD)75[(qD)7)‘[(qD)7)‘I(qD))

is a Hopf brace in C where:

(42) Ni(an) = PD ©ND = Pb © 1D,

(43) Ky = Pb © 1p © (ip @ ip),

(44) B ap) = PD © 1D © (ip ®ip),

(45) €1(gp) = ED ©iD;

(46) S1(ap) = (Pb ® pp) 0 dp oip = (P ® pp) ° dp oip,

(an M) = Pb o X o,
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(48) Miyp) =P oA oip.

Proof. First note that nyg,) = plD onp = p% onp holds because n}(qD) is the unique morphism such
that ¢p o n}(qD) = np and n?(q/:)) is the unique morphism such that ip o n%(qD) = np. Thus, from
now on, we will use 77(,,,) to denote the morphism n}(q/:)) = n%(qD). Also, by the cocommutativity
of D, we can assure that (46]) holds. Therefore, by the general theory of Hopf algebra projections
(Z(gp); M(ap)> 'u}(qp)’ €1(qp)> 9I(qp)» )\}(qD)) and (I(qp), M(gp)> 'u.?(qp)’ €1(gp) O1(qp)> A%(qD)) are Hopf

algebras in C because the cocommutativity condition implies that pr(,,) = ng @ I (gp).
On the other hand, the equality

(49) ipol1qp), =Ty o(ip®ip)
holds because
ip°T1p),
= i © ((ip © A1(gp)) @ (iD © i1y p))) © (Or(gp) ® [(QD)) (by @)
= pp o ((Apoin) ® (uh o (ip ®ip))) © (O1(4p) ® I(gp)) (by @ and (@)

= itp o (Ap 0 ap) ® (1 o (4 ®ip))) © ((9p 2 ip) @ I(gp)) (by @)
= FDl o (ZD & ’LD) (by the condition of coalgebra morphism for gk,),

and then we have that the identities
T1(qp), =Pp LD, 0 (ip ®ip) = ppoTp, o (ip ®ip)
hold. As a consequence,
Bitan) © W3 gn) @ Trta),) © L(aD) @ crigp),1tap) @ 1(aD)) © (31(4p) © I(gp) © I(ap))
= ppoupo((ipopf,, )@ (ipoT1(4p),))o(1(aD)®Cr(4p), 1(ap) @1 (D)0 (O1(4p) @1 (ap)@1(qD))
b
= Ileyo(E,LDL)lD o (M2D X FDl) o (D ®cp,p @ D) o (((ZD ® iD) o 5I(QD)) Rip ® ’iD) (by @), @) and

naturality of c)
=ppoppo(uh@Tp,)o(D&epp®D)o(((gp®qp)odpoip)@ip@ip) (by @)
= p}) o N}) o (N%) & FDl) o (D X cp,p & D) o ((6D o iD) ®ip iD) (by the condition of coalgebra
morphism for qlD)
= p}) o M% o (D & ,u,lD) o (ZD Rip ® ZD) (by (iii) of Definition 1))
= H(gp) © (T(aD) @ pyy)) oy @)
hold and I(¢gp) is a Hopf brace. O

Definition 4.8. Let (H, D, z,y) be a projection of Hopf braces in C. We will say that it is strong

if (40) and

(50) Pp © #h o (z ® D) = ph o i o (x @ qp)
hold.

Note that (B0) implies that
(51) ppoph o (x®ip) =ppouho (z@ip)
holds.

Strong projections with morphisms of projections of Hopf braces form a category that we will
denote by SP(HBr). In other words, SP(HBr) is the full subcategory of P(HBr) whose objects are
strong projections.

Note that, by ([B8]), the equality (&1l is equivalent to

Ppouh o (z®ip) =ppoqhouho(z@ip).
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Theorem 4.9. Let (H, D, z,y) be a strong projection of Hopf braces. Then,
(I(‘JD)77/)}(QD) —=ppopupo(z® Z'D),T/)?(QD) =phouho(z®ip))

s a left H-module and the product u}(qD) defined in (A3) is a morphism of left Hy-modules.
Then, if

‘I'?(ZD) - w%(qD) ® H)o (H® cp,1(4p)) © 0 @ I(qp)),
the following equality holds:
(52) (Hbgpy ® H) 0 (I(qp) © U2 Yo (Wi & I(qp)) = Wi o (H® b, ).
Finally, if H is cocommutative and
Uity = Wigp) © H) o (H @ e pqp) © (0 © 1(4p)),

we have that

(53) (I(ap)@upy)o(Uyt s @ud)o(HoW e @ H)o((My, ©H)o(H®cy i)o(0n @ H))@1(qp) @ H)

= (I(gp) ® u3y) o (VI @ puly) o (H o Wi @ H)

holds.
Proof. 1f (H, D, z,y) is a strong projection of Hopf braces

(I(ap)s ¥1(gp) = Pp o ip © (T @ D), V7 () = Ph o ph o (x @ ip))
is an object in gMod. Indeed, first note that by the general theory of Hopf algebra projections we
have that (I(¢p), zp}(qD) =phouho(x®ip)) is an object in p, Mod and by similar arguments we
can assure that (I(¢p), 1/)?(@) =phouho(r®ip)) is an object in w,Mod. Finally, (IT) follows by:

zp}(qD) o (u3; @ Ty(gpy) © (H ® e ® I(qp)) o (65 ® H © I(qp))

= p}) OM}) o (/1,2D & PDl) o (D Xcp,p® D) o (((5[) o .’1’) Rr& ZD) (by the condition of morphism of Hopf
algebras for z, (I0) and the the naturality of c)

= p}) o N% o (x & (,u,lD o (.’1’ & ZD))) (by (iii) of Definition 2]

= q/)}(q%) o (H®Yj,,) (by GD).

The product ,u}(qD) is a morphism of left Hs-modules because:

N}(QD) © (¢%(qp) & Tﬂ?(q[,)) o(H® CH,I(gp) @ I(gp)) o (0m ® I(qp) ® I(qp))

— phonbol(gherde (@®in)®(ude@®ih))e (HSck (g @ 1(an))o (0 ©1(a0)@1(ap))
(by (EI) and (I0O))

=pponupe((apopuhe(D®ip))® (upho(D@ip)))o(D&cp g © I(ap))
O(((sp o LZ') & I(qD) & I(qD)) (by the condition of coalgebra morphism for  and the naturality of c)

=ppoupo((npo(up®(@oryoufo(y® H))))o(D®epp@D)o(dp®((D®y)odpoip)))
®(,u2D o (D (039 ’LD))) o (D X €D, I(qp) (4 I(qD)) o ((5D o l‘) (039 I(qD) %) I(qD)) (by the condition of
algebra morphism for y and the condition of coalgebra morphism for ,u2D)

=pp o up o ((up o (1h @ (wo Ay oy)o (D®cp,p) o (dp ®ip))) ® (uh o (D ®ip)))
O(D & CD,I(qp) ® I(qD)) o ((51) o $) &® I(qD) ® I(qD)) (in this equality we used that ip is the equalizer
morphism of (D ® y) odp and D ® ng)

= pb o ,ulD o (,UQD ® FDl) o (D ®cp,p ® D) o ((5D o x) ®ip ZD) (by the condition of Hopf algebra
morphism for z, y o z = idy and the naturality of ¢)

=pLou?o(z® (uho(ip®ip))) (by (iii) od Definition ZI)

= Vi(gp) © (H @ 1j(y,,)) (by ED) and @).

On the other hand, (52]) follows by
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() ® H) o (Tlap) © W12 Yo (Wl & T(qp))
((MI(qD (V2 ap) @ VEgp)) © (H @ e 1(qp) © I(ap)) © (6 ® I(qp) ® I(qp))) © H)
(H ® I(qD) K cp I(q )) (H ® CH,I(qp) ® I(qD)) o (51{ ® I(qD) &® I(qD)) (by the naturality of

¢ and the coassociativity of §p)

= ((7/)?(%) o(H® #}(qD))) ® H)o(H®I(gp)® CH,I(qD)) o(H® CH,I(qp) @ I(qp))
O(5H & I(qD) & I(qD)) (by the condition of morphism of left Ha-modules for u}(qD))

= \IJ?ED) o (H ® M}(QD)) (by the naturality of ¢).

Finally, the proof of (B3] is the following:

(Iap) @ i) o (W 020 (He Wl o H)
o((Ty, ® H) o (H®cha)o 0y ® H)) @ I(qp) ® H)

= (T/J}(qD) ® N}lf{) o(H® CH,I(qp) & H)
o((My, ® Ty, ) 0 dren) ® (U, ® ki) o (H & e 1(qp) @ H) o (65 ® I(qp) @ H)))
o(H®cuu®I(qgp) ® H)o (0p ® H®®I(qp) ® H) (by Lemma[ZB)

= (V1) © T, @ ¥7(y,)) © (H ® e ©1(ap))) @ (g © (T, © piy) o (H @ ey @ H)))
o(H® H ® ((H® ey 1(qp) @ H) o (cuu ® chrgp)) © (H®cun ®1(qp))) ® H® H)
o (((5}] ®5H) O(SH) ((H®CH,I(qD)) o (5H®[(QD))) ®H) (by the naturality of ¢, the cocommutativity

of 6 and cp g o ey, g = idm)

((%(qD Ty, ® 1/11 (ap)) © (H® cg ®1(qp)) o (6n ® H ® 1(qp))) ® (g 0 (T, @ p3y)

oH®cyg@H)o(bg@H®H)))o(H® (H® cpgp) ®H)o(cun ® chqgp)) ®H)

O(5H RO ® [(QD) ® H) (by the naturality of c)

= (W20 (H@ Y )10 (Hepid ) o (H (e gy © H)o e e sgn)) @ H)
O(5H RO ® [(QD) ® H) (by @3) for I(gp) and (I8])

— (I(qD) X /L%{) (\I/I? ) (039 luH) (H [} \I’ﬁ}] ) (039 H) (by the naturality of c).

O

Remark 4.10. Let (H, D, z,y) be a projection of Hopf braces. The idempotent morphisms qlD and
q% induce the same coaction on I(gp) because, by (0) and (38), we have that

Plign) = W @pp)odpoip=(y@ (ppogh))odpoip = (y@ph)odpoip = pyy,)-
Then, in the following, we will denote this coaction by p I(qn)-

Definition 4.11. Let (H, D, z,y) be a strong projection of Hopf braces in C. We will say that it is
vi-strong if

(54) (g ® I(qp)) o (H @ crigp),ar) © (Pr(gp) @ H) = (uh @ I(qp)) o (H @ c1(gp).11) © (Pr(gn) @ H),
holds and the morphism

(55) (% ®1(ap)) o (H @ crgp),n) © (Pr(gp) ® N) : I(ap) ® N = N @ I(qp)

is a morphism of left Hj-modules for all (N, le\/= 1/1]2\,, pPN) € %WYD.

These projections with morphisms of projections of Hopf braces form a category that we will
denote by V1SP(HBr), i.e., V1SP(HBr) is the full subcategory of SP(HBr) whose objects are vi-
strong projections.

Theorem 4.12. Let (H, D, z,y) be a vy-strong projection of Hopf braces. Then, the triple
(1(gD): ¥I(gp) =PD © 1D © (T ® D), V7 () = Ph © b © (& ® i), pr(qp) = (y ® pp) © 6p 0 ip)

s an object in %YD.
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Proof. By Theorem 9] we know that

(I(‘JD),T/)}(,]D) = plD ° ,u}:) o(r® Z'D)ﬂ/)?(q[,) = p%) o ,U%) o(z®ip))
is a left H-module. Also, by Remark [£.10, the coaction pj(,,) does not depend on qjlj and q%.
On the other hand, by the general theory of Hopf algebra projections, (I(qD),¢}(qD),p1(qD)) is a

left Yetter-Drinfeld module over H; and, similarly, (I (qD),Q/)?(qD), Pi(qp)) is a left Yetter-Drinfeld

module over Hs. Finally, (iv) of Definition 3.1l and the Hi-linearity of the morphism defined in (55)
follows directly from the condition of vi-strong projection. O

Example 4.13. In [I] we can find constructions for Hopf braces by means of using matched pairs
of Hopf algebras in a category of vector spaces over a field F or, in a more general setting, in a
symmetric monoidal category C that we will assume strict without loss of generality. Recall that a
matched pair of Hopf algebras in C is a system (A, H, 4, 1m), where A and H are Hopf algebras,
A is a left H-module coalgebra with action p4 : H ® A — A, H is a right A-module coalgebra with
action ¥p : H ® A — H and the following conditions hold:

pao(H®na)=cu @na,
Yo (ng ®A) =ng @ea,
pao (H®pa)=pao(A®pa)o (¥ ® A),
Yo (py ®A) =pgo (g ®H)o (H® VY),
(r ® pa) o duga = cam o VY,

where U = (04 ® YH) 0 dgsa.
If (A, H,p4,%p) is a matched pair of Hopf algebras, the double cross product A 1 H of A with
H is the Hopf algebra built on the object A ® H with product

pasan = (4 © pr) o (A® UY @ H)
and tensor product unit, counit, coproduct and antipode
Msarr = Wi o (A @ Aa) 0 camr

where A\p is the antipode of H and A4 is the antipode of A.
Let A be a Hopf algebra and H be a cocommutative Hopf brace. If (A, Hi, 4,9 m, ) is a matched
pair of Hopf algebras, (A, @?4) is a left Ho-module algebra-coalgebra,

T = (¢h @ H) o (H ® cia) 0 (3 @ A),

and the equalities

¢4 o (H®pa)

= a0 ((ny o (H®Ay)) ® ¢3) o (H® g @ A) o ((ufy ® H) o (H @ ) o (b @ H)) ® A),

pir o (H ® )
= ppro (W ® H)o (ujro (HO ) @ T2 o (H@ g ® A)o (uyy © H) o (H @) o (5 @ H)) © A),
hold, by [1, Theorem 2.5, we have that the tensor product A ® H with the products

Whsatr = (pa @ pp) 0 (A@ VY @ H),

H-
[Piparr = Bagr, = (Ha ® p}y) o (A T @ H),
tensor product unit, counit, coproduct and antipodes
Miarr = U o My @ Aa) 0 cam, Nypay =2 0 0} @ Aa)ocan,

is a Hopf brace that we will denote by A > H.
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If in the previous construction we consider the particular case where g, = H ® €4 we obtain
that (H, A H,z =n4 ® H,y = 4 ® H) is a projection of Hopf braces where

QA = Qhpart = Chvarr = A® (N 0 €11).

Therefore, I(q)y..;r) = I(¢%pn) = A,

pzl4[><1H = p?mx]H =A®en,
and
ii&mH = i?élmH =A®ng.
As a consequence of the previous facts, it is easy to show that ({@0), (B0) and (B4) hold because
in this setting
PL(qasr) = (Y ® Phiparr) © S Asa © Pparr = NH © A.
As a consequence, we have that

can = Wk @ 1(@asarr) © (H @ C1(gaan),N) © (Pr(ganarr) @ N)
and, using the cocommutativity condition, we obtain that it is a morphism of left Hi-modules for
all (N, ¢k, %%, pn) € %WYD. Then (H, A< H,z =14 ® H,y =4 ® H) is a vi-strong projection
of Hopf braces such that the object I(gasqr) is the Hopf brace Ay, introduced in Theorem 2.4

because N (qasar) = MA u}( = M%(QAMH) = A, €[(qgapan) = EA 51((1A><1H) =04 and )\}(QAMH) =
A2 = A\a.

I(qapar)
On the other hand, by Theorem .12, we know that I(gas) with the two actions

qA<H

wl(‘]Aqu) = PAvat © Hasarr © (T @ Taary) = A, wl(‘]Aqu) = Posarr © Kaparr © (T @ iapay) = ¥4,
and trivial coaction pr(g, ) = ng ® A is an object in %YD. Moreover, by the general theory of

Hopf algebra projections, (4,14, pa,€4,04,A4) is a Hopf algebra in giYD and in ZEYD. Therefore,
NA, MA, €4, 04, Aa are morphisms of left Hi-modules, left Ho-modules and left H-comodules. As
a consequence of these facts we obtain that Ay, is a Hopf brace in %YD because in this case the
braiding t4 4 in %YD is the symmetry isomorphism c4 4. Finally, note that the previous assertions
imply that (A, p4) is not only a left Hi-module coalgebra but also a left Hi-module algebra.

Remark 4.14. Let’s assume that C is symmetric. Let (H,D,xz,y) be a strong projection of Hopf
braces with D cocommutative. Then, the Hopf brace I(gp), introduced in Theorem 7] with the
actions of the previous theorem is an object in %YD where prp) = na @ I (¢gp). Note that in
this case, for all (N, w}v,zb?v,pN) € %WYD7 t1(gp),N = CI(qp),N 18 @ morphism of left Hj-modules
because if D is cocommutative, the Hopf brace H is cocommutative.

In the following theorem we present the conditions that permit to obtain, using the bossonization
process, Hopf braces in C working with Hopf braces in the category of Yetter-Drinfeld modules
associated to a cocommutative Hopf brace H in C.

Theorem 4.15. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C
and let A be a Hopf brace in %YD. Let \I/fl cH®RA—> A® H, \sz cH® A — A® H and
Q?I :A® H— H® A be the morphisms defined by

Ui = (ph @ H)o(H®cpa)o(On @A), VP=@ieH)o(H®cya) oy A),

Qf = (uly ® A) o (H@can)o (pa® H).
Then, A wa H = ((A e H);,(A »a H)y), where

NAvad = NA QNH, EAvaH = EAREH,
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Pasarr = (h @ pjp) 0 (AQ VY @ H),  phpqr = (15 © pfy) 0 (A Wi © H),
Sarart = (A Q@ H) o (64 @ 0nr),
and
Miparr = U0 (A ® A4) 0 Qff Nipay = V42 0 (A @ A3) 0 Qf,
is a Hopf brace in C if, and only if, the following equalities hold:
(56) (A@ pufy) o (W' @ py) o (H @ W* @ H) o (Ty, ® H) o (H @ crrr) © (95 © H)) @ A® H)
— (A® ) o (W @ uly) o (H & W @ H),
(57) Wi o (H® py) = (uhy @ H) o (A© W) o (V12 ® A),

(58) (uh @ H)o (A W) o(Ae (T, @Ta,)o(H@can®A)o(pa®@H® A)))o(34® Ho A)
=A@ H)o (A ¥,

Proof. First of all prove some equalities that we will need in the proof. More concretely, we will
prove that the following equalities hold:

(59) Qfyo(na® H)=H@na

(60) Qo (A® i) = pa

(61) Sarari o (MA@ H) =(A®H®na®H)o(na®dm),

(62) Sarari © (A®nH) = ((A® pa)oda) ®nm,

(63) Q@A) o (AR Q) 0 (b4 @ H) = (H ®354) 0 Q4

(64) (HoUN) @ (@ H)o (A®dy) = (65 @ A) o Q4

(65) Viomp®A) =A®ny, i=1,2

(66) ViioH@na)=na®H, i=1, 2,

(67) Papag 0 (AR NE QAR H)=py @ H, i=1, 2,

(68) Papan © (A HR®NA@ H) = A@ Yy, i=1, 2,

(69) (1y @ H)yo (A ) o (i@ A) = 0o (H @ 1ly),, i=1, 2,
(70) (A piy) o (Vi@ H)o (HoW!l) =¥lio(uy @A), i=1, 2,
(71) (Wi @ H)yo(H®cpa)o(0g @A) =(A@dg) oWl i=1, 2,
(72) (Ui @ A)o (H®can)o (@A) = (A2 Q)0 (taa @ H)o (AR TL?),

(73) T(aparn), = (A®pg) o (P4 o (M ®T4,)0(Qf @A) @udy) o (AR (H@ W ?) 0 Sy @ A)) @ H),

(74) T(apar); © MA@ H@A® H) = (A® pyy) o (P @ pf) o ANy @ Ui @ H) o 3y ® A® H).

The equality (B9)) follows from (@), the naturality of the braiding and the unit properties. The
proof of (60]) follows from the naturality of the braiding and the unit properties. The equality (61))
is a consequence of (59)) and (62)) follows from (G0). On the other hand, we have that
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QA @ A)o(A® Q) o (0a® H)
=y ®A®A)o(H®can®@A)o(HRA®cam)o (@ A® A)o(H®can @A)
O(,OA ® ,OA) o 5A) &® H) (by the naturality of ¢ and the associativity of p};)
=(uh AR A)o(H®can®@A)o(HRA®cam)o (H®E84)0pa)®H) (by @)
= (H &® 5A) o Q"IL_‘I (by the naturality of c)
and then, (G3) holds. Also,
(HoQ4) @ (Q4 @ H)o (A® )
= (N}{ ® ,Uz}{ ® A) o (H ® CH,H & CA,H) o (5H & CAH & H) o (,OA & 5H) (by the naturality of ¢
and the comodule condition for A)
= (((M}I X /L}I) o 5H®H) ® A) o (H ® CA,H) o (pA ® H) (by the naturality of c)
= (51{ ® A) o Qﬁ (by the condition of coalgebra morphism for p};)
hold, and we obtain (64]). The proof of (65]) follows by the condition of coalgebra morphism for 7y,
the naturality of ¢ and the condition of left module for A. The equality (66]) is a consequence of the
naturality of ¢, the condition of left module algebra for A and the counit properties. The proof of

([67)) is a consequence of (G5)) and (G8]) follows from (G€). The identity (69]) holds because
(Wy @ H)o (A@ U)o (U] @ A)
= (g0 (P @ YY) o (H®cpa®A)o (g @ A® A)) @ H)o (HR®A® cy )
O(H R CHAR A) o (51{ RAR® A) (by the naturality of ¢ and the coassociativity of §z)
= ((Wyo(H@py)@H)o(HoA®cma)o(H@cepa® A)o(0p @A A) (by @)
= \I’Zz o (H ® ,qu) (by the naturality of c)
and (7Q) follows by
(A@ uy) o (V' @ H) o (H® Uy")
= ((Wyo(Wy®A))@uly)o(HRH®cya®H)o(H®chy®cha)o 0y @0y @A) (by the
naturality of ¢ and the condition of left module for A)
= (1%4 &® H) o (H ® CH,A) o ((('LﬂH ® quH) o 5H®H) ® A) (by the naturality of c)
= \I’Zz o (,u’H ® A) (by the condition of coalgebra morphism for ;).
By the coassociativity of 0y and the naturality of ¢ we obtain (7I]). The proof for the equality
([72)) is the following:
(V32 @ A)o (H®caa) o (U @ A)
(Wa®H)o(Hoem )@ A)o (1 @ Hy)odnen) ©caa) o (HOean®A)o(pa® H® A)
(by the condition of algebra morphism for dzr)
(Who(p% @A) 2p% @A) @(HOH®((cna®H)o(H®ep a))®A)o(HOHRHOH®ca, 1)
O(H ® ((CHJ’—[ & CA,H) o (H & CAH ® H) o (,OA & (5H)) & A) o (,OA ® H® A) (by the naturality
of ¢ and the condition of comodule for A)
= ((ibio (H®1/1124)) ®Qf1)o (HO®H®caa@H)o(H®can®cha)o(pa®og @A) (by the
naturality of ¢ and the condition of left module for A)

= (A & Qﬁ) o (tA,A & H) o (A & \I/Zl) (by the naturality of c)

and (73)) follows by (63]) and (69). Finally, (7)) follows by (73]), (59) and the unit properties.
Taking into account the previous equalities, we will prove the theorem. Firstly, let’s assume that

A »«4 H is a Hopf brace in C. Then, (iii) of Definition 2.1 holds for A »« H, i.e., we have that the
following equality:

(75)  taparr © (HWoapars @ T (arar),) © (A® H ® cagraon ® AQ H) o (Sapan ®A® H® A® H)

= /‘?4><H c(A®H® ,u/lélNH)-
Then composing in (75) with n4 ® H @ n4 @ H ® A® H we have



PROJECTIONS OF HOPF BRACES 29

1 narr © (HWopait @ L (arai)y) © (A® H ® caomaen @ AQ H) o (Saran ©®AQH @ A® H)
oM@HIN@H®ARQH)

= (A@pg) o (VY @ H) o (uh @ T (aparr),) o (H ©cam @ H) o (U @ cmm) o (14 @5 © H))
RA® H)(by the naturality of ¢, the unit properties, (66]) and the coalgebra morphism condition for n4)

= (A®py) o (V) @ H) o (uf ® (Liaparry, © (14 ©@ HO A® H))) o (H® cprr © A® H)
O((SH QHRAR H) (by the naturality of ¢ and (59))

— (A uly) o (W1 @ H)o (1 © (A0 uly) o (W1 @ i3 0 (N @ 012 @ H) o (65 © A H))
o(H®cgg®A®H)o (g ®H®A®H) (by (@)

= (A@pup)o((A@py)o (V' @ H)o(H W)@ pud) o ((nf @ Ny )o (H@cmu)o (0n © H))
®\I’IX2 & H) o (H Kegag® A® H) o ((5]{ QHRAR® H) (by the naturality of ¢, the coassociativity
of 6 and the associativity of pk;)

= (A®up) o (V' @ pgp) o (H@W3* @ H)o (U, ® H)o (H @ cyp) o (0 @ H)) @ A® H)
(by (@)

and, on the other hand, using the unit properties
Wararr © (A® H @ pilipqrr) c(na®@ HOna® H® A® H)
(A )0 (W 0 ply) o (H & 011 0 )
Therefore (56]) holds.
If we compose with n4 @ H® A®@ny @ A®ny in ([75]), by the unit properties and (65]) we obtain

[Cperr © (A® H® piliyqr) o ma® HR® AR i © A® )

= Wi o (H @ i)
and, on the other hand,

1 pars © (1WPpars @ T (aratt)) © (AQ H ® cagmapn @ AQH) o (apar ©AQH QAR H)
o(na®@H®@A® N © A®np)

= (ih @ py) o (AS (A@pujy)o (VY @ H)o (HE W)@ H)o (Wi @ (M 2 Wi?) o (0n £ A))
O(H R CHAR A) o ((5]{ RAR® A)(by the naturality of c, the unit properties, the coalgebra morphism
condition for 14, the associativity of “}Iv (9), () and the unit properties)

= (uh @ pul) o (A (W o ((idr+ \y) ® A) @ H) o (A9 HR U!{?) o (A®dx) 0 Ulf2) ® A)
(by (@) and (7))

= (M}L‘ (9 H) o (A &® \I/XQ) o (\IJXQ ® A)(by the unit properties, () and (63)).

Therefore the equality (57) holds.

Finally, the proof for (G8)) is the following: Composing with A @ ng @ na ® H ® A® ng in (75),
by the unit properties and (67), we obtain

[Ciparr © (A® H ® pliper) 0 (AR @14 @ H® A® )

= (ih®H)o (A0 ¥Y")
and, on the other hand,
1 narr © (HWopart @ L (arai)y) © (AQ H ® caomaen @ AQ H) o (Saran ©®AQH @A H)
o(A®7]H®?7A®H®A®7]H)
= (ph @ py)o (AR @ H)o (A9 H® ((A® py)o (W) o (X ®Ta,) 0 (Qf © A) @ H)
(AQH@ U)o (A®sg @ A)))o(A® (3 @ AQH)o(HRcan@H)o(pa®chm)) @A)
O(5A MgV H® A) (by the naturality of ¢, (G8]), the condition of coalgebra morphism of ng, (60)),([7Z3)

and the unit properties)
= (Hh®H)o(A® (A®uj) o (Vi @ H)o(H@WM)))o(A®u @ (A ®©Ta)o(pa®A)))
O(A QH®can® A) o (((A ® pa)o (5,4) RH® A)(by the naturality of ¢, the condition of coalgebra
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morphism for 7y, the unit properties, ([60) and (65]))
= (4 ©H)o(AQ U)o (A® (T, ®Ta,) o (HRcan®A)o(pa®@ HR A)))o(54® H® A)(by

the naturality of ¢, the comodule condition for A and (Z0)))
Conversely, let’s assume that (56), (57) and (58] hold. By the bosonization process we know that

(A >« H)1 = (A ® H, 77A><H,N,14><H75A><H75A><H7)\,14><H)
and
(Ava H)o = (AQ H,NArats Wanpats € Avat s O AvaH s Napal)

are Hopf algebras in C. Then, to finish the proof we only need to show that (iii) of Definition 2.1]
holds for A »« H. Indeed, first note that if (G8) holds, we have that

(76) (T4, @ H)o (A W) =01 o (I, @ Ta,) o (H@ can ® A)o(pa® H® A)
also holds because
(Ca, ® H)o (A W)
= (uy®H)o\y @ ((uy @ H)o (A2 W) o (A (I, ®T4,)o(H®can®@A)o(pa® H A)))
004 ® H® A)))o (64 ®H® A) (by G8)
= \I{Zl o (F}h ® FAI) o (H X cAH @ A) o (pA R H®® A) (by the coassociativity of 6 4, the associativity)
of ,u,}q, (@) and the unit and counit properties).
Then, as a consequence of ([7Gl), we can prove the identity
(77) (Tay @ H) o (A® (W) o (I, ® A))) = Wi o (I, ®Tay) o (H @ ca i ® A) o (R @ H @ A)
because
Ui o (T, ®@Ta,) o (H®can ® A)o (Qff ® He A)
= Wi o (I, @Ta,) 0 (H® (T, @ A) o (H@can)o(can®H))@A)o(pa® HO H® A)
(by the condition of Hz-module with action F’Hl for Hy )
= \Ilzll o (F/H1 ® FAl) o (H Kcag® A) o (pA ® FlHl ® A) (by the naturality of c)
= (Ta, @ H) o (A® (V1 o (T, ® A))) oy @m).
Therefore,
1 e © (Bnarr @ T apar)y) © (A® H @ g aon ® AR H) o (0apai ©AQH @ AR H)
= (uh @ pp) o (A® (A® pp) o (V' @ H) o (H@ W) ® H) o (Wpqyr ® Ay © Tay @ py)
(A®H®crosron @V 2@ H)o (AR (H2QH) o (Qh @ H)o(A®dn)) @ (AR cmm)
O(CH,A (039 H)) RAR H) ¢} (5A X 5H RARHRA® H)(by the naturality of c, coassociativity of dg,
associativity of pi; and (Z3))
= (uh @ pg)o (A @ (P o ((uho(uy @ Ny) o (H@cun)) ®Ta,)) @) o (A (P4 @ H)
o(H@cma)o(lg@A))@can @V P @H)o(ARH®cas®@cypy @A H)
(ARG @ecya@HRARH) 0 (04®6p ®ARH® A® H) (by @) and [@0)
= (@ i) o (3 @ (W oIy, ®Ta,)o(H®can @A) ®p)o (A2 (V2@ A)o(H@ea a)
o(QF AR (HRU ) o(cgn@A)@H)o(0a® (H®cga)o(0gp®A)@H® AR H)
(by (1))
= (nh @ pg) o (u @ (V3 o (D, ®@Tay) o (H®ean ©A) o (U @ H® A)) © i)
(ARtas@H® ((H® U)o (cypyoA) o H)
o4 @ (V2 @ H) o (H®cpra)) o (6g @ A) ® H@ A H) by @)
= (uh ® ujy) o (1% © (Tay © H) o (A® (T 0 Ty, ® A)))) ® uFy)
(ARtaa@H@ (HRU)o(cpnp®A)@H)o(0a® (A2dy) oV 20 Ho Aw H)
(by (D) and D)
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= (A @H)o (A2 ((y @ u3) o (AR U2 @ ul) o (W2 @ Wi @ H))) by the (iii) of Definition
2T for A and (56)
= Hoipars © (A ® H ® [ty 4gy) by ED)
O

Theorem 4.16. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a Hopf brace in BYD satisfying (56)), (51) and (B8). Then,

(H,AvaHz=n4 @ Hy=c4® H)
s a vi-strong projection of Hopf braces.

Proof. First note that if A be a Hopf brace in %YD we have that x and y are Hopf brace morphisms
and y o x = idy. On the other hand, by (60), ([B]), (€6]), (@), the unit properties, the naturality of ¢
and (1) we have that
Chrarr = A® (1 0 €1) = Chpart-
Then,
pxl4><H = p124><H = AQem, Z‘114><H = Z‘124><H = A®nH
and
1 2
(G avarr) = 1(@aparr) = A
Then, we have an unique idempotent that we can denote by qapqmy and, also, with papqmg and

i Apqr We will denote the associated projection and injection respectively.
Therefore, by a routine calculus we have that

1 1 2 2
M (gararr) = A FI(gaparr) = FA> Fi(gapen) = HA

El(qaran) = €A OL(qapen) = 04
1 _ 1 2 _\2
Al(gararr) = M5 Al(gapen) = M
and
Vlausar) = Y20 Vligamar) = VA0 Plgasen) = PA-

On the other hand, the condition (@) holds because ¢}y, 4y = ¢Apqy- Finally, (50) holds trivially
and (54]) and the left H;-linearity condition of the morphism defined in (55) follow from the following
facts: 1(q%pas) = A, PI(gasen) = PA and (A, Y, 9%, pa) is an object in HYD.

O

Remark 4.17. Note that in the conditions of Theorem 15 if (58)) holds, we proved that (G
holds. Moreover, using (I7), it is easy to show that if (76) holds we can obtain (58]). Therefore ((70)
and (B8) are equivalent.

Definition 4.18. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C
and let A be a Hopf brace in 5YD. We will say that A is bosonizable if satisfies (56)), (57) and (58).

These Hopf braces with morphisms of Hopf braces in %YD form a category that we will denote
by B-HBr(f1YD).

Definition 4.19. Let (H, D, z,y) be a vi-strong projection of Hopf braces in C. We will say that
it is vo-strong if )\}(QD) is a morphism of left Ho-modules, ,u%(qD) and )\i(QD) are morphisms of left
Hi-modules and the following equalities

(78)  Hl(gp) © O1tan) = (Hi(gp) @ Hi(gp)) © L(aD) @ Li(gp),1(ap) @ 1(aD)) © (1(gp) © dr(ap)):

(79) ppopupo(ap®up)e(D®cpp®D)o((6poip)@ip@ip) = uiyy © (1(gp) © py,))
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hold, where
ap = pp o ((¢h o uh) ©rp) o (D & cp,p) © (§p © D)
and
rp=dqp o pp o ((zoy) ®Ap) o dp o qp.
These projections with morphisms of projections of Hopf braces form a category that we will
denote by VoSP(HBr), i.e., VoSP(HBr) is the full subcategory of V{SP(HBr) whose objects are va-
strong projections.

Remark 4.20. If rp is the morphism introduced in the previous definition, it’s easy to show that
rp = pp o ((zoy)®Ap) o dp.
Remark 4.21. In the conditions of the previous definition we have that
(1(gp) © M(gp)) © (D) @ 14 1g) © (D)) © (Br(qp) @ O1qp))

= (1 (4p) @ P1(ap)) © T(@D) © 7 (4 1(ar) @ 1(aD)) © (61(gp) © O1(gp));
because I(qp) is a Hopf algebra in the category of left Yetter-Drinfeld modules over H; and by
t%(qD),I(qD) = t1(4p),I(ap)-
Theorem 4.22. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in %YD, Then,
(HAvaHix=ny @ H,y=c4® H)
18 a vo-strong projection of Hopf braces.

Proof. Note that, by Theorem .16l we have that (H, A »a H,x = s @ H,y = e4® H) is a vi-strong
projection of Hopf braces. On the other hand, (78) holds because (A, 74, u}4, €4,04) is a bialgebra
in %YD. Also, using the properties of e and the naturality of ¢, we have the identity

(80) (A®em) o flapay = (Hao (ARYY)) ®en, i=1,2.

On the other hand, by the coassociativity of d4 and the condition of left H-comodule coalgebra of
A, we obtain that

(81) (A®Qf ® A)o (64 @ pa)oda = (A® ((H @ba) 0 pa))oda.

As a consequence of these facts we can obtain the following formulations for the morphisms 7 Apqzr
and QApqH:

(82) TAnHZ)\Il4®(7]HOEH),

(83) et = (a0 (2 ®Ny) 0 (AB (W3 @ A)o (H ®ca,1) 0 ©A)))0 (04 ® H© A)® (na 0c ).
Indeed, ([82) follows by
TAvaH
= (A & (77H o €H)) o \I’Zl o ((ZdH * )\}{) &® )\}4) o QIIL}I o (A &® (77H o €H)) (by the unit and counit
properties, (64) and (EZID}{
=(A® (nuoen)) oWy o (N ocn) ®Ny) 0 Qo (A® (g 0 enr))(by @)
= ((EH & )\114) o pA) & (T]H o EH) (by the condition of algebra morphism for e, (60) and (65))
= )\}4 &® (77H o €H) (by the comodule condition for A)
and, by (80), the unit and counit properties and (G7)), we obtain (83]).
Then,

Phipart © :%14ny ° (OZA?H ® :u,245<H) 0 (A® H® cagn,Aaom @ A® H)
o((0apar © ZANH) @ UApqy @ ZANH)
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=ty © (a0 ((h o (A®P3)) ® A})) @ ph) o (A® H @ ((can @A) o (A® can)) ® A)
O(((A X Qﬁ( ® A) o ((5A ® pA) o (5A) RAR A) (by the condition of algebra morphism for ez, (60) and

o(u3 ®T4,) 0 (A®taa®A)o (4@ AR A) (by ED)
o (A ® ,uh) (by (iii) of Definition 2Tl for A)
= MI(Q,lq,‘H) o (I(q}é;,‘H) & N}(q}élnH)) (by the identities of the proof of Theorem [T6])

and, as a consequence, (H,A pa H,z = 4 ® H,y = ¢4 ® H) is a vg-strong projection of Hopf
braces. Note that, )\114 is a morphism of left Ho-modules, ,u124 and )\124 are morphisms of left Hi-
modules because A is a Hopf brace in %YD. O

Theorem 4.23. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C. Let
(H, D, z,y) be a va-strong projection of Hopf braces. Then,

1 2 1 2
H(qD) = (I(QD), 77]((1[))7 MI(qD)v 'uI(QD)’ €I(qD)7 5I(qD)7 )\I(qD)’ )\I(QD))

is a Hopf.bmce in 2YD, w}.zere Ni(gp) 18 defined as in (B2), ,u}(qD) as in (43), /ﬁ(qo) as in (44,
El(gp) @8 in (HH), 014,y as in (HE),

Atgp) = YItap) © (H @ (P © AD ©iD)) © pr(gp),
and

Nlap) = Yitap) © (H @ (bh © Xp 2iD)) © pr(gp)s
being ¢}(QD)’ Qp?(q[)) and pr(qy) the actions and the coaction introduced in Theorem EI2]

Proof. By Theorem we know that the triple
(1(gD): ¥l(gp) = Pb © b © (T ® D), V7 (p) = Ph © D © (¥ ® i), pr(qp) = (¥ ® pp) © 6p 0 ip)
is an object in %YD. Also, by the theory of Hopf algebra projections,

(1(4D), Mr(ap)s F1(qp): E1an)s O1(ap)s Mgp)
is a Hopf algebra in giYD and

(L(aD)s M1(ap)s i (gp)» E1(an) s O(ap)s M(gp))

is a Hopf algebra in ZEYD. Moreover, by Theorem and the conditions of the theorem, we know
that nr¢p)s ,u}(qD), ,ui(qD), €1(gp)» OT(qn)> )\}(QD) and A%(qp) are morphisms in %YD. Therefore, by

@),
(I(QD)v Ni(gp)s /L}(qD)y €I(gp)> 5I(qD)7 )\}(QD))’ (I(QD)7 Ni(gp)> /L%(qD)y €I(gp)> 5I(qD)7 )\%(QD))

are Hopf algebras in %YD.

Then, to finish the proof we only need to check that (iii) of Definition 2] holds for I(¢p) in
%YD. Indeed, first note that using the coalgebra morphism condition for y, the algebra morphism
condition for z, the associativity of u'), the coassociativity of dp, () and the unit and counit
properties, we obtain that

(84) qp * (xoy) =idp, i=1,2.
Then,
M}(QD) © (/ﬁ(qo) ® FI(qD)l) o (I(gp) & t1(ap).I(qp) ® I(gp)) o (5l(qD) ® I(gp) ® I(gp))

= phouho(D&(u}o(rp®ud)o(6p®D)))o(((qhoud)®D)o(¢h@((13,®D)o((zoy)®cp,p))
o(D®dp®@D))®@D)o((dpoip)®ip®ip) (by @, @, @, @@ and @L))
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=ppoupo(D® (upo(rp® up) o (6p @ D))o ((((ah o np) @ D) o ((4h * (z0y)) @ cp,p)
0(5[) & D)) & D) o (ZD ®Rip R ZD) (by the associativity of u2, and the coassociativity of 6p)
=phopho(ap®@u%)o(D®cpp®@D)o((6poip)®ip®@ip) (by (@), the naturality of c, the

associativity of ulD and the coassociativity of dp)
_ 2 1
= Hi(gp) © (I(gp) ® N[(qD)) (by (@)

and, as a consequence, I(gp) is a Hopf brace in %YD. O

Definition 4.24. Let (H, D, z,y) be a vo-strong projection of Hopf braces in C. We will say that it
is vs-strong if the following equality

(85)  ((phopp)®@H)o(D®cup)o (Ypen @ uh)o(D@cpy®D)o((6poip)® Hip)

= ((pp o Bp) @ H)) o (ip @ ((gp o pp o (x® D)) @ H) o (H © cr.p) © (6 ®ip)))
holds, where

e = (up @ H) o (¢ @ ca,p) o ((6r 0 Ty,) ® rp) o (y ® cp.ar) o (6p ® H),

Bp = pp o (rp @ up) o (bp ® D)
and rp is the morphism introduced in Definition 191
These projections with morphisms of projections of Hopf braces form a category that we will
denote by V3SP(HBr), i.e., V3SP(HBr) is the full subcategory of VoSP(HBr) whose objects are vs-

strong projections.

Theorem 4.25. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in %YD. Then,

(HAvaHix=ny @ Hyy=c4®@ H)
s a vs-strong projection of Hopf braces.

Proof. By Theorem [.22] we only need to show that (85]) holds. First note that, by the unit and
counit properties, the naturality of ¢ and (1)) we have that

(86) Varanen = (A®8y) o Wit o My, @ Ay) o (H @ can) o (U @ H),
(87) Barari = T4, @ ) 0 (A U @ H).
Then,

((Pliparr O aparr) O H) 0 (AQH @, an ) © (Y avai) o H @ Waparr) O (AOH @ cAgr O AQH)
(O amatt © Uaparr) @ H @ iyqsr)

= (ty®H)o (A2 U)o (W' @ A)o(I'y, @\ @) o (H@ean®A®A)o(HR AR can® A)
O(((Qg ® A) o (A ® pA) o (5A) QRH® A) (by the condition of coalgebra morphism for ng, the unit and
counit properties, the naturality of ¢, (60) and (86]))

= \1’51 o (F/Hl &® FAl) o (H Kcag® A) o (pA QR H® A) (by the condition of comodule coalgebra, the
naturality of ¢ and (69)

= (Ta, ® H)o (A2 ) my @)

= ((Papats © Bavar) ® H)) 0 (3pqpy ® (Chpass © Hiapar © (@ AR H)) ® H) 0 (H ® ey, a0 H)
O(5H ®Z}4NH))) (by &), (B2), the condition of algebra morphism for €, the condition of coalgebra morphism
for nyy, the unit and counit properties, the naturality of ¢ and (60))).

Therefore, (H,A vt H,z =14 @ H,y = 4 ® H) is a v3-strong projection of Hopf braces. O



PROJECTIONS OF HOPF BRACES 35

Theorem 4.26. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
Let (H,D, z,y) be a vs-strong projection of Hopf braces. Then, the Hopf brace I(qp), introduced in
Theorem [A.23), is bosonizable.

Proof. By Theorem E.23 we know that I(gp) is a Hopf brace in 1YD. Also, by Theorem E3] we
have that (56]) and (57) hold. Then to finish the proof, by Remark [£17 we only need to show that
((76) holds. Indeed,

\II?(}]D) ° (F}h ® FI(QD)I) ° (H ® CI(¢p),H ® I(QD)) © (pI(qD) ®H® I(qD))
= ((pponp)®H)o(D®cyp)o(((w®H)odyoly o(y®H))®fBp)o(D®cpu®D)
O((éD o ZD) RH® ZD) (by (IQ) and ()

((p}:) o ,ulD) (= H) o (D X CH,D) o (’YD®H X ,uzD) o (D Kecp,H® D) o (((5D OiD) QRH® iD) (by
the naturality of ¢, the associativity of ,ulD and coassociativity of p)

= ((p%)05D)®H)) o (Zb@) (((q}) O,ulDo (x@D))® H)o (H®cyp) O(5H®i1D))) (by )
= (T1(gpy, @ H) © (I(gp) ® U3 ) (by @ and @).

Thus, I(¢p) is bosonizable.

O

Definition 4.27. Let (H, D, z,y) be a vs-strong projection of Hopf braces in C. We will say that it
is v4-strong if qjlj = q%.

These projections with morphisms of projections of Hopf braces form a category that we will
denote by V4SP(HBr), i.e., V4SP(HBr) is the full subcategory of V3SP(HBr) whose objects are v4-
strong projections. With H-V,SP(HBr) we will denote the subcategory of V4SP(HBr) whose objects
are vy-strong projections with H fixed and whose morphisms are the ones with the first component
equal to the identity of H.

Theorem 4.28. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C and
let A be a bosonizable Hopf brace in %YD, Then,

(HAvaHyx=ny @ Hyy=c4® H)
18 a vy4-strong projection of Hopf braces.
Proof. The proof follows by the identities of the proof of Theorem 4.10] O

Theorem 4.29. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C. Let
(H, D, z,y) be a vq-strong projection of Hopf braces. Then, the Hopf brace I(qp) w4 H is isomorphic
to D.

Proof. It (H, D, z,y) is a v4-strong projection of Hopf braces, we have that p}j = p%. Then, by the
general theory of Hopf algebra projections (see (1)), vp = v}, = (ph®y)odp = (p%,Ry)odp = V3
and, as a consequence, it is a Hopf algebra isomorphism between (I(qp) w4 H); and D; and
between (I(gqp) »4 H)y and Do. Therefore, vp is a Hopf brace isomorphism between I(gp) »a H
and D. O

Remark 4.30. In the conditions of the previous theorem we have the equality
(85) i o (ip ®7) = iy o (ip ® 2)
because uh o (ip @ ) is the inverse of v}, and u?, o (ip ® z) is the inverse of V3.

Corollary 4.31. Let’s assume that C is symmetric. Let H be a cocommutative Hopf brace in C.
The categories H-V,SP(HBr) and B-HBr(}1YD) are equivalent.
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Proof. By theorems and it is easy to show that there exists two functors
Feoinv . H-V,SP(HBr) — B-HBr(}YD), G:B-HBr(;YD) — H-V,SP(HBr),
defined on objects by
FeO(H, D, z,y)) = I(gp), G'(A)=(H,AvaH,z=na1®@ Hy=ca®H)

and on morphisms by the following: Let (idg,t) : (H,D,z,y) — (H,D’,2’,4') be a morphism in
H-V4SP(HBr). Taking into account that qll:) = q%, we will denote the idempotent morphism by ¢p,
the injection by ip, the projection by pp and the image by I(gp). Define

tp:=ppotoip:I(qgp) — I(qp)
Then, using that ¢ is Hopf algebra morphisms and (36]), we have that
4D

D
qp)

D\pD‘
I(

t t

D/

PD’ I(QD’) iD/

is a commutative diagram and, as a consequence, by a similar proof that the one used in [4]
Theorem 3.4|, we can obtain that tp is Hopf algebra morphism in ZzYD for ¢ = 1,2. Therefore, tp

is a morphism of Hopf braces in %YD and we define
Feomv((idy,t)) = tp.

On the other hand, if s : A — A’ is a morphism in B—HBr(%YD), the pair (idy, s® H) is a morphism
between (H,A pa H,2 =na @ H,y =4 ® H) and (H, A’ »a H,x =na @ H,y =4 ® H). Then,
we define

Gl(s) := (idy,s ® H).
Finally, following the same techniques used in the proof of [4, Theorem 3.4] and the isomorphism

of Theorem B29] we can assure that F™ and G’ induce an equivalence of categories because for
all (H, D, z,y) we have that

(H7D7$7y) = (Hv]l(QD) pa H,x = Ni(gp) ®@H,y= €I(¢p) ® H) = (Gb © FCOiv)((H,D,l‘,y))
and, for all A, (F®™ o GP)(A) = A. O

Remark 4.32. In [30, Theorem 5.4| the author works with a projection of Hopf braces (H, D, z, y)
such that I(gp) = I(g%) and proves that there exists a Hopf brace structure on the tensor product
I(qp) ® H isomorphic to D. If we study the proof in detail, we see that the author uses the identity
vho(vd)~t = idr(gp)on Where vh = (ph®y)odp and v3 = (p%,®y)odp are the isomorphisms defined
in ({I)). Then, 1/% = V% and this implies that q}) = q% (note that this condition is not assumed in
the statement of the theorem). Also, 1/15 = 1/1% implies that their inverses are the same and then

. . . . 1 _ 2
(B]) also holds. Moreover, in the statement it is not assumed either that § Hgp)waH = o (g el

and, however, this is also used. Therefore, assuming a correct formulation of the conditions for [30]
Theorem 5.4], in this theorem all that is done is to transfer the Hopf brace structure from D to
I(¢p) ® H using the isomorphism vp.
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