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Abstract

We describe a method for modeling the geometry of porous materials. The
approach enables the independent selection of crucial parameters, including
porosity, pore size distribution, pore shape, and connectivity. Consequently, it
can effectively model a wide range of porous systems. Due to the diverse and
systematic variation possibilities, the method is suitable for developing and
optimizing porous structures. The geometries can be exported as triangular
meshes, facilitating their immediate use in numerical simulation and further
digital processing. We showcase the method’s capabilities by minimizing the
foam structure’s thermal conductivity through geometry optimization.
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1. Introduction

Porous materials play a role in many scientifically interesting and techni-
cally relevant systems. Depending on the question, porosity can be considered
on different levels of accuracy. For some questions in the field of geosciences,
for example, effective descriptions in terms of macroscopic laws, such as e.g.
Darcy’s law, are sufficient. Other highly topical issues related to heat and mass
transfer in porous media, such as catalysis, thermal insulation, and filtering,
require understanding at the pore-scale level. In this case, the geometry of the
porous structures must be considered explicitly. The system geometries can be
obtained experimentally by 3d scanning techniques like computed tomography.
However, for the development and optimization of porous structures using
numerical simulation, versatile digital model geometries are needed that, on
the one hand, can accurately describe realistic systems and, on the other
hand, can be systematically varied and parameterized [1, 2].

Various methods for generating porous geometries on different levels of
simplification are described in the literature. Monte Carlo methods, for
example, where pores are subtracted from a solid geometry until a desired
porosity is reached, have been employed by Torquato [3] and De Cariolis [4].
Other simplifications include the replacement of pores by simpler geometries
such as interconnected tubes [5], methods, where pores are placed randomly
and grow until desired pore metrics are reached [6], or purely statistical
methods such as multiple-point statistics [7]. Representative elementary
volumes (REV’s) are frequently employed for large-scale simulations. A
more sophisticated representation is required for other problems, such as the
reactive flow on chemically active surfaces of a porous catalyst. An example
is given in [8], where the pore space of a catalyst is represented by repeated
unit cells. Dyck and Straatman [9] obtain porous geometries from random

Figure 1: Sphere arrangements and inverse sphere arrangements as models for solid phase
and void phase porous materials.

1



Figure 2: Positioning of the geometric primitives (here spheres) in space. Left: Initial
position of the spheres on a rectangular lattice in a cubic domain. Middle: Position after
equilibration phase. Right: Result of the Lubachevsky-Stillinger compression.

close packings of spheres, which, in turn, have been obtained from DEM
simulations. An overview of various methods to create representations for
porous systems is given, for example, by Xiong et al. [2], Al-Raoush et al
[10], Golparvar et al [11] and Chen et al [12].

The models available in the literature are generally tailored to specific
applications, which they then describe in good quality. However, none of the
existing methods meet the criteria relevant to the numerical optimization of
porous structures, i.e., they are versatile, realistic, and can be systematically
varied by parameters. The method presented in this paper is intended to fill
this gap. To that, we extend the approach by Dyck and Straatmann [9] to
aspherical pores with arbitrary overlaps and post-processing of the individual
pores by, e.g., texturing the pores’ surface.

We showcase our method by a) replicating a natural porous material,
simulating its thermal conductivity, and validating it with measured data and
by b) minimizing the heat conductivity of a fictional open-porous material
with overlapping, non-spherical pores at constant porosity. Such porous
structures appear, for example, in macro-porous ceramics, which can be
produced by directly foaming a ceramic suspension or by using a precursor
with additives that lead to the formation of pores through pyrolysis during
firing.
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Figure 3: Modification of the geometric primitives in size (left), shape (middle), and surface
texture (right).

2. Modified sphere packings as a model for porous geometries

One way to model porous matter is to compose the solid matrix by placing
elementary geometric bodies like spheres in space. This arrangement can be
used directly as a model for a solid-phase porous material. Furthermore, the
union of all bodies, following constructive solid geometry principles, can be
subtracted from an encompassing solid body to obtain a void phase porous
geometry as shown in Fig. 1. In both cases, the elementary geometric bodies
can be modified in various ways as an intermediate step. Such modifications
include scaling, deformation, changing the position and orientation, or adding
a surface texture. Our method for generating models of porous structures,
therefore, decomposes into three main steps:

1. Positioning of the geometric primitives in space: Typically, a large
number of objects need to be distributed here, so automated methods
are usually required. In this work, we restrict ourselves to spherical
objects and choose event-driven DEM (e.g., [13]) for the automatic
random positioning. As shown later, the random spatial distribution
of the pores is a good approximation of many scientifically interesting
or technically relevant systems. First, we set up a cuboidal simula-
tion domain with periodic boundary conditions containing the desired
number of spheres. The radii of the spheres are chosen according to a
desired pore size distribution. In the first simulation step, we equilibrate
the system by specifying random velocities for the particles, assuming
elastic interactions, and then simulating their dynamics for a defined
period (e.g., 50 collisions per particle). Next, we adjust the packing
fraction by applying the Lubachevsky-Stillinger algorithm [14], where
the diameter of each sphere is increased at a specified rate until the
desired packing fraction, i.e., porosity, is reached. Figure 2 shows this
three-stage process.
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Figure 4: Exemplary open porous geometries resulting from the described modified sphere
packing algorithm.

2. Modification of the geometric primitives (if required): To carry out
various modifications, we represent each geometric primitive by indi-
vidual triangular meshes from here on. Fig. 3 exemplary shows the
variation of object size, shape, and surface texture. By scaling the
objects, their overlap can be tuned. This makes it possible to choose
between open- and closed-porous systems. In this work, we use the
meshing tool pymesh [15] to perform the mesh modifications.

3. Generation of the inverse packing (in case of void phase porous geome-
tries): The result of the previous step is solid-phase porous structures.
Suppose we subtract the sum of all individual geometric primitives from
a piece of solid material in the sense of constructive solid geometry. In
that case, we arrive at the complementary void-phase porous structure.

The described procedure makes it possible to create a wide variety of porous
structures. Fig. 4 shows some examples of solid and complementary void phase
porous geometries. Further examples are discussed later in the application
demonstrations in Sec. 3 and Sec. 4.
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3. Application demonstration A: Replication of a ceramic foam
structure

This Section demonstrates the modified sphere packing method by repli-
cating the ceramic foam structure. To validate the result, we simulate heat
transport through the artificial porous geometry and compare the resulting
heat conductivity to that of natural ceramic foam obtained from experiments.

To replicate the foam structure using the method described in Sec. 2, the
pore size distribution, the porosity, the overlap ratio between neighboring
pores, and the sphericity of the pores are required. We perform a µ-CT
analysis of a 1 cm3 sample of the ceramic foam to obtain these metrics. Fig.
5 shows microscopy images of the sample and a 2D slice of the acquired
tomogram. As we can see from both the microscopy data and the CT data,
all pores are almost perfectly spherical, and the pores’ positions and sizes
are distributed randomly over space. Additionally, pores frequently combine
and overlap. All these observations result from the foaming process where
randomly placed gas cavities emerge during firing due to additives randomly
distributed over the raw material. Therefore, we can safely assume a pore
sphericity of 1 and use the method described in [16] to obtain all further
metrics of the porous structure required to replicate the geometry. This
method was initially intended to represent complicated shapes by assemblies
of spheres. Still, it can easily be modified to fit spheres to the void space
of a porous structure and, therefore, obtain the position and size of the

Figure 5: Microscopy image of a porous ceramic (left) and CT image data obtained from
the same sample
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Figure 6: µ-CT-data (left), pores detected according to the method described in [16] (right),
and overlay of both (center)

spherical pores. Figure 6 shows the result of this procedure. From the size
and the positions of the detected pores, we can directly obtain the pore
size distribution, the overlap between neighboring pores, and the porosity.
Alternatively, the porosity can be obtained by binarizing the 3D-CT data and
computing the void ratio. Figure 7 shows the measured pore size distribution
and the average overlap between pores as a function of the pore diameter.
The porosity is approximately 60%. Remarkably, the pore sizes follow an
exponential distribution.

Using the obtained characteristics of the ceramic foam, we now apply the
method described in Sec. 2 to create an artificial porous structure with the
same statistical properties as the natural material. While we can precisely
replicate the pore size distribution, the porosity and overlap between pores
can only be replicated within a tolerance of ±3% and ±5%, respectively.
A qualitative comparison between the natural material and the replication
can be seen in Figure 8. The geometries there consist of more than 100.000
individual pores and represent a cubic cutout of the ceramic foam with a side
length of 200µm.

To further validate our method for reproducing porous geometries, we
conduct heat transfer experiments on a sample material and compare the
results with heat transfer simulations of the replicated geometry.

In the experiment, we measure a ceramic foam panel with the dimensions
200× 200× 20 mm. To obtain the heat conductivity, the sample is clamped
between two plates. One of the plates is kept at a temperature of 15 ◦C, and
the other at 5 ◦C. By measuring the heat flux for the given temperature
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gradient, the heat conductivity can be obtained directly from the Fourier law:

λ =
Q̇

A

d

Thot − Tcold

(1)

where Q̇ is the heat output of the hot plate, A is the surface area of the plate,
d is the thickness of the sample, and Thot and Tcold are the temperature of
the hot and the cold plate respectively. The sides of the sample are thermally
insulated such that there is no heat flux directed parallel to the surface of
the hot and cold plate. From this measurement, we obtain the thermal
conductivity 56.9mWm−1K−1.

Four heat conduction mechanisms contribute to the measured overall
heat transfer: Heat conduction through the solid matrix, heat conduction
through the enclosed fluid, convective heat transport, and heat transfer by
radiation. In principle, all four mechanisms must, therefore, also be modeled
in a corresponding simulation. However, for small pores, viscous effects
dominate and inhibit natural convection. There is an ongoing debate on the
critical pore size above which natural convection is significant. In [17], it
was shown that convection does not occur in porous media if the Rayleigh
number is smaller than 75. Later studies suggested that the contribution of
convection to the effective thermal conductivity is negligible for pore sizes

Figure 7: Pore volume per diameter as a function of the pore diameter.
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Figure 8: Geometry of a ceramic foam obtained by µ-CT (left). Replication of the geometric
properties using the method described in Sec. 2 (right)

below 4mm [17, 18, 19, 20, 21, 22]. Others determined the critical pores
size to 3mm [23] or 5mm [24]. A nice overview is given in [25]. As we
can see from the measured pore size distribution in Fig. 7, the pore sizes
of the ceramic foam are below ≈ 400µm and, thus, definitely far below all
critical pore sizes suggested so far. Therefore, we can safely neglect the
contribution of convective transport to the effective thermal conductivity
of the studied ceramic foam. Hence, in our simulations, we only need to
consider heat conduction through the solid and the gas and heat radiation.
The heat conduction simulations are done with an in-house implementation of
the Smoothed Particle Hydrodynamics method (SPH), see e.g. [26]. SPH is a
mesh-free Lagrangian method originally introduced for treating astrophysical
phenomena and gas dynamics [27, 28]. The mesh-free approach has proven
to be advantageous for geometrically complicated boundary conditions, as
is the case with porous foam structures. The heat radiation is modeled by
ray tracing. Each surface element emits thermal energy according to the
Stefan-Boltzmann law

P = ε(T )σAT 4 (2)

where P is the radiation power, ε is the emissivity of the material, A the area
of the surface element and T its temperature. We chose the emissivity of brick,
ε = 0.9 [29]. We then assume that the heat energy is radiated along a straight
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line. When this heat ray hits another surface element, it is absorbed, and its
heat energy is transferred to the respective surface element. The reflectivity of
the ceramic foam is negligible. For the thermal conductivity of the interstitial
air, we use the literature value of 26.2mWm−1 K−1 [30]. For the solid matrix,
we use the heat conductivity of the unfoamed raw material 395.2mWm−1 K−1

as obtained from the experiment. The simulation setup is depicted in Figure
9. Analogous to the experimental setup, the simulation features a cold
plate (left) and a hot plate (right) with the same temperatures as in the
experiment. Different from the experiment, we simulate 10 cubical samples of
the dimension 20× 20× 20 mm and find an effective thermal conductivity of
56.0± 0.1mWm−1 K−1. The discrepancy to the experimental reference value
is approximately 1.5%. This consistency showcases the geometric fidelity of
the presented method for generating porous structures.

Figure 9: Setup for the heat transfer simulations. The sample is clamped between a hot
and cold plate (left and right). At all other faces, we specify Neumann boundary conditions
so that no heat transfer occurs. This corresponds to a perfectly isolated system.
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Figure 10: Effective heat conductivity of the foam structure as a function of the porosity.
Orange line: heat transport through the solid matrix, interstitial gas, and radiation. Blue
line: no radiative transport. The dashed grey lines indicate the air’s heat conductivity
and the solid matrix’s unfoamed raw material. The inset shows the porous geometry for a
porosity of 30%, 50% and 85%.

Figure 11: Effective heat conductivity of the foam structure as a function of the average
pore size (for further description see caption of Fig. 10). The inset shows the porous
geometry for an average pore size of 45µm, 75 µm and 0µm.
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4. Application demonstration B: Optimization of a porous heat-
insulation material

In this Section, we demonstrate the variety of possible geometries and
show how the presented method for creating porous geometries can be used
to vary the produced geometries systematically. To do this, we minimize the
thermal conductivity of a fictitious porous thermal insulation material by
varying its geometry. We determine the resulting thermal conductivity in
each case by simulation as described in Sec. 3. As shown in Fig 10 and Fig.
11, we can use our method to vary the porosity of the geometry for a given
pore size distribution or to vary the average pore size of a porous structure at
constant porosity. From numerical simulations described in Sec. 3, we obtain
that the heat conductivity decreases almost linearly with increasing porosity.
This is to be expected because a higher porosity increases the proportion
of air in the material, which in turn has a lower thermal conductivity than
the material from which the solid matrix is made. By scaling up the entire
porous geometry and cropping the result to the dimensions of the original
sample, we can increase the pore size while keeping the porosity constant.
Some sample geometries are depicted in the inset of Fig. 11. The resulting
heat conductivity decreases with increasing pore size. This is because larger
pores prevent or lengthen thermal bridges from the warm to the cold side
of the sample more than small pores. However, this is only valid as long as
the pore size stays below the threshold at which convection influences the
effective heat conductivity of the system (see discussion in Sec. 3).

In practical application, both parameters, the pore size distribution, and
the insulator’s porosity are frequently predetermined by the manufacturing
process and requirements for the mechanical stability of the resulting material.
In the following, we, therefore, limit ourselves to the pore size distribution
shown in Fig. 7 and porosity of 75%. Possible degrees of freedom that remain
for the optimization of the material include the shape of the individual pores,
the orientation of the pores in the case of aspherical pores, or the transition
from a closed porous system to an open porous system. To vary from closed
to open porous structures at constant porosity, we create closed-cell systems
whose porosity is below the target porosity and then enlarge the pores by a
given pore expansion factor. This allows us to increase the porosity up to the
target value, resulting in overlapping pores, i.e., an open-cell structure. Fig.
12 shows three exemplary geometries with different pore expansions and the
dependence of the effective thermal conductivity on the open cellularity. As
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Figure 12: Effective heat conductivity of the foam structure as a function of the pore
expansion factor (see text). For further description of the figure, see the caption of Fig. 10.
The inset shows the porous geometry for a pore expansion of 100% (closed porous system),
200%, and 300%.

we can see from the numerical simulations, the pore overlap hardly influences
thermal conductivity. This is because although the pores now overlap, they
still do not form continuous channels longer than the critical length scale
above, for which convection significantly contributes to heat transport.

To investigate the influence of spherical pores at constant porosity, we
consider the initially spherical pores as ellipsoids, reducing one of their semi-
axes by a factor and increasing another by the same factor. This way, we
obtain elongated or flattened ellipsoidal pores with unchanged volume. Due
to the aspherical pores, the porous geometry is no longer isotropic, and we
have to determine in which direction we investigate the heat transfer. First,
we consider the case where all pores elongate in the same direction. We vary
the elongation and look at the heat transport along the longest semi-axis of
the ellipsoids. The result is shown in Fig. 13. We can see that the effective
heat conductivity increases linearly with the asphericity. This is due to the
increasingly layered structure where more and more continuous webs form
from cold to warm, creating thermal bridges.

We now vary the difference between the direction of the elongated pores
and the heat flow direction for an asphericity of 1.5. The more the webs of
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Figure 13: Effective heat conductivity of the foam structure as a function of the pore
asphericity. For further description of the figure, see the caption of Fig. 10. The inset
shows the porous geometry for a pore asphericity of 1.25, 1.5, and 2.0.

the layered structure are oriented perpendicular to the direction of the heat
flow, the lower the thermal conductivity is, as this avoids thermal bridges.
Additionally, we simulated the heat conductivity for a sample with random
orientation of the individual pores, as shown in the top row of the inset in Fig.
14. This results in an approximate averaging of the thermal conductivities
measured for the individual orientations.

From these parameter studies, we can conclude that one way to minimize
the thermal conductivity of the porous foam structure at a given porosity
and pore size distribution is to flatten the pores and orient the short half-axis
of the thus aspherical pores perpendicular to the direction of heat flow.

5. Summary

We have introduced a method that allows for generating diverse porous
geometries. The technique allows for specifying essential parameters such as
porosity, pore shape and orientation, and pore size distribution. In contrast
to previously published methods, the parameters can be systematically varied,
and highly porous, highly irregular structures with arbitrarily large pore
overlap can also be generated. The method is thus suitable for replicating
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Figure 14: Effective heat conductivity of the foam structure as a function of the orientation
of elongated pores relative to the direction of heat transfer. For further description of
the figure, see the caption of Fig. 10. The inset shows the porous geometry for relative
orientations of 22.5◦, 45◦ and 90◦. The image at the top of the inset shows a random
orientation of the pores. The dashed orange and blue lines indicate the sample’s thermal
conductivity with random orientation of the pores.

existing natural porous materials and, on the other hand, for conducting pa-
rameter studies with fictitious porous structures, as required for the numerical
optimization and development of novel porous materials using computer simu-
lations. We validated the method by replicating a ceramic foam structure and
comparing the simulated thermal conductivity of the resulting geometry with
experimental results. By optimizing the thermal conductivity of a fictitious
porous thermal insulation material, we have demonstrated the wide variety
of representable geometries and how these can be systematically varied.
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