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Abstract. For the non-gradient exclusion process, we prove its approximation
rate of diffusion matrix/conductivity by local functions. The proof follows the
quantitative homogenization theory developed by Armstrong, Kuusi, Mourrat
and Smart, while the new challenge here is the hard core constraint of particle
number on every site. Therefore, a coarse-grained method is proposed to lift
the configuration to a larger space without exclusion, and a gradient coupling
between two systems is applied to capture the spatial cancellation. Moreover, the
approximation rate of conductivity is uniform with respect to the density via the
regularity of the local corrector. As an application, we integrate this result in the
work by Funaki, Uchiyama and Yau [IMA Vol. Math. Appl., 77 (1996), pp. 1–40.]
and yield a quantitative hydrodynamic limit. In particular, our new approach
avoids to show the characterization of closed forms. We also discuss the possible
extensions in the presence of disorder on the bonds.
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1. Introduction

The diffusion matrix plays an important role in the study of the large-scale
behaviors of interacting particle systems. Among these systems, some are classified
as gradient model if the current of the conserved quantity can be written as a
sum of the difference between a local function and its spatial shift, and the others
are called non-gradient model. Unlike the gradient model, the non-gradient model
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usually requires more techniques to derive the hydrodynamic limit, because the
scaling yields a diverging factor and, moreover, its diffusion matrix does not have
an explicit expression and one needs to add a correction. This idea goes back to the
seminal work [74] of Varadhan, who studied the Ginzburg–Landau model. Later, the
hydrodynamic limit was proved in several classical particle systems of non-gradient
type: the generalized symmetric exclusion process (GSEP) [52] by Kipnis, Landim
and Olla; the lattice gas [34], also known as the non-gradient Kawasaki dynamics, by
Funaki, Uchiyama and Yau, and the general lattice gas with mixing condition [75]
by Varadhan and Yau; the multi-type simple symmetric exclusion process (multi-type
SSEP) [69] by Quastel, etc. The equilibrium fluctuation in non-gradient models was
studied later in [31, 57, 19], and the regularity of the diffusion matrix was discussed in
a series of work [54, 65, 66, 67, 16]. One can also refer [72, 51] for the basic background
and [71] for the relation between the gradient condition and the Green–Kubo formula.

It is natural to ask the convergence rate, and the quantitative hydrodynamic
limit has received attentions recently. The related results can be found for the
Ginzburg–Landau model in [26, 27], which was developed on [45]. Very recently, [60]
proposed a consistence-stability approach to obtain the quantitative hydrodynamic
limit in Wasserstein-1 distance for several models including the zero-range process,
the Ginzburg–Landau model, and the simple exclusion process (see [59, Chapter 5.5]).
However, all these results are for the gradient model, and there is no results for the
non-gradient model in the literature to the best of our knowledge. This is because,
as mentioned in the last paragraph, a diverging factor appears and the diffusion
matrix is more complicated in the non-gradient model. Such obstacle was already
observed in the proof in [34, 31], where several key error terms are finally reduced
to the approximation of the diffusion matrix or the conductivity ; see [34, (2.5) and
Section 5]. These two fundamental quantities are defined using variational formulas
and are related by the Einstein relation. Therefore, both of them can be approximated
qualitatively by a sequence of local functions, but the convergence rate is unknown.

In this paper, we answer the question above by a concrete construction of desired
local functions. As Varadhan observed the link between the interacting systems and
homogenization, in the sense of averaging and gradient replacement which kills the
diverging factor, in the earlier work [74], the new improvement comes from the recent
progress in the quantitative homogenization theory; see [15, 14, 9, 10, 6, 5, 11, 7]
based on the renormalization approach, and [64, 62, 39, 40, 37, 41, 38] based on
another approach using spectral inequalities. As an example, for the ∇ϕ interface
model studied in [33], a quantitative hydrodynamic limit is obtained in [4] using
the renormalization approach. Also inspired by the renormalization approach, [35]
studies a similar diffusion matrix problem in continuous configuration space, and a
quantitative equilibrium fluctuation is obtained recently in [47] under the same setting.
These work pave the way for the quantitative homogenization theory in interacting
particle systems, but the continuous configuration model there relaxes the hard core
constraint by allowing arbitrarily large number of particles in the unit volume. As
a consequence, to apply the existing results to a lattice particle model of exclusion
rule still meets technical challenges in math. The present paper aims to resolve
these difficulties and is the first example to establish quantitative homogenization
theory on the non-gradient exclusion process. Our main result not only generalizes
[35] to the non-gradient exclusion process, but also improves in the sense that we
construct one local corrector to realize uniform convergence of conductivity for every
particle density. Moreover, this density-uniform homogenization can be integrated
into the relative entropy method in the classical work [34], and then establishes a
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quantitative hydrodynamic limit; namely, our result provides the convergence rate in
the hydrodynamic limit for non-gradient exclusion process. We emphasize that our
method is new and, in particular, avoids to prove the characterization of closed forms
which is usually required to show the hydrodynamic limit for non-gradient models.

Our proof is also robust. Viewing the recent interests on the exclusion process in
random environment (see [70, 49, 50, 42, 30, 43, 28, 29]), we give a quick generalization
for our case when the external disorder is posed on the bonds. We believe the results
in this paper can be extended to other models including GSEP and multi-type SSEP
in the future work.

1.1. Main results. In this part, we state our main results.

We recall quickly the necessary notations of the exclusion process and the results

in the previous work. Let Zd be the Euclidean lattice and we use X ∶= {0,1}Z
d
to

stand for the space of the configuration of particles under exclusion rule. The element
of X will be denoted by η = {ηx ∶ x ∈ Zd}. Here ηx = 0 means the site x is vacant and
ηx = 1 means the site is occupied by one particle. We denote by y ∼ x for x, y ∈ Zd if
∣x − y∣ = 1. Then {x, y} is called an (undirected) bond. For every Λ ⊆ Zd, we denote
by Λ∗ the bond in Λ that

Λ∗ ∶= {{x, y} ∶ x, y ∈ Λ, x ∼ y}.(1.1)

For x, y ∈ Zd, the exchange operator ηx,y is defined as

(ηx,y)z ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ηz, z ≠ x, y;
ηy, z = x;
ηx, z = y.

(1.2)

Especially, when b = {x, y} is a bond, we also write ηb instead of ηx,y, and define the
Kawasaki operator πb ≡ πx,y

πbf(η) ∶= f(η
b
) − f(η).(1.3)

For any x ∈ Zd, the translation operator τx is defined as

(τxη)y ∶= ηx+y,(1.4)

and for function f on X , we also define τxf as

(τxf)(η) = f(τxη).(1.5)

The non-gradient exclusion process on Zd is defined by the generator below

L ∶= ∑
b∈(Zd)∗

cb(η)πb =
1

2
∑

x,y∈Zd∶∣x−y∣=1
cx,y(η)πx,y,(1.6)

where the family of functions

{cb(η) ≡ cx,y(η) = cy,x(η); b = {x, y} ∈ (Zd)∗},(1.7)

determine the jump rate of particles on the nearest bonds. This model is also called
the speed-change Kawasaki dynamics or the lattice gas in the literature, and we will
also use these names alternatively from time to time in the paper.

We suppose the following conditions for the jump rate throughout the paper
without specific explanation.

Hypothesis 1.1. The following conditions are supposed for {cb}b∈(Zd)∗ .

(1) Non-degenerate and local: cx,y(η) depends only on {ηz ∶ ∣z − x∣ ⩽ r} for some
integer r > 0, and is bounded on two sides 1 ⩽ cx,y(η) ⩽ λ.
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(2) Spatially homogeneous: for all {x, y} ∈ (Zd)∗, cx,y = τxc0,y−x.
(3) Detailed balance under Bernoulli measures: cx,y(η) is independent of {ηx, ηy}.

This model is known of non-gradient type, i.e. we cannot find functions {hi,j}1⩽i,j⩽d
such that c0,ei(η)(ηei − η0) = ∑

d
j=1 ((τejhi,j)(η) − hi,j(η)) for general {cb}b∈(Zd)∗ , with

{ei}1⩽i⩽d the canonical basis of Zd.

The hydrodynamic limit of this speed-change Kawasaki dynamics on torus is
proved in [34]. Let TdN ∶= (Z/NZ)d be the lattice torus of scale N , where we can

define all the notations by replacing Zd with TdN . We denote by XN ∶= {0,1}
Td
N the

configuration space on TdN , and define ηN(t) = {ηNx (t), x ∈ TdN} as the XN -valued
Markov jump process on torus governed by the generator LN ∶= N

2L, the counterpart
of (1.6) on TdN . The macroscopic empirical measure of ηN(t) is defined as

ρN(t,dv) ∶= N−d ∑
x∈Td

N

ηNx (t)δx/N(dv), v ∈ Td,(1.8)

and the limit is the solution of a nonlinear diffusion equation

∂tρ(t, v) = ∇ ⋅ (D(ρ(t, v))∇ρ(t, v)), (t, v) ∈ R+ ×Td.(1.9)

Here Td = Rd/Zd is the continuous torus and D ∶ (0, 1)→ Rd×d is the diffusion matrix
defined by the Einstein relation

D(ρ) ∶=
c(ρ)

2χ(ρ)
,(1.10)

where χ(ρ) is the compressibility

χ(ρ) ∶= ρ(1 − ρ),(1.11)

and c(ρ) is the effective conductivity defined as follows. We construct at first a
quadratic form with respect to the function F ∈ Fd0

ξ ⋅ c(ρ;F )ξ =
1

2
∑
∣x∣=1
⟨c0,x

⎛

⎝
ξ ⋅

⎧⎪⎪
⎨
⎪⎪⎩

x(ηx − η0) − π0,x(∑
y∈Zd

τyF )

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠

2

⟩

ρ

,(1.12)

where F0 is the local function space on X and Fd0 ∶= (F0)
d, and ⟨⋅⟩ρ stands for the

expectation under Bernoulli product measure of density ρ ∈ [0,1]. Then c(ρ) is the
minimization of c(ρ;F )

ξ ⋅ c(ρ)ξ ∶= inf
F ∈Fd

0

ξ ⋅ c(ρ;F )ξ.(1.13)

Under the assumption that (1.9) has a smooth initial density ρ0 = ρ0(v) and η
N(0)

is close to the local equilibrium with density profile ρ0(v) in the sense of relative
entropy hN(0) = o(1) (see (7.13) for the definition), [34, Theorem 1.1] proves that
for every ϕ ∈ C∞(Td) and ε > 0

P [∣∫
Td
ϕ(v)ρN(t,dv) − ∫

Td
ϕ(v)ρ(t,dv)∣ > ε]

N→∞
ÐÐÐ→ 0.(1.14)

Here P stands for the probability space of the process (ηN(t))t∈R+ , and ρ(t,dv) ∶=
ρ(t, v)dv.

The proof of hydrodynamic limit in [34] relies on the relative entropy method. One
key step is to prove that, for every β > 0 and small δ > 0, we have the following
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estimate for the normalized relative entropy (with some other terms omitting details
on the right-hand side)

hN(t) ⩽ hN(0) +
1

δ
∫

t

0
hN(s)ds +C(β + 1) sup

ρ∈[0,1]
∣R(ρ;F )∣ +

C

β
+QN .(1.15)

Here the quantity R(ρ;F ) comes from the conductivity (1.12) and (1.13), which is
defined as

R(ρ;F ) ∶= c(ρ;F ) − c(ρ),(1.16)

see (7.16) for the other error terms in QN . To conclude (1.14), we take a large β
such that the right-hand side of (1.15) is small, and then apply Gronwall’s inequality
and the entropy inequality. Therefore, we also need the decay from the term R(ρ;F ),
which was proved in [34, Lemma 2.1] that

inf
F ∈Fd

0

sup
ρ∈[0,1]

∣R(ρ;F )∣ = 0.(1.17)

The object of this paper is to give a convergence rate of (1.14). As explained briefly
above, this is finally reduced to R(ρ;F ) and we need to study (1.17) more precisely.
It can be considered as a quantitative homogenization of the fundamental quantity
c(ρ), which is our main result stated as follows. In the statement, ΛL ∶= (−

L
2 ,

L
2 )
d∩Zd

stands for a hypercube of side length around L ∈ R+, and Fd0 (ΛL) is the subset of Fd0
which contains σ({ηx}x∈ΛL

)-measurable local functions.

Theorem 1.2. Under Hypothesis 1.1, there exists an exponent γ(d, λ, r) > 0 and a
positive constant C(d, λ, r) <∞, such that

inf
FL∈Fd

0 (ΛL)
sup
ρ∈[0,1]

∣R(ρ;FL)∣ ⩽ CL
−γ .(1.18)

We will also give the concrete construction of the local function achieving the
estimate above in our proof; see Section 6.4 for details. Then as expected, we can
insert the estimate in (1.15), and obtain a quantitative hydrodynamic limit after
careful investigation.

Theorem 1.3. Let ρ(t, v) be the solution of the hydrodynamic equation (1.9) for
t ∈ [0, T ] with a smooth initial value ρ0 such that 0 < ρ0(v) < 1. Assume that f0 and
ψ0 defined in (7.14) satisfy the entropy condition hN(0) ⩽ CN

−α for some C,α > 0.
Then, for every ε > 0 and ϕ ∈ C∞(Td), there exist κ > 0 and C = C(ε, ϕ) > 0 such that

P [∣∫
Td
ϕ(v)ρN(t,dv) − ∫

Td
ϕ(v)ρ(t,dv)∣ > ε] ⩽ CN−κ(1.19)

holds for all t ∈ [0, T ].

Our proof relies on the homogenization theory, so let us also state a variant of
(1.18), which is an intermediate step but is related to the CLT variance estimate in
[34, Section 5]. Consider a formal sum ℓξ = ∑x∈Zd(ξ ⋅ x)ηx, then we notice that the
term ξ ⋅ x(ηx − η0) in (1.12) is

ξ ⋅ x(ηx − η0) = −π0,xℓξ.

Thus (1.13) is the minimization of the Dirichlet energy of a linear statistic plus
some correction term. Inspired from the ergodic theory, a natural finite-volume
approximation in Λ ⊆ Zd of (1.13) should be

1

2
ξ ⋅ c(ρ,Λ)ξ ∶= inf

v∈ℓξ+F0(Λ−)

1

∣Λ∣
⟨v(−LΛv)⟩ρ .(1.20)
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Here Λ− is the interior of Λ and Λ∗ is the set of bonds issued from Λ (see (1.34),
(1.35) for details). F0(Λ

−) is the set of σ({ηx}x∈Λ−)-measurable local functions, and
LΛ is the generator on Λ

LΛv ∶= ∑
b∈Λ∗

cbπbv.(1.21)

A well-known integration by part formula under ⟨⋅⟩ρ also tells us

⟨v(−LΛv)⟩ρ =
1

2
∑

b∈Λ∗
⟨cb(πbv)

2⟩
ρ
,(1.22)

so (1.20) can be interpreted by the minimization of the Dirichlet energy contributed
by every particle. We expect that c(ρ,Λ) converges to c(ρ) when Λ↗ Zd.

A similar definition like (1.20) can be also posed under the canonical ensemble

1

2
ξ ⋅ ĉ(Λ,N)ξ ∶= inf

v∈ℓξ+F0(Λ−)

1

∣Λ∣
⟨v(−LΛv)⟩Λ,N ,(1.23)

where ⟨⋅⟩Λ,N is the expectation under the uniform measure of N particles in Λ. Notice

that the quantity ĉ(Λ,N) still depends on the configuration outside Λ. On the other
hand, because the jump rate c is of finite range r by Hypothesis 1.1, the influence
from the boundary layer vanishes when Λ ↗ Zd. Thus ĉ(Λ,N) should be close to
c(N/∣Λ∣) in large scale. We prove the convergence of these two quantities in the
following theorem.

Theorem 1.4. Under Hypothesis 1.1, there exists a constant C(d, λ, r) <∞ and two
exponents γ1(d, λ, r), γ2(d, λ, r) > 0 such that for every L,M ∈ N+,

∣c(ρ,ΛL) − c(ρ)∣ ⩽ CL
−γ1 ,(1.24)

and

∣ĉ(ΛL,M) − c(M/∣ΛL∣)∣ ⩽ CL
−γ2 .(1.25)

Recalling the Einstein relation (1.10), the results above also imply the convergence
rate of the diffusion matrix D(ρ), for ρ ∈ (0,1), by local functions or finite-volume
approximation.

We also obtain an estimate similar to (1.24) when the disorder is posed on bonds.
To lighten the notation, we leave the related discussion in Section 8.

Remark 1.5. The choice of notation Λ∗ here is just for the technical convenience
and the consistence. Lemma A.1 ensures the stability of Theorem 1.4 in the general
domain, so we can replace Λ∗ in (1.21) by the canonical notation Λ∗ defined in (1.1)
and the statement still holds.

1.2. Strategy of the proof. The idea of the proof in this paper is inspired by
recent developments in the quantitative homogenization, and in particular on the
renormalization approach developed in [15, 14, 9, 10, 6, 5]; see monographs [11, 7] and
[63] for a gentle introduction. This renormalization approach has shown its robustness
in a number of other settings including the parabolic equations [1], finite-difference
equations on percolation clusters [3, 21, 23], differential forms [22], the “∇ϕ” interface
model [20, 12, 13, 4], and the Villain model [24]. Recently [35, 36, 47] also generalizes
the theory to an interacting particle system in continuous space without exclusion,
thus let us discuss the novelty and contribution in this paper.
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1.2.1. Renormalization with coarse-grained lifting. We employ the renormalization
approach to prove (1.24) of Theorem 1.4, which serves as the cornerstone for the
other results. The ingredients of the renormalization approach can be roughly divided
into two parts:

(1) Find the subadditive quantity for the desired limit, and use the gap between
the subadditive quantity and its dual quantity to control the convergence
rate.

(2) Establish various analytic tools, where the two key estimates are
● the Caccioppoli inequality;
● the multiscale Poincaré inequality.

The first part is more conceptual, and the quantity c(ρ,Λ) defined in (1.20) is a good
candidate satisfying the subadditivity in our setting, i.e.

Λ =
N

⊔
n=1

Λ(i), c(ρ,Λ) ⩽
N

∑
i=1

∣Λ(i)∣

∣Λ∣
c(ρ,Λ(i)).(1.26)

The main issue comes from the second part. The two key inequalities are well-
developed for the elliptic equation on Rd, but can become challenging in other
settings. We should also highlight that, the two inequalities are more than the
technical estimates, but the essentials of quantitative homogenization, because they
characterize the elliptic conditions in the large scale; see the recent work for the
homogenization in high contrast [2], [8]. In Kawasaki dynamics, these inequalities
are not accessible directly, and we need to relax them respectively to the modified
Caccioppoli inequality and the weighted multiscale Poincaré inequality, which are
explained in the following paragraphs more carefully.

The classical Caccioppoli inequality describes the inner regularity of the elliptic
equations, but seems missing in the particle systems due to the influence of particles
near the boundary. Therefore, the modified Caccioppoli inequality is developed in the
previous work [35, Proposition 3.9], which differs from the classical one, but captures
the same spirit. In the present work, its counterpart in Kawasaki dynamics is also
recovered in Proposition 2.6. The proof requires more work due to the microscopic
behavior; see Lemma 2.1 and Lemma 2.7. As new inputs, the Glauber derivative and
the reverse Efron–Stein inequality are also involved.

The multiscale Poincaré inequality (see [11, Proposition 1.12 and Corollary 1.14] for
example) improves the estimate of the classical Poincaré inequality when the function
has the spatial cancellation property, which is the case in homogenization. It meets
obstacles to derive the counterpart for Kawasaki dynamics, because the generator is
not smooth enough to ensure the H2 estimate needed in the proof. Actually, even
the generator of the simple symmetric exclusion shows interaction in higher order
derivative; see Remark 2.10 for details. For this reason, we believe the multiscale

Poincaré inequality should live in the homogenized particle system X̃ = NZd
where

N = {0,1,2,3,⋯}, i.e. the independent particles, and we prove it in Section 2.2.

Then a crucial problem is how to apply an inequality on X̃ = NZd
to the functions

on X = {0,1}Z
d
. Similar problem on the percolation setting was also posed, and

a possible solution is the coarse-grained strategy; see [3, 21, 46, 23]. We hope to
implement this idea in the exclusion processes: for every function u ∶ X → R, we aim
to find a coarsened function [u] ∶ X̃ → R on the larger space such that for every η ∈ X

as the grain of η̃ ∈ X̃ , it satisfies

η̃ ≃ ηÔ⇒ [u](η̃) ≃ u(η).(1.27)
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A naive candidate of grain η is the one close to η̃ under some distance. However,
different from the Bernoulli percolation setting, in particle systems the space of grain
X is a very sparse subset of X̃ , so we face the curse of dimension which may extremely
enlarge the error in (1.27). This is also the key difficulty compared to the previous
work [35]. Our solution turns out not only a coarse-grained method of functions, but

also a lift from X to X̃ , i.e. we can represent the function on Kawasaki dynamics
using a coupled independent particles. More precisely, for every η̃ ∈ X̃ , we set its
grain [η̃] ∈ X as

∀x ∈ Zd, [η̃]x ∶= 1{η̃x⩾1},

and the coarsened function for u ∶ X → R as

[u] ∶ X̃ → R, [u](η̃) ∶= u([η̃]).

This coarse-grained lifting is introduced in Section 3. Based on this technique, we
also obtain a gradient coupling between two systems (see Propositions 3.2 and 3.6),
and a weighted multiscale Poincaré inequality on Kawasaki dynamics. They are the
main tools to evaluate the flatness of the functions in Proposition 5.3.

Figure 1. An illustration for the coarse-grained lifting between the
Kawasaki dynamics and independent particles.

1.2.2. Regularity and uniform convergence. Usually the convergence rate depends
on the particle density, so let us explain why a uniform convergence is valid. A
first qualitative argument is that, our finite-volume approximation decreases to the
limit, and the limit function ρ↦ c(ρ) is continuous thanks to [65], so Dini’s theorem
applies and the convergence is uniform. At the quantitative level, we highlight
that, the only step where the density involves in analysis is the weighted multiscale
Poincaré inequality, where some large factors can be added for the low density cases.
Meanwhile, the modified Caccioppoli inequality (2.10) uses the elliptic regularity and
the variance decay estimate (5.20) uses the spatial independence, so they are free
from particle density. Here we notice that c has a trivial bound by χ(ρ) = ρ(1 − ρ),
and this can help us at two endpoints.

We still need some more ingredients to pass the results from Theorem 1.4 to
Theorem 1.2. The uniform estimates in (1.24) can be seen as a weak version

sup
ρ∈[0,1]

inf
Fρ,L∈Fd

0 (ΛL)
R(ρ;Fρ,L) ⩽ CL

−γ1 ,

while quantity in (1.18) is a strong version, and usually we have

sup
ρ∈[0,1]

inf
Fρ,L∈Fd

0 (ΛL)
R(ρ;Fρ,L) ⩽ inf

FL∈Fd
0 (ΛL)

sup
ρ∈[0,1]

R(ρ;FL).

We do not know whether there exists any duality property in the function R(ρ;F ),
thus we make the proof by a direct construction. The minimizer F in this variational
problem is actually the correctors in homogenization theory. In the renormalization
step, we already get a candidate ϕρ,Λ,ξ for the problem (1.20), but it has dependence
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on the density. Our main task is to remove this dependence, so we propose a modified
version of the local corrector

Λ =
N

⊔
n=1

Λ(i), ϕ̃ρ̂,Λ,ξ =
N

∑
i=1
ϕρ̂,Λi,ξ,(1.28)

where ρ̂ is an empirical density on the domain Λ instead of a fixed designed density.
Insert this function in the problem (1.20), we obtain a uniform convergence under
grand canonical ensemble by the following reasons.

(1) The homogenization appears in the large scale, so (1.26) is nearly an equality

and ∑Ni=1 ϕρ,Λi,ξ nearly equals ϕρ,Λ,ξ.
(2) Given an empirical density ρ̂, each local corrector lives as if under the grand

canonical ensemble thanks to the local equivalence of ensembles. This is also
the trick in the proof of (1.25).

(3) The empirical density ρ̂ may also fluctuate when applying the Kawasaki
operator, but this can be handled. On the one hand, we have the regularity
of the mapping ρ↦ ϕρ,Λi,ξ, and each fluctuation of density is just 1/∣Λ∣. On
the other hand, such fluctuation only happens on the boundary layer of Λ,
whose order is dominated by the volume order in (1.20).

Similar argument actually has already appeared in the proof of (1.17) in [34,
Lemma 2.1]. Besides the quantitative homogenization in (1), we also need to calculate
carefully the errors in (2) and (3), i.e. that from local equivalence of ensembles and
the regularity of density. They are discussed in detail in Sections 6.2 and 6.1, and
then we justify the density-free corrector (1.28) in Section 6.3.

1.2.3. Hydrodynamic Limit. Overall, our method well fits proving the hydrodynamic
limit even with a quantitative convergence rate for the non-gradient Kawasaki dy-
namics. The main difficulty to study non-gradient models lies, in general, in the
fact that the microscopic current does not have a gradient form and this yields a
diverging factor under the scaling. To overcome this difficulty, we need to show that,
under a large space-time domain, one can replace such a term by a well-behaving
function of gradient form asymptotically. This is called the gradient replacement (see
[34, Theorem 3.2 and Lemma 3.4]). For this, we usually need to show Varadhan’s
lemma (see [74, Theorem 5.2] and [34, Theorem 4.1]) which gives the characterization
of closed forms defined on a configuration space. We observe a connection between
the gradient replacement and the dual quantity employed in the renormalization
approach (see Section 7.1), thus our method provides another new route for the
non-gradient hydrodynamic limit avoiding Varadhan’s lemma.

1.3. Organization of paper. The rest of paper is organized as follows. We finish the
introduction with a resume of notations, especially those about function spaces. In
Section 2, we present the necessary tools including the modified Caccioppoli inequality
for the Kawasaki dynamics. Then we introduce the coarse-grained lifting technique in
Section 3, and use it to derive the weighted multiscale Poincaré inequality. Sections 4
and 5 are devoted to the convergence rate, where we make use of the renormalization
approach. Afterwards, we study the regularity of the local corrector and remove the
density dependence in Section 6. The quantitative hydrodynamic limit is proved in
Section 7 and the extension for the disordered cases is discussed in Section 8. See the
outline in Figure 2 for details.

1.4. Notations. We resume the notations used throughout the paper.
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Section 3
Coarse-grained lifting

Proposition 3.9
Weighted multiscale
Poincaré inequality

Proposition 2.6
Modified Caccioppoli

inequality

Section 5
Quantitative homogenization

via renormalization
(Extension in Section 8)

Section 4
Subadditive quantities

Section 6.3
Construction of density-free

corrector

Section 7
Quantitative hydrodynamic

limit

Relative entropy
method [34]

Section 6.1
Regularity of local

corrector

Section 6.2
Convergence under
canonical ensemble

Lemma 6.5
Local equivalence of

ensembles

Figure 2. The outline of proof.

1.4.1. Geometry. We use ∣ ⋅ ∣ to stand for the usual ℓ2-norm for the finite dimensional
vector or matrices. Meanwhile, for any x, y ∈ Zd, we define

dist(x, y) ∶=max{∣x1 − y1∣, ∣x2 − y2∣,⋯, ∣xd − yd∣}.(1.29)

This also generalizes to dist(x,Λ) ∶= supy∈Λ dist(x, y) for every Λ ⊆ Zd.
We denote by ΛL ∶= (

L
2 ,

L
2 )
d ∩ Zd the hypercube of side length around L, where

L ∈ R+ is not necessarily an integer for the flexibility. For every m ∈ N = {0,1,2,⋯},
we also denote by ◻m ∶= (−

3m

2 ,
3m

2
)
d
∩Zd the hypercube of side length 3m. For any

n,m ∈ N such that n <m, we denote by Zm,n ∶= 3
nZd ∩◻m and Zn ∶= 3

nZd. Then we
have the following partition

◻m = ⊔
z∈Zm,n

(z +◻n),(1.30)

which provides convenience to implement the renormalization.

For any finite set Λ ⊆ Zd, we denote by ∣Λ∣ the number of vertices

∣Λ∣ ∶=#{x ∶ x ∈ Λ},(1.31)

and define the diameter as

diam(Λ) ∶=max{∣x − y∣ ∶ x, y ∈ Λ}.(1.32)

We also define ∂Λ the boundary set of Λ that

∂Λ ∶= {x ∈ Λ ∶ ∃y ∉ Λ, y ∼ x},(1.33)

and denote by Λ− the interior of Λ

Λ− ∶= Λ ∖ ∂Λ.(1.34)

Recall that the set of bonds of Λ is defined as Λ∗ in (1.1). We define its enlarged
version

Λ∗ ∶= {{x, y} ∶ x ∈ Λ, y = x + ei, i = 1,2,⋯, d},(1.35)
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where ei ∈ Zd is the i-th directed unit vector, and also denote by Λ+ the vertices
concerned in (1.35)

Λ+ ∶= Λ ∪
d

⋃
i=1
(Λ + ei).(1.36)

One motivation is that, for n,m ∈ N such that n <m, despite of (1.30), we observe
that ⋃z∈Zm,n

(z+◻n)
∗ ⊊ (◻m)∗. On the other hand, (1.35) provides a better partition

structure for bonds

(◻m)∗ = ⊔
z∈Zm,n

(z +◻n)∗.(1.37)

For disjoint sets Λ,Λ′ ⊆ Zd,Λ ∩ Λ′ = ∅, we define (Λ,Λ′)∗ as the set of bonds
between Λ and Λ′

(Λ,Λ′)∗ ∶= (Zd)∗ ∖ (Λ∗ ⊔ (Λ′)∗)(1.38)

Especially, (Λ,Λc)∗ is the set of bonds connecting Λ and its complement.

1.4.2. Probability spaces. For every Λ ⊆ Zd, we denote by FΛ the σ-algebra generate
by the (ηx)x∈Λ and we write F short for FZd . Given ρ ∈ (0,1) as the density of

particle, and make use of Pρ as the Bernoulli product measure Ber(ρ)⊗Z
d
on X ,

thus (X ,F ,Pρ) is the triplet of probability space most used in this paper. For the
expectation under Pρ, we use the notation ⟨⋅⟩ρ or Eρ[⋅]. We make use of Pρ,Λ, ⟨⋅⟩ρ,Λ
when we restrict our measure on (ηx)x∈Λ. We also denote by PΛ,N,ζ and ⟨⋅⟩Λ,N,ζ
for the probability and expectation under the canonical ensemble, i.e. N particles
distributed uniformly on different sites of Λ with the configuration ζ on Λc. We
usually omit ζ and just write them as PΛ,N and ⟨⋅⟩Λ,N .

1.4.3. Function spaces. For every 1 ⩽ p ⩽∞, we denote by ∥⋅∥Lp or ∥⋅∥p the Lp norm

over the probability space (X ,F ,Pρ), and denote by Lp(X ,F ,Pρ) or shortly Lp the

set of random variables with finite norm. For any Λ ⊆ Zd, let F0(Λ) be the set of
FΛ-measurable local functions. We also define the Sobolev norm H1(Λ) that

∥f∥2H1(Λ) = ⟨f
2⟩
ρ
+ ∑
b∈Λ∗
⟨(πbf)

2⟩
ρ
.(1.39)

For every local functions, we can calculate its H1(Λ) norm, and we also use H1(Λ)
to represent the set of functions with finite H1(Λ) norm. Despite of the natural
definition of F0(Λ), the function space F0(Λ

−) is the proper analogue of the function
space H1

0 in the domain Λ. To see this, we can verify the following identity easily

∀Λ ⊆ Λ′ ⊆ Zd, f ∈ F0(Λ
−
), ∥f∥H1(Λ) = ∥f∥H1(Λ′) .(1.40)

This is the important extension property of H1
0 function, but a general F0(Λ) function

does not necessarily satisfy it. We will not use the notation H1
0(Λ) in the paragraphs

for the conciseness of notation, while we keep in mind that F0(Λ
−) plays the same

role.

Viewing the discussion above, we define the space of harmonic functions with
respect to the Kawasaki dynamics

A(Λ) ∶= {u ∈H1
(Λ) ∶ ∀v ∈ F0(Λ

−
), ⟨v(−LΛu)⟩ρ = 0}.(1.41)

Note that u ∈ A(Λ) does not imply that u ∈ F0(Λ) and it can have dependence on
the configuration outside Λ.



12 TADAHISA FUNAKI, CHENLIN GU, HAN WANG

1.4.4. Operators. The translation operator, exchange operator and Kawasaki operator
are respectively defined in (1.4), (1.5), (1.2) and (1.3). For η ∈ X and Λ ⊆ Zd, we
define (η Λ) as the configuration restricted on Λ that

∀x ∈ Zd, (η Λ)x ∶= ηx1{x∈Λ}.(1.42)

We sometimes identify η ∈ X as η = ∑x∈Zd ηxδx for the convenience to manipulate.

The affine function defined by

ℓp(η) ∶= ∑
x∈Zd

(p ⋅ x)ηx,(1.43)

is just a formal sum as there are infinite terms, while πbℓp is well-defined as

∀b = {x, y} ∈ (Zd)∗, (πbℓp)(η) ∶= p ⋅ (y − x)(ηx − ηy).(1.44)

A rigorous version of (1.43) is a sum restricted on the finite set Λ ⊆ Zd

ℓp,Λ(η) ∶= ∑
x∈Λ
(p ⋅ x)ηx.(1.45)

In Kawasaki dynamics, we define the tangent field along the direction ei at x for
u ∶ X → R as

∇x,eiu ∶= (πx,x+eiu)(πx,x+eiℓei).(1.46)

Some simple calculation gives us

(πx,x+eiu)(πx,x+eiℓei)(η) = (u(η
x,x+ei) − u(η)) (ηx − ηx+ei),(1.47)

so the term is non-zero if and only if (ηx, ηx+ei) = (1,0) or (ηx, ηx+ei) = (0,1).
Moreover, for both two non-zero cases, they evaluates the change that a particle
jumps from x to x + ei. Similarly, we define the gradient field of u at x as

∇xu ∶= (∇x,e1u,∇x,e2u,⋯,∇x,edu).(1.48)

For every p ∈ Rd, we also obtain that

p ⋅ ∇xu =
d

∑
i=1
(πx,x+eiu)(πx,x+eiℓp).(1.49)

The Glauber operator appears naturally in some steps of analysis. We denote by
ηx the flip operator at x that

(ηx)z = {
ηz, z ≠ x;
1 − ηz, z = x.

(1.50)

Then the Glauber derivative for f ∶ X → R is defined by

πxf ∶= f(η
x
) − f(η).(1.51)

Clearly, (πxf)
2 is independent of ηx.

1.4.5. Constants. We usually use C to represent a positive finite constant and C(⋯)
to indicate its dependence with other parameters. The value of C may change from
line to line. The following constants will be fixed and used throughout the paper.

● d ∈ N+ = {1,2,3,⋯} for the dimension of lattice.
● λ for the upper bound of the jump rate, i.e. cb(η) ⩽ λ for any b ∈ (Zd)∗, η ∈ X .
● r for the radius of dependence of jump rate as indicated in Hypothesis 1.1.
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2. Analytic tools

In this part, we collect all the necessary analytic tools in this paper. The two main
results of this section are the modified Caccioppoli inequality (Proposition 2.6), and the
weighted multiscale Poincaré inequality (Proposition 2.12 and then Proposition 3.9).

2.1. Analytic tools on Kawasaki dynamics.

2.1.1. Glauber operator meets Kawasaki operator. Our first inequality comes from
the observation in [48, eq.(B.2)], which states that we can exchange the site of the
Glauber derivative by paying the error of the Kawasaki operator.

Lemma 2.1. Recall the L2 function space defined in Section 1.4.3, then we have

∥πxf∥L2 ⩽ ∥πyf∥L2 +
1

√
2χ(ρ)

∥πx,yf∥L2 .(2.1)

Proof. As we know, (πxf)
2 does not depend on ηx, thus we decompose ∥πxf∥L2 with

respect to the state of ηy

∥πxf∥L2 = ⟨(πxf)
2 1{ηy=1} + (πxf)

2 1{ηy=0}⟩
1
2

ρ
.

We denote by η̃ = (ηz)z∈Zd∖{x,y} and F (ηx, ηy, η̃) = f(η). Then we have

∥πxf∥L2

= (∫X
p(F (1,1, η̃) − F (0,1, η̃))2 + (1 − p)(F (1,0, η̃) − F (0,0, η̃))2 dPρ(η̃))

1
2

.

We apply the triangle inequality for this norm. The trick is that we only replace the
term involving ηx ≠ ηy. For example, in the terms (F (1, 1, η̃)−F (0, 1, η̃))2, we replace
F (0, 1, η̃) by F (1, 0, η̃). This follows exactly the spirit of the Kawasaki operator πx,y
and we obtain

∥πxf∥L2

⩽ (∫X
p(F (1,1, η̃) − F (1,0, η̃))2 + (1 − p)(F (0,1, η̃) − F (0,0, η̃))2 dPρ(η̃))

1
2

+ (∫X
p(F (0,1, η̃) − F (1,0, η̃))2 + (1 − p)(F (1,0, η̃) − F (0,1, η̃))2 dPρ(η̃))

1
2

= (∫X
p(F (1,1, η̃) − F (1,0, η̃))2 + (1 − p)(F (0,1, η̃) − F (0,0, η̃))2 dPρ(η̃))

1
2

+ (∫X
(F (1,0, η̃) − F (0,1, η̃))2 dPρ(η̃))

1
2

.

We notice the identity in the last equation

∥πyf∥L2 = (∫X
p(F (1,1, η̃) − F (1,0, η̃))2 + (1 − p)(F (0,1, η̃) − F (0,0, η̃))2 dPρ(η̃))

1
2

,

∥πx,yf∥L2 = (∫X
2p(1 − p)(F (1,0, η̃) − F (0,1, η̃))2 dPρ(η̃))

1
2

,

then we conclude the desired result. □
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2.1.2. Spectral inequality. The spectral inequality is an important tool to analyze
Markov processes. In this part, we resume several spectral inequalities from the
literature.

The most used spectral inequality is the one for independent random variables
known as Efron–Stein inequality. Here we state it and also its reverse version.

Lemma 2.2 (Efron–Stein inequality). Let (Xi)1⩽i⩽n be i.i.d. random variables taking
value on E, and we denote by

E(i)[⋅] ∶= ∫
E
(⋅)dPXi , E(−i)[⋅] ∶= ∫

En−1
(⋅) ∏

1⩽j⩽n,j≠i
dPXj ,(2.2)

and Var(i),Var(−i) for the corresponding variances. Then for a random variable
f(X1,X2,⋯,Xn), we have

n

∑
i=1

Var(i)[E(−i)[f]] ⩽ Var[f] ⩽
n

∑
i=1

E(−i)[Var(i)[f]].(2.3)

Proof. The upper bound is the classical Efron–Stein inequality, and one can find
its proof in [18, Theorem 3.1]. The lower bound, which could be seen as a reverse
Efron–Stein inequality, is less well-known, but follows exactly the same strategy of
proof. The authors learn the lower bound at first in [73]. □

A direct corollary of Efron–Stein inequality is the spectral inequality of the Glauber
operator (1.50) under product Bernoulli measure.

Corollary 2.3 (Spectral inequality for Glauber dynamics). For any Λ ⊆ Zd, we have

Varρ,Λ[f] ⩽ χ(ρ)∑
x∈Λ
⟨(πxf)

2
⟩
ρ,Λ

.(2.4)

Proof. We apply the classical Efron–Stein inequality and the upper bound is the
right-hand side of (2.4). □

With some more treatment, we can also obtain the spectral inequality for the
Kawasaki operator (1.3) under product Bernoulli measure.

Lemma 2.4. For any bounded set Λ ⊆ Zd and f ∈ F0(Λ
−), we have

Varρ[f] ⩽ diam(Λ)2 ∑
b∈Λ∗
⟨(πbf)

2
⟩
ρ
.(2.5)

Proof. We apply at first the spectral inequality for Glauber dynamics

Varρ[f] ⩽ χ(ρ)∑
x∈Λ
⟨(πxf)

2
⟩
ρ
.(2.6)

We fix a direction in the canonical basis ei, then for every x ∈ Λ, there exists a positive
integer ℓ depending on x,

ℓ(x) ∶=min{k ∈ N+ ∶ x + kei ∈ ∂Λ}.
Then we apply Lemma 2.1

∥πxf∥L2 ⩽ ∥πx+eif∥L2 +
1

√
2χ(ρ)

∥πx,x+eif∥L2 .

We sum this inequality along the path x→ x + ei → x + 2ei⋯→ x + ℓ(x)ei

∥πxf∥L2 ⩽ ∥πx+ℓ(x)eif∥L2 +
1

√
2χ(ρ)

ℓ(x)
∑
j=1
∥πx+(j−1)ei,x+jeif∥L2 .
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Notice that x + ℓ(x)ei ∈ ∂Λ and f ∈ F0(Λ
−), so f does not depend on ηx+ℓ(x)ei and

πx+ℓ(x)eif = 0. This implies

∥πxf∥L2 ⩽
1

√
2χ(ρ)

ℓ(x)
∑
j=1
∥πx+(j−1)ei,x+jeif∥L2 .(2.7)

We put (2.7) back to (2.6) and apply Cauchy–Schwarz inequality

Varρ[f] ⩽
1

2
∑
x∈Λ

ℓ(x)
ℓ(x)
∑
j=1
⟨(πx+(j−1)ei,x+jeif)

2⟩
ρ

⩽
1

2
diam(Λ)∑

x∈Λ

ℓ(x)
∑
j=1
⟨(πx+(j−1)ei,x+jeif)

2⟩
ρ
.

Here the factor χ(ρ) in (2.7) and (2.6) compensates, and we also make use of the

fact ℓ(x) ⩽ diam(Λ). We now exchange the order of the sum ∑x∈Λ∑
ℓ(x)
j=1

Varρ[f] ⩽
1

2
diam(Λ) ∑

b∈Λ∗
∑

x∈Λ∶∃j∈N+,x+jei∈b
⟨(πbf)

2⟩
ρ
.

Because every bond b can be counted at most diam(Λ) times along the direction ei,
we obtain the desired result. □

In [58, Theorem 1], Lu and Yau proved a generalized version of the spectral
inequality for the Glauber dynamics. We do not need that one in this paper, but
we will make use of [58, Theorem 2], the spectral inequality for Kawasaki dynamics
under canonical ensemble.

Lemma 2.5 (Theorem 2, [58]). There exists a positive constant C = C(d), such that
for any L ∈ N+ and any N ∈ N+,N ⩽ ∣ΛL∣, we have

VarΛL,N [f] ⩽ CL
2
∑

b∈(ΛL)∗
⟨(πbf)

2⟩
ΛL,N

.(2.8)

2.1.3. Modified Caccioppoli inequality. The modified Caccioppoli inequality is a key
input to gain the convergence rate in the interacting particle systems. It is at first
proved in [35, Proposition 3.9] and here we present its version in Kawasaki dynamics.
The conditional expectation operator will be used in the following paragraphs. For
Λ ⊆ Zd and f ∈ L1, we define

AΛf ∶= Eρ [f ∣FΛ] .(2.9)

Concretely, it is calculated as

AΛf(η) = ∫X
f(η Λ + η′ Λc)dPρ(η′).

We usually denote by ALf ≡ AΛL
f for short.

Proposition 2.6 (Modified Caccioppoli inequality). There exist θ(d, λ) ∈ (0,1), finite
positive constants C(d, λ), and R0(d, λ, r) such that for every L ⩾ R0 and u ∈ A(Λ3L)

(defined in (1.41)), we have

1

∣ΛL∣
⟨AL+2ru(−LΛL

AL+2ru)⟩ρ ⩽
CL−2

∣Λ3L∣
⟨u2⟩

ρ
+

θ

∣Λ3L∣
⟨u(−LΛ3L

u)⟩ρ .(2.10)

Its proof is similar to [35, Proposition 3.9], which can be summarized as following
three steps.

(1) Test the harmonic function u ∈ A(Λ3L) with its cutoff version ALu.
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(2) Obtain the L2-term using the quadratic variation of the martingale (Anu)n∈N+ .
(3) Bootstrap the result from its weak version with a correct normalization factor

of volume.

The first and second step can be seen as the main difference between particle system
and PDE setting, where we make the cutoff in order to reduce the influence of
particles from the boundary, and we also need the nice L2-isometry of martingale to
recover the L2 term of u.

In Kawasaki dynamics, the quadratic variation structure is less obvious compared
to the setting of continuous configuration space in [35]. Let us make some explicit
calculation at first. It is clear that

∀b ∈ (Λn)
∗, πbAnf = Anπbf,

∀b ∈ (Λcn)
∗, πbAnf = 0.

(2.11)

That is to say, the operators An and πb are commutative when the bond b stays in
(Λn)

∗, and the influence is 0 when b is outside Λn. When b ∈ (Λn,Λ
c
n)
∗, the situation

is subtle as we will see the perturbation

∀x ∈ ∂Λn, y ∉ Λn, y ∼ x, πx,yAnf(η) = Anf(η
x,y
) −Anf(η).

Since we apply the conditional expectation, the information of ηx is no longer useful
in Anf(η

x,y) and we have

Anf(η
x,y
) = Anf(η (Λn ∖ {x}) + ηyδx).

Thus, near the boundary the Kawasaki operator is like resampling the state at x and
we have

∀x ∈ ∂Λn, y ∉ Λn, y ∼ x, ⟨(πx,yAnf)
2⟩
ρ
= 2χ(ρ) ⟨(πxAnf)

2
⟩
ρ
.(2.12)

By the spectral inequality (2.4), we know that

χ(ρ) ∑
x∈∂Λn

⟨(πxAnf)
2
⟩
ρ
⩾ ⟨(Anf −An−2f)

2⟩
ρ
.

The inequality is not on the desired direction, because we hope to give an upper
bound for the boundary perturbation. For this reason, we would like to study how to
control this Glauber derivative near the boundary at first.

Lemma 2.7. For An ≡ AΛn defined in (2.9) and f ∈ L2, the following estimate holds

∑
b∈(Λn,Λc

n)∗
⟨(πbAnf)

2⟩
ρ
⩽ 4
⎛

⎝
∑

b∈(Λn,Λc
n)∗
⟨(An+2πbf)

2⟩
ρ
+ ⟨(An+2f −Anf)

2⟩
ρ

⎞

⎠
.(2.13)

Proof. The left-hand side can be expressed with (2.12)

∑
b∈(Λn,Λc

n)∗
⟨(πbAnf)

2⟩
ρ
= ∑
x∈∂Λn,y∉Λn,y∼x

⟨(πx,yAnf)
2⟩
ρ

= ∑
x∈∂Λn,y∉Λn,y∼x

2χ(ρ) ⟨(πxAnf)
2
⟩
ρ
.

(2.14)

We notice that

πxAnf = Anf(η
x
) −Anf(η)

= ∫{0,1}
(AΛn⊔{y}f(η

x
) −AΛn⊔{y}f(η)) dPρ(ηy)

= ∫{0,1}
πxAΛn⊔{y}f dPρ(ηy).

(2.15)
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Using Jensen’s inequality, we have

⟨(πxAnf)
2
⟩
ρ
⩽ ⟨(πxAΛn⊔{y}f)

2
⟩
ρ

(2.16)

Then we apply Lemma 2.1 to AΛn⊔{y}f and obtain that

∥πxAΛn⊔{y}f∥L2 ⩽ ∥πyAΛn⊔{y}f∥L2 +
1

√
2χ(ρ)

∥πx,yAΛn⊔{y}f∥L2 .(2.17)

We put (2.17) and (2.16) back to (2.14), and obtain that

(2.18) ∑
b∈(Λn,Λc

n)∗
⟨(πbAnf)

2⟩
ρ

⩽ ∑
x∈∂Λn,y∉Λn,y∼x

4χ(ρ)(⟨(πyAΛn⊔{y}f)
2
⟩
ρ
+

1

2χ(ρ)
⟨(πx,yAΛn⊔{y}f)

2
⟩
ρ
) .

For the first term on right-hand side, it is exactly the fluctuation on ∂Λn+2, so we
apply the reverse Efron–Stein inequality (the first inequality of (2.2)) to An+2f under
the expectation over the {ηy}y∈∂Λn+2

∑
y∈∂Λn+2

χ(ρ) ⟨(πyAΛn⊔{y}f)
2
⟩
ρ,∂Λn+2

= ∑
y∈∂Λn+2

Varρ,∂Λn+2[Eρ,∂Λn+2[An+2f ∣ηy]]

⩽ Varρ,∂Λn+2[An+2f]

= ⟨(An+2f −Anf)
2⟩
ρ,∂Λn+2

.

Recall that ⟨⋅⟩ρ,∂Λn+2
is defined in Section 1.4.2, and note that χ(ρ) also appears sim-

ilarly in (2.4) in a reversed inequality. We also use the identity Eρ,∂Λn+2[An+2f ∣ηy] =
AΛn⊔{y}f here. Then we take the expectation of other variables to yield the estimate
of the first term on the right-hand sideof (2.18)

∑
x∈∂Λn,y∉Λn,y∼x

4χ(ρ) ⟨(πyAΛn⊔{y}f)
2
⟩
ρ
⩽ 4 ⟨(An+2f −Anf)

2⟩
ρ
.

For the second term on the right-hand sideof (2.18), we apply (2.11) and once again
Jensen’s inequality to obtain that

∑
x∈∂Λn,y∉Λn,y∼x

⟨(πx,yAΛn⊔{y}f)
2
⟩
ρ
= ∑
x∈∂Λn,y∉Λn,y∼x

⟨(AΛn⊔{y}πx,yf)
2
⟩
ρ

⩽ ∑
b∈(Λn,Λc

n)∗
⟨(An+2πbf)

2⟩
ρ
.

This concludes the desired result. □

Once we develop Lemma 2.7, the rest of the proof follows that in [35, Proposition
3.9].

Proof of Proposition 2.6. The proof can be divided into three steps.

Step 1: construction of test function. In the first step, we do some preparation. Our
object is to regularize u such that it becomes a function in F0(Λ

−
3L). A very natural

idea is to apply the conditional expectation operator (2.9), then the information
outside 3L will be averaged. In order to make this cutoff more smooth, we propose
the following regularized version

As,ℓf ∶=
1

ℓ
∫

ℓ

0
As+tf dt.(2.19)
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Recall ΛL is defined for L ∈ R+, so As+t does for s, t ∈ R+. Its Kawasaki derivative
can be calculated using (2.11)

πbAs,ℓf =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

As,ℓπbf if b ∈ (Λs)
∗;

1
ℓ ∫

s+ℓ
τ(b)+Atπbf dt +

(τb−s)∧1
ℓ πbAτbf1b∈(Λτ(b),Λ

c
τ(b)
)
∗ if b ∈ (Λs,Λ

c
s+ℓ)

∗
;

0 if b ∈ (Λcs+ℓ)
∗.

(2.20)

Here the notation τ(b) is defined as

τ(b) ∶= inf{s ∈ R+ ∶ b ∈ (Λs)∗}.(2.21)

From the definition of hypercube in Section 1.4.1, we know b ∈ Λτ(b)+ but b ∉ Λτ(b).

We will also make use of the following operator

Ãs,ℓf ∶= (As,ℓ ○As,ℓ)(f) =
2

ℓ2
∫

ℓ

0
(ℓ − t)As+tf dt,(2.22)

The motivation comes from the following identity that

⟨(As,ℓf)
2⟩
ρ
= ⟨f(Ãs,ℓf)⟩ρ =

2

ℓ2
∫

ℓ

0
(ℓ − t) ⟨(As+tf)

2⟩
ρ
dt.(2.23)

Similar to (2.20), we also calculate its Kawasaki derivative as preparation

(2.24) πbÃs,ℓf =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

As,ℓπbf if b ∈ (Λs)
∗;

2
ℓ2 ∫

s+ℓ
τ(b)+(s + ℓ − t)Atπbf dt

+ 2
ℓ2 ∫

τ(b)
(τ(b)−2)∨s(s + ℓ − t)πbAτ(b)f1b∈(Λτ(b),Λ

c
τ(b)
)
∗ if b ∈ (Λs,Λ

c
s+ℓ)

∗
;

0 if b ∈ (Λcs+ℓ)
∗.

Step 2: week Caccioppoli inequality. We then prove the weak Caccioppoli inequality
at first. Fix θ′(λ) ∶= 10λ

1+10λ ∈ (0, 1); recall that λ ⩾ 1 is the constant in Hypothesis 1.1.
For every L > 0, s ⩾ L + 2r, ℓ > 1, s + ℓ < 3L and u ∈ A(Λs+ℓ+2), we claim that

(2.25) ℓ−2 ⟨(Asu)
2⟩
ρ
+ ⟨As,ℓu(−LΛL

As,ℓu)⟩ρ

⩽ θ′ (ℓ−2 ⟨(As+ℓu)
2⟩
ρ
+ ⟨u(−LΛs+ℓ

u)⟩ρ) .

The main idea is to use the conditional expectation Ãs,ℓu given in (2.22), because

it provides a cutoff that Ãs,ℓu ∈ F0(Λ
−
s+ℓ+2). Then we test it with u

0 = ⟨Ãs,ℓu(−Ls+ℓ+2u)⟩ρ = ∑
b∈(Λs+ℓ+2)∗

⟨cb(πbÃs,ℓu)(πbu)⟩ρ = I + II + III.

Here decompose the right-hand side into the sum of three terms

I ∶= ∑
b∈(Λs−2r)∗

⟨cb(πbÃs,ℓu)(πbu)⟩ρ ,

II ∶= ∑
b∈(Λs)∗∖(Λs−2r)∗

⟨cb(πbÃs,ℓu)(πbu)⟩ρ ,

III ∶= ∑
b∈(Λs+ℓ)∗∖(Λs)∗

⟨cb(πbÃs,ℓu)(πbu)⟩ρ ,

(2.26)

and we have the estimate

∣I∣ ⩽ ∣II∣ + ∣III∣.(2.27)
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The term I is the easiest one to treat

I = ∑
b∈(Λs−2r)∗

⟨cb(πbÃs,ℓu)(πbu)⟩ρ

= ∑
b∈(Λs−2r)∗

⟨(πbAs,ℓu)As,ℓ(cbπbu)⟩ρ

= ∑
b∈(Λs−2r)∗

⟨cb(πbAs,ℓu)
2⟩
ρ
.

(2.28)

From the first line to the second line, we use the fact Ãs,ℓ = As,ℓ ○ As,ℓ and the
reversibility of As,ℓ. From the second line to the third line, we use the fact cb is
FΛs-measurable when b ∈ (Λs−2r)∗ and As,ℓπb = πbAs,ℓ from (2.24).

The identity (2.28) does not apply directly to II, because for b ∈ (Λs)
∗ ∖ (Λs−2r)∗,

the jump rate cb is no longer FΛs-measurable. Therefore, we make use of the exact
expression (2.22)

∣II∣ = ∑
b∈(Λs)∗∖(Λs−2r)∗

∣
2

ℓ2
∫

ℓ

0
(ℓ − t) ⟨cb(πbAs+tu)(πbu)⟩ρ dt∣

⩽ ∑
b∈(Λs)∗∖(Λs−2r)∗

λ

ℓ2
∫

ℓ

0
(ℓ − t) ⟨(πbAs+tu)

2
+ (πbu)

2⟩
ρ
dt

⩽ ∑
b∈(Λs)∗∖(Λs−2r)∗

2λ

ℓ2
∫

ℓ

0
(ℓ − t) ⟨(πbu)

2⟩
ρ
dt

= ∑
b∈(Λs)∗∖(Λs−2r)∗

λ ⟨(πbu)
2⟩
ρ
.

(2.29)

From the first line to the second line, we make use of Young’s inequality and cb ⩽ λ.
From the second line to the third line, As,ℓπb = πbAs,ℓ and ⟨(As+tπbu)

2⟩
ρ
⩽ ⟨(πbu)

2⟩
ρ

is also applied thanks to Jensen’s inequality.

The term III has two integrals following (2.24), which can be noted respectively
by III.1 and III.2. The first part is similar to (2.29)

(2.30)

∣III.1∣ ⩽ ∑
b∈(Λs+ℓ)∗∖(Λs)∗

∣
2

ℓ2
∫

s+ℓ

τ(b)+
(s + ℓ − t) ⟨cb(Atπbu)(πbu)⟩ρ dt∣

⩽ ∑
b∈(Λs+ℓ)∗∖(Λs)∗

λ ⟨(πbu)
2⟩
ρ
.

The second part is the key to make appear the L2 term

∣III.2∣ ⩽ ∑
b∈(Λs+ℓ)∗∖(Λs)∗

∣
2

ℓ2
∫

τ(b)

(τ(b)−2)∨s
(s + ℓ − t) ⟨cb(πbAτ(b)u)(πbu)⟩ρ 1b∈(Λτ(b),Λ

c
τ(b)
)
∗ dt∣

⩽ ∑
b∈(Λs+ℓ)∗∖(Λs)∗

2λ

ℓ
⟨γ−1(πbAτ(b)u)

2
+ γ(πbu)

2⟩
ρ
1
b∈(Λτ(b),Λ

c
τ(b)
)
∗ .

From the first line to the second line, Young’s inequality is applied with γ > 0 to be
fixed, together with the trivial bound (s + ℓ − t) ⩽ ℓ for t defied above. We rearrange
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the sum, and obtain

∣III.2∣ ⩽
⌊ℓ⌋−2
∑
n=0

∑
b∈(Λn,Λc

n)∗

2λ

ℓ
⟨γ−1(πbAnu)

2
+ γ(πbu)

2⟩
ρ

⩽

⌊ℓ⌋−2
∑
n=0

⎛

⎝

8λ

γℓ
⟨(As+n+2u −As+nu)

2⟩
ρ
+ ∑
b∈(Λn,Λc

n)∗
(
8λ

γℓ
+
2γλ

ℓ
) ⟨(πbu)

2⟩
ρ

⎞

⎠

=
8λ

γℓ
⟨(As+ℓu −Asu)

2⟩
ρ
+

⌊ℓ⌋−2
∑
n=0

∑
b∈(Λn,Λc

n)∗
(
8λ

γℓ
+
2γλ

ℓ
) ⟨(πbu)

2⟩
ρ
.

(2.31)

Here we insert the estimate Lemma 2.7 in the second line to handle the perturbation
of boundary term, and then make use of the orthogonal decomposition of martingale
from the second line to the third line. We choose γ = ℓ, and put (2.28), (2.29), (2.30)
and (2.31) back to (2.27), which concludes that

(2.32) ∑
b∈(Λs−2r)∗

⟨cb(πbAs,ℓu)
2⟩
ρ

⩽ 10λ
⎛

⎝
ℓ−2 ⟨(As+ℓu −Asu)

2⟩
ρ
+ ∑
b∈(Λs+ℓ)∗∖(Λs−2r)∗

⟨cb(πbu)
2⟩
ρ

⎞

⎠
.

Then a “filling-hole” argument applies by adding 10λ∑b∈(Λs−2r)∗ ⟨cb(πbAs,ℓu)
2⟩
ρ
on

the two sides (Jensen’s inequality is also applied to the right-hand side)

(2.33) (1 + 10λ) ∑
b∈(Λs−2r)∗

⟨cb(πbAs,ℓu)
2⟩
ρ

⩽ 10λ
⎛

⎝
ℓ−2 ⟨(As+ℓu −Asu)

2⟩
ρ
+ ∑
b∈(Λs+ℓ)∗

⟨cb(πbu)
2⟩
ρ

⎞

⎠
.

We note the martingale property of (Asu)s⩾0 and divide (1 + 10λ) on the two sides
to obtain (2.25) with θ′ = 10λ

1+10λ .

Step 3: bootstrap. When we take L large enough, ℓ = L, and s = 2L in (2.25), we
obtain

1

∣ΛL∣
⟨A2Lu(−LΛL

A2Lu)⟩ρ ⩽ 3
dθ′ (

L−2

∣Λ3L∣
⟨(A3Lu)

2⟩
ρ
+

1

∣Λ3L∣
⟨u(−LΛ3L

u)⟩ρ) .(2.34)

The factor before the L2 term is correct, but it misses a volume factor compared
to the desired result (2.10), as we do not necessarily have 3dθ′ < 1. However, if we
choose carefully s = (1 + δ)L and ℓ = δL, we obtain

(2.35)
1

∣ΛL∣
⟨ALu(−LΛL

ALu)⟩ρ

⩽ (1 + 2δ)dθ′ (
(δL)−2

∣Λ(1+2δ)L∣
⟨(A(1+2δ)Lu)

2⟩
ρ
+

1

∣Λ(1+2δ)L∣
⟨u(−LΛ

(1+2δ)L
u)⟩

ρ
) .

We can choose δ small such that (1+ 2δ)dθ′ < 1, and then iterate the Dirichlet energy
term on the right-hand side, such that the domain increases progressively to Λ3L. See
[35, eq.(56)-(60)] for details, since this step is an algebraic iteration and independent
of model. □
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2.2. Analytic tools on independent particles. In this part, we develop the

analytic tools on independent particles. We denote by X̃ ∶= NZd
for the configuration

space of independent particles on Zd, which does not have constraint for the number
of particles on every site. For η̃ ∈ X̃ such that η̃x ⩾ 1, we define the jump operator

η̃x,y ∶= η̃ − δx + δy,

and

(π̃x,yũ)(η̃) ∶= ũ(η̃
x,y
) − ũ(η̃).

The generator of the independent particles is

(L̃ũ)(η̃) ∶= ∑
x∈Zd

η̃x∑
y∼x

π̃x,yũ.(2.36)

This generates a dynamic that every particle jumps independently with rate 1 to the
nearest neighbor site.

Fix an α > 0, we denote by Poi(α) the Poisson distribution on N with mean α

and P̃α ∶= Poi(α)⊗Z
d
the probability measure on X̃ which is stationary with respect

to L̃ in (2.36), and ⟪⋅⟫α its associated expectation. We usually write η̃ ∈ X̃ as a

canonical random variable sampled under P̃α. We also denote by P̃Λ,N and ⟪⋅⟫Λ,N
for the probability and expectation under the canonical ensemble, i.e. N particles
distributed independently and uniformly in Λ.

2.2.1. Mecke’s identity. The first lemma is about Mecke’s identity, which simplifies
some expectation under ⟪⋅⟫α by adding one additional particle. This identity is
inspired from the reference [55, Theorem 4.1].

Lemma 2.8 (Mecke’s identity). For any α > 0 and F ∶ X̃ ×Λ→ R integrable under
Pα, then for every x ∈ Λ, the following identity holds

⟪η̃xF (η̃, x)⟫α = α⟪F (η̃ + δx, x)⟫α .(2.37)

Proof. We make the calculation directly

⟪η̃xF (η̃, x)⟫α = e
−α
∞
∑
k=0

αk

k!
⟪kF (η̃, x) ∣η̃x = k⟫α

= αe−α
∞
∑
k=1

α(k−1)

(k − 1)!
⟪F (η̃, x) ∣η̃x = k⟫α

= αe−α
∞
∑
k=1

α(k−1)

(k − 1)!
⟪F (η̃ + δx, x) ∣η̃x = k − 1⟫α

= αe−α ⟪F (η̃ + δx, x)⟫α .

□

The calculation over independent particle system has a close connection with the
finite difference operator on lattice Zd or TdL. Given a function ũ ∶ X̃ → R which only

dependents on the configuration in Λ−, and using the expression η̃ Λ = ∑Ni=1 δxi , then
we have the following canonical projection

ũN(x1, x2,⋯, xN) ∶= ũ(η̃).(2.38)

Moreover, ũ is a function on X̃ if and only if ũN is invariant under permutation for
all N ∈ N+; see [35, Lemma A.1] for similar discussions.
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We state some more properties using the expression (2.38). To better treat the
high dimensional function, we define the following notation for shorthand,

⨏
ΛN
(⋅) ∶=

1

∣Λ∣N
∑

x1,⋯,xN ∈Λ
(⋅) ,

then using the notation (2.38), we observe

⟪ũ⟫Λ,N = ⨏
ΛN

ũN .(2.39)

For any integer 1 ⩽ i ⩽ N and e ∈ U ∶= {e′ ∈ Zd ∶ ∣e′∣ = 1}, the finite difference operator
Dxi,e is defined for ũN as

(Dxi,eũN)(x1,⋯, xN) ∶= ũN(x1,⋯, xi + e,⋯, xN) − ũN(x1,⋯, xi,⋯, xN),(2.40)

which is commutative in the sense

∀1 ⩽ i, j ⩽ N,∀e, e′ ∈ U, Dxi,eDxj ,e′ = Dxj ,e′Dxi,e.(2.41)

Combing the canonical projection (2.38), the finite difference operator is related to

the generator L̃ in (2.36) by the following identity

L̃ũ(η̃) =
N

∑
i=1
∑
e∈U
Dxi,eũN(x1,⋯, xN).(2.42)

Then a lot of analytic tools on Euclidean space can be applied to independent
particles.

2.2.2. H2-estimate. In the following paragraphs, we will recall H2 estimate for
independent particles (indeed identity), which will be used in the multiscale Poincaré
estimate later in Proposition 2.12. The proof follows [11, Lemma B.19] and [17,
Proposition 3.10] after a careful review. We will also explain in detail in Remark 2.10
the difficulty met when developing the counterpart for Kawasaki dynamics.

Lemma 2.9 (Dimension-free H2 estimate on torus). For any L,N ∈ N+ and any
function u, f ∶ (TdL)

N → R satisfying

N

∑
i=1
∑
e∈U
Dxi,eu = f,(2.43)

the following identity holds

⨏(Td
L)N

N

∑
i,j=1

∑
e,e′∈U

(Dxj ,e′Dxi,eu)
2
= 4⨏(Td

L)N
f2.(2.44)

Proof. It is easy to verify the identity

N

∑
i=1
∑
e∈U
Dxi,e =

1

2

N

∑
i=1
∑
e∈U
Dxi,−eDxi,e,

so (2.43) is equivalent to

1

2

N

∑
i=1
∑
e∈U
Dxi,−eDxi,eu = f.
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We evaluate the L2 sum of the two sides

⨏(Td
L)N

f2 =
1

4
⨏(Td

L)N
(
N

∑
i=1
∑
e∈U
Dxi,−eDxi,eu)

2

=
1

4
⨏(Td

L)N
(
N

∑
i=1
∑
e∈U
Dxi,−eDxi,eu)

⎛

⎝

N

∑
j=1
∑
e′∈U
Dxj ,−e′Dxj ,e′u

⎞

⎠
.

(2.45)

On torus, it is easy to verify the integration by part formula for u, v ∶ (TdL)
N → R

∀1 ⩽ i ⩽ N,e ∈ U, ⨏(Td
L)N
(Dxi,eu)v = ⨏(Td

L)N
u(Dxi,−ev).

We apply it and the commutativity (2.41) to the right-hand side of (2.45)

⨏(Td
L)N
(Dxi,−eDxi,eu) (Dxj ,−e′Dxj ,e′u) = ⨏(Td

L)N
(Dxi,eu) (Dxi,eDxj ,−e′Dxj ,e′u)

= ⨏(Td
L)N
(Dxi,eu) (Dxj ,−e′Dxi,eDxj ,e′u)

= ⨏(Td
L)N
(Dxj ,e′Dxi,eu) (Dxi,eDxj ,e′u)

= ⨏(Td
L)N
(Dxi,eDxj ,e′u)

2
.

We put it back to the right-hand side of (2.45) and conclude (2.44). □

Remark 2.10. If one hopes to recover a similar identity on Kawasaki dynamics for
u, f ∶ X → R, such that ∑b∈(Td

L)∗
πbu = f , then we also have πb =

1
2πbπb and integration

by part formula. However, the main difficulty appears in the commutativity. The
identity

πbπb′ = πb′πb,

holds when b∩b′ = ∅. Otherwise, when b, b′ shares common endpoint, as the symmetry
group is not Abelian, some exotic term will generate and pose challenge.

We then extend the result above to the discrete Poisson equation on cube ΛL.
Here we add the Neumann boundary condition (2.46), and the indicator in (2.47)
excludes the second-order finite difference outside Λ+L.

Corollary 2.11 (Dimension-free H2 estimate on cube). For any L,N ∈ N+ and any
function u, f ∶ (ΛL)

N → R satisfying

N

∑
i=1
∑
e∈U
Dxi,eu = f,

with the Neumann boundary condition

Dxi,eu1{xi∈∂ΛL,xi+e∉ΛL} = 0,(2.46)

we have

⨏(ΛL)N

N

∑
i,j=1

∑
e,e′∈U

(Dxj ,e′Dxi,eu)
21{xi=xj ,e=e′,xi+2e∉ΛL} = 4⨏(ΛL)N

f2.(2.47)

Proof. The main idea of proof is periodization. Only in this proof, we work on
half integers. With a translation and scaling, we set the cube of size L is ◻ =
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(Z+ 1
2)
d ∩ [0, L]d and set ◻̃ = (Z+ 1

2)
d ∩ [−L,L]d. We still denote by u, f ∶ (◻)N → R

and extend them to ũ, f̃ ∶ (◻̃)N → R by mirror symmetry

x1,⋯, xN ∈ (◻̃)
N , ũ(x1,⋯, xN) ∶= u(∣x1∣,⋯, ∣xN ∣).(2.48)

Next, we identify the opposite sides of the cube [−L,L]d together to get a torus, and

view ◻̃ as a lattice torus Td2L. Then functions ũ, f̃ on ◻̃ can be regarded as functions

on Td2L. Moreover, the Neaumann boundary condition and the mirror symmetry

implies that on the whole Td2L, we have

N

∑
i=1
∑
e∈U
Dxi,eũ = f̃ ,

Therefore, Lemma 2.9 applies to obtain

⨏(Td
2L)N

N

∑
i,j=1

∑
e,e′∈U

(Dxj ,e′Dxi,eũ)
2
= 4⨏(Td

2L)N
f̃2.

Each side counts 2d times in the integration over ◻, which gives us

⨏◻N

N

∑
i,j=1

∑
e,e′∈U

(Dxj ,e′Dxi,eũ)
2
= 4⨏◻N

f̃2.

We realize that the second-order derivative of ũ near the boundary vanishes due
to the Neaumann boundary condition and the mirror symmetry, then we conclude
(2.47).

□

2.2.3. Multiscale Poincaré inequality. In this part, we introduce the notion of spatial
average and use it to develop some kind of multiscale Poincaré inequality.

We define the gradient by adding one more particle

(∂kũ)(η̃, x) ∶= ũ(η̃ + δx+ek) − ũ(η̃ + δx),

(∇̃ũ)(η̃, x) ∶= ((∂1ũ)(η̃, x), (∂2ũ)(η̃, x),⋯, (∂dũ)(η̃, x)) .
(2.49)

Recalling the definition of the enlarged domain in (1.36), we define the filtration

G̃Λ+ ∶= σ ( ∑
x∈Λ+

η̃x,{η̃y, y ∈ (Λ
+
)
c
}) .(2.50)

Using Zm,n and Zn defined in Section 1.4.1, we also define the spatial average operator

Sn(∇̃ũ)(η̃, x) ∶= ∑
z∈Zn

⎛

⎝

1

∣◻n∣
∑

y∈z+◻n

⟪(∇̃ũ)(η̃, y) ∣G̃(z+◻n)+⟫
⎞

⎠
1{x∈z+◻n}.(2.51)

That is, this operator makes spatial average over the added particle and over the local
configuration. The enlarged domain (z +◻n)

+ is needed to include all the sites to

add particle in (∇̃ũ(µ,x))x∈z+◻n . Then note that ⟪⋅ ∣G̃(z+◻n)+⟫α does not dependent
on α > 0, so we drop the density α. This leads to the multiscale Poincaré inequality.

Proposition 2.12 (Multiscale Poincaré inequality). There exists a finite positive

constant C= C(d) such that for all function ũ ∶ X̃ → R such that ⟪ũ ∣G̃◻+m⟫ = 0, we
have

(2.52) ⟪
1

∣◻m∣
ũ2⟫

1
2

α

⩽ Cα
1
2

m

∑
n=1

3n
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟪∣Sn∇̃ũ∣
2
(η̃, z)⟫

α

⎞

⎠

1
2
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Proof. We are only interested in the case that ũ is integrable under ⟪⋅⟫α. The proof
follows [35, Proposition 3.5] and we give a scratch here. Let w̃ solve the following
equation

∑
x∈◻m

η̃x∑
y∼x

π̃x,yw̃ = ũ,

in the sense of the Poisson equation with the same Neumann boundary condition
(2.46) for w̃ in Corollary 2.11 and by the identity (2.42). This will give us the H2

estimate for w̃ using the projection. Then we have

1

∣◻m∣
⟪ũ2⟫

α
=

1

∣◻m∣

d

∑
i=1
∑
x∈◻m

⟪η̃x(π̃x,x+ei ũ)(π̃x,x+eiw̃)⟫α

=
α

∣◻m∣
∑
x∈◻m

⟪(∇̃ũ)(∇̃w̃)(η̃, x)⟫
α
.

Here we use the Mecke’s identity in Lemma 2.8. Then we add the local averages

1

∣◻m∣
⟪ũ2⟫

α
=

α

∣◻m∣
∑
x∈◻m

⟪(∇̃ũ)(∇̃w̃ − S0∇̃w̃)(η̃, x)⟫α

+
m−1
∑
n=0

α

∣◻m∣
∑
x∈◻m

⟪(Sn∇̃ũ)(Sn∇̃w̃ − Sn+1∇̃w̃)(η̃, x)⟫α

+
α

∣◻m∣
∑
x∈◻m

⟪(Sm∇̃ũ)(Sm∇̃w̃)(η̃, x)⟫α .

We just focus on one scale, which gives us
RRRRRRRRRRR

1

∣◻m∣
∑
x∈◻m

⟪(Sn∇̃ũ)(Sn∇̃w̃ − Sn+1∇̃w̃)(η̃, x)⟫α

RRRRRRRRRRR

=

RRRRRRRRRRRR

1

∣Zm,n∣
∑

z∈Zm,n

⟪(Sn∇̃ũ)(Sn∇̃w̃ − Sn+1∇̃w̃)(η̃, z)⟫α

RRRRRRRRRRRR

⩽
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟪∣Sn∇̃ũ∣
2
(η̃, z)⟫

α

⎞

⎠

1
2
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟪∣Sn∇̃w̃ − Sn+1∇̃w̃∣
2
(η̃, z)⟫

α

⎞

⎠

1
2

⩽ Cα−
1
2 3n
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟪∣Sn∇̃ũ∣
2
(η̃, z)⟫

α

⎞

⎠

1
2

⟪
1

∣◻m∣
ũ2⟫

1
2

α

.

From the third line to the forth line, we use the Poincaré inequality of independent

particles for the term ∣Sn∇̃w̃ − Sn+1∇̃w̃∣
2
, and this will give the factor 3n. The output

is the second-order derivatives of w̃, which will be bounded by ⟪ũ2⟫
α
using the

dimension-free H2 estimate in Corollary 2.11. Here the factor α−
1
2 comes from

another application of Mecke’s identity (2.37), and this concludes (2.52). □

3. Coarse-grained lifting

This part introduces the key technique to handle the constraint of particle numbers
in Kawasaki dynamics, which is the coarse-grained lifting to independent particles. Let

η̃ ∈ X̃ = NZd
stand for the configuration of independent particles, and η ∈ X = {0, 1}Z

d

for the configuration in Kawasaki dynamics. We aim to embed X into X̃ , and a
natural idea is to define the following projection [] ∶ X̃ → X that

∀x ∈ Zd, [η̃]x ∶= 1{η̃x⩾1}.(3.1)
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Therefore, [η̃] only indicates whether the site is occupied, but does not care the exact
number of particles. This projection operator also induces an extension for every
function u ∶ X → R by pull-back that

[u] ∶ X̃ → R, [u](η̃) ∶= u([η̃]),(3.2)

and we call [u] the coarsened function of u. In the following paragraphs, we will
use [η̃] to represent the configuration of Kawasaki dynamics, and explore several
identities under this projection/coarsen.

3.1. Grand canonical ensemble. Let the configuration of independent particles
η̃ follow the law P̃α, which is independent Poisson distribution of parameter α > 0.
In order to make [η̃] of the same law as sampled from Pρ, we make a specific choice
between the parameters such that e−α = 1 − ρ, i.e.

∀ρ ∈ (0,1), α(ρ) ∶= − log(1 − ρ).(3.3)

Under this specific choice of parameter, we can see the coarsen function [u] as a lift
of u thanks of the following proposition.

Proposition 3.1 (Coarsen-grained lifting). Given ρ ∈ (0,1) and α(ρ) defined as

(3.3) and η̃ sampled from P̃α(ρ), then [η̃] ∈ X follows the law Pρ. As a consequence,
for every u ∶ X → R integrable under Pρ, its coarsen function satisfies

⟪[u]⟫α(ρ) = ⟨u⟩ρ .(3.4)

Proof. With the choice of the parameter (3.3) and the definition of the projection
operator (3.1), we have

∀x ∈ Zd, P̃α(ρ)[[η̃]x = 0] = P̃α(ρ)[η̃x = 0] = e−α(ρ) = 1 − ρ,

P̃α(ρ)[[η̃]x = 1] = P̃α(ρ)[η̃x ⩾ 1] = 1 − P̃α(ρ)[η̃x = 0] = ρ.

Therefore, [η̃]x follows the Bernoulli law with parameter ρ. Since (η̃x)x∈Zd are i.i.d.
random variables, [η̃] has the same law as Pρ. Combing this fact and (3.2), the
identity (3.4) is a direct corollary

⟪[u]⟫α(ρ) = ⟪u([η̃])⟫α(ρ) = ⟨u(η)⟩ρ .

□

Although we can couple the static configuration between two systems and obtain
the nice identity (3.4), similar result cannot be extended to the Dirichlet energy and
we cannot expect a similar identity like

∑
x∈Λ

∑
y∈Λ,y∼x

⟪η̃x(π̃x,y[u])
2⟫

α(ρ) = C(ρ) ∑
x,y∈Λ,x∼y

⟨(πx,yu)
2⟩
ρ
.(3.5)

On the other hand, the coarse-grained lifting can be very useful when evaluating the
spatial average of the gradient. We establish the following identity, which can be
used as the gradient coupling. We recall the definition of the tangent field ∇x,ei for
Kawasaki dynamics defined in (1.46).

Proposition 3.2 (Gradient coupling). For every ρ ∈ (0,1),Λ ⊆ Zd and u ∶ X → R,
the following identity holds for every i ∈ {1,⋯, d}

∑
x∈Λ
⟪η̃xπ̃x,x+ei[u]⟫α(ρ) =

α(ρ)

2ρ
∑
x∈Λ
⟨∇x,eiu⟩ρ .(3.6)
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Proposition 3.2 is the result of the following lemmas. We state them separately as
they can be useful in other proofs. The first lemma is a similar version of Mecke’s
identity in Kawasaki dynamics. Here, instead of adding a particle, the added particle
is understood as “forcing the site occupied”.

Lemma 3.3 (Mecke’s identity in Kawasaki dynamics). For every ρ ∈ (0,1) and
u ∶ X → R, the following identity holds

⟨∇x,eiu⟩ρ = 2ρ (⟨u ∣ηx+ei = 1⟩ρ − ⟨u ∣ηx = 1⟩ρ) .(3.7)

Proof. Recall the identity (1.47) and the term is non-zero if and only if (ηx, ηx+ei) =
(1,0) or (ηx, ηx+ei) = (0,1). Then we obtain that

⟨(πx,x+eiu)(πx,x+eiℓei)⟩ρ = 2 ⟨u(η)1{(ηx,ηx+ei)=(0,1)}
− u(η)1{(ηx,ηx+ei)=(1,0)}

⟩
ρ
.

Here noticing that the term (ηx, ηx+ei) = (1,1) is canceled on the right-hand side of
the equation, we can rewrite it as

⟨u(η)1{(ηx,ηx+ei)=(0,1)}
− u(η)1{(ηx,ηx+ei)=(1,0)}

⟩
ρ

= ⟨u(η)1{(ηx,ηx+ei)=(0,1)}
+ u(η)1{(ηx,ηx+ei)=(1,1)}

⟩
ρ

− ⟨u(η)1{(ηx,ηx+ei)=(1,0)}
+ u(η)1{(ηx,ηx+ei)=(1,1)}

⟩
ρ

= ⟨u(η)1{ηx+ei=1}
− u(η)1{ηx=1}⟩ρ

.

Therefore, we obtain the identity

⟨(πx,x+eiu)(πx,x+eiℓei)⟩ρ = 2 ⟨u(η)1{ηx+ei=1}
− u(η)1{ηx=1}⟩ρ

= 2ρ (⟨u ∣ηx+ei = 1⟩ρ − ⟨u ∣ηx = 1⟩ρ) .

□

The second lemma makes the bridge between Lemma 2.8 and Lemma 3.3, and is a
corollary from Proposition 3.1.

Lemma 3.4 (Change of variable). For any ρ ∈ (0,1) and x, y ∈ Zd, let η ∈ X be

sampled from Pρ and η̃ ∈ X̃ sampled from P̃α(ρ), then we have

([η̃ + δx], [η̃ + δy])
(d)
= (η ∨ δx, η ∨ δy),(3.8)

where η ∨ δx ∈ X is defined as (η ∨ δx)x = ηx ∨ 1 and (η ∨ δx)z = ηz for z ≠ x.

Proof. The proof follows the observation that

[η̃ + δx] = [η̃] ∨ δx.

Thus, we apply Proposition 3.1

([η̃ + δx], [η̃ + δy]) = ([η̃] ∨ δx, [η̃] ∨ δy)
(d)
= (η ∨ δx, η ∨ δy).

□

Proof of Proposition 3.2. We combine the results in Lemma 2.8, Lemma 3.3 and
Lemma 3.4

∑
x∈Λ
⟪η̃xπ̃x,x+ei[u]⟫α(ρ)

(2.37)
= α(ρ)∑

x∈Λ
⟪[u](η̃ + δx+ei) − [u](η̃ + δx)⟫α(ρ)
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(3.2)
= α(ρ)∑

x∈Λ
⟪u([η̃ + δx+ei]) − u([η̃ + δx])⟫α(ρ)

(3.8)
= α(ρ)∑

x∈Λ
⟨u(η ∨ δx+ei) − u(η ∨ δx)⟩ρ

(3.7)
=

α(ρ)

2ρ
∑
x∈Λ
⟨(πx,x+eiu)(πx,x+eiℓei)⟩ρ .

Here from the third line to the forth line, we also use the fact ⟨u ∣ηx = 1⟩ρ = ⟨u(η ∨ δx)⟩ρ.
□

At the end of this subsection, we give another application of Lemma 3.3. We recall
the notation Λ− defined in (1.34).

Corollary 3.5. For every bounded set Λ ⊆ Zd and u ∈ F0(Λ
−), we have

∑
x∈Λ
⟨∇xu⟩ρ = 0.(3.9)

Proof. We just focus on the gradient field along one direction ei and apply (3.7)

∑
x∈Λ
⟨∇x,eiu⟩ρ = 2ρ∑

x∈Λ
(⟨u(η ∨ δx+ei)⟩ρ − ⟨u(η ∨ δx)⟩ρ)

= 2ρ
⎛

⎝
∑

x∈Λ,x+ei∉Λ
⟨u(η ∨ δx)⟩ρ − ∑

x∈Λ,x−ei∉Λ
⟨u(η ∨ δx)⟩ρ

⎞

⎠

= 2ρ
⎛

⎝
∑

x∈Λ,x+ei∉Λ
⟨u(η)⟩ρ − ∑

x∈Λ,x−ei∉Λ
⟨u(η)⟩ρ

⎞

⎠

= 0.

In the first line, we also use the observation ⟨u ∣ηx = 1⟩ρ = ⟨u(η ∨ δx)⟩ρ. Then the
proof is similar to the discrete Stokes’ formula that all the terms except those on the
boundary cancel, which yields the second line. The condition u ∈ F0(Λ

−) implies that
u(η ∨ δx) = u(η) and passes the result from the second line to the third line. Finally,
as the terms in ∑x∈Λ,x+ei∉Λ and ∑x∈Λ,x−ei∉Λ are coupled, we obtain 0. □

3.2. Canonical ensemble. We establish a gradient coupling similar to Proposi-
tion 3.2 under the canonical ensemble. Recall Λ+ defined in (1.36).

Proposition 3.6 (Gradient coupling). For every M ∈ N,Λ ⊆ Zd and u ∶ X → R a
FΛ+-measurable function, let (η̃x)x∈Λ+ be sampled from the canonical ensemble of

independent particles P̃Λ+,M and (PΛ,M,N)N∈N be the probability of the number of
occupied sites defined as

PΛ,M,N ∶= P̃Λ+,M

⎡
⎢
⎢
⎢
⎢
⎣

∑
z∈Λ+∖{y}

1{η̃z>0} = N − 1
⎤
⎥
⎥
⎥
⎥
⎦

, y ∈ Λ+,(3.10)

then the following identity holds for every i ∈ {1,⋯, d}

∑
x∈Λ
⟪∂i[u](η̃, x)⟫Λ+,M =

M

∑
N=1

∣Λ+∣PΛ,M,N

2N
∑
x∈Λ
⟨∇x,eiu⟩Λ+,N .(3.11)

Remark 3.7. One can check that (3.10) is well-defined and does not depend on the
choice of y. One can pick a specific y and put it back to (3.11). This will make the
identity there a little strange, but it transfers the symmetry used in the proof.
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To prove this proposition, we also give a Mecke’s identity like Lemma 3.3 under
the canonical ensemble.

Lemma 3.8 (Mecke’s identity under canonical ensemble). Given u ∶ X → R, then
for every N ∈ N, a subset Λ ⊆ Zd and x ∈ Λ, the following identity holds

⟨∇x,eiu⟩Λ+,N =
2N

∣Λ+∣
(⟨u ∣ηx+ei = 1⟩Λ+,N − ⟨u ∣ηx = 1⟩Λ+,N) .(3.12)

Proof. The proof follows the similar strategy as Lemma 3.3

⟨(πx,x+eiu)(πx,x+eiℓei)⟩Λ+,N = 2 ⟨u(η)1{(ηx,ηx+ei)=(0,1)}
− u(η)1{(ηx,ηx+ei)=(1,0)}

⟩
Λ+,N

= 2 ⟨u(η)1{ηx+ei=1}
− u(η)1{ηx=1}⟩Λ+,N

=
2N

∣Λ+∣
(⟨u ∣ηx+ei = 1⟩Λ+,N − ⟨u ∣ηx = 1⟩Λ+,N) .

Here from the first line to the second line, we use the fact that the case (ηx, ηx+ei) =
(1, 1) cancels. From the second line to the third line, we notice that x,x + ei ∈ Λ

+, so

PΛ+,N [ηx = 1] = PΛ+,N [ηx+ei = 1] =
(
(∣Λ+∣−1)
(N−1) )

(
∣Λ+∣
N
)
=
N

∣Λ+∣
.

□

Proof of Proposition 3.6. Notice that, for every x ∈ Λ+, we have

⟪[u](η̃ + δx)⟫Λ+,M

= ⟪u([η̃ + δx])⟫Λ+,M

=
M

∑
N=1

P̃Λ+,M [∑
z∈Λ+

1{η̃z+δx>0} = N]⟪u([η̃ + δx]) ∣ ∑
z∈Λ+

1{η̃z+δx>0} = N⟫
Λ+,M

=
M

∑
N=1

PΛ,M,N ⟨u ∣ηx = 1⟩Λ+,N .

(3.13)

Here we apply the definition of the projection operator (3.1) from the first line to
the second line, and the total probability formula from the second line to the third
line. The passage from the third line to the forth line requires some work. Firstly, we
recall the identity (3.10)

P̃Λ+,M [∑
z∈Λ+

1{η̃z+δx>0} = N] = P̃Λ+,M

⎡
⎢
⎢
⎢
⎢
⎣

∑
z∈Λ+∖{x}

1{η̃z>0} = N − 1
⎤
⎥
⎥
⎥
⎥
⎦

= PΛ,M,N .

We also remark that PΛ,M,N is well-defined and does not dependent on the excluded
site x. Secondly, we notice that, for every choice of vertex set V ⊆ Λ+ ∖ {x} such that
∣V ∣ = N − 1, in the following set

{∑
z∈Λ+

η̃z =M ∶ η̃z > 0 for all z ∈ V, and η̃z = 0 for all z ∈ Λ+ ∖ ({x} ∪ V )} ,

the number of configurations is the same. Therefore, the configuration [η̃ + δx]
contains a particle on x, and the other occupied positions are uniformly distributed
conditioned on the number of occupied sites. This generalizes the coarse-grained
lifting under the canonical ensemble, and gives the passage concerning the conditional
expectation in the third line of (3.13).
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Applying (3.13), we obtain

∑
x∈Λ
⟪[u](η̃ + δx+ei) − [u](η̃ + δx)⟫Λ+,M

=
M

∑
N=1

PΛ,M,N ∑
x∈Λ
(⟨u ∣ηx+ei = 1⟩Λ+,N − ⟨u ∣ηx = 1⟩Λ+,N)

=
M

∑
N=1

∣Λ+∣PΛ,M,N

2N
∑
x∈Λ
⟨(πx,x+eiu)(πx,x+eiℓei)⟩Λ+,N .

Here from the second line to the third line, we also use (3.12). This yields the desired
result. □

3.3. Weighted multiscale Poincaré inequality. As the main result of this sub-
section, we combine the coarse-grained lifting and gradient coupling to obtain the
weighted multiscale Poincaré inequality on Kawasaki dynamics. Here we define GΛ+
similar to (2.50)

(3.14) GΛ+ ∶= σ ( ∑
x∈Λ+

ηx,{ηy, y ∈ (Λ
+
)
c
}) .

Proposition 3.9 (Weighted multiscale Poincaré inequality). There exists a finite
positive constant C = C(d, ρ) such that for all functions u ∶ X → R such that
⟨u ∣G◻+m⟩ = 0, the following estimate is established

(3.15) ⟨
1

∣◻m∣
u2⟩

1
2

ρ

⩽ Cα
1
2

m

∑
n=0

3n
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟨(
∣◻+n∣

2Nz,n
)

2 RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇xu⟩z+◻+n,Nz,n

RRRRRRRRRRR

2

⟩

ρ

⎞

⎠

1
2

.

Here the random variable Nz,n is defined as Nz,n ∶= 1 +∑x∈(z+◻+n)∖{z} ηx.

Proof. Step 1: forward procedure. In order to better estimate its L2 norm, we need
the multiscale Poincaré inequality (2.52). Since this is only established in independent
particle systems, we make use of the coarse-grained lifting developed in Proposition 3.1
as a bridge, that is

⟨
1

∣◻m∣
u2⟩

1
2

ρ

= ⟪
1

∣◻m∣
[u]2⟫

1
2

α(ρ)

⩽ Cα
1
2 (ρ)

m

∑
n=1

3n
⎛

⎝

1

∣Zm,n∣
∑

z∈Zm,n

⟪∣Sn∇̃[u]∣
2
(η̃, z)⟫

α(ρ)

⎞

⎠

1
2

.

We also remark that ⟨u ∣G◻+m⟩ = 0 ensures the condition ⟨[u] ∣G̃◻+m⟩ = 0 to apply (2.52).

Step 2: backward procedure. We focus on one term ⟪(Sn∇̃[u])
2
(η̃, z)⟫

α(ρ)
, which

is the spatial average in the independent particles. Our main task in this step is
to bring (Sn∇̃[u])(η̃, z) back to the original Kawasaki dynamics from the coarsen
operator. We apply the definition of Sn in (2.51)

(3.16) ⟪∣Sn∇̃[u]∣
2
(η̃, z)⟫

α(ρ)
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=
∞
∑
M=0

P̃α(ρ)
⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈z+◻+n

η̃y =M

⎤
⎥
⎥
⎥
⎥
⎦

⟪

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟪∇̃[u](η̃, x)⟫
z+◻+n,M

RRRRRRRRRRR

2

⟫

α(ρ)
.

More precisely, by ⟪∇̃[u](η̃, x)⟫
z+◻+n,M we mean

⟪∇̃[u](η̃, x)⟫
z+◻+n,M = ∫X̃

∇̃[u](η̃′ (z +◻+n) + η̃ (z +◻+n)
c, x)dP̃z+◻+n,M(η̃

′
).

Then we apply the gradient coupling (3.11) to the term η̃′ in the right-hand side

⎛

⎝

1

∣◻n∣
∑

x∈z+◻n

⟪∂i[u](η̃, x)⟫z+◻+n,M
⎞

⎠

2

= (
M

∑
N=1

Pz+◻n,M,N
∣◻+n∣

2N

1

∣◻n∣
∑

x∈z+◻n

⟨(∇x,eiu)(η (z +◻+n) + [η̃] (z +◻
+
n)
c
)⟩z+◻+n,N

⎞

⎠

2

⩽
M

∑
N=1

Pz+◻n,M,N (
∣◻+n∣

2N
)

2

⎛

⎝

1

∣◻n∣
∑

x∈z+◻n

⟨(∇x,eiu)(η (z +◻+n) + [η̃] (z +◻
+
n)
c
)⟩z+◻+n,N

⎞

⎠

2

.

From the second line to the third line, we make use of Jensen’s inequality. We also
remark that, our function is not Fz+◻+n-measurable, thus we keep [η̃] (z +◻+n)

c after
the local average. We put this result back to (3.16) and apply Proposition 3.1 to
[η̃] (z +◻+n)

c, which gives us

(3.17) ⟪
⎛

⎝

1

∣◻n∣
∑

x∈z+◻n

⟨(∇x,eiu)(η (z +◻+n) + [η̃] (z +◻
+
n)
c
)⟩z+◻+n,N

⎞

⎠

2

⟫

α(ρ)

= ⟨
⎛

⎝

1

∣◻n∣
∑

x∈z+◻n

⟨∇x,eiu⟩z+◻+n,N
⎞

⎠

2

⟩

ρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶F (N)

.

Using the definition (3.10) with a specific choice y = z there, we have

Pz+◻n,M,N = P̃z+◻+n,M
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈(z+◻+n)∖{z}

1{η̃x>0} = N − 1
⎤
⎥
⎥
⎥
⎥
⎦

.

Then we apply Fubuni’s lemma to the double sum

⟪(Sn(∂i[u])(η̃, z))
2
⟫
α(ρ)

⩽
∞
∑
M=0

P̃α(ρ)
⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈z+◻+n

η̃y =M

⎤
⎥
⎥
⎥
⎥
⎦

M

∑
N=1

Pz+◻n,M,N (
∣◻+n∣

2N
)

2

F (N)

=
∞
∑
N=1

⎛

⎝
∑
M⩾N

P̃α(ρ)
⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈z+◻+n

η̃y =M

⎤
⎥
⎥
⎥
⎥
⎦

P̃z+◻+n,M
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈(z+◻+n)∖{z}

[η̃]x = N − 1

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
(
∣◻+n∣

2N
)

2

F (N)
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=
∞
∑
N=1

P̃α(ρ)
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈(z+◻+n)∖{z}

[η̃]x = N − 1

⎤
⎥
⎥
⎥
⎥
⎦

(
∣◻+n∣

2N
)

2

F (N)

=
∞
∑
N=1

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈(z+◻+n)∖{z}

ηx = N − 1

⎤
⎥
⎥
⎥
⎥
⎦

(
∣◻+n∣

2N
)

2

F (N)

The identity from the third line to the forth line comes from the definition of
conditional probability. From the forth line to the fifth line, we apply the coarse-
grained lifting in Proposition 3.1 once again. Using the notation of Nz,n, the last

term becomes ⟨(
∣◻+n∣
2Nz,n

)
2
F (Nz,n)⟩

ρ
, and it gives us

(3.18) ⟪(Sn(∂i[u])(η̃, z))
2
⟫
α(ρ)

⩽ ⟨(
∣◻+n∣

2Nz,n
)

2
⎛

⎝

1

∣◻n∣
∑

x∈z+◻n

⟨(∇x,eiu)⟩z+◻+n,Nz,n

⎞

⎠

2

⟩

ρ

.

This result is as expected, since we retract the spatial average under the Kawasaki
dynamics with a weight of particle numbers. □

4. Subadditive quantities

In this section, we define several subadditive quantities and develop their elementary
properties.

4.1. Subadditive quantities ν and ν∗. For every finite set Λ ⊆ Zd and p, q ∈ Rd,
we define the quantities

ν(ρ,Λ, p) ∶= inf
v∈ℓp,Λ++F0(Λ−)

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
⟨
1

2
cb(πbv)

2
⟩
ρ

⎫⎪⎪
⎬
⎪⎪⎭

,

ν∗(ρ,Λ, q) ∶= sup
v∈F0

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
⟨(πbℓq)(πbv) −

1

2
cb(πbv)

2
⟩
ρ

⎫⎪⎪
⎬
⎪⎪⎭

.

(4.1)

Recall that the affine function ℓp,Λ+ defined in (1.45), and Λ−, Λ∗ defined respectively
in (1.34), (1.35). Compared to (1.20), here we add the factor χ(ρ) in the normalization,
which will make the notation lighter in the homogenization step.

We record some elementary properties satisfied by ν and ν∗.

Proposition 4.1 (Elementary properties of ν and ν∗). The following properties hold
for every bounded Λ ⊆ Zd and p, p′, q, q′ ∈ Rd.

(1) There exists a unique solution for the optimization problem of ν(ρ,Λ, p) sat-
isfying ⟨v − ℓp,Λ+⟩ρ = 0; we denote it by v(⋅, ρ,Λ, p). For the optimization problem

of ν∗(ρ,Λ.q), there exists a unique maximizer u(⋅,Λ, q) being independent of ρ and
belonging to F0(Nr(Λ

+)) satisfying Eρ[u∣GΛ+] = 0, where GΛ+ is defined in (3.14) and
Nr(Λ

+) is defined as

Nr(Λ
+
) ∶= {x ∈ Zd ∶ dist(x,Λ+) ⩽ r}.

Moreover, the two optimizers are both harmonic in the sense v(⋅, ρ,Λ, p), u(⋅,Λ, q) ∈
A(Λ), where A(Λ) is defined in (1.41).
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(2) There exist two d × d symmetric matrices D(ρ,Λ) and D∗(ρ,Λ) such that for
every p, q ∈ Rd

ν(ρ,Λ, p) =
1

2
p ⋅D(ρ,Λ)p, ν∗(ρ,Λ, q) =

1

2
q ⋅D

−1
∗ (ρ,Λ)q(4.2)

and these matrices satisfy Id ⩽D(ρ,Λ),D∗(ρ,Λ) ⩽ λId. Moreover, for ever p′, q′ ∈ Rd,
we have

p′ ⋅D(ρ,Λ)p = ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πbℓp′)(πbv(⋅, ρ,Λ, p))⟩

ρ

,

q′ ⋅D
−1
∗ (ρ,Λ)q = ⟨

1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(πbℓq′)(πbu(⋅,Λ, q))⟩

ρ

.

(4.3)

(3) For every v′ ∈ ℓp,Λ+ +F0(Λ
−), we have

(4.4) ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗

1

2
cb(πb(v − v

′
))

2
⟩

ρ

= ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗

1

2
cb(πbv

′
)
2
⟩

ρ

− ν(ρ,Λ, p),

where v = v(⋅, ρ,Λ, p) is the minimizer defined in (1).

Similarly, for every u′ ∈ F0 and the maximiser u = u(⋅,Λ, q) defined in (1), we have

(4.5) ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗

1

2
cb(πb(u − u

′
))

2
⟩

ρ

= ν∗(ρ,Λ, q) − ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbu

′
)
2
+ (πbℓq)(πbu

′
))⟩

ρ

.

(4) For any partition of verticies Λ = ⊔mi=1Λi, we have

ν(ρ,Λ, p) ⩽
m

∑
i=1

∣Λi∣

∣Λ∣
ν(ρ,Λi, p),(4.6)

ν∗(ρ,Λ, p) ⩽
m

∑
i=1

∣Λi∣

∣Λ∣
ν∗(ρ,Λi, p).(4.7)

In particular, we have ν(ρ,◻n+1, q) ⩽ ν(ρ,◻n, q) and ν∗(ρ,◻n+1, q) ⩽ ν∗(ρ,◻n, q) for
every n ∈ N+.

Proof. The proof of this proposition is elementary and standard. We give the
complete proof of (1), which concerns some details. For other statements, we sketch
the main idea of the proof. Readers may look for details in a similar setting in [35,
Proposition 4.1].

(1) We first study ν(ρ,Λ, p). By a variational calculus, the minimizer of the
equation can be characterized by the equation that for any ϕ ∈ F0(Λ

−),

(4.8) ⟨∑

b∈Λ∗
cb(πb(v − ℓp,Λ+))(πbϕ)⟩

ρ

= ⟨∑

b∈Λ∗
cb(πb(−ℓp,Λ+))(πbϕ)⟩

ρ

.

We can define its solution in the space

V = {f ∈ F0(Λ
−
) ∶ ⟨f⟩ρ = 0}.

The coercivity is ensured by Poincaré inequality (2.5) and we can apply Lax–Milgram
theorem to get the unique minimizer v(⋅, ρ,Λ, p). Moreover, (4.8) implies that
v(⋅, ρ,Λ, p) ∈ A(Λ).
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Then we turn to ν∗(ρ,Λ, q). A first observation is that the maximizer can be
found in F0(Nr(Λ

+)). Because for any u ∈ F0, its conditional expectation ANr(Λ+)u
(defined in (2.9)) reaches a larger value for the functional. More precisely,

⟨∑

b∈Λ∗
(−

1

2
cb(πbANr(Λ+)u)

2
+ (πbℓq)(πbANr(Λ+)u)⟩

ρ

= ⟨∑

b∈Λ∗
(−

1

2
cb(ANr(Λ+)πbu)

2
+ (πbℓq)(πbANr(Λ+)u)⟩

ρ

⩾ ⟨∑

b∈Λ∗
(−

1

2
cb(πbu)

2
+ (πbℓq)(πbu)⟩

ρ

,

(4.9)

where we use the locality of cb and (2.11) from the first line to the second line, and
Jensen’s inequality from the second line to the third line.

Similar to the discussion above, the maximizer of the functional can be characterized
by the variational equation that for any ϕ ∈ F0,

⟨∑

b∈Λ∗
cb(πbu)(πbϕ)⟩

ρ

= ⟨∑

b∈Λ∗
(πbℓq)(πbϕ)⟩

ρ

(4.10)

Notice that for any GΛ+ measurable function ϕ′, the difference πbϕ
′ becomes zero

and thus the above equation automatically holds. By replacing ϕ by ϕ −Eρ[ϕ∣GΛ+]
we may only solve the problem for all ϕ in the space W = {f ∈ F0 ∶ Eρ[f ∣GΛ+] = 0}.
Moreover, testing the equation with ϕ1{∑x∈Λ+ ηx=N}1{ηy=εy , for finitely many y∈(Λ+)c} for
arbitrary N ∈ N and εy ∈ {0,1}, we acturally reinforce the equation (4.10) into a
stronger way

Eρ [∑
b∈Λ∗

cb(πbu)(πbϕ) ∣ GΛ+] = Eρ [∑
b∈Λ∗
(πbℓq)(πbϕ) ∣ GΛ+] .(4.11)

and we may seek for the solution in the spaceW . In this space the Poincaré inequality
(2.8) ensures the coercivity, so Lax–Milgram theorem applies and we get the unique
maximizer u(⋅,Λ, q). We emphasize that after taking conditional expectation with
respect to proper GΛ+ , the equation (4.11) is independent of the choice of ρ. Thus
the optimizer is found separately for every conditional expectation E[⋅∣GΛ+] and in
particular, u is a optimizer for all ρ. Moreover, testing (4.10) with ϕ ∈ F0(Λ

−), the
right hand side becomes zero thanks to (3.9) and we get u ∈ A(Λ).

(2) We test (4.8) with v(⋅, ρ,Λ, p′) − ℓp′,Λ+ and get

(4.12) ⟨∑
b∈Λ∗

cb(πbv(⋅, ρ,Λ, p))(πbv(⋅, ρ,Λ, p
′
))⟩

ρ

= ⟨∑

b∈Λ∗
cb(πbv(⋅, ρ,Λ, p))(πbℓp′,Λ+)⟩

ρ

,

which gives the linearity. To obtain the bound of D(ρ,Λ), we use the condition
1 ⩽ cb ⩽ λ in Hypothesis 1.1,

inf
v∈ℓp,Λ+F0(Λ−)

⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
(πbv)

2
⟩

ρ

⩽ inf
v∈ℓp,Λ+F0(Λ−)

⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πbv)

2
⟩

ρ

=
1

2
p ⋅D(ρ,Λ) ⋅ p

⩽ inf
v∈ℓp,Λ+F0(Λ−)

⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
λ(πbv)

2
⟩

ρ

.
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We can observe that ℓp,Λ+ is the minimizer for infv∈ℓp,Λ+F0(Λ−) ⟨
1

4χ(ρ)∣Λ∣ ∑b∈Λ∗(πbv)
2⟩
ρ
,

whose energy is precisely p2, so this proves the first part of the proposition.

The similar argument works for ν∗(ρ,Λ, q). Testing (4.10) with u(⋅,Λ, q′) yields
the linearity. Concerning the bound for D∗, we use the bound for cb to obtain:

sup
v∈F0

1

2χ(ρ)∣Λ∣
⟨−
λ

2
∑
b∈Λ∗
(πbv)

2
+ ∑
b∈Λ∗
(πbℓq,Λ+)(πbv)⟩

ρ

⩽ ν∗(ρ,Λ, q)

⩽ sup
v∈F0

1

2χ(ρ)∣Λ∣
⟨−

1

2
∑
b∈Λ∗
(πbv)

2
+ ∑
b∈Λ∗
(πbℓq,Λ+)(πbv)⟩

ρ

.

One can see in the lower bound, the maximizer is ℓ q
λ
.Λ+ , while in the upper bound,

the maximizer is ℓq,Λ+ . This gives the bound we want.

(3) This is a direct calculation. We test (4.8) with (v′ − ℓp,Λ+) to get the first
equation, and test the equation (4.10) with u′ to get the second equation.

(4) For the quantity ν(ρ,Λ, p), we use

v′ = ℓp,Λ+ +
n

∑
i=1
(v(⋅, ρ,Λi, p) − ℓp,Λ+i )

is a sub-minimizer of ν(ρ,Λ, p) to prove the subadditivity of ν. Concerning the
quantity ν∗(ρ,Λ, q), we can not “glue” the local optimizers, but we use the fact that
u(⋅,Λ, q) is a sub-maximizer for every ν∗(ρ,Λ, q) to get the subadditivity of ν∗. We
also highlight the identity (1.37), which helps avoid the boundary layer and is the
motivation we use Λ∗ in the definition (4.1).

□

Remark 4.2. Intuitively, the last part of the proof of item (1) actually says that
the maximizer u(⋅,Λ, q) can be found in the following way: first, fix the number
of particles inside Λ+ (denoted by n) and the environment outside Λ+ (denoted by
ζ), and seek for a maximizer un,ζ in this condition. Then the maximizer is exactly
obtained by pasting all the un,ζ ’s.

Viewing the subadditivity (4.6), we have the following corollary.

Corollary 4.3. For every ρ ∈ (0,1), the following limit is well-defined

D(ρ) ∶= lim
m→∞

D(ρ,◻m).(4.13)

Recall the L∞ norm over X defined as ∥F ∥∞ ∶= supη∈X ∣F (η)∣. Here we give an
upper bound estimate of v(⋅, ρ,Λ, p) and u(⋅,Λ, q) defined in Proposition 4.1.

Lemma 4.4 (L∞ estimate). For any connected domain Λ of diameter L and p, q ∈ B1,
there exists a constant C(λ, d) such that

∥v(⋅, ρ,Λ, p)∥∞ + ∥u(⋅,Λ, q)∥∞ ⩽ CL
d+2 logL.(4.14)

The proof relies on the mixing time of our non-gradient dynamic; see Appendix B.
Note that for 1 ⩽ p <∞, we have a better estimate that

∥v(⋅, ρ,Λ, p)∥p + ∥u(⋅,Λ, q)∥p ⩽ CL
d+2.

See Remark B.3 for details.
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4.2. Master quantities J . We continue to explore the dual property between ν and
ν∗ in this subsection. For every bonded Λ ⊆ Zd and p, q ∈ Rd, we define the quantities

(4.15) J(ρ,Λ, p, q) ∶= ν(ρ,Λ, p) + ν∗(ρ,Λ, q) − p ⋅ q.

We first describe J with a variational problem.

Lemma 4.5. (1) For each p, q ∈ Rd, we have the variational representation

J(ρ,Λ, p, q) ∶= sup
w∈A(Λ)

J(ρ,Λ, p, q;w),(4.16)

where J(ρ,Λ, p, q;w) is a functional defined as

(4.17) J(ρ,Λ, p, q;w)

∶= ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbw)

2
− cb(πbℓp)(πbw) + (πbℓq)(πbw))⟩

ρ

.

One maximizer is (u(⋅,Λ, q) − v(⋅, ρ,Λ, p)) with v, u defined in (1) of Proposition 4.1.

(2) The master quantity J is always positive, i.e. J(ρ,Λ, p, q) ⩾ 0.

Proof. (1) In the following paragraph, we use v(⋅, ρ,Λ, p) to denote the minimizer in
the definition of ν and write v = v(⋅, ρ,Λ, p) for short. Since we have deduced that
the maximizer of ν∗ can be found in A(Λ) in (1) of Proposition 4.1, we may write

J(ρ,Λ, p, q) = ⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πbv)

2
⟩

ρ

+ sup
u∈A(Λ)

⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbu)

2
+ (πbℓq)(πbu))⟩

ρ

− p ⋅ q.

Since (v − ℓp,Λ+) ∈ F0(Λ
−), we have

(4.18) ⟨∑

b∈Λ∗
(πb(v − ℓp,Λ+))(πbℓq,Λ+)⟩

ρ

= ∑
x∈Λ
⟨q ⋅ ∇x(v − ℓp,Λ+)⟩ρ = 0

Here the first equality comes from (1.46), (1.48), (1.49) and the second equality
comes from (3.9). Moreover, for any u ∈ A(Λ), by its definition (1.41) and noting
(v − ℓp,Λ+) ∈ F0(Λ

−) again, we have

⟨∑

b∈Λ∗
cb(πbu)(πbv)⟩

ρ

= ⟨∑

b∈Λ∗
cb(πbu)(πbℓp,Λ+)⟩

ρ

and in particular this equation is true when taking u = v.

Combining these results, we obtain

J(ρ,Λ, p, q)

= sup
u∈A(Λ)

⎛
⎜
⎝
⟨

1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πbv)

2
⟩

ρ

+ ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbu)

2
+ (πbℓq)(πbu))⟩

ρ

− ⟨
1

2χ(ρ)∣Λ∣
∑
b∈Λ∗
(πbℓp)(πbℓq)⟩

ρ

⎞

⎠

= sup
u∈A(Λ)

⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πb(u − v))

2
− cb(πbℓp)πb(u − v) + (πbℓq)πb(u − v))⟩

ρ
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= sup
w∈A(Λ)

⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbw)

2
− cb(πbℓp)(πbw) + (πbℓq)(πbw))⟩

ρ

.

From the definition of u(⋅,Λ, q), we conclude that w = u(⋅,Λ, q)−v(⋅, ρ,Λ, p) is exactly
a maximizer.

(2) We test the functional in the definition of ν∗(ρ,Λ, q) with the minimizer
v = v(⋅, ρ,Λ, p) of ν(ρ,Λ, p) and obtain

ν∗(ρ,Λ, q) ⩾ ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(−

1

2
cb(πbv)

2
+ (πbℓq)(πbv))⟩

ρ

= −ν(ρ,Λ, p) + ⟨
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
(πbℓq)(πbℓp)⟩

ρ

= −ν(ρ,Λ, p) + p ⋅ q,

which proves J(ρ,Λ, p, q) ⩾ 0. Here from the first line to the second line, we also use
the identity (4.18). □

Now we explain why J is convenient in estimating the convergence rate.

Lemma 4.6. (1) For any bounded Λ ⊆ Zd and ρ ∈ (0, 1), we have D(ρ,Λ) ⩾D∗(ρ,Λ).

(2) There exists a constant C(d, λ) such that for every symmetric matrix D̃

satisfying ∣ξ∣2 ⩽ ξ ⋅ D̃ξ ⩽ λ∣ξ∣2, we have

(4.19) ∣D̃ −D(ρ,Λ)∣ + ∣D̃ −D∗(ρ,Λ)∣ ⩽ C sup
∣p∣=1

J(ρ,Λ, p, D̃p)
1
2

Proof. (1) Recall J(ρ,Λ, p, q) ⩾ 0 from (2) of Lemma 4.5, and insert q =D∗(ρ,Λ)p to
obtain

0 ⩽J(ρ,Λ, p,D∗(ρ,Λ)p)

=
1

2
p ⋅D(ρ,Λ)p +

1

2
p ⋅D∗(ρ,Λ)p − p ⋅D∗(ρ,Λ)p

=
1

2
p ⋅D(ρ,Λ)p −

1

2
p ⋅D∗(ρ,Λ)p,

so we have D(ρ,Λ) ⩾D∗(ρ,Λ).

(2) Using the property D(ρ,Λ) ⩾D∗(ρ,Λ), we have

J(ρ,Λ, p, q) =
1

2
p ⋅D(ρ,Λ)p +

1

2
q ⋅D

−1
∗ (ρ,Λ)q − p ⋅ q

⩾
1

2
p ⋅D(ρ,Λ)p +

1

2
q ⋅D

−1
(ρ,Λ)q − p ⋅ q

=
1

2
(D(ρ,Λ)p − q) ⋅D

−1
(ρ,Λ)(D(ρ,Λ)p − q).

Setting ∣p∣ = 1 and q = D̃p, we conclude that

∣D(ρ,Λ) − D̃∣ ⩽ C sup
∣p∣=1

J(ρ,Λ, p, D̃p)
1
2 .

The proof of the statement concerning ∣D∗(ρ,Λ) − D̃∣ is similar. □

This lemma allows us to control the convergence rate of D(ρ,◻m) by showing
the convergence rate of J(ρ,◻m, p,D∗(ρ,◻m)p). Finally, we resume some more
properties of J similar to the properties for ν and ν∗.
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Proposition 4.7 (Elementary properties of J). For every ρ ∈ (0,1), every bounded
Λ ∈ Zd and every p, q ∈ Rd, the quantity J(ρ,Λ, p, q) defined as (4.15) satisfies the
following properties:

(1) First order variation and optimizer: the optimization problem in (4.16) admits
a unique solution v(⋅, ρ,Λ, p, q) ∈ A(Λ) such that Eρ[v(⋅, ρ,Λ.p, q)∣GΛ+] = 0, which can
be expressed in terms of the optimizers of ν and ν∗ as

(4.20) v(⋅, ρ,Λ, p, q) = u(⋅,Λ, q) − v(⋅, ρ,Λ, q) −Eρ[u(⋅,Λ, q) − v(⋅, ρ,Λ, p)∣GΛ+].

This solution v(⋅, ρ,Λ, p, q) satisfies that for every w ∈ A(Λ),

(4.21) ⟨∑
b∈Λ∗
(cbπbv(⋅, ρ,Λ, p, q))(πbw)⟩

ρ

= ⟨∑

b∈Λ∗
(−cb(πbℓp)(πbw) + (πbℓq)(πbw))⟩

ρ

,

and the mapping (p, q)↦ v(⋅, ρ,Λ, p, q) is linear.

(2) Quadratic response: we have an quadratic expression for J

(4.22) J(ρ,Λ, p, q) = ⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πbv(⋅, ρ,Λ, p, q))

2
⟩

ρ

.

For every w ∈ A(Λ), with the functional defined in (4.17), we have

⟨
1

4χ(ρ)∣Λ∣
∑

b∈Λ∗
cb(πb(w − v(⋅, ρ,Λ, p, q)))

2
⟩

ρ

= J(ρ,Λ, p, q) − J(ρ,Λ, p, q;w).(4.23)

(3) For any partition of verticies Λ = ⊔mi=1Λi, we have

(4.24) J(ρ,Λ, p, q) ⩽
m

∑
i=1

∣Λi∣

∣Λ∣
J(ρ,Λi, p, q).

(4) Slope property: with the gradient operator ∇x defined in (1.48), the optimizer
v(⋅, ρ,Λ, p, q) satisfies the slop property

⟨
1

2χ(ρ)∣Λ∣
∑
x∈Λ
∇xv(⋅, ρ,Λ, p, q)⟩

ρ

=D
−1
∗ (ρ,Λ)q − p.(4.25)

Proof. (1) The equation (4.21) comes directly from the first order variation calculus.
The proof of existance and uniqueness of the solution v(⋅, ρ,Λ, p, q) is similar to the
one for ν∗(ρ,Λ, q).

One can check directly that v(⋅, ρ,Λ, p1, q1) + v(⋅, ρ,Λ, p2, q2) is the solution for
the problem (4.21) with parameter (p1 + p2, q1 + q2) and it also satisfies the condi-
tional expectation condition, so we have v(⋅, ρ,Λ, p1 + p2, q1 + q2) = v(⋅, ρ,Λ, p1, q1) +
v(⋅, ρ,Λ, p2, q2) by the uniqueness, which implies (p, q)↦ v(⋅, ρ,Λ, p, q) is linear.

The exact expression (4.20) follows directly from the fact that (u(⋅,Λ, q) − v(⋅, ρ,Λ, p))
is a maximizer in (4.16), and we add the necessary regularization condition.

(2) We put v = v(⋅, ρ,Λ, p, q) in the first order variation (4.21) to get

⟨∑
b∈Λ∗
(cb(πbv)

2
+ cb(πbℓp)(πbv) − (πbℓq,Λ+)(πbv))⟩

ρ

= 0.

Then we plug this into (4.16) to get the quadratic expression. The quadratic response
(4.23) follows directly from (4.5) by testing with u = w − v(⋅, ρ,Λ, p).

(3) This is a consequence of (4.6) and (4.7).
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(4) Using the exact expression of v(⋅, ρ,Λ, p, q) in (4.20), we have

⟨
1

2χ(ρ)∣Λ∣
∑
x∈Λ
∇xv(⋅, ρ,Λ, p, q)⟩

ρ

= ⟨
1

2χ(ρ)∣Λ∣
∑
x∈Λ
∇xu(⋅,Λ, q)⟩

ρ

− ⟨
1

2χ(ρ)∣Λ∣
∑
x∈Λ
∇xv(⋅, ρ,Λ, q)⟩

ρ

=D
−1
∗ (ρ,Λ)q − p.

Here in the second line, we apply (4.3) to the first term and (4.18) to the second
term. □

5. Renormalization under grand canonical ensemble

Based on the diffusion matrix D(ρ,Λ),D∗(ρ,Λ) defined in Proposition 4.1 and
using the Einstein relation (1.10), we define the conductivity and its dual quantity
on (0,1) as

c(ρ,Λ) ∶= 2χ(ρ)D(ρ,Λ), c∗(ρ,Λ) ∶= 2χ(ρ)D∗(ρ,Λ).(5.1)

By default, when ρ ∈ {0, 1}, we set c(ρ,Λ) = c∗(ρ,Λ) = 0. Especially, c(ρ,Λ) coincides
with the definition (1.20). Then Corollary 4.3 also defines a limit

c(ρ) ∶= 2χ(ρ)D(ρ) = lim
m→∞

c(ρ,◻m).(5.2)

In this section, we are ready to prove the convergence rate.

Proposition 5.1. There exists an exponent γ1(d, λ, r) > 0 and a positive constant
C(d, λ, r) <∞ such that for every L ∈ N+,

sup
ρ∈[0,1]

(∣c(ρ,ΛL) − c(ρ)∣ + ∣c∗(ρ,ΛL) − c(ρ)∣) ⩽ CL
−γ1 .(5.3)

Although Proposition 5.1 is stated for c(ρ,ΛL) and c∗(ρ,ΛL), we will still rely
on D(ρ,Λ) and D∗(ρ,Λ) in the intermediate steps as they are already normalized;
see (2) of Proposition 4.1. Note that χ(ρ) in c(ρ,ΛL) helps to prove the uniform
convergence in ρ ∈ [0,1]. Throughout this section, we define the following shorthand
expression

Dn ∶=D∗(ρ,◻n).(5.4)

By the subadditive quantity (4.6) and (4.7), we know that D(ρ,◻m) and D
−1
∗ (ρ,◻m)

are decreasing. Therefore, it suffices to show the convergence rate for ∣D∗(ρ,◻m) −
D(ρ,◻m)∣, which is reduced to the decay rate of sup∣p∣=1 J(ρ,◻n, p,Dmp) after ap-

plying (4.19) with D̃ =Dm.

In this section, we will heavily use the master quantity J(ρ,Λ, p, q) defined in
(4.16) and its optimizer v(⋅, ρ,Λ, p, q) defined in (1) of Proposition 4.7. The notation
Zm,n = 3

nZd ∩ ◻m is usually involved to make comparison between J in different
scales. We will also use the following gap of the master quantities in the proof very
often

(5.5) τn ∶= sup
p,q∈B1

(J(ρ,◻n, p, q) − J(ρ,◻n+1, p, q)),

where B1 ∶= {p ∈ Rd ∶ ∣p∣ = 1}.
Our first lemma makes use of the elliptic regularity, especially the modified Cac-

cioppoli inequality (2.10), in our master quantity.
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Lemma 5.2. There exists a finite positive constant C(d, λ) such that, for every
m ∈ N+ satisfying 3m > R0 for the constant in Proposition 2.6, we have the following
estimate

J(ρ,◻m, p,Dmp)
1
2 ⩽ Cτ

1
2
m +C3

−m
⟨

1

2χ(ρ)∣◻m+1∣
v(⋅, ρ,◻m+1, p,Dmp)

2
⟩

1
2

ρ

.(5.6)

Proof. We write vm = v(⋅, ρ,◻m, p,Dmp) as a shortened version in the proof. Recall
the operator AL defined in (2.9), and denote by

L ∶= 3m + 2r,(5.7)

as the length of localization in this proof. Then, by (4.22), we decompose our quantity
J(ρ,◻m, p,Dmp) as

J(ρ,◻m, p,Dmp)
1
2 ⩽ (I)

1
2 + (II)

1
2 ,

I ∶= ⟨
1

4χ(ρ)∣◻m∣
∑

b∈◻∗m
cb(πb(vm −ALvm+1))

2
⟩

ρ

,

II ∶= ⟨
1

4χ(ρ)∣◻m∣
∑

b∈◻∗m
cb(πbALvm+1)

2
⟩

ρ

.

(5.8)

We justify at first ALvm+1 ∈ A(◻m) by testing an arbitrary function f ∈ F0(◻
−
m)

∑

b∈◻∗m
⟨cb(πbALvm+1)(πbf)⟩ρ = ∑

b∈◻∗m
⟨AL (cb(πbvm+1)(πbf))⟩ρ

= ∑

b∈◻∗m
⟨cb(πbvm+1)(πbf)⟩ρ = 0.

Here in the first line, since cb and f are both FΛL
-measurable, they commute with

AL operator. In the second line, we use the fact that vm+1 ∈ A(◻m+1) ⊆ A(◻m) from
(1) of Proposition 4.7.

We now turn to the two terms in (5.8). As we have proved ALvm+1 ∈ A(◻m), we
apply (4.23) to I and get

I = J(ρ,◻m, p,Dmp) − J(ρ,◻m, p,Dmp;ALvm+1).(5.9)

We investigate the expression of J(ρ,◻m, p,Dmp;ALvm+1) by (4.17). By Jensen’s
inequality, we have

⟨
1

2χ(ρ)∣◻m∣
∑

b∈◻∗m

1

2
cb(πbALvm+1)

2
⟩

ρ

⩽ ⟨
1

2χ(ρ)∣◻m∣
∑

b∈◻∗m

1

2
cb(πbvm+1)

2
⟩

ρ

,

and by the definition of conditional expectation, we also have

⟨
1

2χ(ρ)∣◻m∣
∑

b∈◻∗m
(cb(πbℓp)(πbALvm+1) − (πbℓDmp)(πbALvm+1))⟩

ρ

= ⟨
1

2χ(ρ)∣◻m∣
∑

b∈◻∗m
(cb(πbℓp)(πbvm+1) − (πbℓDmp)(πbvm+1))⟩

ρ

.

These imply that J(ρ,◻m, p,Dmp;ALvm+1) ⩾ J(ρ,◻m, p,Dmp; vm+1). Putting it back
to (5.9) and using (4.23) again, we have

I ⩽ J(ρ,◻m, p,Dmp) − J(ρ,◻m, p,Dmp; vm+1)
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= ⟨
1

4χ(ρ)∣◻m∣
∑

b∈◻∗m
cb(πb(vm − vm+1))

2
⟩

ρ

.

We claim that the right hand side of the inequality can be controlled by Cτm defined
in (5.5) with some constant only depending on the dimension d. It suffices to apply
(4.23) to z + ◻m with z ∈ Zm+1,m. We denote by vm,z = v(⋅, ρ, z + ◻m, p,Dmp) to
simplify the notation in the following calculation

⟨
1

4χ(ρ)∣◻m∣
∑

b∈◻∗m
cb(πb(vm − vm+1))

2
⟩

ρ

⩽ ∑
z∈Zm+1,m

⟨
1

4χ(ρ)∣◻m∣
∑

b∈(z+◻m)∗
cb(πb(vm,z − vm+1))

2
⟩

ρ

= ∑
z∈Zm+1,m

(J(ρ, z +◻m, p,Dmp) − J(ρ, z +◻m, p,Dmp; vm+1))

= 3d(J(ρ,◻m, p,Dmp) − J(ρ,◻m+1, p,Dmp)).

This concludes that

I ⩽ 3dλτm.(5.10)

Concerning II, as we have proved ALvm+1 ∈ A(◻m) and 3m > R0 in Proposition 2.6,
we can apply the modified Caccioppoli inequality (2.10) to get

II ⩽ ⟨
C3−2m

2χ(ρ)∣◻m+1∣
v2m+1⟩

ρ

+ θJ(ρ,◻m+1, p,Dmp).(5.11)

Here the factor θ ∈ (0, 1) and the constant C all come from Proposition 2.6, and only
dependent on d, λ.

Combining the two estimates (5.10) and (5.11), we have

J(ρ,◻m, p,Dmp)
1
2

⩽ θ
1
2J(ρ,◻m, p,Dmp)

1
2 +C3−m ⟨

1

2χ(ρ)∣◻m+1∣
v(◻m+1)

2
⟩

1
2

ρ

+Cτ
1
2
m.

Using the fact θ ∈ (0,1), we rearrange the expression above and conclude (5.6). □

5.1. Flatness estimate. This part gives a flatness estimate and this is the main
challenge compared to its counterpart in [35, Lemma 5.1]. The whole Section 3 is
devoted to overcome the technical difficulty here.

Proposition 5.3 (L2-flatness estimate). There exists an exponent β(d) ∈ (0, 14) and
a constant C(d, λ, r) <∞ such that for every p, q ∈ B1 and m ∈ N,

(5.12)
1

2χ(ρ)∣◻m+1∣
⟨(v(ρ,◻m+1, p, q) − ℓD−1m q−p,◻m+1

)
2
⟩
ρ

⩽ Cα(ρ)32m (ρ−2 (3−βm +
m

∑
n=0

3−β(m−n)τn) + χ
−2
(ρ)3(4d+6)me−

ρ23
m
4

2 ) .

Proof. In the proof, we write vm+1 as a shorthand of v(ρ,◻m+1, p, q). We apply the
weighted multiscale Poincaré inequality Proposition 3.9 to obtain
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(5.13) ⟨
1

2χ(ρ)∣◻m+1∣
(vm+1 − ℓD−1m q−p,◻m+1

)
2
⟩

1
2

ρ

⩽ Cα
1
2 (ρ)

m

∑
n=1

3n
⎛

⎝

1

∣Zm+1,n∣
∑

z∈Zm+1,n

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n⟩
ρ

⎞

⎠

1
2

,

where the term Iz,n is the shorthand of

Iz,n ∶=
1

2χ(ρ)

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇x(vm+1 − ℓD−1m q−p)⟩z+◻+n,Nz,n

RRRRRRRRRRR

2

,

and recall (1.48) for ∇x. We need to treat the terms Iz,n and study at first the case
of large scales.

Case 1.1: large scale n > m
2(d+1) ; high density Nz,n ⩾

1
2ρ∣◻

+
n∣. For this case, the

weight is of typical size and does not degenerate, so we have

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n1{Nz,n⩾ 1
2
ρ∣◻+n∣}⟩

ρ

⩽ ⟨(
1

ρ
)
2

Iz,n1{Nz,n⩾ 1
2
ρ∣◻+n∣}⟩

ρ

⩽ (
1

ρ
)
2

⟨Iz,n⟩ρ .

(5.14)

Here we use the fact Iz,n ⩾ 0, so we can drop the indicator in the third line. Then we
use the comparison of Dirichlet energy with vn,z = v(ρ, z +◻n, p, q)

⟨Iz,n⟩ρ ⩽
3

2χ(ρ)
⟨

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇x(vn,z − ℓD−1n q−p)⟩z+◻+n,Nz

RRRRRRRRRRR

2

⟩

ρ

+
3

2χ(ρ)
⟨

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇x(vn,z − vm+1)⟩z+◻+n,Nz

RRRRRRRRRRR

2

⟩

ρ

+ 3∣D−1m q −D
−1
n q∣

2.

(5.15)

We will estimate the first term by Lemma 5.4 below, which studies the decay of
variance

1

2χ(ρ)
⟨

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇x(vn,z − ℓD−1n q−p)⟩z+◻+n,Nz

RRRRRRRRRRR

2

⟩

ρ

⩽ ⟨
1

2χ(ρ)

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

∇x(vn,z − ℓD−1n q−p)
RRRRRRRRRRR

2

⟩

ρ

⩽ C3−βn +C
n−1
∑
k=0

3−β(n−k)τk.

Here from the first line to the second line, we use Jensen’s inequality. Notice that
the exponent β only depends on d and the constant C depends on λ, r, d as stated in
Lemma 5.4.
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The second term in (5.15) can be controlled by the gap of the subadditive quantity
using (4.23) as the proof of Lemma 5.6

1

∣Zm+1,n∣
∑

z∈Zm+1,n

1

2χ(ρ)
⟨

RRRRRRRRRRR

1

∣◻n∣
∑

x∈z+◻n

⟨∇x(vn,z − vm+1)⟩z+◻+n,Nz

RRRRRRRRRRR

2

⟩

ρ

⩽
1

∣Zm+1,n∣
∑

z∈Zm+1,n

1

2χ(ρ)
⟨

1

∣◻n∣
∑

x∈z+◻n

∣∇x(vn,z − vm+1)∣
2
⟩

ρ

⩽ J(ρ,◻n, p, q) − J(ρ,◻m+1, p, q)

⩽
m

∑
k=n

τk.

The third term in (5.15) is also naturally bounded

∣D−1m q −D
−1
n q∣

2
⩽ C(λ)

m−1
∑
k=n

τk.

Combine these three terms and take in account of the factor ρ−2 from (5.14), we
obtain

(5.16)
1

∣Zm+1,n∣
∑

z∈Zm+1,n

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n1{Nz,n⩾ 1
2
ρ∣◻+n∣}⟩

ρ

⩽ Cρ−2 (3−βn +
n−1
∑
k=0

3−β(n−k)τk +
m

∑
k=n

τk) .

Case 1.2: large scale n > m
2(d+1) ; low density 1 ⩽Nz,n <

1
2ρ∣◻

+
n∣. For this case, we

will get a very large factor from the weight using the trivial bound

(
∣◻+n∣

2Nz,n
)

2

⩽ 32dn.(5.17)

However, this case is quite rare by Hoeffding inequality (see [18, Theorem 2.8])

Pρ [Nz,n <
ρ∣◻+n∣

2
] ⩽ exp(−

ρ2∣◻+n∣

2
) .

We also make use of the L∞ estimate from Lemma 4.4, and obtain

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n1{1⩽Nz,n< 1
2
ρ∣◻+n∣}⟩

ρ

⩽ χ−2(ρ)32dn ∥vm+1∥
2
∞ Pρ [Nz,n <

ρ∣◻+n∣

2
]

⩽ C(λ, d)χ−2(ρ)32dn32(d+3)m exp(−
ρ2∣◻+n∣

2
)

⩽ C(λ, d)χ−2(ρ)32dn32(d+3)m exp(−
ρ23

m
4

2
) .

(5.18)

In the last line, we use the condition n > m
2(d+1) to bound the rare probability.

Now we turn to the case of small scales.

Case 2: small scale 0 ⩽ n ⩽ m
2(d+1) . For this case, we cannot expect too much

spatial average cancellation, while the concentration effect is not strong enough to
beat the L∞ norm like in (5.18). On the other hand, the factors from the Poincaré
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inequality and the weight is still not so large. Therefore, we use Jensen’s inequality
and the trivial bound (5.17), and pay directly the price of the volume ∣◻+n∣

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n⟩
ρ

⩽ 32dn ⟨
1

2χ(ρ)

1

∣◻n∣
∑

x∈z+◻n

∣∇xvm+1 − ℓD−1m q−p∣
2
⟩

ρ

.

The contribution from all these scales are

α
1
2 (ρ)

⌊ m
2(d+1)

⌋

∑
n=0

3n
⎛

⎝

1

∣Zm+1,n∣
∑

z∈Zm+1,n

⟨(
∣◻+n∣

2Nz,n
)

2

Iz,n⟩
ρ

⎞

⎠

1
2

⩽ α
1
2 (ρ)

⌊ m
2(d+1)

⌋

∑
n=0

3(d+1)n ⟨
1

2χ(ρ)

1

∣◻m+1∣
∑

x∈◻m+1

∣∇xvm+1 − ℓD−1m q−p∣
2
⟩

1
2

ρ

⩽ C(λ)α
1
2 (ρ)3

m
2 .

(5.19)

Here from the second line to the third line, we just use the Dirichlet energy estimate
of ∇xvm+1 in (2) of Proposition 4.1.

Plugging (5.16), (5.18) and (5.19) into (5.13), we have

⟨
1

2χ(ρ)∣◻m+1∣
(vm+1 − ℓD−1m q−p,◻m+1

)
2
⟩

1
2

ρ

⩽ C(λ)α
1
2 (ρ)

⎛
⎜
⎝
3

m
2 +

m

∑
n=⌊ m

2(d+1)
⌋
3n (ρ−2 (3−βn +

n−1
∑
k=0

3−β(n−k)τk +
m

∑
k=n

τk)

+χ−2(ρ)32dn32(d+3)m exp(−
ρ23

m
4

2
))

1
2⎞
⎟
⎠
.

Square this equation with Cauchy–Schwartz inequality, and shrink β, then we prove
(5.12).

□

5.2. Variance decay of the averaged gradient. In this part, we prove the variance
decay of gradient. Since its proof only uses the spatial independence, all its parameters
are independent of ρ. Especially, the decay exponent β only depends on the dimension
d.

Lemma 5.4 (Variance decay). There exist β(d) > 0 and C(d, λ, r) <∞ such that for
every p, q ∈ B1 and n ∈ N, we have

(5.20)
1

2χ(ρ)
⟨

RRRRRRRRRRR

1

∣◻n∣
∑
x∈◻n

∇x (v(ρ,◻n, p, q) − ℓD−1n q−p)
RRRRRRRRRRR

2

⟩

ρ

⩽ C3−βn +C
n−1
∑
k=0

3−β(n−k)τk.

Proof. Since ρ, p, q does not change, we write vn as a shorthand for v(ρ,◻n, p, q) and
vn−1,z as a shorthand of v(ρ, z + ◻n−1, p, q). We use a comparison between scale n
and scale (n − 1)

⟨
1

2χ(ρ)

RRRRRRRRRRR

1

∣◻n∣
∑
x∈◻n

∇x (vn − ℓD−1n q−p)
⎞

⎠

2

⟩

1
2

ρ
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⩽ ⟨
1

2χ(ρ)

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − ℓD−1n−1q−p)

RRRRRRRRRRRR

2

⟩

1
2

ρ

+ ⟨
1

2χ(ρ)

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − vn)

RRRRRRRRRRRR

2

⟩

1
2

ρ

+ λ∣D−1n q −D
−1
n−1q∣.

Here the last term comes from the integration of affine function, and χ(ρ)∣◻n∣ is the
correct factor to normalize the integration. We deal with the three terms separately.
The third term is naturally bounded

∣D−1n q −D
−1
n−1q∣ ⩽ C(d, λ)τ

1
2
n−1.

For the second term, we use Jensen’s inequality and (4.23) to obtain

⟨
1

2χ(ρ)

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − vn)

RRRRRRRRRRRR

2

⟩

ρ

⩽ ⟨
1

2χ(ρ)

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∣∇x (vn−1,z − vn)∣
2
⟩

ρ

⩽ τn−1.

For the first term, we define

Xz ∶=
1

∣◻n−1∣
∑

x∈z+◻n−1

∇x (v(z +◻n−1, p, q)) − ℓD−1n−1q−p) ,

and expand the square

⟨

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − ℓD−1n−1q−p)

RRRRRRRRRRRR

2

⟩

ρ

= ⟨

RRRRRRRRRRRR

1

∣Zn,n−1∣
∑

z∈Zn,n−1

Xz

RRRRRRRRRRRR

2

⟩

ρ

=
1

∣Zn,n−1∣2
∑

z,w∈Zn,n−1

⟨Xz ⋅Xw⟩ρ .

Note that Xz is a Rd-valued random vector, and here Xz ⋅Xw is the inner product
between Xz and Xw.

For sufficiently large n such that 3n > 10r, there exist two cubes z + ◻n−1 and
w +◻n−1 with distance greater than 2r. Recall that Xz ∈ F0(Nr(z +◻

+
n)) from (1) of

Proposition 4.1. Then we can use the local property and independence for such pair
Xz,Xw to get

⟨Xz ⋅Xw⟩ρ = ⟨Xz⟩ρ ⋅ ⟨Xw⟩ρ = 0,

where the last equal sign follows from the average slope property (4.25). For other
pairs, we just use Cauchy–Schwartz inequality and stationary property, which con-
cludes

⟨

RRRRRRRRRRRR

1

∣Zn,n−1∣
∑

z∈Zn,n−1

Xz

RRRRRRRRRRRR

2

⟩

ρ

⩽
32d − 1

32d
⟨∣X0∣

2⟩
ρ
.
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If we denote left hand side of (5.20) by σ2n, then our calculation above gives

(5.21) σn ⩽ θσn−1 +Cτ
1
2
n−1

for some positive constant θ ∶= 32d−1
32d
< 1. This holds for all n ⩾ n0 such that 3n0 > 10r,

and we do iteration to obtain

∀n > n0, σn ⩽ θ
n−n0σn0 +C(d, λ)

n−1
∑
k=n0

θn−kτ
1
2

k

⩽ C(d, λ, r)(θn +
n−1
∑
k=0

θn−kτ
1
2

k ) .

Here we also use the trivial bound σ0 ⩽ λ, and shift the constant. Since there are
only finite cases 1 ⩽ n ⩽ n0, we square the equation above and prove (5.20). □

5.3. Iterations and track of parameters. In this part, we resume the previous
steps and conclude the proof. Especially, here we need to track the dependence of
the density ρ in our convergence. Recall (5.1), and combine the result (4.19) with

D̃ =Dm defined in (5.4), we obtain

∣c(ρ,◻m) − c∗(ρ,◻m)∣

= 2χ(ρ) ∣D(ρ,◻m) −D∗(ρ,◻m)∣

⩽ C(d, λ)χ(ρ)
⎛

⎝
sup
∣p∣=1

J(ρ,◻m, p,Dmp)
1
2
⎞

⎠
.

(5.22)

Therefore, we need to study the uniform convergence of χ2(ρ)J(ρ,◻m, p,Dmp), where
the compresssibility χ(ρ) helps control the convergence near two endpoints. We state
the following lemma, which controls χ2(ρ)J(ρ,◻m, p,Dmp) by the energy gap τn
defined in (5.5) uniformly in ρ.

Lemma 5.5. There exist an exponent κ(d) > 0 and a constant C(d, λ, r) <∞ such
that for every p ∈ B1 and ρ ∈ (0,1), we have

χ2
(ρ)J(ρ,◻m, p,Dmp) ⩽ C (3

−κm
+

m

∑
n=0

3−κ(m−n)τn) .(5.23)

Proof. We combine the estimates (5.6) and (5.12), which yield

(5.24) J(ρ,◻m, p,Dmp)

⩽ Cτm +Cα(ρ)(ρ
−2
(3−βm +

m

∑
n=0

3−β(m−n)τn) + χ
−2
(ρ)3(4d+6)me−

ρ23
m
4

2 ) .

This estimate will explode when fixing m and sending ρ to 0 or 1, which is even worse
than the trivial bound 0 ⩽ J(ρ,◻m, p,Dmp) ⩽ 3λ for all p ∈ B1; see (4.15) and (2) of
Proposition 4.1. Therefore, we combine these two estimates by an interpolation. Let
s ∈ (1,∞) be an exponent to be determined later, we have

χ2
(ρ)J(ρ,◻m, p,Dmp) ⩽ χ

2
(ρ)J

1
s (ρ,◻m, p,Dmp)(3λ)

1− 1
s(5.25)

⩽ 3λ (χ2s
(ρ)J(ρ,◻m, p,Dmp))

1
s .

Then we insert the expression (5.24). For the case s ⩾ 2, we have

χ2s
(ρ)J(ρ,◻m, p,Dmp)
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⩽ Cχ2s
(ρ)α(ρ)(ρ−2 (3−βm +

m

∑
n=0

3−β(m−n)τn) + χ
−2
(ρ)3(4d+6)me−

ρ23
m
4

2 )

⩽ Cχ2s−2
(ρ)α(ρ)((3−βm +

m

∑
n=0

3−β(m−n)τn) + 3
(4d+6)me−

ρ23
m
4

2 ) .

In the last line, we pay χ2(ρ) to compensate the singularity from ρ−2 and χ−2(ρ).
Then we study the condition to balance the other term involving ρ.

● Concerning α(ρ), we pose a condition s ⩾ 3. Then the factor (1 − ρ)2s−2 from
χ2s−2(ρ) dominates α(ρ) = − log(1 − ρ) because

(1 − ρ)2s−2α(ρ) ⩽ −(1 − ρ) log(1 − ρ) ⩽ e−1,

and −x logx takes its maximum on [0,1] at x = e−1.

● Concerning 3(4d+6)me−
ρ23

m
4

2 , we pose a condition s ⩾ 16d+26. Then the factor
ρ2s−2 from χ2(ρ) can improve the term of concentration estimate

ρ2s−23(4d+6)me−
ρ23

m
4

2 ⩽ ρ32d+503(4d+6)me−
ρ23

m
4

2

⩽ ρ2 (ρ23
m
4 )

16d+24
e−

ρ23
m
4

2 .

We use the fact that x16d+24e−
x
2 ⩽ C(d)x−1 on R+ and the condition β ∈ (0, 14)

from Proposition 5.3, then we obtain

ρ2s−23(4d+6)me−
ρ23

m
4

2 ⩽ ρ2 (ρ23
m
4 )
−1
⩽ 3−

m
4 ⩽ 3−βm.

Thus we set s = 16d + 26, and put these estimates back to (5.25), which yields

χ2
(ρ)J(ρ,◻m, p,Dmp) ⩽ C (3

−βm
+

m

∑
n=0

3−β(m−n)τn)

1
16d+26

⩽ C (3−
βm

16d+26 +
m

∑
n=0

3−
βm

16d+26 τn) .

Here we use (a + b)
1
n ⩽ a

1
n + b

1
n for a, b > 0 and n ∈ N+. By setting κ ∶= β

16d+26 , we
obtain the desired result (5.23). □

Proof of Proposition 5.1. The remaining part is similar to the proof of [11, Proposi-
tion 2.11] and we give its sketch. We define

Fm ∶=
d

∑
i=1
χ2
(ρ)J(ρ,◻m, ei,Dmei),(5.26)

and its weighted version with κ > 0 from Lemma 5.5.

F̃m ∶=
m

∑
n=0

3−
κ
2
(m−n)Fn.

Since (5.5) and (5.23) all satisfy the estimate independent of ρ, it suffices to follow
the iteration in [11, Proposition 2.11], and there exists a constant C(d, λ, r) <∞ such
that

F̃m+1 ⩽ C(F̃m − F̃m+1) +C3
−κm

2 .

This implies a contraction

F̃m+1 ⩽ (
C

1 +C
) F̃m + (

C

1 +C
)3−

κm
2 .
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Following (5.22) and (5.26), there exists γ1(d, λ, r) > 0 and C(d, λ, r) <∞ such that

∀ρ ∈ [0,1], ∣c(ρ,◻m) − c∗(ρ,◻m)∣ ⩽ Fm ⩽ F̃m ⩽ C3
−γ1m.(5.27)

Recall the monotone convergence in Corollary 4.3 for a fixed ρ, thus as m → ∞,
the sequence c(ρ,◻m) decreases and c∗(ρ,◻m) increases to the same limit c(ρ).
Then (5.27) gives the desired uniform convergence rate along the triadic cubes, and
Lemma A.1 extends the result to a general cube, which concludes the proof. □

6. Density-free local corrector with uniform convergence

There still remains some difference between our homogenization result in Propo-
sition 5.1 and Theorem 1.2. The optimizer FL in Theorem 1.2 is a corrector-type
function in homogenization, and we have already obtained a natural candidate from
previous sections (see (4.1) and (1) of Proposition 4.1)

(6.1) ϕρ,Λ,ξ ∶= v(ρ,Λ, ξ) − ℓΛ+,ξ.

This local corrector is of F0(Λ
−), but has the dependence on ρ. In this part, we

explore various properties about this function at first in Sections 6.1, 6.2, then improve
it by removing the dependence of density in Section 6.3, and finally prove the main
theorem (Theorem 1.2) in Section 6.4 and 6.5.

6.1. Regularity of local corrector. We resume at first some properties about our
local corrector ϕρ,Λ,ξ from previous sections.

Proposition 6.1. The local corrector ϕρ,Λ,ξ satisfies the following properties.

(1) (Elementary properties) ϕρ,Λ,ξ is a F0(Λ
−) function with ⟨ϕρ,Λ,ξ⟩ρ = 0, and

ξ ↦ ϕρ,Λ,ξ is linear.
(2) (Approximation of conductivity) For every L ∈ N+, we have

sup
ρ∈[0,1],ξ∈B1

RRRRRRRRRRRRRRR

1

∣ΛL∣
⟨ ∑

b∈Λ∗L

1

2
cb(πb(ℓξ + ϕρ,ΛL,ξ))

2
⟩

ρ

−
1

2
ξ ⋅ c(ρ)ξ

RRRRRRRRRRRRRRR

⩽ CL−γ1 .(6.2)

Here the exponent γ1(d, λ, r) and the constant C(d, λ, r) are same as in
Proposition 5.1.

(3) (Sublinearity) There exists a constant C(d, λ, r) <∞, such for every L ∈ N+,
the following estimate holds for γ1(d, λ, r) from Proposition 5.1

sup
ρ∈[0,1],ξ∈B1

⟨
1

∣ΛL∣
ϕ2ρ,ΛL,ξ

⟩
ρ

⩽ CL2−γ1 .(6.3)

Proof. (1) can be deduced from Proposition 4.1. (2) is the consequence from Proposi-
tion 5.1. (3) comes from Proposition 5.3, once we put the convergence rate (5.3) to
(5.5). □

The main task of this part is to explore the regularity on ρ. We propose the
following factor to measure the one-sided bias when change the probability

∀ρ′, ρ ∈ (0,1), Θρ′,ρ ∶=max{
ρ′

ρ
,
1 − ρ′

1 − ρ
,} ,(6.4)

This quantity is used to control the continuity with respect to the small change of
density ρ. We remark that, the role of ρ and ρ′ is not same here, since we should
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always view the second parameter as the targeted density and the first parameter as
its perturbation. The following observation is obvious

∣ρ′ − ρ∣ < εmin{ρ,1 − ρ}Ô⇒ Θρ′,ρ ∈ [1,1 + ε].(6.5)

Especially, we only require the targeted density ρ not to be degenerated to 0 or 1 to
get a good estimate, but the perturbation ρ′ can be degenerate. We also define the
two-sided bias factor

Θ̃ρ′,ρ ∶=max{Θρ′,ρ,Θρ,ρ′},(6.6)

where the role of ρ and ρ′ is symmetric.

The following lemma is an example to apply the one-sided bias factor Θρ′,ρ, and it
will be useful throughout the section.

Lemma 6.2. For Λ ⊆ Zd and every local function f ∈ F0(Λ), the following inequality
holds for every ρ′, ρ ∈ (0,1)

∣⟨f⟩ρ′ − ⟨f⟩ρ∣ ⩽ (Θ
∣Λ∣
ρ′,ρ − 1) ⟨∣f ∣⟩ρ .(6.7)

Proof. We make the decomposition using the canonical ensemble. Denote by X the
random variable X ∶= ∑x∈Λ ηx

∣⟨f⟩ρ′ − ⟨f⟩ρ∣ =

RRRRRRRRRRRR

∣Λ∣
∑
M=0
(Pρ′ [X =M] − Pρ [X =M]) ⟨f⟩Λ,M

RRRRRRRRRRRR

⩽

RRRRRRRRRRRR

∣Λ∣
∑
M=0
∣Pρ′ [X =M] − Pρ [X =M]∣ ⟨∣f ∣⟩Λ,M

RRRRRRRRRRRR

=

RRRRRRRRRRRR

∣Λ∣
∑
M=0
∣
Pρ′ [X =M]
Pρ [X =M]

− 1∣Pρ [X =M] ⟨∣f ∣⟩Λ,M
RRRRRRRRRRRR

.

Using the expression of Binomial distribution and the bound M ⩽ ∣Λ∣, we obtain

∣
Pρ′ [X =M]
Pρ [X =M]

− 1∣ = ∣
(ρ′)M(1 − ρ′)∣Λ∣−M

ρM(1 − ρ)∣Λ∣−M
− 1∣ ⩽ Θ

∣Λ∣
ρ′,ρ − 1.

This concludes the desired result. □

We now study the dependence of the density ρ in several quantities. Similar
argument can be found in [36, Proposition 6.1].

Proposition 6.3 (Regularity on density). For every L ∈ N+, every ρ, ρ′, ρ′′ ∈ (0,1)
and ξ ∈ B1, we have the following estimates using the factors Θ and Θ̃ defined
respectively in (6.4) and (6.6).

(1) Regularity of conductivity: we have

c(ρ′,ΛL) ⩽ Θ
(L+2r)d
ρ′,ρ c(ρ,ΛL), .(6.8)

and

∣c(ρ,ΛL) − c(ρ
′,ΛL)∣ ⩽ (Θ̃

(L+2r)d
ρ′,ρ − 1)max{∣c∣(ρ,ΛL), ∣c∣(ρ

′,ΛL)} .(6.9)

(2) Regularity of mean:

1

∣ΛL∣
⟨ϕρ,ΛL,ξ⟩

2

ρ′
⩽ L2

(Θ
(L+2r)d
ρ′,ρ − 1)

2

∣c∣(ρ,ΛL)(6.10)
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(3) Regularity of Dirichlet energy and L2: if Θ̃
(L+2r)d
ρ,ρ′′ , Θ̃

(L+2r)d
ρ′,ρ′′ ⩽ 2, we have

(6.11) L−2 ⟨
1

∣ΛL∣
(ϕρ′,ΛL,ξ − ϕρ,ΛL,ξ)

2
⟩
ρ′′
+

1

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ′,ΛL,ξ − πbϕρ,ΛL,ξ)
2
⟩

ρ′′

⩽ 10(max{Θ̃
(L+2r)d
ρ,ρ′′ , Θ̃

(L+2r)d
ρ′,ρ′′ } − 1)max{∣c∣(ρ,ΛL), ∣c∣(ρ

′,ΛL), ∣c∣(ρ
′′,ΛL)} .

Proof. (1) We test ϕρ′,ΛL,ξ in the variational problem of c(ρ,Λ), and apply (6.7) to
change the parameter of the grand canonical ensemble

1

2
ξ ⋅ c(ρ,ΛL)ξ ⩽

1

∣ΛL∣
⟨ ∑

b∈Λ∗L

1

2
cb (πb(ℓξ + ϕρ′,ΛL,ξ))

2
⟩

ρ

⩽ Θ
(L+2r)d
ρ′,ρ

1

∣ΛL∣
⟨ ∑

b∈Λ∗L

1

2
cb (πb(ℓξ + ϕρ′,ΛL,ξ))

2
⟩

ρ′

= Θ
(L+2r)d
ρ′,ρ

1

2
p ⋅ c(ρ′,ΛL)p.

(6.12)

Here because of the correlation length r, the integration ∑b∈Λ∗L
1
2cbπb(ℓξ + ϕρ′,ΛL,ξ)

2

is in F0(ΛL+2r) and we need to enlarge the power for the factor Θρ′,ρ. This proves
(6.8). By exchanging the role of ρ and ρ′, we can obtain the estimate on the other

direction similarly, which concludes (6.9) using Θ̃ρ′,ρ defined in (6.6).

(2) Recall that ⟨ϕρ,ΛL,ξ⟩ρ = 0 from (1) of Proposition 6.1, then we apply (6.7) to

1
∣ΛL∣ ⟨ϕρ,ΛL,ξ⟩

2

ρ′

1

∣ΛL∣
⟨ϕρ,ΛL,ξ⟩

2

ρ′
=

1

∣ΛL∣
∣⟨ϕρ,ΛL,ξ⟩ρ′ −

⟨ϕρ,ΛL,ξ⟩ρ∣
2

⩽
1

∣ΛL∣
(Θ
(L+2r)d
ρ′,ρ − 1)

2

⟨∣ϕρ,ΛL,ξ ∣⟩
2

ρ

⩽
1

∣ΛL∣
(Θ
(L+2r)d
ρ′,ρ − 1)

2

⟨ϕ2ρ,ΛL,ξ
⟩
ρ

⩽ L2
(Θ
(L+2r)d
ρ′,ρ − 1)

2

∣c∣(ρ,ΛL).

Here we apply Jensen’s inequality from the second line to the third line, and the
spectral inequality (2.5) from the third line to the forth line.

(3) To compare the Dirichlet energy, we add ϕρ′′,ΛL,ξ as an intermediate term,
which gives

1

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ′,ΛL,ξ − πbϕρ,ΛL,ξ)
2
⟩

ρ′′

⩽
2

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ′,ΛL,ξ − πbϕρ′′,ΛL,ξ)
2
⟩

ρ′′

+
2

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ,ΛL,ξ − πbϕρ′′,ΛL,ξ)
2
⟩

ρ′′

.

For each term, we can repeat the argument in (6.12), and conclude that

(6.13)
1

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ′,ΛL,ξ − πbϕρ,ΛL,ξ)
2
⟩

ρ′′
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⩽ (Θ̃
(L+2r)d
ρ,ρ′′ + Θ̃

(L+2r)d
ρ′,ρ′′ − 2)max{∣c∣(ρ,ΛL), ∣c∣(ρ

′,ΛL), ∣c∣(ρ
′′,ΛL)} .

The L2 term can be done similarly,

⟨
1

∣ΛL∣
(ϕρ′,ΛL,ξ − ϕρ,ΛL,ξ)

2
⟩
ρ′′

⩽ ⟨
2

∣ΛL∣
(ϕρ′,ΛL,ξ − ϕρ′′,ΛL,ξ)

2
⟩
ρ′′
+ ⟨

2

∣ΛL∣
(ϕρ,ΛL,ξ − ϕρ′′,ΛL,ξ)

2
⟩
ρ′′
.

Here, we hope to use Poincaré inequality, but the constant part of the function should
be truncated. We take the term involving ρ, ρ′′ for example

⟨
2

∣ΛL∣
(ϕρ,ΛL,ξ − ϕρ′′,ΛL,ξ)

2
⟩
ρ′′

⩽ ⟨
4

∣ΛL∣
(ϕρ,ΛL,ξ − ⟨ϕρ,ΛL,ξ⟩ρ′′ − ϕρ′′,ΛL,ξ)

2
⟩
ρ′′
+

4

∣ΛL∣
⟨ϕρ,ΛL,ξ⟩

2

ρ′′
.

The Poincaré inequality (2.5) applies for the first term, and then we can use (6.13)

⟨
4

∣ΛL∣
(ϕρ,ΛL,ξ − ⟨ϕρ,ΛL,ξ⟩ρ′′ − ϕρ′′,ΛL,ξ)

2
⟩
ρ′′

⩽
4L2

∣ΛL∣
⟨ ∑

b∈Λ∗L

cb(πbϕρ,ΛL,ξ − πbϕρ′′,ΛL,ξ)
2
⟩

ρ′′

⩽ 4L2
(Θ̃
(L+2r)d
ρ,ρ′′ − 1)max{∣c∣(ρ,ΛL), ∣c∣(ρ

′′,ΛL)} .

Concerning the term 4
∣ΛL∣ ⟨ϕρ,ΛL,ξ⟩

2

ρ′′
, we apply directly (6.10). Under the assumption

Θ̃
(L+2r)d
ρ,ρ′′ ⩽ 2, then we have(Θ

(L+2r)d
ρ,ρ′′ − 1)

2

⩽ (Θ
(L+2r)d
ρ,ρ′′ − 1) and the leading order

should be (Θ̃
(L+2r)d
ρ,ρ′′ − 1). This concludes the proof. □

6.2. Convergence rate under canonical ensemble. In this part, we give the
convergence rate of diffusion matrix under the canonical ensemble. Inspired by
the subadditive quantities in (4.1), we can also define their counterparts under the
canonical ensemble that

1

2
p ⋅ D̂(Λ,N)p ∶= inf

v∈ℓp,Λ++F0(Λ−)

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(N/∣Λ∣)∣Λ∣
∑

b∈Λ∗
⟨
1

2
cb(πbv)

2
⟩
Λ,N

⎫⎪⎪
⎬
⎪⎪⎭

,

1

2
q ⋅ D̂−1∗ (Λ,N)q

∶= sup
v∈F0

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(N/∣Λ∣)∣Λ∣
∑

b∈Λ∗
⟨(πbℓq,Λ)(πbv) −

1

2
cb(πbv)

2
⟩
Λ,N

⎫⎪⎪
⎬
⎪⎪⎭

.

(6.14)

Similarly to (5.1), we define the conductivity using the Einstein relation (1.10)

ĉ(Λ,N) ∶= 2χ(N/∣Λ∣)D̂(Λ,N), ĉ∗(Λ,N) ∶= 2χ(N/∣Λ∣)D̂∗(Λ,N).(6.15)

Here ĉ(Λ,N) also coincides with the definition (1.23). Our main result in this
subsection is the following proposition.
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Proposition 6.4. Under Hypothesis 1.1, there exists an exponent γ2(d, λ, r) > 0 and
a positive constant C(d, λ, r) <∞ such that for every L,M ∈ N+,

∣ĉ(ΛL,M) − c(M/∣ΛL∣)∣ + ∣ĉ∗(ΛL,M) − c(M/∣ΛL∣)∣ ⩽ CL
−γ2 ,(6.16)

where c(ρ) is the same as that defined in (5.2).

We establish at first a result of the local equivalence of ensembles. Similar result
can be found in [51, Appendix 2] and other references. In our setting, for any Λ ⊆ Zd
and ε ∈ (0,1), we define the following set of integers such that the empirical density
is not degenerate

Mε(Λ) ∶= {M ∈ N+ ∶ ε ⩽M/∣Λ∣ ⩽ 1 − ε}.(6.17)

Lemma 6.5. Let L, ℓ ∈ N+ and M ∈ N, we denote by ρ̂ the empirical density ρ̂ ∶= M
∣ΛL∣ .

(1) If 10ℓ2 ⩽ L and 0 ⩽M ⩽ Ld, then for any local function f ∈ F0(Λℓ) such that
⟨f⟩Λℓ,N

⩾ 0 for any N ∈ N, we have

⟨f⟩ΛL,M
⩽
⎛

⎝
1 + 4(

ℓ2

L
)

d
⎞

⎠
⟨f⟩ρ̂ .(6.18)

(2) Given ε ∈ (0,1), if 10ℓ2d ⩽ εLd and M ∈Mε(ΛL), then for any local function
f ∈ F0(Λℓ), we have

∣⟨f⟩ΛL,M
− ⟨f⟩ρ̂∣ ⩽

1

ε
(
ℓ2

L
)

d

⟨∣f ∣⟩ρ̂ .(6.19)

Proof. The proof is similar to Lemma 6.2. For f ∈ F0(Λℓ), we decompose the
expectation as

⟨f⟩ΛL,M
− ⟨f⟩ρ̂ =

∣ΛL∣
∑
M=0

⎛

⎝

PΛL,M [∑x∈Λℓ
ηx = N]

Pρ̂ [∑x∈Λℓ
ηx = N]

− 1
⎞

⎠
Pρ̂
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Λℓ

ηx = N

⎤
⎥
⎥
⎥
⎥
⎦

⟨f⟩Λℓ,N
.(6.20)

It remains to analyze the Radon–Nikodym derivative under different setting.

(1) Under this setting, because ⟨f⟩Λℓ,N
is positive, it suffice to have a upper bound

for the following probability

PΛL,M

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Λℓ

ηx = N

⎤
⎥
⎥
⎥
⎥
⎦

=
(
∣ΛL∖Λℓ∣
M−N )

(
∣ΛL∣
M
)
=
( M !
(M−N)!) (

(∣ΛL∣−M)!
(∣ΛL∖Λℓ∣−(M−N))!)

∣ΛL∣!
∣ΛL∖Λℓ∣!

.(6.21)

Notice that

∣ΛL∣!

∣ΛL ∖Λℓ∣!
⩾ ∣ΛL ∖Λℓ∣

∣Λℓ∣,
M !

(M −N)!
⩽MN ,

(∣ΛL∣ −M)!

(∣ΛL ∖Λℓ∣ − (M −N))!
⩽ (∣ΛL∣ −M)

∣Λℓ∣−N ,

(6.22)

thus we have an upper bound for (6.21)

PΛL,M [∑x∈Λℓ
ηx = N]

Pρ̂ [∑x∈Λℓ
ηx = N]

⩽ (
MN(∣ΛL∣ −M)

∣Λℓ∣−N

∣ΛL ∖Λℓ∣∣Λℓ∣
)/(

MN(∣ΛL∣ −M)
∣Λℓ∣−N

∣ΛL∣∣Λℓ∣
)

= (
∣ΛL∣

∣ΛL ∖Λℓ∣
)

∣Λℓ∣
.

(6.23)
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It suffice to give an estimate for the term (
∣ΛL∣
∣ΛL∖Λℓ∣)

∣Λℓ∣

(
∣ΛL∣

∣ΛL ∖Λℓ∣
)

∣Λℓ∣
⩽ (1 + 2(

ℓ

L
)

d

)

ℓd

⩽ e
log(1+2( ℓ

L
)d)ℓd

⩽ e
2( ℓ

2

L
)
d

⩽ 1 + 4(
ℓ2

L
)

d

.

This estimate together with (6.21), (6.23) and (6.18) gives us the desired result for
positive function f .

(2) Under this setting, ⟨f⟩Λℓ,N
can be negative, so we need two-sided estimate for

the Radon-Nikodym derivative. The upper bound is already proved in (6.23), and
we only need the lower bound, which is as follows

∣ΛL∣!

∣ΛL ∖Λℓ∣!
⩽ ∣ΛL∣

∣Λℓ∣,
M !

(M −N)!
⩾ (M −N)N ,

(∣ΛL∣ −M)!

(∣ΛL ∖Λℓ∣ − (M −N))!
⩾ ((∣ΛL∣ −M) − (∣Λℓ∣ −N))

∣Λℓ∣−N .

(6.24)

This gives us a lower bound of the proportion

PΛL,M [∑x∈Λℓ
ηx = N]

Pρ̂ [∑x∈Λℓ
ηx = N]

⩾ (1 −
N

M
)

N

(1 −
∣Λℓ∣ −N

∣ΛL∣ −M
)

∣Λℓ∣−N
.

Because M ∈Mε(ΛL), we have

0 ⩽max{
N

M
,
∣Λℓ∣ −N

∣ΛL∣ −M
} ⩽

ℓd

εLd
,

which results in

(6.25)
PΛL,M [∑x∈Λℓ

ηx = N]

Pρ̂ [∑x∈Λℓ
ηx = N]

⩾ (1 −
ℓd

εLd
)

ℓd

⩾ 1 −
1

ε
(
ℓ2

L
)

d

.

Here we also make use of condition 10ℓ2d ⩽ εLd. This estimate and (6.20) together
conclude (6.19). □

With this local equivalence of ensembles result, we can obtain the convergence
rate of diffusion matrix under the canonical ensemble.

Proof of Proposition 6.4. By similar analysis as Proposition 4.1 and Lemma 4.6 in
previous sections, we obtain that

Id ⩽ D̂∗(Λ,N) ⩽ D̂(Λ,N) ⩽ λId.(6.26)

The strategy is the following sandwich argument : we prove that in scale 1≪ ℓ≪ L,
we have

(6.27) D∗(M/∣ΛL∣,Λℓ) −CℓL
−1Id ⩽ D̂∗(ΛL,M)

⩽ D̂(ΛL,M) ⩽D(M/∣ΛL∣,Λℓ) +CℓL
−1Id.

Then the distance from D(M/∣ΛL∣,Λℓ) (resp. D∗(M/∣ΛL∣,Λℓ)) to D(M/∣ΛL∣) bounds
that from D̂(ΛL,M) (resp. D̂∗(ΛL,M)) to D(M/∣ΛL∣).

In the following, for the convenience to implement the renormalization step, we
justify the two sides in (6.27) with L = 3m, ℓ = 3n,m,n ∈ N+, but one can easily adapt
it to the general case. We always suppose that the parameters L = 3m, ℓ = 3n satisfy
the conditions of Lemma 6.5. We also denote by ρ̂ ∶= M

∣◻m∣ to lighten the notation,

which can be interpreted as the empirical density of particles under the canonical
ensemble.
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Step 1: comparison between D̂(◻m,M) and D(ρ̂,◻n). We propose a sub-

minimizer ℓξ + ϕ̃ρ̂,◻m,ξ for the optimization problem of D̂(◻m,M) that

ϕ̃ρ̂,◻m,ξ ∶= ∑
z∈Zm,n,

dist(z,∂◻m)>3n

ϕρ̂,z+◻n,ξ.

Here we require the dist(z, ∂◻m) > 3
n in order to cutoff the influence of particles

from the domain outside ◻m. Since it is a sub-minimizer, we have

1

2
ξ ⋅ D̂(◻m,M)ξ

⩽
1

2χ(ρ̂)∣◻m∣
⟨
1

2
∑

b∈◻∗m
cb(πb(ℓξ + ϕ̃ρ̂,◻m,ξ))

2
⟩

◻m,M

⩽
1

∣Zm,n∣
∑

z∈Zm,n,
dist(z,∂◻m)>3n

1

2χ(ρ̂)∣◻n∣
⟨
1

2
∑

b∈(z+◻n)∗
cb(πb(ℓξ + ϕ̃ρ̂,z+◻n,ξ))

2
⟩

◻m,M

+ λ3−(m−n)∣p∣2.

(6.28)

Here the last error term λ3−(m−n)∣p∣2 comes from the calculation of Dirichlet energy
in the boundary layer of width 3n, where we do not pose any corrector and the affine
function can be calculated directly. For the Dirichlet energy in the interior and when
3n > r, then for every z ∈ Zm,n,dist(z, ∂◻m) > 3

n, we have that

∑

b∈(z+◻n)∗
cb(πb(ℓξ + ϕ̃ρ̂,z+◻n,ξ))

2
∈ F0(z +◻n+1),

and z+◻n+1 ⊆ ◻m. Then Lemma 6.5-(1) applies to this case (z ∈ Zm,n,dist(z, ∂◻m) > 3
n > r)

and we have

1

2χ(ρ̂)∣◻n∣
⟨
1

2
∑

b∈(z+◻n)∗
cb(πb(ℓξ + ϕ̃ρ̂,z+◻n,ξ))

2
⟩

◻m,M

⩽
(1 + 3d(2n−m))

2χ(ρ̂)∣◻n∣
⟨
1

2
∑

b∈(z+◻n)∗
cb(πb(ℓξ + ϕ̃ρ̂,z+◻n,ξ))

2
⟩

ρ̂

⩽ (1 + 3d(2n−m)) (
1

2
ξ ⋅D(◻n, ρ̂)ξ) .

We put this back to (6.28) and concludes that

D̂(◻m,M) ⩽D(◻n, ρ̂) +C(λ)(3
−(m−n)

+ 3−d(m−2n))Id.(6.29)

Step 2: comparison between D̂∗(◻m,M) and D∗(ρ̂,◻n). This part is quite close
to that in Step 1. We make the decomposition that

1

2χ(ρ̂)∣◻m∣
∑

b∈◻∗m
⟨(πbℓq)(πbv) −

1

2
cb(πbv)

2
⟩
◻m,M

=
1

∣Zm,n∣
∑

z∈Zm,n,
dist(z,∂◻m)>3n

1

2χ(ρ̂)∣◻n∣
∑

b∈(z+◻n)∗
⟨(πbℓq)(πbv) −

1

2
cb(πbv)

2
⟩
◻m,M

+
1

2χ(ρ̂)∣◻m∣
∑

b∈◻∗m,
other bonds

⟨(πbℓq)(πbv) −
1

2
cb(πbv)

2
⟩
◻m,M

(6.30)



HOMOGENIZATION OF NON-GRADIENT EXCLUSION PROCESS 55

Let uz+◻n,ρ̂,q be the maximizer for the problem ν∗(z + ◻n, ρ̂, q). Then for the case
z ∈ Zm,n,dist(z, ∂◻m) > 3

n > r and by the definition of ν∗(z +◻n, ρ̂, q), we also have

1

2χ(ρ̂)∣◻n∣
∑

b∈(z+◻n)∗
⟨(πbℓq)(πbv) −

1

2
cb(πbv)

2
⟩
◻m,M

⩽
1

2χ(ρ̂)∣◻n∣
∑

b∈(z+◻n)∗
⟨(πbℓq)(πbuz+◻n,ρ̂,q) −

1

2
cb(πbuz+◻n,ρ̂,q)

2
⟩
◻m,M

⩽ (1 + 3d(2n−m)) (
1

2
q ⋅D

−1
∗ (◻n, ρ̂)q) .

Here from the first line to the second line, we use the fact that uz+◻n,ρ̂,q is also the
maixmiser under the canonical ensemble and gives positive functional; see (4.11) and
Remark 4.2 for details. Then from the second line to the third line, note the positivity
of the integral, Lemma 6.5-(1) applies. We only needs to treat the boundary layer
and the layer between the small cubes appearing in the third line of (6.30), which
can be solved by the following uniform point-wise estimate that

(πbℓq)(πbv) −
1

2
cb(πbv)

2
⩽
1

2
(πbℓq)

2
+
1

2
(πbv)

2
−
1

2
(πbv)

2
=
1

2
(πbℓq)

2.

Therefore, (6.30) can be reduced to

D̂−1∗ (◻m,M) ⩽D
−1
∗ (◻n, ρ̂) +C(λ)(3

−(m−n)
+ 3−d(m−2n))Id,

which implies, noting D∗(◻n, ρ̂) ⩽ λId, that

D̂∗(◻m,M) ⩾D∗(◻n, ρ̂) −C(λ)λ
2
(3−(m−n) + 3−d(m−2n))Id.(6.31)

Step 3: conclusion. Combining (6.26), (6.29) and (6.31), we obtain

D∗(◻n, ρ̂) −C(λ)(3
−(m−n)

+ 3−d(m−2n))Id ⩽ D̂∗(◻m,M)

⩽ D̂(◻m,M) ⩽D(◻n, ρ̂) +C(λ)(3
−(m−n)

+ 3−d(m−2n))Id.

Applying (6.15) and (5.2), this is interpreted as

c∗(◻n, ρ̂) −C(λ)χ(ρ̂)(3
−(m−n)

+ 3−d(m−2n))Id ⩽ ĉ∗(◻m,M)

⩽ ĉ(◻m,M) ⩽ c(◻n, ρ̂) +C(λ)χ(ρ̂)(3
−(m−n)

+ 3−d(m−2n))Id.

Inserting the result of homogenization (5.3), and by a choice of n that

d(m − 2n) = γ1n⇐⇒ n =
dm

2d + γ1
,

we obtain that

∣ĉ(◻m,M) − c(ρ̂)∣ + ∣ĉ∗(◻m,M) − c(ρ̂)∣ ⩽ C3
−( dγ1

2d+γ1
)m
.

This is the desired result (6.16) by setting γ2 ∶=
dγ1

2d+γ1 . □

6.3. Construction of density-free local corrector. This subsection is devoted
to remove the dependence of density in the local corrector. A first natural idea is to
consider the following variational problem for general Λ ⊆ Zd and ξ ∈ Rd

µ(Λ, ξ) ∶= inf
v∈F0(Λ−)

sup
ρ∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

1

∣Λ∣
∑

b∈Λ∗
⟨
1

2
cb(πb(ℓξ + v))

2
⟩
ρ
−
1

2
ξ ⋅ c(ρ)ξ

⎫⎪⎪
⎬
⎪⎪⎭

.(6.32)

As expected, the uniform convergence can be improved as follows.
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Proposition 6.6. There exists an exponent γ3(d, λ, r) > 0 and a constant C(d, λ, r) <∞
such that for every L ∈ N+ and ξ ∈ B1, we have

0 ⩽ µ(ΛL, ξ) ⩽ CL
−γ3 .(6.33)

Compared with (4.1), the variational problem (6.32) is more complicated. There-
fore, instead of attacking (6.32) directly, we turn to construct one sub-minimizer
with a good uniform convergence for ρ ∈ [0, 1]. This is the main task in the remaining
part of this subsection. We are inspired by the function used to prove the qualitative
version of (1.18) in the previous work [34, Lemma 2.1], where the main idea is to
make the linear combination of the local corrector using the empirical density. Thus,
we propose our density-free local corrector built on (6.1)

ϕ̂
(ε)
m,n,ξ ∶= ∑

z∈Zm,n,
dist(z,∂◻m)>3n

ϕη0∨ε∧(1−ε),z+◻n,ξ.(6.34)

Recall Zm,n = 3nZd ∩ ◻m. Here η0 is a (random) empirical density defined as

η0 ∶=
1
∣◻−m∣ ∑x∈◻−m ηx. The mapping ρ↦ ρ ∨ ε ∧ (1 − ε) restricts the density away from

0 and 1. That is, we make the truncation both for the spatial boundary layer and for
the density, in order to avoid the perturbation from the rare but degenerate cases.
More explicitly, recall the notationMε(Λ) defined in (6.17), and denote by M∗,M∗

M∗ ∶=minMε(◻
−
m), M∗

∶=maxMε(◻
−
m),(6.35)

then we can rewrite this corrector as

(6.36) ϕ̂
(ε)
m,n,ξ =

∞
∑
M=0

⎛
⎜
⎜
⎜
⎝

∑
z∈Zm,n,

dist(z,∂◻m)>3n

ϕM∨M∗∧M∗

∣◻−m ∣
,z+◻n,ξ

⎞
⎟
⎟
⎟
⎠

1{∑x∈◻−m
ηx=M}

.

When n, ε is well-chosen with respect to m, this corrector will give us uniform
convergence under all grand canonical ensembles.

Proposition 6.7. There exist an exponent γ4(d, λ, r) > 0 and a constant C(d, λ, r) <∞

such that for every m ∈ N+, by setting n ∶= ⌊ m
9d+3⌋ and ε ∶= 3

− 2dm
9d+3 , we have

sup
ρ∈[0,1],ξ∈B1

RRRRRRRRRRRRRRR

1

∣◻m∣
⟨ ∑

b∈◻∗m

1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩

ρ

−
1

2
ξ ⋅ c(ρ)ξ

RRRRRRRRRRRRRRR

⩽ C3−γ4m.(6.37)

Proof. We assume r≪ 3n ≪ 3m and 0 < ε≪ 1 with n, ε to be determined in the end.

Since ϕ̂
(ε)
m,n,ξ ∈ F0(◻

−
m), we compare it with the variational problem (4.1), which gives

1

∣◻m∣
⟨ ∑

b∈◻∗m

1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩

ρ

⩾
1

2
ξ ⋅ c(ρ,◻m)ξ ⩾

1

2
ξ ⋅ c(ρ)ξ.(6.38)
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Figure 3. An illustration for the decomposition in (6.39): the bonds
in the term I, II and III are respectively marked in blue, green and
red.

Thus it suffices to give the upper bound, and we can decompose the sum as

1

∣◻m∣
∑

b∈◻∗m
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
= I + II + III,

I ∶= ∑

b∈◻∗m,dist(b,∂◻m)>3n

1

∣◻m∣
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
,

II ∶= ∑

b∈◻∗m∖(◻m,◻−m)∗
dist(b,∂◻m)⩽3n

1

∣◻m∣
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
,

III ∶= ∑
b∈(◻m,◻−m)∗

1

∣◻m∣
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
.

(6.39)

Roughly, I is the main contribution, while the terms II and III come from the
boundary layer. Since the order of boundary layer is 3(d−1)m, they vanish after the
normalization 1

∣◻m∣ when m ↗∞. See Figure 3 for an illustration. We treat these

three terms one by one in the remaining paragraphs.

Step 1: term I. This is the case that the bonds stay in the interior, and is the
main contribution of the Dirichlet energy. This term can be further decomposed as

I ⩽
1

∣Zm,n∣
∑

z∈Zm,n,
dist(z,∂◻m)>3n

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
.

We focus on one term (z + ◻n) above and b ∈ (z +◻n)
∗, and have the following

observation

(6.40) πbϕ̂
(ε)
m,n,ξ(η) =

∞
∑
M=0

1{∑x∈◻−m
ηx=M}

πbϕM∨M∗∧M∗

∣◻−m ∣
,z+◻n,ξ

(η),

because the Kawasaki operator πb is conservative for the number of particles in ◻−m
and only one local corrector is perturbed. Therefore, we apply the decomposition of

canonical ensemble for the sum over (z +◻n)
∗

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
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=
∞
∑
M=0

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩
M,◻−m

⩽ (1 + 4 ⋅ 3d(2n−m))
∞
∑
M=0

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

×
1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

.

We use the definition (6.1) that ℓξ +ϕ M
∣◻−m ∣

,z+◻n,ξ
= v (M/∣◻−m∣, z +◻n, ξ) from the first

line to the second line. From the second line to the third line, we use the local
equivalence of ensembles in (6.18) and need to assume

1 ⩽ n <
m

2
.(6.41)

We then study the last line and distinguish it in 3 cases

Step 1.1: case M ∈Mε(◻
−
m). Then there is no bias between the probability space

and the associated corrector, thus we have

(6.42)

∀M ∈Mε(◻
−
m),

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

= (
1

2
ξ ⋅ c(M/∣◻−m∣, z +◻n)ξ) .

Step 1.2: case 0 ⩽M ⩽M∗. For this case, we have the following estimate

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

=
1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M∗/∣◻

−
m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

⩽ Θ
(3n+2r)d
M
∣◻−m ∣

, M∗
∣◻−m ∣

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M∗/∣◻

−
m∣, z +◻n, ξ))

2
⟩

M∗
∣◻−m ∣

.

Here from the second line to the third line, we use the regularity estimate (6.7),

which gives an one-sided bias factor Θ
(3n+2r)d
M
∣◻−m ∣

, M∗
∣◻−m ∣

. This factor will not explode because

the targeted density M∗
∣◻−m∣ does not degenerate; recall the remark around (6.5). More

precisely, using the definition of (6.4), M ⩽M∗ and M∗
∣◻−m∣ ≃ ε≪ 1, we have

Θ M
∣◻−m ∣

, M∗
∣◻−m ∣

=max

⎧⎪⎪
⎨
⎪⎪⎩

M

M∗
,
1 − M

∣◻−m∣
1 − M∗

∣◻−m∣

⎫⎪⎪
⎬
⎪⎪⎭

=
1 − M

∣◻−m∣
1 − M∗

∣◻−m∣
⩽ 1 +

M∗
∣◻−m∣

1 − M∗
∣◻−m∣

⩽ 1 + 2ε,

which results in

Θ
(3n+2r)d
M
∣◻−m ∣

, M∗
∣◻−m ∣

⩽ (1 + 2ε)(3
n+2r)d

⩽ 1 + 10 ⋅ 3dn ⋅ ε.

Here we also need to assume

0 < ε≪ 3−dn.(6.43)

Using the stationarity, this concludes that
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(6.44)

∀0 ⩽M <M∗,
1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

⩽ (1 + 10 ⋅ 3dn ⋅ ε)(
1

2
ξ ⋅ c(M∗/∣◻

−
m∣, z +◻n)ξ)

Step 1.3: case M∗ <M < ∣◻−m∣. This case is similar to Step 1.2, and we have

(6.45)

∀M∗ <M < ∣◻
−
m∣,

1

∣◻n∣
∑

b∈(z+◻n)∗
⟨
1

2
cb (πbv (M ∨M∗ ∧M

∗
/∣◻−m∣, z +◻n, ξ))

2
⟩

M
∣◻−m ∣

⩽ (1 + 10 ⋅ 3dn ⋅ ε)(
1

2
ξ ⋅ c(M∗

/∣◻−m∣, z +◻n)ξ)

Combing (6.42), (6.44), (6.45) and the spatial homogeneity from (2) of Hypoth-
esis 1.1, we obtain an estimate of the term I under the assumption (6.41) and
(6.43)

(6.46) I ⩽ (1 + 10 ⋅ 3d(2n−m) + 10 ⋅ 3dn ⋅ ε)
∞
∑
M=0

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c(

M ∨M∗ ∧M∗

∣◻−m∣
,◻n) ξ) .

We aim to compare this quantity with the target 1
2ξ ⋅ c (ρ,◻n) ξ, which relies on the

concentration of measure and the regularity of c (ρ,◻n). We resume this as Step 1.4.

Step 1.4: regularity on density. Recall the Markov inequality of density

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRRR

1

∣◻−m∣
∑
x∈◻−m

ηx − ρ

RRRRRRRRRRRR

> δ

⎤
⎥
⎥
⎥
⎥
⎦

⩽
Varρ[ 1

∣◻−m∣ ∑x∈◻−m ηx]

δ2
=
ρ(1 − ρ)

∣◻−m∣δ
2
.(6.47)

We choose δ > 0 in function of ρ and distinguish two cases. Viewing the assumption
(6.43), here the threshold is tighter than ε.

Step 1.4.1: case ρ ∈ [3−dn, 1− 3−dn]. We choose the window δ ∶= 3−3dn for such case,

then treat the regime ∣ M∣◻−m∣ − ρ∣ ⩽ δ at first in (6.46)

∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩽δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c(

M ∨M∗ ∧M∗

∣◻−m∣
,◻n) ξ)

⩽ ∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩽δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c (ρ,◻n) ξ)Θ

(3n+2r)d
M
∣◻−m ∣

,ρ

⩽ (1 + 3dnδ)2⋅3
dn

(
1

2
ξ ⋅ c (ρ,◻n) ξ)

⩽ (1 + 4 ⋅ 3−dn) (
1

2
ξ ⋅ c (ρ,◻n) ξ) .

Here because of the assumption (6.43), we haveM ∨M∗ ∧M∗ =M for all ∣ M∣◻−m∣ − ρ∣ ⩽ δ.
Then we apply (6.8) from the first line to the second line. From the second line to
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the third line, we apply (6.5) to give an upper bound for Θ
(3n+2r)d
M
∣◻−m ∣

,ρ

∀ρ ∈ [3−dn,1 − 3−dn], ∣
M

∣◻−m∣
− ρ∣ ⩽ δÔ⇒

∣ M∣◻−m∣ − ρ∣

min{ρ,1 − ρ}
< 3dnδ

(6.5)
Ô⇒ Θ

(3n+2r)d
M
∣◻−m ∣

,ρ
⩽ (1 + 3dnδ)2⋅3

dn

.

Finally, we insert the choice δ = 3−3dn from the third line to the forth line.

For the regime ∣ M∣◻−m∣ − ρ∣ ⩾ δ, we just use the Markov inequality (6.47) and the

trivial bound of c

∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩾δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c(

M ∨M∗ ∧M∗

∣◻−m∣
,◻n) ξ) ⩽ λ3

d(6n−m).

Combing the two estimates above and (6.46), we conclude the estimate for I under
the condition ρ ∈ [3−dn,1 − 3−dn]

I ⩽ (
1

2
ξ ⋅ c (ρ,◻n) ξ) +C(λ) (3

dnε + 3−dn + 3d(6n−m)) .(6.48)

Step 1.4.2: case ρ ∈ [0, 3−dn) ∪ (1 − 3−dn, 1]. We choose the window δ ∶= 3−
dm
2 , then

for ∣ M∣◻−m∣ − ρ∣ ⩽ δ, we have M
∣◻−m∣ ∈ [0,2 ⋅ 3

−dn] ∪ [1 − 2 ⋅ 3−dn,1] since we assume (6.41).

Then with the a priori bound (12ξ ⋅ c (
M
∣◻−m∣ ,◻n) ξ) ⩽ χ(

M
∣◻−m∣), we have

∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩽δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c(

M ∨M∗ ∧M∗

∣◻−m∣
,◻n) ξ)

⩽ ∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩽δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

χ(
M

∣◻−m∣
)

⩽ C(λ)3−dn.

For ∣ M∣◻−m∣ − ρ∣ ⩾ δ, we use Markov inequality (6.47) to give

∑

M∈N,∣ M
∣◻−m ∣

−ρ∣⩾δ

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

(
1

2
ξ ⋅ c(

M ∨M∗ ∧M∗

∣◻−m∣
,◻n) ξ) ⩽ C(λ)3

−dn.

Therefore, under (6.41) and (6.43), the estimate in (6.46) has an upper bound for
ρ ∈ [0,3−dn) ∪ (1 − 3−dn,1]

I ⩽ C(λ)3−dn.(6.49)

Combing (6.48) and (6.49), we conclude the uniform estimate for Step 1 that

I ⩽ (
1

2
ξ ⋅ c (ρ,◻n) ξ) +C(λ) (3

dnε + 3−dn + 3d(6n−m)) .(6.50)

Step 2: term II. This term is the contribution of the boundary layer. For this
case, because the local correctors and the indicator are both invariant when applying
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πb, we have πbϕ̂
(ε)
m,n,ξ(η) = 0. The only contribution comes from the affine function,

which gives us

II ⩽ ∑

b∈◻∗m∖(◻m,◻−m)∗
dist(b,∂◻m)⩽3n

1

∣◻m∣
⟨
1

2
cb(πbℓξ)

2
⟩
ρ
⩽ λχ(ρ)3(n−m).(6.51)

This term is small under the assumption (6.41).

Step 3: term III. This term is also the contribution of the boundary layer, but its
estimate is more delicate. We denote by b = {y1, y2}, where y1 ∈ ◻

−
m and y2 ∈ ∂◻m.

The operator πy1,y2 makes difference only when ηy1 ≠ ηy2 . For example, for the case
ηy1 = 1, ηy2 = 0, we have

(πy1,y2 ϕ̂
(ε)
m,n,ξ)(η)1{ηy1=1,ηy2=0}

= (ϕ̂
(ε)
m,n,ξ(η

y1,y2) − ϕ̂
(ε)
m,n,ξ(η))1{ηy1=1,ηy2=0}

= ∑
M∈Mε(◻−m)

⎛
⎜
⎜
⎜
⎝

∑
z∈Zm,n,

dist(z,∂◻m)>3n

(ϕ M
∣◻−m ∣

,z+◻n,ξ
− ϕM+1

∣◻−m ∣
,z+◻n,ξ

)

⎞
⎟
⎟
⎟
⎠

1{∑x∈◻−m,x≠y1
ηx=M}

1{ηy1=1,ηy2=0}
.

Here we have ϕρ,z+◻n,ξ(η
y1,y2) = ϕρ,z+◻n,ξ(η), because y1, y2 are both far from the

support of the local function when 3n ⩾ r. Meanwhile, the operator πy1,y2 will change
the empirical density, that is the perturbation in the third line. We should also remark
that such perturbation will vanish when M ∉Mε(◻

−
m), since there is a regularization

of density ρ↦ ρ ∨ ε ∧ (1 − ε) in our definition (6.34).

The case ηy1 = 0, ηy2 = 1 is similar. As the indicator 1{ηy1=1,ηy2=0}
is independent

of the other terms in the last line under Pρ, we obtain

(6.52) ⟨cy1,y2(πy1,y2(ℓξ + ϕ̂
(ε)
m,n,ξ))

2
⟩
ρ

⩽ 2λχ(ρ)

⎛
⎜
⎜
⎜
⎜
⎝

1 + ∑
M∈Mε(◻−m)

Pρ
⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈◻−m,x≠y1

ηx =M

⎤
⎥
⎥
⎥
⎥
⎦

⟨

⎛
⎜
⎜
⎜
⎝

∑
z∈Zm,n,

dist(z,∂◻m)>3n

∆M,z

⎞
⎟
⎟
⎟
⎠

2

⟩

◻−m∖{y1},M

⎞
⎟
⎟
⎟
⎟
⎠

,

where we define ∆M,z to simplify the notation

∆M,z ∶= ϕM+1
∣◻−m ∣

,z+◻n,ξ
− ϕ M

∣◻−m ∣
,z+◻n,ξ

, M ∈Mε(◻
−
m).(6.53)

Because there are 3(d−1)m terms like (6.52) from boundary layer b ∈ (◻m,◻
−
m)
∗ and

the normalization factor is 1
∣◻m∣ , our object is to show that each term above is of

order O(3Kn+sm) with some s ∈ (0, 1) and K ∈ R+. Then roughly we get an estimate

III ⩽ ∑
b∈(◻m,◻−m)∗

1

∣◻m∣
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
⩽ O(3Kn+(s−1)m).(6.54)

By a careful choice of n≪m, we can make the contribution from III small.

To obtain the estimate above, we also need to treat the spatial cancellation in

⎛

⎝
∑ z∈Zm,n,

dist(z,∂◻m)>3n
∆M,z

⎞

⎠

2

. Thus, we develop it as
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⟨

⎛
⎜
⎜
⎜
⎝

∑
z∈Zm,n,

dist(z,∂◻m)>3n

∆M,z

⎞
⎟
⎟
⎟
⎠

2

⟩

◻−m∖{y1},M

= ∑
z∈Zm,n,

dist(z,∂◻m)>3n

⟨(∆M,z)
2
⟩◻−m∖{y1},M

+ ∑
z,z′∈Zm,n,z≠z′

dist(z,∂◻m)>3n,dist(z′,∂◻m)>3n

⟨∆M,z∆M,z′⟩◻−m∖{y1},M .

We treat the diagonal terms and off-diagonal terms separately.

Step 3.1: the diagonal term ⟨(∆M,z)
2
⟩◻−m∖{y1},M . For this term, we use the local

equivalence of ensembles from (6.18)

⟨(∆M,z)
2
⟩◻−m∖{y1},M ⩽ (1 + 4 ⋅ 3

d(2n−m)
) ⟨(∆M,z)

2
⟩ M
∣◻−m ∣−1

.(6.55)

Assuming that n < m
2 as (6.41), the factor (1 + 4 ⋅ 3d(2n−m)) is smaller than 2. To

simplify the notation, we introduce the following shorthand expression

ρ̂ ∶=
M

∣◻−m∣
, ρ̂′ ∶=

M + 1

∣◻−m∣
, ρ̂′′ ∶=

M

∣◻−m∣ − 1
.(6.56)

Then for M ∈Mε(◻
−
m), as the difference between ρ̂, ρ̂′, ρ̂′′ is roughly 3−dm and the

three terms are not degenerate at 0 or 1, we have an estimate for the two-sided bias
factor of (6.6)

∀M ∈Mε(◻
−
m), 1 ⩽ Θ̃ρ̂,ρ̂′ , Θ̃ρ̂,ρ̂′′ ⩽ 1 + 3

−dmε−1.(6.57)

Insert the notation (6.56) to (6.53), the quantity ∆M,z has a clear expression

∆M,z = ϕρ̂′,z+◻n,ξ − ϕρ̂,z+◻n,ξ,(6.58)

and ⟨(∆M,z)
2
⟩ M
∣◻−m ∣−1

is just the expectation under the grand canonical ensemble of

density ρ̂′′ for difference between the correctors of densities ρ̂ and ρ̂′

⟨(∆M,z)
2
⟩ M
∣◻−m ∣−1

= ⟨(ϕρ̂′,z+◻n,ξ − ϕρ̂,z+◻n,ξ)
2⟩
ρ̂′′
.(6.59)

Therefore, we use the continuity in density (6.11) and (6.57)

⟨(∆M,z)
2
⟩◻−m∖{y1},M ⩽ 2 ⟨(∆M,z)

2
⟩
ρ̂′′

⩽ 10λ ⋅ 3(d+2)n (Θ̃(3
n+2r)d

ρ̂,ρ̂′′ + Θ̃
(3n+2r)d
ρ̂′,ρ̂′′ − 2)

⩽ 20λ ⋅ 3(d+2)n ⋅ ((1 + 3−dmε−1)
3dn

− 1)

⩽ 20λ ⋅ 3(2d+2)n ⋅ 3−dm ⋅ ε−1.

(6.60)

Here we also need to add an assumption

3dn ≪ 3dm ⋅ ε.(6.61)

Under this assumption, the contribution of the diagonal terms are

∑
z∈Zm,n,

dist(z,∂◻m)>3n

⟨(∆M,z)
2
⟩◻−m∖{y1},M ⩽ 20λ ⋅ 3

d(m−n)
⋅ 3(2d+2)n ⋅ 3−dm ⋅ ε−1(6.62)

= 20λ ⋅ 3(d+2)n ⋅ ε−1.

Step 3.2: the off-diagonal term ⟨∆M,z∆M,z′⟩◻−m∖{y1},M . Before starting the proof,

we remark that the error in each off-diagonal term should be smaller than that of the
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diagonal term. A naive application of Cauchy–Schwarz inequality and (6.60) does
not work here, because the factor 3−dm in (6.60) is not enough to dominate the total

number of 32d(m−n) off-diagonal terms.

We observe that ⟨∆M,z∆M,z′⟩◻−m∖{y1},M is actually asymptotically independent,

and we need a decoupling inequality to justify it. Thus we make the following
decomposition

⟨∆M,z∆M,z′⟩◻−m∖{y1},M

= ⟨∆M,z∆M,z′⟩ M
∣◻−m ∣−1

+ (⟨∆M,z∆M,z′⟩◻−m∖{y1},M − ⟨∆M,z∆M,z′⟩ M
∣◻−m ∣−1

)

= ⟨∆M,z⟩
2

M
∣◻−m ∣−1

+ (⟨∆M,z∆M,z′⟩◻−m∖{y1},M − ⟨∆M,z∆M,z′⟩ M
∣◻−m ∣−1

) .

(6.63)

From the second line to the third line, we use the fact that under Pρ, the variables
∆M,z and ∆M,z′ are independent and of the same law. We continue to estimate the
two terms respectively.

For the first term in (6.63), we make use of the definition (6.58). It transforms the
estimate as the regularity of mean

⟨∆M,z⟩
2

M
∣◻−m ∣−1

= ⟨ϕρ̂′,z+◻n,ξ − ϕρ̂,z+◻n,ξ⟩
2

ρ̂′′
,

so (6.10) applies

⟨∆M,z⟩
2

M
∣◻−m ∣−1

⩽ 2 ⟨ϕρ̂′,z+◻n,ξ⟩
2

ρ̂′′
+ 2 ⟨ϕρ̂,z+◻n,ξ⟩

2

ρ̂′′

⩽ 2λ ⋅ 3(d+2)n ((Θ̃(3
n+2r)d

ρ̂,ρ̂′′ − 1)2 + (Θ̃
(3n+2r)d
ρ̂′,ρ̂′′ − 1)2)

⩽ 4λ ⋅ 3(d+2)n ⋅ ((1 + 3−dmε−1)
3dn

− 1)
2

⩽ 4λ ⋅ 3(3d+2)n ⋅ 3−2dm ⋅ ε−2.

(6.64)

Here from the second line to the third line, we use the estimate of the two-sided bias
factor in (6.57) for M ∈Mε(◻

−
m). We also need to assume (6.61) from the third line

to the forth line. Compare the regularity of mean (6.10) and of L2 (6.11), we gain

another factor of type (Θ̃
(3n+2r)d
ρ̂,ρ̂′′ − 1), that is why we have 3−2dm in the last line.

For the second term in (6.63), we use the local equivalence of ensembles. Especially,
since ∆M,z∆M,z′ is not necessarily positive, we need apply the version of (6.19),
which requires some supplementary conditions. These conditions are satisfied as we
recall that M ∈Mε(◻

−
m) and assume (6.61). Then we obtain

∣⟨∆M,z∆M,z′⟩◻−m∖{y1},M − ⟨∆M,z∆M,z′⟩ M
∣◻−m ∣−1

∣

⩽ 3d(2n−m) ⋅ ε−1 ⋅ ⟨∣∆M,z∆M,z′ ∣⟩ M
∣◻−m ∣−1

⩽ 3d(2n−m) ⋅ ε−1 ⋅ ⟨(∆M,z)
2⟩ M
∣◻−m ∣−1

⩽ 20λ ⋅ 3(4d+2)n ⋅ 3−2dm ⋅ ε−2.

(6.65)

Here we use Cauchy–Schwarz inequality from the second line to the third line, and
insert the estimate (6.60) in the last line. Finally, we also gain the factor 3−2dm.
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We combine the estimates (6.64) and (6.65) and obtain an upper bound for the
off-diagonal terms

RRRRRRRRRRRRRRRRRR

∑
z,z′∈Zm,n,z≠z′

dist(z,∂◻m)>3n,dist(z′,∂◻m)>3n

⟨∆M,z∆M,z′⟩◻−m∖{y1},M

RRRRRRRRRRRRRRRRRR

⩽ 20λ ⋅ 32d(m−n) ⋅ 3(4d+2)n ⋅ 3−2dm ⋅ ε−2

= 20λ ⋅ 3(2d+2)n ⋅ ε−2.

(6.66)

The error (6.66) from the off-diagonal terms is the leading order compared to (6.62)
from the diagonal terms. We put them back to (6.54) and (6.52), and obtain the
estimates for the contribution from III

III ⩽ 20λ ⋅ 3−m ⋅ (3(2d+2)n ⋅ ε−2 + 3(d+2)n ⋅ ε−1) .(6.67)

Step 4: track of parameters. We collect all the estimates from (6.50), (6.51) and
(6.67), and put them back to (6.39) to obtain

1

∣◻m∣
∑

b∈◻∗m
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
⩽ (

1

2
ξ ⋅ c (ρ,◻n) ξ)

+C(λ) (3dnε + 3−dn + 3d(6n−m) + 3(n−m) + 3(2d+2)n−mε−2) Id.

The choice of parameters should satisfy the assumptions (6.41), (6.43), (6.61), and
also make the upper bound above be small. A possible choice is

ε = 3−2dn, n = ⌊
m

9d + 3
⌋ ,

which gives

1

∣◻m∣
∑

b∈◻∗m
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
⩽ (

1

2
ξ ⋅ c (ρ,◻n) ξ) +C(λ)3

−m
12 .

Then we apply the uniform estimate from Proposition 5.3, which gives us

1

∣◻m∣
∑

b∈◻∗m
⟨
1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩
ρ
⩽
1

2
ξ ⋅ c (ρ) ξ +C(d, λ)3−

(1∧γ1)m

12 .

Together with (6.38), this concludes (6.37) by setting γ4 ∶=
(1∧γ1)

12 .

□

Proof of Proposition 6.6. Viewing Proposition 4.1 and Corollary 4.3, for any v ∈ F0(Λ
−),

we have

1

∣Λ∣
∑

b∈Λ∗
⟨
1

2
cb(πb(ℓξ + v))

2
⟩
ρ
⩾
1

2
ξ ⋅ c(ρ,Λ)ξ ⩾

1

2
ξ ⋅ c(ρ)ξ,

thus µ(Λ, ξ) ⩾ 0. Moreover, Proposition 6.7 implies

0 ⩽ µ(◻m, ξ) ⩽
1

∣◻m∣
⟨ ∑

b∈◻∗m

1

2
cb(πb(ℓξ + ϕ̂

(ε)
m,n,ξ))

2
⟩

ρ

−
1

2
ξ ⋅ c(ρ)ξ ⩽ C3−γ4m,

then we prove (6.33) along a subsequence {◻m}m∈N+ . Like (4) of Proposition 4.1,
we can prove that µ(◻m, ξ) is a subadditive quantity, so Lemma A.1 applies and
generalizes the uniform convergence (6.33) to general cubes ΛL with γ3 ∶= γ4. □
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6.4. Stationary corrector. Recall that we have two definitions of the conductivity,
that is (1.13) for c(ρ) and (5.2) for c(ρ). In this part, we will establish the identity
c(ρ) = c(ρ), so the results proved in the previous sections are indeed for the con-
vergence to c(ρ). Secondly, we will give the concrete construction of ΦL valid for
(1.18).

We first establish several auxiliary lemmas on the stationary function. Recall that
a mapping y ↦ f(y, η) is stationary iff f(y, η) = τyf(0, η) = f(0, τyη).

Lemma 6.8. The following properties hold.

(1) For every x, y, z ∈ Zd, we have

πx+z,y+zτz = τzπx,y.(6.68)

(2) For every integer 1 ⩽ i ⩽ d, every ξ ∈ Rd and every local function f ∈ F0, the
following mapping is stationary.

y ↦ cy,y+eiπy,y+ei
⎛

⎝
ℓξ + ∑

x∈Zd

τxf
⎞

⎠

2

.(6.69)

(3) For every ξ ∈ Rd, f ∈ F0(Λ
−
L), we have

d

∑
i=1
⟨c0,ei

⎛

⎝
π0,ei(ℓξ +

1

∣ΛL∣
∑
x∈Zd

τxf)
⎞

⎠

2

⟩

ρ

⩽
1

∣ΛL∣
∑

b∈Λ∗L

⟨cb (πb (ℓξ + f))
2
⟩
ρ
.(6.70)

Proof. The identity (6.68) can be proved by a direct verification. To prove (6.69), it
suffices to prove

cy,y+eiπy,y+ei
⎛

⎝
ℓξ + ∑

x∈Zd

τxf
⎞

⎠

2

= τy
⎛
⎜
⎝
c0,0+eiπ0,ei

⎛

⎝
ℓξ + ∑

x∈Zd

τxf
⎞

⎠

2
⎞
⎟
⎠
.(6.71)

We start from its right-hand side and evaluate the term one by one. From the
definition of cy,y+ei , we have τyc0,0+ei = cy,y+ei . For the term ℓξ, we have

τyπ0,eiℓξ = τy (−ξ ⋅ ei(ηei − η0)) = −ξ ⋅ ei(ηy+ei − ηy) = πy,y+eiℓξ.

For the term involving f , we apply (6.68)

τyπ0,ei
⎛

⎝
∑
x∈Zd

τxf
⎞

⎠
= πy,y+eiτy

⎛

⎝
∑
x∈Zd

τxf
⎞

⎠

= πy,y+ei
⎛

⎝
∑
x∈Zd

τx+yf
⎞

⎠

= πy,y+ei
⎛

⎝
∑
x∈Zd

τxf
⎞

⎠
.

Then we obtain (6.71) and establish the stationary property.
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Finally, we verify the inequality (6.70). Notice that πy,y+zτxℓξ = πy,y+zℓξ, we have

d

∑
i=1
⟨c0,ei

⎛

⎝
π0,ei(ℓξ +

1

∣ΛL∣
∑
x∈Zd

τxf)
⎞

⎠

2

⟩

ρ

=
d

∑
i=1
⟨c0,ei

⎛

⎝
π0,ei(

1

∣ΛL∣
∑
x∈ΛL

τx(ℓξ + f))
⎞

⎠

2

⟩

ρ

⩽
d

∑
i=1

1

∣ΛL∣
∑
x∈ΛL

⟨c0,ei (π0,ei (τx(ℓξ + f)))
2
⟩
ρ
.

(6.72)

From the first line to the second line, we also use the fact that f ∈ F0(Λ
−
L), so the

derivative vanish when translation is outside ΛL. From the second line to the third
line above, we apply Jensen’s inequality. Then we simplify the result

⟨c0,ei (π0,ei (τx(ℓξ + f)))
2
⟩
ρ
= ⟨τ−xc0,ei (π0,ei (τx(ℓξ + f)))

2
⟩
ρ

= ⟨c−x,−x+ei (π−x,−x+ei (ℓξ + f))
2
⟩
ρ
.

The equality in the first line comes from the stationarity of Pρ, i.e. ⟨τxF ⟩ρ = ⟨F ⟩ρ for

all x ∈ Zd, while the equality from the second line comes from (6.68). We put this
identity back to (6.72) and conclude the desired result

d

∑
i=1
⟨c0,ei

⎛

⎝
π0,ei(ℓξ +

1

∣ΛL∣
∑
x∈ΛL

τxf)
⎞

⎠

2

⟩

ρ

⩽
d

∑
i=1

1

∣ΛL∣
∑
x∈ΛL

⟨c−x,−x+ei (π−x,−x+ei (ℓξ + f))
2
⟩
ρ

⩽
1

∣ΛL∣
∑

b∈Λ∗L

⟨cb (πb (ℓξ + f))
2
⟩
ρ
.

□

With the preparation of Lemma 6.8 and Proposition 6.6, we can now prove the
main result in this subsection.

Proposition 6.9. For every ρ ∈ [0,1], the quantities defined in (1.13) and (5.2)
coincide

c(ρ) = c(ρ).

Moreover, let ϕΛ,ξ be an optimizer for µ(Λ, ξ) defined in (6.32) and ΦL ∈ F
d
0 (ΛL) be

defined as

ΦL ∶= (
1

∣ΛL∣
ϕΛL,e1 ,

1

∣ΛL∣
ϕΛL,e2 ,⋯,

1

∣ΛL∣
ϕΛL,ed) ,(6.73)

then there exists an exponent γ(d, λ, r) > 0 and a positive constant C(d, λ, r) < ∞,
such that

sup
ρ∈[0,1]

∣c(ρ;ΦL) − c(ρ)∣ ⩽ CL
−γ .(6.74)

Proof. The proof is similar to the sandwich argument in (6.27) and can be divided
the into three steps. Similar arguments can be found in [35, Theorem B.1].
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Step 1: c(ρ) ⩽ c(ρ). We recall (1.12) that

ξ ⋅ c(ρ;ΦL)ξ =
d

∑
i=1
⟨c0,ei

⎛

⎝
ξ ⋅

⎧⎪⎪
⎨
⎪⎪⎩

ei(ηei − η0) − π0,ei(∑
y∈Zd

τyΦL)

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠

2

⟩

ρ

.

and notice the fact that

ξ ⋅ x(ηx − η0) = −π0,xℓξ,

ξ ⋅ΦL =
1

∣ΛL∣
ϕΛL,ξ,

where the second identity comes from the linear map ξ ↦ ϕΛL,ξ. Therefore, we have

ξ ⋅ c(ρ;ΦL)ξ =
d

∑
i=1
⟨c0,ei

⎛

⎝
π0,ei

⎛

⎝
ℓξ +

1

∣ΛL∣
∑
y∈Zd

τyϕΛL,ξ

⎞

⎠

⎞

⎠

2

⟩

ρ

⩽
1

∣ΛL∣
∑

b∈Λ∗L

⟨cb (πb (ℓξ + ϕΛL,ξ))
2
⟩
ρ

⩽ ξ ⋅ c(ρ)ξ + µ(ΛL, ξ),

where we apply (6.70) from the first line to the second line and (6.32) from the
second line to the third line. Using the estimate (6.33) about µ(ΛL, ξ), we obtain an
important inequality chain with C,γ3 independent of ρ ∈ [0,1]

ξ ⋅ c(ρ)ξ ⩽ ξ ⋅ c(ρ;ΦL)ξ ⩽ ξ ⋅ c(ρ)ξ +CL
−γ3 ∣ξ∣2.(6.75)

We take the first one and the third one, and let L↗∞, and obtain the desired result

c(ρ) ⩽ lim
L→∞

c(ρ,ΛL) = c(ρ).

Step 2: c(ρ) ⩾ c(ρ). We pick FK as a sequence of local functions to approximate
c(ρ), and compare vp,K = ℓp +∑x∈Zd p ⋅ τxFK in the functional of ν∗(ρ,ΛL, q)

ν∗(ρ,ΛL, q) =
1

2
q ⋅D

−1
∗ (ρ,ΛL) ⋅ q

⩾
1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
⟨(πbℓq)(πbvp,K) −

1

2
cb(πbvp,K)

2
⟩
ρ
.

Applying the stationarity of mapping in (6.69), we obtain that

1

2
q ⋅D

−1
∗ (ρ,ΛL)q ⩾ p ⋅ q −

1

4χ(ρ)
p ⋅ c(ρ;FK)p.

Letting L,K →∞, this yields

1

2
q ⋅D

−1
(ρ)q ⩾ p ⋅ q −

1

4χ(ρ)
p ⋅ c(ρ)p.

By taking q =D(ρ)p and recall 2χ(ρ)D(ρ) = c(ρ) from (5.2), we conclude c(ρ) ⩾ c(ρ).

Step 3: Error estimate. Once we identify that c(ρ) = c(ρ), we go back to (6.75)
to obtain

ξ ⋅ c(ρ)ξ ⩽ ξ ⋅ c(ρ;ΦL)ξ ⩽ ξ ⋅ c(ρ)ξ +CL
−γ3 ∣ξ∣2.

Since C,γ3 come from Proposition 6.6 and are independent of ρ, this concludes the
estimate (6.74) by setting γ ∶= γ3. □
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6.5. Proof of Theorem 1.2 and Theorem 1.4. We resume the proof of the main
theorems in this paper.

Proof of Theorem 1.2 and Theorem 1.4. The finite-volume approximation defined in
(1.20) gives a subadditive quantity c(ρ,ΛL), which defines a limit c(ρ) in (5.2).
Using the dual quantity, we prove the convergence rate of this approximation in
Proposition 5.1 and Proposition 6.4. In Lemma 6.8, we identify that c(ρ) coincides
with c(ρ) defined in (1.13), therefore Proposition 5.1 together with Proposition 6.4
proves Theorem 1.4. Finally, Proposition 6.6 removes the dependence of density of
the local corrector and Lemma 6.8 proves Theorem 1.2, where (6.73) gives a concrete
construction of the density-free local corrector. □

7. Quantitative hydrodynamic limit

In this part, we reveal the connection between homogenization and hydrodynamic
limit. The main task for establishing the hydrodynamic limit for non-gradient models
lies in showing the gradient replacement, that is, a replacement of a diverging term,
appearing in the scaling and caused by the non-gradient nature of the microscopic
current, by a well-behaving gradient term under a large scale space-time sample
average. For this, one needs Varadhan’s lemma, that is, the characterization of the
closed forms. So far, this method is the only mathematically rigorous way to deal
with the non-gradient models, however it is usually hard to prove. In this section, we
propose a new approach with two advantages: it avoids to show Varadhan’s lemma,
and it gives the convergence rate for the hydrodynamic limit.

As briefly explained in Section 1.1, the hydrodynamic limit was studied in [34] for
the non-gradient Kawasaki dynamics on the lattice torus TdN . It is described as a

Markov process ηN(t) = {ηNx (t), x ∈ TdN} on the configuration space XN = {0,1}
Td
N

governed by the infinitesimal generator LN = N
2L, where L is the operator defined

by (1.6) replacing Zd with TdN . The hydrodynamic limit is the problem to study
the asymptotic behavior as N →∞ of the macroscopic empirical mass distribution
ρN(t, dv) of ηN(t) defined by (1.8) and the nonlinear diffusion equation (1.9) was
derived in the limit; see also the discussions around (1.14).

7.1. Convergence rate in gradient replacement. As we pointed, one main step
in non-gradient hydrodynamic limit was to show the gradient replacement. In the
previous work [34], it is Theorem 3.2 together with Lemma 3.4. The formula in
Theorem 3.2 still contains diverging factor N in N1−d but it can be absorbed as in
Lemma 3.4 due to the gradient property of the function A defined by (7.3) below.
Theorem 3.2 follows from Corollary 5.1 or especially from Theorem 5.1 for which
Varadhan’s lemma formulated in Theorem 4.1 was used. Varadhan’s lemma roughly
claims that the closed forms are determined from and spanned by the functions
v in the variational formula (1.20) or (1.23) for the conductivity c(ρ). Physically,
the linear term appears as the first order term in the Taylor expansion of the local
equilibrium state of second order approximation (see (7.14) below), which corresponds
to the corrector in the homogenization theory.

Let us start with a refinement of Theorem 5.1 and Corollary 5.1 in [34]. For any
Λ ⊆ Zd, we denote by XΛ = {0,1}

Λ. Using the notation (1.42), every configuration
η ∈ X can be decomposed into two parts

η = ξ ⋅ ζ, ξ ∶= η∣Λ ∈ XΛ, ζ ∶= η∣Λc ∈ XΛc .(7.1)
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We let LΛ,ζ be a restriction of the generator L defined in (1.6) on Λ with the exterior
condition ζ

LΛ,ζv ∶= ∑
b∈Λ∗

cbπbv.(7.2)

Using the decomposition η = ξ ⋅ ζ from (7.1) on the domain ΛL = (−L/2, L/2) ∩ Zd,
we define the quantity AL,BL,ζ and HL,ζ,F as

AL(ξ) ∶=
1

2
∑

x,y∈ΛL∶∣x−y∣=1
(ξy − ξx)(y − x),

BL,ζ(ξ) ∶=
1

2
∑

x,y∈ΛL∶∣x−y∣=1
Wx,y(η)(y − x) = −LΛL,ζ( ∑

x∈ΛL

xξx),

HL,ζ,F (ξ) ∶= ∑
x∈ΛL−r(F )−1

τx(LNF )(η) = LΛL,ζ( ∑
x∈ΛL−r(F )−1

τxF)(ξ).

(7.3)

Note that Wx,y(η) ∶= cx,y(η)(ηy − ηx) in BL,ζ denotes the microscopic current, while

F = (Fi)
d
i=1 ∈ F

d
0 in HL,ζ,F will be taken as the function appearing in the local

equilibrium state of second order approximation ψt in (7.14) defined in next section .
The correction function F should be local compared to ΛL, so we require r(F ) ⩽ L−1,
where r(F ) measures the diameter of the support of F

r(F ) ∶=min{r ∈ N+ ∶ F ∈ Fd0 (Λr)}.(7.4)

For a function f ∈ F0 such that ⟨f⟩ΛL,M
= 0, its CLT variance is defined by

∆L,M,ζ[f] ∶=∆L,M,ζ[f, f],

for 0 ⩽M ⩽ ∣ΛL∣ and ζ ∈ XΛc
L
= {0,1}Λ

c
L , where

∆L,M,ζ[f, g] ∶= ⟨f(−LΛL,ζ)
−1g⟩

ΛL,M
,

The CLT variance for the gradient replacement is defined by

(7.5) QL(F ; q,M, ζ) ∶= ∣ΛL∣
−1∆L,M,ζ [q ⋅ {D(M/∣ΛL∣)AL − (BL,ζ −HL,ζ,F )}]

−
1

2
q ⋅R(M/∣ΛL∣;F )q,

where R(ρ;F ) = c(ρ;F ) − c(ρ) is defined in (1.16).

The following proposition states that, when taking F such that R(ρ;F ) is very
small, the non-gradient term BL,ζ can be replaced by a gradient term AL plus a term
HL,ζ,F vanishing under the time integral and scaling. Proposition 7.1 provides the
convergence rate in the gradient replacement, which is a quantitative refinement of
the result shown in Corollary 5.1 of [34] and is a key for proving the hydrodynamic
limit in non-gradient model.

Proposition 7.1. There exists a positive constant C(d, λ, r) such that the quantity
QL defined in (7.5) satisfies the following estimate for all L ∈ N+ and F ∈ Fd0

(7.6) sup
q,M,ζ

∣QL(F ; q,M, ζ)∣

⩽ C (L−α1 + r(F )d(1 + r(F )2d∥F ∥2∞)L
−1
+ r(F )2d∥F ∥∞L

−d
+CL−1) .

Here the supreme is taken over all q ∈ B1, 0 ⩽M ⩽ ∣ΛL∣ and ζ ∈ XΛc
L
.
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Proof. We denote by ρ̂ ∶= M
∣ΛL∣ as the empirical density to simplify the notation. As

proposed in [34, Proposition 5.1 and Theorem 5.1], the estimate of QL(F ; q,M, ζ)
can be reduced to the following three terms

Q
(4)
L (F ; q,M, ζ) ∶= ∣ΛL∣

−1∆L,M,ζ [q ⋅ (BL,ζ −HL,ζ,F )] −
1

2
q ⋅ c(ρ̂;F )q,

Q
(5)
L (F ; q, q̃,M, ζ) ∶= ∣ΛL∣

−1∆L,M,ζ [q̃ ⋅AL, q ⋅ (BL,ζ −HL,ζ,F )] − (q ⋅ q̃)χ(ρ̂),

Q
(6)
L (q̃,M, ζ) ∶= ∣ΛL∣

−1∆L,M,ζ [q̃ ⋅AL] − 2(q̃ ⋅ c
−1
(ρ̂)q̃)χ2

(ρ̂).

(7.7)

By choosing q̃ =D(ρ̂)q in (7.3), we obtain immediately an identity of QL

(7.8) QL(F ; q,M, ζ)

= Q
(4)
L (F ; q,M, ζ) − 2Q

(5)
L (F ; q,D(ρ̂)q,M, ζ) +Q

(6)
L (D(ρ̂)q,M, ζ).

To show (7.6), we need the error estimate for each term. Among them, the

quantitative estimates of Q
(4)
L and Q

(5)
L are given in Proposition 4.1 of [32]: for

q, q̃ ∈ Rd such that ∣q∣ = ∣q̃∣ = 1,

∣Q
(4)
L (F ; q,M, ζ)∣ ⩽ Cr(F )d(1 + r(F )2d∥F ∥2∞)L

−1,(7.9)

∣Q
(5)
L (F ; q, q̃,M, ζ)∣ ⩽ Cr(F )2d∥F ∥∞L

−d
+CL−1.(7.10)

The computation of Q
(6)
L , as the error for the CLT variance of AL, is indeed deeply

related to the dual quantity studied in (6.14), and this makes Varadhan’s lemma

avoidable. It is, in a sense, hidden in the variational formula for D̂∗(ΛL,M). In
other words, our dual computation well fits to computing the CLT variance of AL.
This matches with the dual computation in (5.7) in the proof of Theorem 5.1 in [34],
but our computation is presented at higher level on the configuration space. We can

write the error Q
(6)
L of the CLT variance of AL defined by (7.7) concretely in terms of

the dual quantity as in (7.11) below. It is important that we can give such an exact
formula before taking the limit so that one can directly apply our estimate to obtain
its convergence rate. Note that we need the uniformity in the density ρ ∈ [0,1] as in
Corollary 5.1 in [34].

Let us implement the discussion above to Q
(6)
L . From (7.3) and (1.44), the quantity

q ⋅AL satisfies the identity

q ⋅AL = − ∑
b={x,y}∈(ΛL)∗

πbℓq.

Then by variational formula of the dual quantity D̂∗(ΛL,M) defined in (6.14), the
optimiser u(ΛL, q) satisfies that

∑
b∈(ΛL)∗

cbπbu(ΛL, q) = ∑
b∈(ΛL)∗

πbℓq.

Recall the generator LΛL,ζ defined in (7.2), thus the quantity (−LΛL,ζ)
−1(q ⋅AL) is

nothing but u(ΛL, q) defined in (1) of Proposition 4.1 (see also Remark 4.2) because
of the following identity

(−LΛL,ζ)
−1
(q ⋅AL) = (LΛL,ζ)

−1 ⎛

⎝
∑

b∈(ΛL)∗
πbℓq
⎞

⎠
= u(ΛL, q).

Here we abuse the notation because the generator defined in (7.2) from [34] is slightly different
from (1.21). Nevertheless, this tiny difference does no harm; see Remark 1.5.



HOMOGENIZATION OF NON-GRADIENT EXCLUSION PROCESS 71

Therefore, we put this result back to ∆L,M,ζ[q ⋅AL] and obtain

∆L,M,ζ[q ⋅AL] = ⟨(q ⋅AL)(−LΛL,ζ)
−1
(q ⋅AL)⟩ΛL,M

= ⟨(q ⋅AL)u(ΛL, q)⟩ΛL,M

= − ∑
b∈(ΛL)∗

⟨(πbℓq)u(ΛL, q)⟩ΛL,M

=
1

2
∑

b∈(ΛL)∗
⟨(πbℓq)(πbu(ΛL, q))⟩ΛL,M

=
1

2
∑

b∈(ΛL)∗
⟨cb(πbu(ΛL, q))

2⟩
ΛL,M

.

Here from the third line to the forth line, we use the identity πbπb = −2πb and
integration by part. From the forth line to the fifth line, we use the variational
formula of D̂∗(ΛL,M) once again rewritten similar to (4.3). This concludes that

∣ΛL∣
−1∆L,M,ζ[q ⋅AL] = (2χ(ρ̂)) (

1

2
q ⋅ D̂−1∗ (ΛL,M)q) = χ(ρ̂)q ⋅ D̂

−1
∗ (ΛL,M)q.

We put this result back to (7.7), and obtain that

Q
(6)
L (q,M, ζ) = χ(ρ̂)q ⋅ (D̂−1∗ (ΛL,M) −D

−1
(ρ̂)) q(7.11)

= χ(ρ̂)q ⋅ D̂−1∗ (ΛL,M) (D(ρ̂) − D̂∗(ΛL,M))D
−1
(ρ̂)q

=
1

2
q ⋅ D̂−1∗ (ΛL,M) (c(ρ̂) − ĉ∗(ΛL,M))D

−1
(ρ̂)q.

Apply the quantitative homogenization of canonical ensemble in (1.25) (see also
Proposition 6.4 and c(ρ) = c(ρ) proved in Proposition 6.9), noting the uniform

positivity of matrices D̂∗(ΛL,M) and D(ρ̂) in (2) of Proposition 4.1, we obtain that

∣Q
(6)
L (q,M, ζ)∣ ⩽ CL−α1 ,(7.12)

for some C,α1 > 0. The estimates (7.9), (7.10) and (7.12) together apply to (7.8) and
yield (7.6).

□

7.2. Application to the quantitative hydrodynamic limit. The proof of the
hydrodynamic limit in [34] relies on the relative entropy method in which we compare
the distribution of our system ηN(t) with the local equilibrium state of second order
approximation.

Let hN(f ∣ψ) be the relative entropy per volume for two probability densities f
and ψ with respect to νN1/2 defined as

hN(f ∣ψ) ∶= N
−d
∫XN

f log(f/ψ)dνN1/2.(7.13)

Here νN1/2 is the Bernoulli product measure on XN with mean 1/2. The local equilib-

rium state of second order approximation ψt ≡ ψ
N
t was defined by

ψNt (η) ∶= Z
−1
t exp{ ∑

x∈Td
N

λ(t, x/N)ηx +
1

N
∑
x∈Td

N

∂λ(t, x/N) ⋅ τxFN(η)},(7.14)

where Zt is a normalization constant with respect to the Bernoulli product measure
νN1/2 and ∂λ (≡ ∇λ) = (∂iλ)

d
i=1; see p.5 of [34] or (2.1) in [32]. Here, we determine

λ(t, v) in ψNt as λ(t, v) = λ(ρ(t, v)) from the solution ρ(t, v) of the hydrodynamic
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equation (1.9) with λ(ρ) = log{ρ/(1 − ρ)} and F ≡ FN ∶= Φn(N) with Φn defined in
(6.73) with n = n(N) to be determined later.

The choice of F ≡ FN ∶= Φn(N) is the main result obtained in this paper, as it gives
the decay rate for R(ρ;F ) = c(ρ;F )−c(ρ). Following Proposition 6.9 and Lemma 4.4,
one can find a sequence of functions Φn such that

r(Φn) ⩽ n, ∥Φn∥∞ ⩽ C2n
2 logn, sup

ρ∈[0,1]
∣R(ρ;Φn)∣ ⩽ C2n

−α2 .(7.15)

for some C2, α2 > 0 independent of ρ.

Then, we are now ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. We consider the relative entropy hN(t) ∶= hN(f
N
t ∣ψ

N
t ), where

we denote by fNt the density of the distribution of ηN(t) on XN with respect to νN1/2.

The proof is given by a combination of a bound for hN(t), the entropy inequality
and a large deviation estimate for ψNt . Besides the previous work [34], we also
borrow some estimates from [32], where the hydrodynamic limit for a non-gradient
Glauber–Kawasaki dynamics is studied.

Step 1: relative entropy estimate. A bound for hN(t) was obtained for Glauber–
Kawasaki dynamics with a strength K in the Glauber part in (3.64) of [32]. Our
Kawasaki dynamics corresponds to the case of K = 0 and, picking the contribution
from Kawasaki part only, we obtain the estimate

0 ⩽ hN(t) ⩽ e
t/δ
(hN(0) +Q

Ω1

N,L,β(λ,FN) +Q
LD
N,L,δ(λ,FN)(7.16)

+C(β + 1) ∥∂λ∥2∞ sup
ρ∈[0,1]

∣R(ρ;FN)∣

+QEnN (λ,FN) +Q
Ω2
N,L(λ,FN)),

for every β > 0, 1 ⩽ L ⩽ N/2, t ∈ [0, T ] and δ > 0 sufficiently small. Note that a bound

for h(t) = lim
N→∞

hN(t) is given in Theorem 2.1 in [34], but we actually have an error

term o(1) for hN(t) as in Lemma 3.2 in [34]. In the above estimate (7.16) (which is
obtained after applying Gronwall’s inequality), we give an estimate for the term o(1)
clarifying its decay rate.

Term 1: QΩ1

N,L,β(λ,F ). In (7.16), the first error QΩ1

N,L,β(λ,F ) for the microscopic

current of non-gradient type adjusting with the corrector F consists of four terms as

QΩ1

N,L,β(λ,F ) =
C

β
+ β2Q

(1)
N,L(λ,F ) + βQ

(2)
L (λ,F ) +Q

(3)
N,L(λ),

with F = FN . Here, the term Q
(1)
N,L has a bound

∣Q
(1)
N,L∣ ⩽ CN

−1L2d+4
(1 + r(F )3d∥F ∥3∞),(7.17)

see Theorem 3.5 of [32]. Note that λ does not depend on K in the present setting
so that ∥∂λ∥∞ is bounded by C. Note also that C

βK in Lemma 3.6 of [32] may be

replaced by C
β which is needed as a cost for the entropy bound, though we have no

Glauber part. The term Q
(2)
L ≡ Q

(2)
L (λ,F ) is estimated by [32, (3.31)] as

∣Q
(2)
L ∣ ⩽ C ∥∂λ∥

2
∞ sup
q,M,ζ

∣QL(F ; q,M, ζ)∣,(7.18)

so we can cite the estimate of the gradient replacement (7.6) in Section 7.1 directly.
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The term Q
(3)
N,L ≡ Q

(3)
N,L(λ) does not depend on F and it is estimated from above as

Q
(3)
N,L ⩽ C(L

−1
+N−1) +CβL−1 +

C

β
+Cβ2N−1L2d−2,(7.19)

see Lemma 3.7 in [32].

Term 2: QLDN,L,δ(λ,F ). The error QLDN,L,δ(λ,F ) appearing in a large deviation
bound is estimated as

∣QLDN,L,δ(λ,F )∣ ⩽ CN
−1
(L + ∥F ∥∞) +CL

−d logL.(7.20)

This estimate is shown in Theorem 3.9 of [32] for Glauber–Kawasaki dynamics, and
for a function G = G1 +

1
KG2 with G1 and G2 coming respectively from the Glauber

and Kawasaki part, as in [32, (3.59)]. In the present setting, since G1 ≡ 0 in this
theorem and also in Section 3.6 of [32], one can apply it by taking K = 1 so that
G = G2. Note that K ⩾ 1 in Theorem 3.9 of [32] was just a parameter which can be
different from K(N) in [32, (1.1)], and a uniform estimate in K was provided. Note
also that, by the same reason, we may take K = 1 in Theorem 3.11 of [32].

Term 3: QEnN (λ,F ). The error QEnN (λ,F ) in the entropy calculation, especially in
the time derivative of hN(t), has a bound

∣QEnN (λ,F )∣ ⩽ CN
−1
(1 + r(F )d+2∥F ∥∞)

3,(7.21)

if the condition N−1r(F )d∥F ∥∞ ⩽ 1 is satisfied; see Lemma 3.1 in [32].

Term 4: QΩ2
N,L(λ,F ). The error QΩ2

N,L(λ,F ) for the gradient term is bounded as

∣QΩ2
N,L(λ,F )∣ ⩽C(N

−1L(d+2)/2 +L−d(1 + r(F )d))(7.22)

× (1 + r(F )2d∥F ∥2∞ + r(F )
d+1
∥F ∥∞) +CN

−1.

This estimate is shown in Lemma 3.8 of [32] relying on Lemma 3.4 of [32]. To apply
the latter, since K in the estimate covers both Glauber and Kawasaki effects, we
need to take K = 1 rather than K = 0 by a similar reason to Term 2 above.

Step 2: choice of parameters. Now, we choose 1≪ n≪ L≪ N and F ≡ FN = Φn(N)
as stated at the beginning of this section, and insert the estimate (7.15). More
precisely, we set n,L, β as mesoscopical scales

(7.23) n ∶= N s1 < L ∶= N s2 < N, 0 < s1 < s2 < 1, β ∶= ns3 , s3 > 0,

with s1, s2, s3 to be determined. Then, from (7.16) and several estimates stated above,
we obtain for some µ > 0

hN(t) ⩽ C(hN(0) + n
−s3 + nµN−1L2d+4

+ ns3L−α1

+ nµL−1 +L−d logL + ns3n−α2).

Since hN(0) ⩽ CN
−α, choosing s3 ∈ (0, α2), s2 = 1/(2d+ 5) and then s1 ∈ (0, s2) small

enough, one can derive

hN(t) ⩽ CN
−κ,

for some C,κ > 0.

Step 3: entropy inequality. To show the estimate (1.19) in Theorem 1.3, consider
the event

A = {η ∈ XN ∶ ∣∫
Td
ϕ(v)ρN(t,dv) − ∫

Td
ϕ(v)ρ(t,dv)∣ > ε} .
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Then, by the large deviation estimate with respect to Pψt = ψNt dνN1/2, we have

(7.24) Pψt(A) ⩽ e−C(ε)N
d

for some C(ε) > 0. Indeed, (7.24) is shown since the contribution of FN is negligible
due to the factor 1/N in (7.14), the bound on ∥Φn∥∞ and the choice of n = n(N); see
(2.6) and Corollary 3.10 in [32]. Applying the entropy inequality for P ft = fNt dνN1/2,
we obtain

P ft(A) ⩽
log 2 +NdhN(f

N
t ∣ψ

N
t )

log{1 + 1/Pψt(A)}
⩽

log 2 +CNd−κ

log{1 + eC(ε)Nd
}
⩽ C ′N−κ.

This completes the proof of Theorem 1.3. □

Our method and estimates apply also for non-gradient Glauber–Kawasaki dynamics.
In particular, one can give the upper bound for the strength K(N) of the Glauber
part for which one can prove the hydrodynamic limit. This is discussed in [32].

8. Extension to disordered lattice gas

We have worked with the non-gradient model where the jump rate is non-constant
but a deterministic function on the configuration space. One may wonder whether
the method is effective when the external randomness comes into the jump rate
function. These models are known as the disordered lattice gas or the exclusion
process in random/inhomogeneous environment. In the literature, [70, 30] considered
the lattice gas with disorder on site; [42, 49, 50] studied the cases where the jump rate
dependents on the random environment and combines the homogenization theory
to obtain the diffusion matrix; [28, 29] further relaxed the underlying graph to the
supercritical percolation and other stationary random graphs. It is not immediate to
cover the quantitative homogenization results in all these models, because there are
various ways to pose the disorder and sometimes the jump rate also degenerates. Here
we just give one typical example to illustrate that our proof still works in the presence
of external disorder. Our model can be seen as a lattice gas with disorder on bonds,
where randomness is introduced without breaking the spatial homogeneous property,
the uniform ellipticity and the product Bernoulli measure is still an invariant measure.
The argument will give a quantitative convergence rate (with a random fluctuation)
of finite-volume conductivity.

8.1. Model and hypothesis. The notations in this new model is almost the same
of the original one. However, instead of the genrator (1.6) defined by a collection of
functions {cb(η)}b∈(Zd)∗ , we now consider a collection of random functions:

c ∶ Ω→ F
(Zd)∗
0 ,

ω ↦ {cωb (⋅)}b∈(Zd)∗ ,

on some probability space (Ω,G ,P) satisfying the following hypothesis.

Hypothesis 8.1. The following conditions are supposed for c ∶ Ω→ F
(Zd)∗
0 .

(1) Non-degenerate and local: there exists a positive integer r and a positive
number λ > 1 such that for every ω, the function cωx,y(η) depends only on
{ηz ∶ ∣z − x∣ ⩽ r}, and is bounded on two sides 1 ⩽ cωx,y(η) ⩽ λ.

(2) Detailed balance under Bernoulli measures: for every ω, the function cωx,y(η)
does not depend on {ηx, ηy}.
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(3) Spatially homogeneous: the joint distribution of (cωx,x+e)x∈Zd,e∈U is the same as
that of (τxc

ω
0,e)x∈Zd,e∈U , where both of them are viewed as a family of random

functions taking value in F0.
(4) Unit range dependence: for any two edge sets E,F ⊆ (Zd)∗ such that if there

is no adjacent pair b ∈ E, b′ ∈ F sharing a common vertex, then the functions
{c⋅b}b∈E and {c⋅b}b∈F are independent.

We specially mention that given each sample ω ∈ Ω, the functions {cωb }b∈(Zd)∗
satisfy the same properties as that in Hypothesis 1.1 except the spatial homogeneous
property, which is replaced by the equality in distribution. Meanwhile, the detailed

balance condition ensures that the product Bernoulli measure Ber(ρ)⊗Z
d
is still an

invariant measure for the Kawasaki dynamics of jump rate {cωb }b∈(Zd)∗ for every

ρ ∈ [0,1].

8.2. Quantitative stochastic homogenization. We use the renormalization ap-
proach to establish the quantitative homogenization result. Given ω ∈ Ω, we define
the quenched subadditive quantities ν(ω, ρ,Λ, p) and ν∗(ω, ρ,Λ, q) as in (4.1)

ν(ω, ρ,Λ, p) ∶= inf
v∈ℓp,Λ++F0(Λ−)

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
⟨
1

2
cωb (πbv)

2
⟩
ρ

⎫⎪⎪
⎬
⎪⎪⎭

,

ν∗(ω, ρ,Λ, q) ∶= sup
v∈F0

⎧⎪⎪
⎨
⎪⎪⎩

1

2χ(ρ)∣Λ∣
∑

b∈Λ∗
⟨(πbℓq)(πbv) −

1

2
cωb (πbv)

2
⟩
ρ

⎫⎪⎪
⎬
⎪⎪⎭

.

(8.1)

Then for each ω, (1)-(4) in Proposition 4.1 still hold except (4.6) and (4.7). This
gives the definition of the quenched diffusion matrix and conductivity

ν(ω, ρ,Λ, p) =
1

2
p ⋅D(ω, ρ,Λ)p, c(ω, ρ,Λ) = 2χ(ρ)D(ω, ρ,Λ),

ν∗(ω, ρ,Λ, q) =
1

2
q ⋅D

−1
∗ (ω, ρ,Λ)q, c∗(ω, ρ,Λ) = 2χ(ρ)D∗(ω, ρ,Λ).

The results (4.6) and (4.7) are missing, because now for every Λ ⊆ Zd and z ∈ Zd

we only have ν(ω, ρ, z +Λ, p)
(d)
= ν(ω, ρ,Λ, p) (from (3) of Hypothesis 8.1) instead of

ν(ρ, z+Λ, p) = ν(ρ,Λ, p) in Proposition 4.1. Nevertheless, denote by E the expectation
associated to (Ω,G ,P), we recover

E[ν(⋅, ρ,◻m+1, p)] ⩽ E[ν(⋅, ρ,◻m, p)],

E[ν∗(⋅, ρ,◻m+1, q)] ⩽ E[ν∗(⋅, ρ,◻m, q)].
(8.2)

The monotone property allows us to define the limit

D(ρ) ∶= lim
m→∞

E[D(⋅, ρ,◻m)], c(ρ) ∶= 2χ(ρ)D(ρ).

Our goal is to prove the quantitative convergence rate of the finite-volume quenched
conductivity matrix to this limit. Because c(ω, ρ,Λ) depends on the random envi-
ronment ω, we need to measure the random fluctuation and we use the following
notation introduced in [11, Appendix A]: for a random variable X in (Ω,G ,P) and
exponents s, θ ∈ (0,∞), we define

(8.3) X ⩽ Os(θ)⇐⇒ E[exp((θ−1X+)
s
)] ⩽ 2,

where X+ ∶=max{X, 0}. Roughly, (8.3) tells that X is concentrated with a stretched
exponential tail. More properties of Os can be found in [11, Appendix A]. Using this
notation, we state our result as follows.
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Theorem 8.2. Fix t ∈ (0, d), there exists κ(d, λ) > 0, C(t, d, λ) < ∞ such that for
any ρ ∈ (0,1) and any m ∈ N+:

(8.4) ∣c(ρ) − c(ω, ρ,◻m)∣ + ∣c(ρ) − c∗(ω, ρ,◻m)∣ ⩽ (C3
−mκ(d−t)

+O1(C3
−mt
)) .

Proof. We follow [11, Theorem 2.4] to handle the fluctuation part. We combine
the quenched subadditive quantity defined in (8.1) to obtain the quenched master
quantity

J(ω, ρ,Λ, p, q) ∶= ν(ω, ρ,Λ, p) + ν∗(ω, ρ,Λ, q) − p ⋅ q.(8.5)

Then for each ω fixed, Lemmas 4.5 and 4.6 remain valid and especially we have

∣c(ω, ρ,◻m) − c∗(ω, ρ,◻m)∣ ⩽ C(d, λ)χ(ρ)
⎛

⎝
sup
∣p∣=1

J(ω, ρ,◻m, p,D(ρ)p)
1
2
⎞

⎠
.

One can verify that J(ω, ρ,Λ, p, q) is a subadditive quantity. The key step of
the proof relies on the observation in [11, Lemma A.7], which breaks the control of
subadditive quantities with mixing condition into its mean and the random fluctuation.
It also applies to the mapping Λ ↦ J(ω, ρ,Λ, p, q) in our setting: for every p ∈ B1,
there exists a constant C independent of ρ such that

J(ω, ρ,◻m, p,D(ρ)p) ⩽ 2E[J(⋅, ρ,◻n, p,D(ρ)p)] +O1(Cλ3
−(m−n)d

).(8.6)

Here we have the freedom to choose the parameter n ∈ (0,m) ∩ N+, which will
determine t in (8.4) by setting t ∶= d (1 − n

m
) ∈ (0, d).

Therefore, it suffices to study of the decay of the mean part E[J(⋅, ρ,◻n, p,D(ρ)p)]
and the proof is quite similar to what we have done in Section 5, where the main steps
are Lemmas 5.2 and 5.4, and Proposition 5.3. They can be carried to the disordered
setting for the following reasons.

(1) Lemma 5.2 depends on the modified Caccioppoli inequality (2.10), which
is valid for each ω ∈ Ω because {cωb }b∈(Zd)∗ satisfies the uniform ellipticy by

(1) of Hypothesis 8.1, and the underlying invariant measure is still Bernoulli
measure by (2) of Hypothesis 8.1.

(2) The variance decay in Lemma 5.4 uses the spatial independence, which is
ensured by (3) and (4) of Hypothesis 8.1. More precisely, let v(ω, ρ,◻n, p, q)
be the optimiser of J(ω, ρ,◻n, p, q) like (4.16), we aim to estimate

1

2χ(ρ)
E

⎡
⎢
⎢
⎢
⎢
⎣

⟨

RRRRRRRRRRR

1

∣◻n∣
∑
x∈◻n

∇x (v(ω, ρ,◻n, p, q) − ℓD−1n q−p)
RRRRRRRRRRR

2

⟩

ρ

⎤
⎥
⎥
⎥
⎥
⎦

⩽ C3−βn +C
n−1
∑
k=0

3−β(n−k)τk,

where the quantity Dn(ρ) is defined as

Dn(ρ) ∶= E[D∗(⋅, ρ,◻n)
−1
]
−1,

and τn is defined as

τn = sup
p,q∈B1

E[J(⋅, ρ,◻n, p, q) − J(⋅, ρ,◻n+1, p, q)].
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We write vn as a shorthand for v(ω, ρ,◻n, p, q) and vn−1,z as a shorthand of
v(ω, ρ, z +◻n−1, p, q), then we have the decomposition

E

⎡
⎢
⎢
⎢
⎢
⎣

⟨
1

2χ(ρ)

RRRRRRRRRRR

1

∣◻n∣
∑
x∈◻n

∇x (vn − ℓD−1n q−p)
RRRRRRRRRRR

2

⟩

ρ

⎤
⎥
⎥
⎥
⎥
⎦

1
2

⩽ E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⟨
1

2χ(ρ)

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − ℓD−1n−1q−p)

RRRRRRRRRRRR

2

⟩

ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1
2

+E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⟨
1

2χ(ρ)

RRRRRRRRRRRR

1

∣◻n∣
∑

z∈Zn,n−1

∑
x∈z+◻n−1

∇x (vn−1,z − vn)

RRRRRRRRRRRR

2

⟩

ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1
2

+ λ∣D−1n q −D
−1
n−1q∣.

The key is the cancellation in the first term under E[⟨⋯⟩ρ]. After expanding

the sum, we not only use the finite-range dependence of η ↦ cωb (η) to obtain
the independence over Pρ, but we also use the unit-range dependence of P.

(3) The L2-flatness estimate in Proposition 5.3 should also be carried under the
expectation E. It relies on the weighted multiscale Poincaré inequality (3.15),
which does not involve the jump rate. Then we further develop it, and the
variance decay in Lemma 5.4 applies to the typical case (5.14), which has
been discussed as above. For the atypical case (5.18), the L∞ estimate also
applies since it only requires the log-Sobolev inequality (see the proof in
Appendix B), which remains valid thanks to the uniform ellipticity of the
jump rate by (1) of Hypothesis 8.1 .

□

One can deduce further results built on Theorem 8.2, and we leave them to the
future work.

Appendix A. Subadditivity and Whitney inequality

A lot of results on quantitative homogenization are stated for the triadic cubes,
but they actually hold for the general domain with reasonable boundary regularity,
and such generalization only relies on the subadditivity and a nice decomposition.
We state this observation under Rd setting, and one can adapt it easily in lattice
models. In the following statement, a triadic cube Q in Rd is an open set of type
z + (−3m

2 ,
3m

2 )
d, where z ∈ Rd is called its center and 3m with m ∈ Z is called its size

and is denoted by size(Q). Especially, we denote by ◻m = (−
3m

2 ,
3m

2 )
d as the cube

centered at 0 and of size 3m in this section. We also denote by ∣U ∣ the Rd-Lebesgue
measure for Borel set U , and by σ(C) the area of the (d − 1)-dimensional surface C.

Lemma A.1. Let the quantity ν be defined on the bounded open sets of Rd with
Lipschitz boundary and satisfy the following properties.

(1) (Spatial homogeneous) For any z ∈ Rd and open set U ⊆ Rd, ν(z +U) = ν(U).
(2) (Subadditivity) Given disjoint open sets {Ui}1⩽i⩽n such that they partition U

in the sense that U1,⋯, Un ⊆ U and ∣U ∖ (⋃ni=1Ui)∣ = 0, then we have

ν(U) ⩽
n

∑
i=1

∣Ui∣

∣U ∣
ν(Ui).(A.1)
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(3) (Decay for triadic cubes) There exist two finite positive constants C,α, such
that for any triadic cube ◻m, we have

ν(◻m) ⩽ C(3
−αm
∧ 1).(A.2)

Then there exists a positive constant C ′, such that for any open set U circumscribed
by piecewise C1 surfaces, we have

ν(U) ⩽ C ′ (
σ(∂U)diam(U)(1−α)∨0

∣U ∣
∧ 1) .(A.3)

Remark A.2. As an application, for the cube ΛL = (−
L
2 ,

L
2 )
d with L ⩾ 1, we have

ν(ΛL) ⩽ C
′L−(α∧1) and it gives a polynomial decay in function of the diameter.

Proof. The case for diam(U) ⩽ 1 is trivial and we focus on the case that U of large
diameter. The proof relies on the standard Whitney decomposition, which will give a
family of open triadic cubes {Qj}j⩾0 of nice properties; see [44, Appendix J] for its
construction and proof. In our proof, the useful properties from such decomposition
are

● {Qj}j⩾0 are disjoint and they partition U in the sense of (2) in Lemma A.1;

●
√
d size(Qj) ⩽ dist(Qj , ∂U) ⩽ 4

√
d size(Qj).

Apply the subadditivity to {Qj}j⩾0 and by passing to the limit, we have

ν(U) ⩽
∞
∑
i=1

∣Qi∣

∣U ∣
ν(Qi).(A.4)

Let m be the positive integer such that

3m−1 ⩽ diam(U) ⩽ 3m,(A.5)

then we classify the cubes by their sizes

Ik ∶= {i ∈ N+ ∶ size(Qi) = 3k}.

Using the second properties listed above about the decomposition, all the cubes in Ik
stay in distance 4

√
d3k from the boundary, then we have

⋃
i∈Ik

Qi ⊆ {x ∈ U ∶ dist(x, ∂U) ⩽ 5
√
d3k}.(A.6)

Since U admits piecewise C1 boundary, we denote by ∂U = ⋃mj=1 Cj , where different
pieces Cj only have intersection of null set. Then we have the following volume
estimate

(A.7) ∑
i∈Ik
∣Qi∣ ⩽ ∣{x ∈ U ∶ dist(x, ∂U) ⩽ 5

√
d3k}∣ ⩽

m

∑
j=1
∣{x ∈ U ∶ dist(x, ∂Cj) ⩽ 5

√
d3k}∣

⩽ 10
√
d3k

m

∑
j=1

σ(Cj) = 10
√
d3kσ(∂U).

Then we put these estimates back to the cubes from Whitney decomposition (A.4)
to obtain

ν(U) ⩽
0

∑
k=−∞

1

∣U ∣

⎛

⎝
∑
i∈Ik
∣Qi∣
⎞

⎠
ν(◻k) +

m

∑
k=1

1

∣U ∣

⎛

⎝
∑
i∈Ik
∣Qi∣
⎞

⎠
ν(◻k)

⩽
Cσ(∂U)

∣U ∣

0

∑
k=−∞

3k +
Cσ(∂U)

∣U ∣

m

∑
k=1

3(1−α)k
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⩽
Cσ(∂U)

∣U ∣
3m(1−α)∨0.

Here apply (A.2) and (A.7) from the first line to the second line, then we use (A.5)
to conclude the proof. □

Appendix B. Proof of L∞ norm using mixing time

In this part, we prove Lemma 4.14. Such estimate should be generally valid for
Markov chain, and we state the case of Kawasaki dynamics.

Lemma B.1. There exists a constant C(λ, d) < ∞, such that for any connected
domain Λ ⊆ Zd of diameter L and any two functions u, f ∶ X → R satisfying

LΛu = f,

then for any N ∈ N+ we have

∥u − ⟨u⟩Λ,N∥∞ ⩽ CL
2 logL ∥f∥∞ .(B.1)

Proof. Let Pt(⋅, ⋅) ∶ X ×X → R+ be the transition probability of the continuous-time
Kawasaki dynamics generated by the generator LΛ, which has µΛ,N = PΛ,N as its
stationary measure for any N ∈ N+. Then we use the Duhamel’s formula

u(η) − ⟨u⟩Λ,N = ∫
∞

0
(Ptf)(η) − ⟨f⟩Λ,N dt,(B.2)

which is well-defined thanks to the spectral gap and exponential decay of the mapping
t↦ VarΛ,N [Ptf].

Then we estimate the L∞ norm. We notice that

∥(Ptf)(η) − ⟨f⟩Λ,N∥∞ = sup
η∈X

⎛

⎝
∑
η′∈X

Pt(η, η
′
)f(η′) − ∑

η′∈X
µΛ,N(η

′
)f(η′)

⎞

⎠

⩽ 2 sup
η∈X
∥Pt(η, ⋅) − µΛ,N∥TV ∥f∥∞ .(B.3)

Here we denote by ∥⋅∥TV the total variation distance and make use of its definition
[56, (4.7)]. By convention in [56, (4.22),(4.30),(4.31)], we also define

d(t) ∶= sup
η∈X
∥Pt(η, ⋅) − µΛ,N∥TV ,

tmix ∶= inf {t ∈ R+ ∶ d(t) <
1

4
} .

Then t↦ d(t) is decreasing and satisfies (see [56, (4.33)])

∀n ∈ N, d(ntmix) ⩽ 2
−n.

We put this observation and (B.3) back to (B.2)

∥(Ptf)(η) − ⟨f⟩Λ,N∥∞ ⩽
∞
∑
n=0
∫

(n+1)tmix

ntmix

∥(Ptf)(η) − ⟨f⟩Λ,N∥∞ dt

⩽
∞
∑
n=0

2d(ntmix) ∥f∥∞ tmix

⩽ 2
∞
∑
n=0

2−n ∥f∥∞ tmix

= 2 ∥f∥∞ tmix.

One classical method to obtain the mixing time of Markov process is the log-Sobolev
inequality; see [25, (1.8)]. In our case, we use the log-Sobolev inequality on general
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Kawasaki dynamics developed in [58, Theorem 3]; see also [61, (2)] and discussion
there. This gives us

tmix ⩽ C(d, λ)L
2 log log (

Ld

N
) ⩽ C̃(d, λ)L2 logL,(B.4)

which yields (B.1). □

Remark B.2. The steps before (B.4) is standard for all the reversible Markov processes.
We apply the log-Sobolev inequality for the mixing time, because the jump rate
in this paper depends on the local configuration. We remark some other recent
progresses [68, 53, 61] on the mixing time of the exclusion processes (i.e. the constant-
speed Kawasaki dynamics). Their generalization on the non-gradient models is an
interesting and challenging question.

Proof of Lemma 4.4. We take u(Λ, q) for example, which is the solution of

LΛu(Λ, q) = ∑
b∈Λ∗L

πbℓq.

Therefore, we apply (B.1) with ∥∑b∈Λ∗L
πbℓq∥

∞
⩽ C(λ, d)Ld. The case for v(ρ,Λ, ξ)

can be done similarly. □

Remark B.3. For 2 ⩽ p < ∞, we have ∥u − ⟨u⟩Λ,N∥p ⩽ CL
2∥f∥p without logL.

Indeed, we may apply Riesz–Thorin interpolation theorem for two inequalities

∥Ptf − ⟨f⟩Λ,N∥∞ ⩽ 2∥f∥∞ and ∥Ptf − ⟨f⟩Λ,N∥2 ⩽ e
−cL−2t∥f∥2 for some c > 0, which

follows from the spectral gap estimate for LΛ.
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[18] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford University Press,

Oxford, 2013.
[19] C.-C. Chang. Equilibrium fluctuations of nongradient reversible particle systems. In Nonlinear

stochastic PDEs (Minneapolis, MN, 1994), volume 77 of IMA Vol. Math. Appl., pages 41–51.
Springer, New York, 1996.

[20] P. Dario. Quantitative homogenization of the disordered ∇ϕmodel. Electron. J. Probab., 24:Paper
No. 90, 99p., 2019.

[21] P. Dario. Optimal corrector estimates on percolation cluster. Ann. Appl. Probab., 31(1):377–431,
2021.

[22] P. Dario. Quantitative homogenization of differential forms. Ann. Inst. Henri Poincaré Probab.
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