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Abstract
In recent years, there has been a growing inter-
est in using machine learning techniques for the
estimation of treatment effects. Most of the best-
performing methods rely on representation learning
strategies that encourage shared behavior among
potential outcomes to increase the precision of treat-
ment effect estimates. In this paper we discuss
and classify these models in terms of their algorith-
mic inductive biases and present a new model, NN-
CGC, that considers additional information from
the causal graph. NN-CGC tackles bias resulting
from spurious variable interactions by implementing
novel constraints on models, and it can be integrated
with other representation learning methods. We test
the effectiveness of our method using three different
base models on common benchmarks. Our results
indicate that our model constraints lead to signifi-
cant improvements, achieving new state-of-the-art
results in treatment effects estimation. We also show
that our method is robust to imperfect causal graphs
and that using partial causal information is prefer-
able to ignoring it.

1 Introduction
Causal inference is a method used to understand whether and
how a specific action (intervention or treatment) causes a
change in a particular result or outcome. This process is
crucial in many fields where understanding the cause-effect
relationship is important; such as in medical trials, economic
policy analysis, educational program evaluations, social sci-
ence research, and artificial intelligence [Schölkopf et al.,
2021].

A key challenge in causal inference is that when we observe
an outcome, we usually do not know what would have hap-
pened with an alternative intervention. This issue is known
as the “Fundamental Problem of Causal Inference” [Rubin,
1974]. Due to this, direct application of data-based function
approximation methods, such as machine learning or statistical
analysis, is not feasible. As a result, various indirect methods
have been devised to address this challenge.

In the case of observational data, that is, information col-
lected without any deliberate intervention or controlled ex-

periment, causal inference faces unique challenges and ap-
proaches.

The first major challenge in conducting causal inference
from observational data is the identifiability problem [Pearl,
2009]: establishing that the causal effect can be uniquely
inferred from the data at hand. This requires ensuring that the
data, model, and assumptions used are appropriate and robust
enough to distinguish between correlation and causation.

Once identifiability is established, the next step is to artic-
ulate the target causal effect using estimable quantities. Ma-
chine learning techniques have proven highly effective in cal-
culating the types of expressions found in these estimable
quantities, playing a significant role in advancing various
causal inference methodologies [Kaddour et al., 2022].

During recent years, there has been an increasing empha-
sis on developing techniques that incrementally adapt ma-
chine learning models to the task of causal effects estima-
tion. This area, where representation learning and neural
networks play a vital role [Shalit et al., 2017; Shi et al., 2019;
Tesei et al., 2023], is the focus of our paper. In this work, we
review and categorize these models based on their algorithmic
inductive bias – the underlying assumptions a model relies
on for making predictions or generalizations from its training
data. We explore their relationship with various types of bi-
ases that need to be addressed for accurate treatment effect
estimation.

Furthermore, we pinpoint and address a bias that is often
overlooked in the literature on non-linear models: the occur-
rence of spurious interactions between variables within models.
These interactions are not part of the underlying causal model
and can create correlational shortcuts that alter the impact
of causal relationships estimated by models, particularly in
situations where data is limited.

The rest of this paper is organized as follows. In Section
2, we define the problem and review related work on causal
effects estimation. In Section 3, we describe our proposed
method and explain how it can be implemented in neural
network models. In Section 4, we present the experiments we
conducted to evaluate our method and compare it with other
state-of-the-art estimators. In Section 5, we discuss the results
and analysis of our experiments and suggest some possible
directions for future research.
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1.1 Preliminary concepts and setup
We want to estimate the causal effect of a treatment variable T
on an outcome variable Y , controlling for a set of covariates
X . We assume that the causal relationships between these
variables can be represented by a causal graph [Koller and
Friedman, 2009]. A causal graph is a directed acyclic graph
(DAG) where each node is a variable and each edge is a direct
causal effect. We assume that the causal graph satisfies the
causal edges assumptions, which means that all parents are
causes of their children. We denote the causal graph by G, the
set of parents of node xi by Pa(xi), the children by Ch(xi)
and the ancestors by An(xi).

Beyond the causal graph, the underlying causal model can
be modeled through a set of structural equations. A Struc-
tural Causal Model (SCM) [Pearl, 2009] consists of a set of
endogenous variables U , a set of exogenous variables V and
a set of functions {fi} to generate each endogenous variable
xi as a function of other variables. Every SCM implies an
associated causal graph.

An interaction occurs when the effect of one variable on the
outcome depends on the value of another variable. However,
models for treatment effect estimation can consider interac-
tions that may be spurious, lacking a real presence in any
causal mechanism within the data generation process. Hence,
we define a spurious interaction as one that does not man-
ifest in any of the equations fi within the SCM. We refer to
non-spurious interactions as causally valid interactions.

In many cases, the complete SCM may not be fully known,
but there might be some expert knowledge about the nature
of the interactions between variables. In such situations, the
method proposed in this paper can still be utilized by incorpo-
rating this partial information.

In this work, we will focus on causal effects that can be
identified using the backdoor criterion [Pearl, 1993]. A set
of variables X satisfies the backdoor criterion relative to T
and Y if: 1) X blocks all backdoor paths from T to Y , and 2)
X does not contain any descendants of T .

Adjustment sets and variable interactions
Even though the backdoor criterion provides a complete iden-
tification of all valid adjustment sets (sets of variables can be
used to identify the causal effects, possibly including variables
that are not strictly necessary), it does not tell us which is
the optimal adjustment set for practical estimation in finite-
sample scenarios.

Those variables in a valid adjustment set that are not strictly
required for identification are called neutral controls [Cinelli
et al., 2022]. These variables neither increase nor decrease
the asymptotic bias of the estimation of treatment effects, but
they can still have a huge impact in a finite-sample scenario
and can improve the performance of estimators. The optimal
adjustment set usually contains neutral controls.

Given a valid adjustment set, its associated spurious interac-
tions are the potential interactions between variables included
in the set that do not appear in any of the of the equations of
the SCM associated with the data.

In this work, we assume all our datasets are composed of
valid adjustment sets, i.e. the backdoor criterion can be satis-
fied. There are advanced methods that, given an SCM, allow

to define efficient adjustment sets (adjustment sets that yield
the least squares estimator with the smallest asymptotic vari-
ance) [Rotnitzky and Smucler, 2020], [Henckel et al., 2022].
Although this scenario is not addressed in our work, it’s im-
portant to note that these sets may also be prone to spurious
interaction bias. Consequently, the method outlined in this
paper is also applicable to them.

2 Problem definition and related work
We are interested in estimating the fY (T,X) function that
explains the causal effect of a given treatment T on a target
variable Y considering a valid adjustment set X . In this paper,
we name this the causal effects function.

In the binary case, let us define Y (1) as the outcome in
the presence of treatment and Y (0) as the outcome in its
absence. For a given individual i, the causal effects function,
or Individual Treatment Effect function (ITE), is expressed
as ITE := fY (T,X) = fY (X) = Yi(1) − Yi(0). We are
also interested in the Average Treatment Effect (ATE) and
the Conditional Average Treatment Effect (CATE): ATE :=
E[Yi(1)− Yi(0)], CATE := E[Yi(1)− Yi(0)|X = x].

In order to be able to estimate these quantities, we need to
obtain a statistical estimand that depends only on observed
data using the process of identification. The identified esti-
mand for the binary case using the backdoor criterion is:

EX [E[Y |T = 1, X]− E[Y |T = 0, X]] (1)

This estimand is apparently similar to the common esti-
mand used in prediction tasks E[Y |T,X], but model selection
processes and inductive biases that work for one do not neces-
sarily apply to the other [Doutreligne and Varoquaux, 2023].
Consequently, having an identified expression might not be
enough to calculate accurate causal effects. The estimand that
has been identified might be prone to issues that could make
it difficult to estimate and hence render any non-asymptotic
estimation impossible [Maclaren and Nicholson, 2019].

The step after causal identification is causal estimation: in
this step, all available data is used to compute an association
that reflects the causal effect if all assumptions are met.

2.1 Causal Estimation and Inductive biases for the
causal inference task

The use of algorithmic inductive biases that encode prior infor-
mation about the data in causal estimation methods has been
one of the most successful strategies to build better causal
inference models [Künzel et al., 2019]. To understand these
inductive biases, we need to identify the sources of error when
computing causal effects. These sources of error can be cat-
egorized into two main categories: identification bias and
estimation bias [Chatton and Rohrer, 2023].

In practical situations, it is not always possible to test the
assumptions that establish a statistical estimand as a causal
estimand. Certain assumptions, such as the absence of con-
founders, cannot be tested. Below, we present several bi-
ases that arise from the potential violation of the assumptions,
known as identification bias:

• Exchangeability bias: Bias derived from the existence of
hidden confounders that impact the identification process.



METHOD
IDENTIFICATION BIAS ESTIMATION BIAS

Exchangeability Positivity No interference Consistency Data eficiency Treatment relevance Propensity Spurious interactions

Linear Models [Thoresen, 2019] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
S-learner [Künzel et al., 2019] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
T-learner [Künzel et al., 2019] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
X-learner [Künzel et al., 2019] ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
BLearner [Oprescu et al., 2023] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

TARNet[Shalit et al., 2017] ✗ ✗ ✗ ✗ ✓ ✓ ✗ + CGC −→ ✓
CFRNet [Shalit et al., 2017] ✗ ✗ ✗ ✗ ✓ ✓ ✓ + CGC 99K ✓?
Dragonnet [Shi et al., 2019] ✗ ✗ ✗ ✗ ✓ ✓ ✓ + CGC −→ ✓
BCAUSS [Tesei et al., 2023] ✗ ✓ ✗ ✗ ✓ ✓ ✓ + CGC −→ ✓

HINITE [Lin et al., 2023] ✗ ✗ ✓ ✗ ✓ ✓ ✓ + CGC 99K ✓?

Table 1: Comparison of some relevant causal inference methods in terms of the biases they address. Checkmarks indicate that the method has a
mechanism to address the bias indicated in the column. Methods included in the table have mechanisms that are easy to associate with a source
of error. In this paper, we present CGC, a method that can be applied on top of other representation-based learners to address the spurious
interactions bias. With a solid arrow, we represent the methods evaluated in this paper. With a dashed arrow, other representation-based
methods where CGC could be applied.

• Positivity bias: This assumption can be violated if we do
not collect any data for a subpopulation.

• Consistency bias: Bias derived from the violation of the
consistency assumption, which states that if the treat-
ment is T , then the observed outcome Y is the potential
outcome under treatment T [Neal, 2020].

• Non-interference bias: Bias derived from the effect of one
individual treatment on another individual. The existence
of this bias is particularly common in network data [Lin
et al., 2023].

We can also consider additional inductive biases related to
the finite nature of the data. These are called estimation bias:

• Propensity bias: A causal model must generalize from
behavior under one set of conditions to behavior under
another set [Pearl, 2009]. This bias appears when the
performance of the model differs between distinct treat-
ments as a consequence of a difference in the distribution
of the data.

• Relevance of treatment: Bias that appears especially in
high-dimensional settings. Models tend to neglect the
role of the treatment and its effect is expressed through
correlated features.

• Functional form: Any task performance can be affected
by the functional form in which it is modeled. Linear
tasks are better modeled by linear models, and monotonic
tasks by monotonic models.

• Variable interactions: Spurious variable interactions do
not explain any causal relationship between the variables,
but a model might use them as a correlational shortcut,
modifying the effect of causal relationships.

• Data efficiency: A model might not make an efficient use
of the information present in the data.

• Missing data: Bias derived from the lack of availability
of some data.

• Measurement error on some variables.
In Table 1 some of the most relevant causal inference meth-

ods are considered along with the biases they address. It shows
which methods can correct or mitigate each type of bias. Using
data efficiently and ensuring treatment relevance are among

the most critical sources of error and have been addressed by
most models. In the table, we can also see that one of the
most interesting properties of non-linear models is that they
can stack multiple bias correction strategies to address several
sources of bias at the same time.

2.2 State of the Art causal inference methods
Two of the most straightforward approaches for estimating
the estimand represented by Eq.(1) are the S-Learner and the
T-Learner [Künzel et al., 2019]. S-learner is a method that
trains a single machine learning model with the treatment vari-
able as one of the features, along with other covariates. This
model is then used to predict outcomes under both scenarios -
with treatment and without treatment. The main disadvantage
of S-learner is that it can bias the estimate of the treatment
effect towards zero, especially when the feature space is large.
Unlike the S-learner, the T-learner splits the data by treatment
and fits a model for each group. This addresses the issue of
failing to recognize a weak treatment variable, yet it may still
be prone to data efficiency bias.

S-learner and T-learner are among the simplest causal ef-
fects estimators; however, apart from these approaches, more
sophisticated methods have also been developed.

Most of the best performing methods in Table 1 rely
on the concept of representation learning [Bengio et al.,
2013]. They use neural networks with an architecture that
can be understood in two parts: pre-representation and post-
representation. The first creates a representation from the
input data and the second takes over from the representation
to the desired output. One reason why explicitly dealing with
representations is interesting is because they can be conve-
nient to express many general priors about the world around
us. These priors can be used to incorporate inductive biases
to improve the causal inference task. Recent improvements in
causal effect prediction methods focus primarily on modifica-
tions of the post-representation part: either by modifying the
architecture of the output layers of the network or by using
specific loss functions that carry inductive biases.

For example, TARNet [Shalit et al., 2017] branches off into
two separate heads for each treatment group to prevent the
model from disregarding T . On top of that, Dragonnet [Shi
et al., 2019] is adds a third head to the TARNet architecture
to predict propensity g(X) = P (T = 1|X). This approach



reduces the bias caused by having different modeling perfor-
mances for each value of the treatment, although it decreases
the predictive accuracy of the model. BCAUSS [Tesei et al.,
2023] uses the same architecture as the Dragonnet, but mod-
ifies the loss function so that it is more robust to positivity
violations. In this approach, multiple bias correction methods
are stacked to obtain state-of-the-art results. Other represen-
tation learning approaches encode other inductive biases to
deal with different scenarios. CFRNet [Shalit et al., 2017] and
BNN [Johansson et al., 2016] create a balanced representa-
tion of the data for both treated and untreated observations.
Similarly, importance sampling weights can be added to the
CFRNet to alleviate the problem of selection bias [Hassanpour
and Greiner, 2019]. HINITE [Lin et al., 2023] addresses no
interference assumption violations, and in [Curth and van der
Schaar, 2021] the authors create a representation that encodes
prior information about the structure of causal effects.

Other works have suggested inductive biases that are chal-
lenging to link with a particular source of error. For example,
CEVAE [Louizos et al., 2017] uses variational autoencoders
(VAE) to estimate a latent-variable model that simultaneously
discovers hidden confounders and infers how they affect treat-
ment and outcome. Another example is GANITE [Yoon et
al., 2018], which uses generative adversarial networks (GAN)
to estimate treatment effects. This approach attempts to cap-
ture the uncertainty in the counterfactual distributions and is
defined for any number of treatments.

2.3 Motivation
The source of bias derived from variable interactions has been
studied in the context of linear models [Thoresen, 2019], [Har-
ring et al., 2015], where the inclusion of each interaction has
to be evaluated. However, the discussion has not extended to
non-linear models like neural networks, despite these models
frequently rely on interactions between all variables.

In this paper we propose Neural Networks with Causal
Graph Constraints (NN-CGC), a method to address the vari-
able interactions bias using causal information like the one
that might be present in the causal graph and apply it to neural
network models.

3 A new Inductive Bias for Estimating Causal
Effects

We propose a comprehensive methodology for incorporating
an inductive bias that mitigates spurious interactions in neural
network models. This approach can utilize information such
as expert insights about the connections between specific vari-
ables, partial or complete knowledge of the causal graph, or a
blend of both.

3.1 Constraining the learned distribution
Our main assumption is that the learned distribution has to be
as close as possible to the distribution defined by the underly-
ing causal model. To do so, we remove some of the cases that
do not satisfy the conditional independence structure encoded
by the causal graph. Specifically, we model the distribution
of Y as a function of functions of variables that are causally
related to each other.

For any node xi ∈ Pa(Y ), we define the following set of
variables: Gxi := ({xi} ∪An(xi)) \ {T}.

Then, we propose to restrict the learned model fY (X) to
this family of functions:

fY (X) ∼ fY

(
f
(
Pa(Y ) \ {T}

)
, f

(
Gx1

)
, .., f

(
Gxn

))
.

The variable T is excluded from all the groups because the
learners implemented in this paper do not use T as an input
but rather as part of the structure.

Using this method, all valid interactions are included, while
all discarded interactions are of spurious nature. Note that we
do not use causal paths that go from root nodes to the target as
groups, as these would prevent some valid interactions. See
an example in Figure 1.

In the case of not having access to the causal graph, we can
be define Gxi

by using expert knowledge about existing spuri-
ous interactions or by considering causal discovery methods.
This approach can help limit our model’s reliance on at least
some of the spurious interactions.

Groups of variables and Independent Causal Mechanisms
The causal generative process of a system variables is com-
posed of autonomous modules that do not inform or influence
each other, called Independent Causal Mechanisms (ICM)
[Schölkopf et al., 2021]. The groups defined in Section 3.1
contain all the information for modeling the ICMs for the
target variable Y and for each of its parents Pa(Y ) given the
adjustment set X . Several studies, such as those by [Xia et
al., 2021] and [Parafita and Vitrià, 2022], have investigated
the process of modeling all Independent Causal Mechanisms
(ICMs) to derive a Structural Causal Model (SCM). This com-
prehensive method carries its own challenges and advantages,
making it a suitable option for certain scenarios. The method-
ology presented in this paper finds a balance between fully
connected modeling and SCM-based modeling.

Following this objective, in the next section, we detail how
this approach can be implemented using neural networks and
how it can be combined with other neural network-based learn-
ers.

Figure 1: Illustrative example of groups of variables allowed to
interact between each other. In this setting, the allowed interactions
are: (X1, X2, X4), (X3, X1), (X5, X3, X4). In this specific case, Gx4

is equal to GT .



Figure 2: Model architecture when applying CGC to the Drag-
onnet. The post-representation part remains identical but the pre-
representation layers are divided according to the groups of variables.

3.2 Implementation and Neural Network
Architecture

Similarly to other methods related to representation learning
ideas, our technique can be broken down into two parts. Ini-
tially, we define the inputs and the layers that lead to the
representation. Subsequently, we analyze the representation
layer and the output layers of the network. A pseudocode for
the implementation can be found in Algorithm 1.

Pre-representation: Variable groups
The input of the network is divided into different groups of
variables, as shown in Figure 2. We create a set of layers for
each variable group Gxi

and Pa(Y ), that do not interact with
each other. Each set of layers receives only the variables in
the group as input. Note that a single variable can be part of
more than one group. Each set of layers must be able to model
P (Y |Gxi

) or P (Y |Pa(Y )). The output of all these layers is
concatenated and used as input of the representation layer Z.

Post-representation: Linear layer and output heads
The representation layer Z is connected to the head of the
network through a linear activation function. This ensures that
the representation encoded in Z, which is used as input for the
rest of the network, is free from spurious interactions.

Most state of the art methods modify the output of the net-
work by changing the architecture after the representation
layer, i.e. considering distinct heads or loss functions. In
contrast, our methodology takes place in the architecture be-
fore the representation layer. This allows for a combination
of both architectures, using our methodology combined with
any of the output heads. In this paper we implemented the
TARNet [Shalit et al., 2017], Dragonnet [Shi et al., 2019] and
BCAUSS [Tesei et al., 2023] heads, but other representation-
based learners can be connected to the network.

4 Empirical testing
We are interested in determining whether models that are
constrained using the proposed technique perform better than
their unconstrained counterparts. Since the method can be
applied to most representation-based learners, we test it using
some of the best performing learners:TARNet, Dragonnet, and
BCAUSS. Counting constrained and unconstrained versions,
this gives us a total of six models to experiment with.

4.1 Experimental setup
Evaluating causal inference methods is hard because we usu-
ally have no access to counterfactual data. To overcome

Algorithm 1 Adding CGC procedure
Input: Train and test sets (Dtr, Dte) ∼ D with a treatment
variable T , a target Y and a valid adjustment set X .
Parameter: A representation-based fY (T,X) estimator NN.

1: Causal Knowledge Specification: Build or discover the
associated causal graph using the data in Dtr. If this is not
feasible, list all forbidden variable interactions by using
expert knowledge.

2: Groups: Create the groups of variables Gxi
:= ({xi} ∪

An(xi)) \ {T} ∀xi ∈ Pa(Y ) and Pa(Y ) \ {T}. If the
causal graph is not available, form all compatible variable
subsets by excluding forbidden interactions.

3: Architecture pre-representation: Create an independent
set of layers for each group, all connected to the represen-
tation layer Z.

4: Architecture post-representation: Use the head associated
to NN from the representation layer onward.

5: Model: Run the causal inference workflow associated to
NN using Dtr and Dte.

this problem, one of the common approaches is to use semi-
synthetic data. We test the models on two of the most common
benchmarks in causal inference: IHDP and JOBS. These
benchmarks have already been used by some of the best per-
forming methods and thus are specially relevant for the com-
parison of constrained and unconstrained models.

Since these benchmarks might present some problems
[Curth et al., 2021], we also test the models on a range
of synthetic benchmarks that represent distinct situations,
details in the synthetic experiments section. All the
code for reproducing the experiments can be found here -
https://anonymous.4open.science/r/NN-CGC-FF9E/.

Causal Graphs
All causal graphs in these experiments are discovered using the
ICALINGAM algorithm [Shimizu et al., 2006] implemented
in [Zhang et al., 2021]. The output of this algorithm usually
involves only a subset of the variables. Since we are interested
in the effect of using correct information rather than the quality
of the discovery, we group the remaining variables into a
single group of variables. Errors in the discovery might still
translate to loss of performance of the constrained models
(which can be seen in the higher-variance scenarios of the
synthetic benchmarks). The choice of the discovery algorithm
is out of the scope of this work, and ICALINGAM has been
selected for its ability to converge under distinct scenarios.
Given that the adjustment set is considered valid, it is assumed
that any nodes associated with the target are in the parents of
Y , as this would otherwise go against the backdoor criterion.

Hyperparameters
We use the same training hyperparameters defined in [Shi et
al., 2019] and [Tesei et al., 2023], as they show to achieve
state of the art results. These include a hidden layer size of 200
for the shared representation layers and 100 for the conditional
outcome layers, train using stochastic gradient descent with

https://anonymous.4open.science/r/NN-CGC-FF9E/


SCENARIO NOISE TARNET DRAGONNET BCAUSS

A

1/2 0.76 0.76 0.93
1 0.91 0.92 1.02
2 1.07 1.04 1.06
4 1.08 1.11 1.02

B

1/2 0.73 0.72 0.63
1 0.92 0.94 0.78
2 1.02 1.06 0.94
4 1.00 0.99 0.96

C

1/2 0.51 0.51 0.36
1 0.71 0.76 0.7
2 1.00 1. 1.09
4 1.12 1.13 1.18

D

1/2 0.5 0.51 0.38
1 0.76 0.76 0.72
2 0.92 0.92 0.93
4 1.00 1.00 1.01

Table 2: Table for PEHE Comparison. The reported value is the ratio
between the constrained and the unconstrained models. Values < 1
mean the constrained version has a lower error than the unconstrained
counterpart.

learning rate 10−5 and momentum 0.9, and batch size equal
to 64 for the TARNet and Dragonnet and equal to the train-
set length for BCAUSS. Details can be found in the code
implementation and in appendix B.

In the constrained architectures, the hyperparameters for
each set of layers are kept the same as those in the uncon-
strained architectures. However, the activation function of the
representation layer is modified to a linear function.

Evaluation metrics
When counterfactual data is accessible, we use standard met-
rics such as the error in Average Treatment Effects -ATE- and
the Precision in Estimation of Heterogeneous Effects -PEHE.

For the Jobs dataset, no counterfactuals are available, so we
use the experimental nature of the data to compute the error
of the average treatment effects on the treated ATT.

4.2 Experiments
Synthetic experiments
We use a set of synthetic experiments defined in [Nie and
Wager, 2021] and implemented in [Chen et al., 2020]. These
experiments are composed of four scenarios: scenario A is
a complex outcome regression model with an easy treatment
effect, scenario B is a randomized controlled trial, scenario C
has an easy propensity score with a difficult control outcome,
and scenario D has an unrelated treatment arm and control arm.
We run each scenario using the settings in the original paper:
number of samples n ∈ {500, 1000}, number of variables
d ∈ {6, 12}, and noise level σ ∈ {0.5, 1, 2, 4}. We generate
an equal number of test samples as the number of train samples.
Each configuration is repeated 100 times, making a total of
6400 runs. We average for the number of samples and number
of variables for controlling the reporting size and show the
results at the scenario-noise level because it contains the most
information. Detailed results can be found in appendix A.

Synthetic experiments results. The results of the synthetic
experiments are shown in the metric values Table 4 and in the

SCENARIO NOISE TARNET DRAGONNET BCAUSS

A

1/2 0.73 0.74 0.93
1 0.83 0.81 1.02
2 0.96 0.92 1.07
4 1.01 1.04 1.02

B

1/2 0.87 0.88 0.69
1 0.96 0.98 0.87
2 0.95 0.99 0.98
4 0.91 0.93 0.95

C

1/2 .58 0.58 0.17
1 0.54 0.64 0.31
2 0.70 0.72 0.54
4 0.87 0.91 0.79

D

1/2 0.85 0.92 0.7
1 0.98 1.01 0.88
2 1.01 0.99 0.94
4 1.02 1.03 1.07

Table 3: Table for ATE Comparison. The reported value is the ratio
between the constrained and the unconstrained models. Values < 1
mean the constrained version has a lower error than the unconstrained
counterpart.

MODEL
√
ϵPEHE ϵATE

A B C D A B C D

TARNet .363 .350 .456 .564 .285 .197 .316 .158
Dragonnet .359 .349 .446 .568 .283 .196 .306 .160
BCAUSS .413 .432 .424 .681 .346 .212 .405 .163

TARNet + CGC .350 .334 .411 .475 .252 .182 .232 .158
Dragonnet + CGC .347 .335 .408 .478 .250 .185 .238 .161
BCAUSS + CGC .417 .366 .378 .523 .348 .195 .207 .157

Table 4: Test metrics on the synthetic benchmark averaged to the
scenario level. Lower is better.

comparison Table 3 and Table 2, where each value is the ratio
between the PEHE and ATE, respectively, of the constrained
and unconstrained models. A value less than 1 indicates that
the constrained model has a lower metric value than the uncon-
strained model and vice versa. We observe that constrained
models generally perform better than their unconstrained coun-
terparts. Among the models with CGC, Dragonnet + CGC
achieves the lowest PEHE values in three out of four scenarios,
while BCAUSS + CGC achieves the lowest ATE values in two
out of four scenarios. TARNet + CGC performs slightly worse
than the other two models with CGC but still better than the
models without CGC. In settings with higher variance, with a
noise value 4 for the ATEs and values 2 and 4 for the PEHEs,
the unconstrained models performed similar or better than the
constrained models. This suggests that in high-noise environ-
ments the discerning between spurious and valid interactions
is more difficult, and constraining the model can be discarding
causally valid information.
Semisynthetic experiments: IHDP
The Infant Health and Development Program (IHDP) is a study
that used randomization to examine the effects of home visits
by specialist doctors on the cognitive test scores of premature
infants. The dataset1 was first used by [Hill, 2011] to eval-
uate algorithms for estimating treatment effects. In order to
create an observational dataset, non-random subsets of treated

1 The dataset can be accessed at www.fredjo.com.



individuals were removed, resulting in selection bias. The
outcomes in the dataset were generated using the original co-
variates and treatments. The dataset consists of 747 subjects
and 25 variables. Following the recent literature, we used the
simulated outcome implemented in the NPCI package [Dorie,
2016], which is composed of 1000 repetitions of the experi-
ment. We averaged our results over 1000 train/validation/test
splits with ratios 70/20/10.

MODEL
√
ϵPEHE ϵATE

Value Comp Value Comp

BNN [Johansson et al., 2016] 2.2 ± .1 - .37 ± .03 -
CFRW [Shalit et al., 2017] .71 ± .0 - .25 ± .01 -

CEVAEs [Louizos et al., 2017] 2.7 ± .1 - .34 ± .01 -
GANITE [Yoon et al., 2018] 1.9 ± .4 - .43 ± .05 -

TARNet + CGC .960 ± .032 0.78 .148 ± .004 1.04TARNet 1.23 ± .046 .142 ± .004

Dragonnet + CGC .974 ± .034 0.797 .138 ± .003 .968Dragonnet 1.22 ± .047 .143 ± .004

BCAUSS + CGC .663 ± .022 .805 .100 ± .003 .929BCAUSS .824 ± .023 .107 ± .003

Table 5: Train metrics on the IHDP benchmark. The “Comp” value
is the ratio between the constrained and the unconstrained model.

MODEL
√
ϵPEHE ϵATE

Value Comp Value Comp

BNN [Johansson et al., 2016] 2.1 ± .1 - .42 ± .03 -
CFRW [Shalit et al., 2017] .76 ± .0 - .27 ± .01 -

CEVAEs [Louizos et al., 2017] 2.6 ± .1 - .46 ± .02 -
GANITE [Yoon et al., 2018] 2.4 ± .4 - .49 ± .05 -

TARNet + CGC 1.004 ± .039 0.783 .180 ± .006 0.884TARNet 1.283 ± .052 .204 ± .008

Dragonnet + CGC 1.027 ± .045 0.796 .190 ± .009 0.911Dragonnet 1.290 ± .057 .209 ± .010

BCAUSS + CGC .741 ± .030 0.771 .132 ± .005 0.862BCAUSS .962 ± .035 .153 ± .006

Table 6: Test metrics on the IHDP benchmark. The “Comp” value is
the ratio between the constrained and the unconstrained model.

IHDP results. The constrained version of BCAUSS yields
the best results in both ATE and PEHE metrics, with the uncon-
strained version of BCAUSS coming in second. In all cases,
constrained models outperform unconstrained ones, obtaining
lower errors and a similar or smaller variability in the results.

The PEHE and ATE metric values of the unconstrained mod-
els (TARNet, Dragonnet, and BCAUSS) were higher than
those of the constrained models on both the train and test sets,
indicating that the constraints reduced the estimation error and
increased the generalization ability of the models.

Real data experiments: Jobs
The LaLonde Jobs dataset1 [LaLonde, 1986] assesses the im-
pact of job training as a treatment on income and employment
status after training. We use the feature set defined in [De-
hejia and Wahba, 2002]. Following [Shalit et al., 2017], we
combined the LaLonde experimental sample (297 treated, 425
control) with the PSID comparison group (2490 control). We
averaged over 10 train/validation/test splits with a ratio of
62/18/20. Due to the small size of the benchmark we repeat
the process 10 times and report the average of the results. For
most of the runs, the discovery algorithm was unable to find a
causal graph, and a default was used. The default causal graph

was obtained as the most common causal graph discovered
across 100 runs.

MODEL
ϵtrATT ϵteATT

Value Comp Value Comp

BNN [Johansson et al., 2016] .04 ± .01 - .09 ± .04 -
CFRW [Shalit et al., 2017] .04 ± .01 - .09 ± .03 -

CEVAEs [Louizos et al., 2017] .02 ± .01 - .03 ± .01 -
GANITE [Yoon et al., 2018] .01 ± .01 - .06 ± .03 -

TARNet + CGC .037 ± .003 0.945 .087 ± .008 1.022TARNet .039 ± .004 .085 ± .008

Dragonnet + CGC .054 ± .010 1.121 .097 ± .012 1.147Dragonnet .048 ± .004 .085 ± .008

BCAUSS + CGC .017 ± .006 0.288 .075 ± .007 0.796BCAUSS .058 ± .001 .094 ± .009

Table 7: Train and test metrics on the Jobs benchmark. Lower is
better. The “Comp” value is the ratio between the constrained and
the unconstrained model.

Jobs results. Jobs is a small benchmark and the performance
of the models varies greatly between runs. This characteristic
is evidenced in the standard deviation values, which are in the
same order as the mean in most cases. Because of that, we
think the use of the benchmark rests upon its ability to test that
models perform well on real data. In this sense, all models
perform comparably well. The lowest ATT error for train
is obtained by GANITE followed by the constrained version
of BCAUSS while for test, the lowest error is obtained by
CEVAE followed by GANITE. In this dataset, the discovery of
the causal graph is especially unreliable, and this is reflected
in the comparison between constrained and unconstrained
models, which obtain similar results.

5 Discussion and Conclusion

We have presented NN-CGC, a novel method for incorporat-
ing causal information into the estimation of heterogeneous
treatment effects. Our method leverages an inductive bias that
reduces the error caused by spurious variable interactions and
can be applied on top of other representation-based models.
We have tested the effectiveness of our method using three
different base models. The experiments indicate that constrain-
ing models using the described method leads to significant
improvements, achieving new state-of-the-art results.

NN-CGC is flexible and performed well for all three base
models. Following the idea of stacking mechanism to address
sources of error, NN-CGC can be combined with other tech-
niques to introduce additional inductive biases. We have also
shown that our method is robust to imperfect causal graphs,
and that using partial causal information is preferable to ignor-
ing it. Having no restrictions on interactions is the same as
assuming a causal graph that is fully connected, and in most
cases there are at least some known edges that are not causal.

As a future work, we plan to enhance our method by us-
ing masking and a graphical conditioner, a neural network
that prevents spurious interactions by design, to share some
weights between the groups. This would reduce redundancy
in the architecture and make a more efficient use of the data.
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