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Abstract

This paper introduces an adaptive convolutional neural network (CNN) architecture capable of
automating various topology optimization (TO) problems with diverse underlying physics. The pro-
posed architecture has an encoder-decoder-type structure with dense layers added at the bottleneck
region to capture complex geometrical features. The network is trained using datasets obtained by
the problem-specific open-source TO codes. Tensorflow and Keras are the main libraries employed to
develop and to train the model. Effectiveness and robustness of the proposed adaptive CNN model are
demonstrated through its performance in compliance minimization problems involving constant and
design-dependent loads and in addressing bulk modulus optimization. Once trained, the model takes
user’s input of the volume fraction as an image and instantly generates an output image of optimized
design. The proposed CNN produces high-quality results resembling those obtained via open-source
TO codes with negligible performance and volume fraction errors. The paper includes complete asso-
ciated Python code (Appendix A) for the proposed CNN architecture and explains each part of the
code to facilitate reproducibility and ease of learning.
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1 Introduction

Topology optimization (TO), a computational
technique, finds the optimum material distribu-
tion within a given design domain while extrem-
izing an objective with predetermined constraints
and boundary conditions (Sigmund and Maute,
2013). It provides innovative and resource-efficient
optimized designs for problems with single- and/or
multi-physics. These days, demands for TO meth-
ods have increased considerably in academia and
industry due to recent developments in additive
manufacturing that can print complex geometry
obtained from the TO approaches (Bayat et al.,

2023). A typical TO involves four stages: (i) dis-
cretizing the design domain using finite elements
(FEs). Each element is allotted a design vari-
able ρ ∈ [0, 1]. ρ = 1 and ρ = 0 indicate
solid phase and void phase of the element, respec-
tively (ii) conducting FE analysis (ses) for rele-
vant physical aspects, (iii) determining the objec-
tive function, constraints, and their corresponding
sensitivities, and (iv) updating the design vari-
able through the optimization procedure. TO can
become notably computationally demanding when
dealing with large-scale problems (Choi et al.,
2016) and can become intricate and complex
with multi-physics/design-dependent loads (Bayat
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Fig. 1: Kernal movement

et al., 2023; Kumar et al., 2020; Kumar, 2022;
Siqueira et al., 2024).

To complement the traditional TO techniques
and confront the computational intensity inher-
ent to them, the integration of deep learning
into optimization tasks has emerged as a promis-
ing avenue (Sosnovik and Oseledets, 2019; Banga
et al., 2018; Sasaki and Igarashi, 2019; Harish
et al., 2020; Chandrasekhar and Suresh, 2021;
Regenwetter et al., 2022). Previous attempts in
using deep learning methods to automate TO
problems have already shown potential (Lee et al.,
2020; Chandrasekhar and Suresh, 2021; Regenwet-
ter et al., 2022; Ramu et al., 2022). Convolutional
Neural Networks (CNNs) have demonstrated pro-
ficiency in extracting valuable features and dis-
cerning intricate patterns and relationships within
image data (Lee et al., 2020; Banga et al., 2018;
Lee et al., 2020; Ramu et al., 2022). TO meth-
ods generate visual representations of optimized
designs in the form of images; hence, using CNNs
to automate TO problems becomes a natural
choice.

Sosnovik and Oseledets (2019) provided a neu-
ral network (NN) architecture to improve the opti-
mum material layout for 2D optimization prob-
lems. They trained the model using 10,000 train-
ing data samples. Banga et al. (2018) proposed an
NN architecture for 3D problems, which takes the
intermediate solutions of an optimization problem
as input to provide the final optimized designs.
The method used 6000 training data samples in
the study. Oh et al. (2019) integrated TO and
generative adversarial network in their method.
Yu et al. (2019) proposed an approach wherein a
CNN architecture is used to obtain low-resolution
solutions, and then a conditional generative adver-
sarial network is used to obtain the high-resolution
optimized solutions. Dalei et al. (2022) provided
a deep-leaning model capable of automating and

producing optimized designs for boundary condi-
tions that it was not trained on. However, initial
nodal displacement and strain information of the
boundary and loading conditions for which the
optimized design will be generated are required.
Lee et al. (2020) proposed a recognition method
based on the CNN model for TO that elimi-
nates the FE analysis step and accelerates the
TO process. The model proposed in Xiang et al.
(2022) focused on accelerating the optimization
process. Xue et al. (2021) provided a deep learning
model for achieving high-resolution results. Seo
and Kapania (2023) proposed a machine-learning-
based surrogated model to predict the optimum
material layout of the problems using the encoder-
decoder network, Unet, and Unet++. A reader
can refer to Ramu et al. (2022); Regenwetter et al.
(2022) for a detailed overview of the NN-based TO
methods.

CNN architectures developed in the past were
tailored for specific optimization tasks and lacked
the generalization ability to adapt to new opti-
mization problems for different applications. In
addition, they also required a considerable amount
of data. Herein, we propose a simple and effi-
cient CNN architecture to automate diverse TO
problems requiring minimal sample data, inspired
by the encoder-decoder model per Harish et al.
(2020). The proposed model is fluidic; it contains
the adaptive layer that has a variable number of
neurons. This ensures that the user has a cer-
tain amount of control over the network output.
In addition, the paper constituents with essential
concepts necessary for understanding the model’s
functionality, provides the complete Python code
in Appendix A, and furnishes explanations of
each part of the code in detail. Codes using
machine/deep learning techniques for TO are nec-
essary in academia and the professional landscape.
These codes can provide practical gateways and
platforms, serve as education tools, and offer
hands-on experience for students, researchers, and
newcomers to use, learn, develop, and extend
machine/deep learning with TO. The code is envi-
sioned to provide an introductory example that
facilitates a potential avenue for understanding
deep learning techniques with TO. In addition,
we outline how one can use the proposed archi-
tecture to automate their respective TO problems
effectively.
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In summary, this paper offers the following new
contributions:

• Provides an adaptive convolution neural net-
work for topology optimization, which can
cater to multidisciplinary design optimiza-
tion problems having different applications.

• The proposed model is capable of producing
high-quality optimized results with a small
set of training data.

• The adaptive layer of the model grants users
control over the quality of outputs generated
by choosing a suitable number of neurons n

• The efficacy and success of the proposed
model are demonstrated on compliance mini-
mization problems with constant and design-
dependent loads, and on maximizing the
material bulk modulus.

• The pertinent Python code is provided in
Appendix A and is explained in detail. We
believe the code will assist researchers, new-
comers, and students besides reproducing the
results.

The remainder of the paper is structured
as follows: Sec. 2 provides the fundamental of
CNNs in brief. Sec. 3 introduces and explains the
proposed CNN architecture. Section 4 describes
different TO problems that are automated for
testing accuracy of the proposed model. Sec. 5
explains the methodology for generate training
data. Sec. 6 provides Python code implementation
with a detailed explanation. Sec. 7 presents the
optimized results generated by the proposed CNN
and compares these results with their counter-
parts generated via open-source MATLAB codes.
Finally, capability of the proposed machine learn-
ing model, its limitations, and future scope are
summarized in Sec. 8

2 Fundamentals of CNNs

This section provides the foundational concepts
of CNNs in brief for the sake of completeness.
Such a network employs convolution operation,
max pooling operation, and transpose convolution
operations, which are discussed below.

2.1 Convolution operation

In a CNN, the convolution operation is a detec-
tive searching for patterns in an image. Consider
an image as a grid of pixels, and the convolutional

layer uses small filters (kernels) to slide over this
grid (Fig. 1). At each step, the filter looks at a
small portion of the image and checks for specific
features, like edges or textures. The results are
combined to create a new “feature map” that high-
lights important aspects of the image. This helps
the network understand the visual elements in the
input data.

A kernel is a small 2D matrix that maps onto
the input image by simple matrix multiplication
and addition. The output of the convolution oper-
ation has lower dimensions and is, therefore, easier
to work with. The shape of a kernel is dependent
mainly on the input shape of the image and archi-
tecture of the entire network primarily; the size of
kernels is a square matrix (Fig. 1). The movement
of a kernel is always from left to right and top to
bottom, as displayed in Fig. 1, which is determined
by stride.

Stride is defined as the step by which the kernel
moves. For example, a stride of 1 makes the kernel
slide by one row/column at a time. Likewise, a
stride of 2 moves the kernel by two rows/columns
at a time. In summary, the stride of n makes the
kernel slide by n rows/columns at a time.

In convolution operations, typically, padding
is performed to the input image, which involves
adding extra pixels (zeros) to avoid information
loss at the edges. Depending upon the type of
padding used, one can classify convolution opera-
tions into two types:

• Same convolution: It involves padding the
image so that the output size is the same as
the input size.

• Valid convolution: It involves no padding on
the input data, resulting in a smaller output
size

We have used the ‘same’ padding in the proposed
CNN model (Sec. 3). One can calculate the output
size (O) of a convolution operation given input
size (I), filter size (K), stride (S), and padding
(P ) as (Goodfellow et al., 2016)

O =
I −K + 2P

S
+ 1 (1)

Next, we describe the working of a kernel opera-
tion on a sample matrix. We take input matrix of
4× 4 and kernel with size 3× 3, see Fig. 2. As the
shape of the input matrix is larger than that of the
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Input Matrix Kernel Result
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Fig. 2: Kernal operation

kernel, we can implement a sliding window proto-
col and apply the kernel over the entire input. For
example, the first entry in the convoluted result is
evaluated as 1 × 1 + 2 × 0 + 3 × 1 + 5 × 0 + 6 ×
1 + 7× 0 + 9× 1 + 10× 0 + 11× 1 = 30 (Fig. 2).
One performs the following steps for the sliding
window protocol:

• First, the kernel gets into position at the top-
left corner of the input matrix (Fig. 2, 1st
row, 1st column, 1st image).

• Then it starts moving left to right, calculat-
ing the dot product and saving it to a new
matrix until it has reached the last column
(Fig. 2, 2nd row, 1st column, 1st image).
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Fig. 3: Maxpooling operation

• Next, the kernel resets its position at the first
column, but now it slides one row to the bot-
tom. Thus following the fashion left-right and
top-bottom.

• Steps 2 and 3 are repeated till the entire input
is processed.

A sample for kernel operations performed is shown
in Fig. 2.

2.2 Maxpooling operation

MaxPooling is a down-sampling operation often
used in CNNs to reduce the spatial dimensions of
the input volume (Fig. 3). It is a pooling layer that
helps retain the most essential information while
discarding less critical ones. MaxPooling is typi-
cally applied after convolutional layers in a CNN.
The basic idea behind MaxPooling is to divide
the input image into non-overlapping rectangular
regions and, for each region, output the maximum
value. This operation is performed independently
for each channel in the input. Typical choices for
the size of the pooling window are 2×2 or 3×3, and
the stride (the step size when moving the pooling
window) is often set to be equal to the size of the
window for non-overlapping pooling.

2.3 Transpose convolution operation

Transpose convolution is like an artist enlarg-
ing a small painting on a grid. Imagine that
each square in the grid represents a pixel in a
low-resolution image. Transpose convolution helps
recreate a larger version of the painting by placing
new pixels strategically (Fig. 4). It is as if one is
zooming into the original artwork, adding details,
and making it bigger. This proves highly valuable
for reconstructing an image following a sequence
of convolution operations that have decreased its
dimensions.

The transposed convolutional layer is simi-
lar to a standard convolutional layer, except it

performs the convolution operation in the oppo-
site direction. Instead of sliding the kernel over
the input and performing element-wise multiplica-
tion and summation, a transposed convolutional
layer slides the input over the kernel. It performs
element-wise multiplication and summation, as
shown in the example in Fig. 4. This results in
an output larger than the input and the output
size can be controlled by the stride and padding
parameters of the layer. The output size of the
transpose convolution generation O is calculated
as (Goodfellow et al., 2016)

O = (I − 1)S +K − 2P (2)

2.4 Convolutional Neural Network

A CNN is formed by stacking multiple convo-
lutional layers for hierarchical feature extraction
from input data. The introduced convolutional
layers use learnable filters to capture local pat-
terns in the input. CNN architecture learns by
obtaining weights and biases that minimize train-
ing data errors, wherein weights are the specific
elements within kernels, highlighting the concept
of learnable filters employed by convolutional lay-
ers. In each convolutional layer of a CNN, after
the convolution operation is performed, a bias is
added to each output element to introduce an off-
set, allowing the model to account for any inherent
biases in the data. The output is passed through
an activation function, which introduces nonlin-
earity to the model. This nonlinearity is essential
for capturing complex structural features and rela-
tionships in the data. This empowers CNN to
model a broader range of functions. Next, we
describe the proposed CNN architecture.

3 Proposed CNN

The proposed architecture has an encoder-
decoder-type structure with dense layers added at
the bottleneck region. The encoder and decoder
parts of the network are based on convolutional.
The architecture combines the strengths of convo-
lutional layers for feature extraction from images
and fully connected layers (dense layers) for rel-
atively more abstract, high-level processing. The
three main parts of the proposed architecture are
discussed below.
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Fig. 5: General Architecture of the Adaptive Convolutional Neural Network (CNN)

Encoder network: It plays a crucial role in
extracting meaningful information from the
training data while reducing the dimension-
ality of the input data. In this context, the
input image, with dimensions (100 × 100 ×
1), undergoes down-sampling through the

encoder network to reach a size of (5 ×
5 × 512). This downsizing process is accom-
plished through three consecutive convolu-
tional and max-pooling operations (refer to
Fig. 5). All convolution operations are con-
ducted as ”same” convolutions, ensuring that
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information at the edges of the input image
is thoroughly considered in the resulting fea-
ture map. The responsibility of image down-
sampling lies with the max-pooling opera-
tions.

Dense layers: The encoder network’s output,
sized (5 × 5 × 512), is flattened to form
the initial dense layer comprising 12800 neu-
rons (Fig. 5). An adaptive (optional) layer
(depicted by dotted boundaries) having a
variable number of neurons n) is placed.
Another dense layer with 12800 neurons is
followed after that. The inclusion of the adap-
tive layer endows the network with the ability
to automate a diverse array of optimiza-
tion tasks. Including the adaptive layer, the
required number of neurons n is based on the
complexity of the optimized design for the
particular TO problems.

Decoder network: This network uses suc-
cessive transpose convulution operations
(Fig. 5) to up-scale the image size to (100 ×
100× 1). Zero padding for input and output
for all the transpose convolution operations
is used. One can note the employed filter
size and number of filters for each transpose
convolution from Fig. 5.

The proposed CNN architecture is termed the
Base architecture when devoid of the adaptive
layer. We use the ”ReLU” (Rectified Linear Unit,
cf. Ronneberger et al. (2015)) activation function
in all the layers. The Mean Squared Error(MSE)
cost function is employed. For efficient training
purposes, the ”Adam” (Adaptive Moment Esti-
mation, cf. Kingma and Ba (2014)) optimizer is
utilized.

4 Problem description and
optimization formulation

To showcase the network’s and presented Python
code’s capability in automating various topology
optimization challenges, we evaluate its perfor-
mance on the compliance minimization problem
with constant and design-dependent loads.

The design domains are parameterized using
bi-linear quadrilateral finite elements. Each ele-
ment is assigned a design variable ρ. The modified
solid isotropic material with penalization (SIMP)

approach (Sigmund and Maute, 2013) is imple-
mented to interpolate the Young’s modulus of
element i as:

Ei = E0 + ρpi (E1 − E0) (3)

where E1 and E0 are the Young’s moduli of the
solid and void phases of element i, respectively. p
is the SIMP parameter. We use p = 3 for all the
examples presented. Next, we describe the opti-
mization formulation for the numerical examples
solved in this paper.

4.1 With constant load

A constant load does not change its direction and
location with the TO progress. Such loads have
many applications (Sigmund and Maute, 2013).
To determine the optimized designs with constant
loads, typically, the following standard compli-
ance minimization problem is solved with a given
resource constraint:

min
ρ

C(ρ) = u⊤K(ρ)u

subjected to:

λ : Ku− F = 0

Λ : V (ρ)− V ∗ ≤ 0

0 ≤ ρ ≤ 1


, (4)

where C denotes the structure’s compliance and
nel is the total number of FEs used to describe the
design domain. K and u are the global stiffness
matrix and global displacement vector, respec-
tively. F is the global force vector. V ∗ and V
denote the permitted and current volume of the
design domain. λ and Λ are the Lagrange mul-
tipliers. ρ is the design vector. top88 MATLAB
code (Andreassen et al., 2011) is used to obtain
the output data pertaining to this set of problems.

4.2 With design-dependent load

A design-dependent load changes its direction and
location with the TO progress. Though such loads
are prevalent in various applications, they pose
several challenges (Kumar et al., 2020). Typically,
to obtain the pressure load-bearing structures,
structure’s compliance is minimized with the given
volume constraint. We solve the optimization
problem described in (Kumar et al., 2020) for
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Fig. 6: Problem description (a) Mid-load (b) Cantilever beam with center load (c) Cantilever beam with
end load (d) Pressure loadbearing arch and (e) Bulk modulus maximization

designing the load-bearing structures.

min
ρ

C(ρ) = u⊤K(ρ)u

subjected to:

λ1 : Ap = 0

λ2 : Ku = F = −Tp

Λ : V (ρ)− V ∗ ≤ 0

0 ≤ ρ ≤ 1


, (5)

where A, p, and T are the global flow matrix,
pressure load, and transformation matrix. Read-
ers may refer to Kumar et al. (2020) for a detailed
overview of the problem setting. The method
introduced in Kumar et al. (2020) has been
extended to solve a set of different problems, e.g.,
3D structures and compliant mechanisms (Kumar
and Langelaar, 2021), for the prescribed length-
scale compliant mechanisms (Kumar and Lange-
laar, 2022), soft grippers (Pinskier et al., 2024),

a PneuNet of a soft robot (Kumar, 2022), multi-
material frequency contained TO (Banh et al.,
2024), to name a few. Using the method reported
in Kumar et al. (2020), TOPress MATLAB code is
presented in Kumar (2023), which is used herein
to generate the output data for the training of the
proposed CNN model.

4.3 Material bulk modulus
optimization

We solve the following optimization problem for
obtaining the microstrucutre (Xia and Breitkopf,
2015)
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Training data set: Input and target images. (a) Input image. Target images: (b) Mid-load (Fig. 6a),
(c) Cantilever beam with center load (Fig. 6b), (d) Cantilever beam a load at free end (Fig. 6c), (e)
Pressure loadbearing arch structure (Fig. 6d) (f) Bulk modulus optimization problem (Fig. 6e)

min
ρ

C(EH
ijkl(ρ))

subjected to:

KuA(kl) − Fkl = 0, k, l = 1, · · · , d
V (ρ)− V ∗ ≤ 0

0 ≤ ρ ≤ 1


, (6)

where uA(kl) and Fkl are the global displace-
ment vector and force vector for the test case
(kl), respectively (Xia and Breitkopf, 2015).
C(EH

ijkl(ρ)) is a function of the homogenized stiff-
ness tensor (Xia and Breitkopf, 2015). Herein, we
have considered maximization of the material bulk
modulus, i.e., c = (E1111+E1122+E2211+E2222).
topX code provided in Xia and Breitkopf (2015)
is employed to obtain the required output data
for this case. Readers may refer to Xia and Bre-
itkopf (2015) for more details about the problem
framework.

5 Generation of training data

We use a convolutional neural network in the
proposed model (Fig. 5); hence, both the net-
work’s input and output must be images. For
generating the output training data (optimized
designs, cf. Fig. 7), top88 (Andreassen et al.,
2011), TOPress (Kumar, 2023) and topX (Xia and
Breitkopf, 2015) MATLAB codes are employed
for constant load problem (Fig. 6a, Fig. 6b and
Fig. 6c) and for design-dependent load problem
(Fig. 6d), respectively. The output images have
size 100 × 100 (i.e., 100 × 100 FEs are used
to parameterize the design domains). We vary
the volume fraction from 0.01 to 0.95 with an
increment of 0.01 to obtain the outputs of the
training data. {penal = 3, rmin = 2.4, ft = 1},
{penal = 3, rmin = 2.4, etaf = 0.2, betaf = 8,
lst = 1, maxit = 100} and
{penal = 3, rmin = 2.4, ft = 1} are used as
inputs to top88, TOPress and topX MATLAB
codes for the respective problems (Fig. 6). For
the input images, we generate black-and-white
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images wherein the fraction of black pixels equals
the given volume fractions (Fig. 7a). This proce-
dure to generate training data gives 95 input and
corresponding output images obtained using the
MATLAB codes. If generating data for volume
fractions ranging from 0.01 to 0.95 proves chal-
lenging, users should generate training images
within the feasible volume fraction range.

6 Python Implementation

This section describes the Python implementation
of the proposed CNN architecture. We use the
Jupyter Notebook environment. TensorFlow and
Keras used to develop and train the model. The
code contains five main parts, which are described
below.

6.1 Installing Tensorflow and
importing important libraries

We first install the TensorFlow in our system
using the following command on line 3.

pip install tensorflow

TensorFlow is developed by the GoogleBrain
team. It facilitates various machine learning
tasks, e.g., classification, regression, and clus-
tering, to name a few. pip install Libname,
wherein Libname indicates the operation required
libraries. Lines 4-10 import other required libraries
that come pre-installed in the jupyter environment
setup as

import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from matplotlib.image import imread
from tensorflow.keras.models import

Sequential
from tensorflow.keras.layers import

Conv2D , Conv2DTranspose , MaxPool2D

os module facilitates operating system-dependent
functionality, e.g., file-keeping/calling activities.
numpy is a numerical computing library. conv2D,
Conv2DTranspose and MaxPool2D indicate convo-
lution (Sec. 2.1), transpose convolution (Sec. 2.3)
and Maxpooling (Sec. 2.2), respectively.

6.2 Providing training data file path

Create input data and output data folders in
the main folder named main. The training data

file is provided using the following piece of codes
(line 11-15)

Input_train_folder_path =’main\
input_data ’

Output_train_folder_path =’main\
output_data ’

Input_train_elements = os.listdir(
Input_train_folder_path)

Output_train_elements = os.listdir(
Output_train_folder_path)

The first two lines (lines 12-13) store the file path
of the training data input and output as strings
in the respective variables. The following two lines
(lines 14-15) save the list of all the elements (train-
ing inputs and outputs) in the mentioned file path
in the respective variables.

6.3 Developing the input and
output training tensors

In this section, we develop the input and out train-
ing tensors that is supplied to train the model
using the following codes (lines 16-28).

Input_train = np.zeros ((95 ,100 ,100 ,1))
Output_train= np.zeros ((95 ,100 ,100 ,1))
for index , Input_train_element in

enumerate(Input_train_elements):
element_path = os.path.join(

Input_train_folder_path ,
Input_train_element)

img = imread(element_path)
img = img.reshape ((100, 100, 1))
Input_train[index] = img
for index , Output_train_element in

enumerate(Output_train_elements):
element_path = os.path.join(

Output_train_folder_path ,
Output_train_element)

img = imread(element_path)
img = img.reshape ((100, 100, 1))
Output_train[index] = img

The first two lines (lines 17-18) initialize the input
and output training tensors. Both tensors have
a size of (95,100,100,1), wherein the first entry,
i.e., 95 indicates the number of training exam-
ples supplied, (100, 100, 1) indicate pixel size in
x−, y− and z−directions, respectively. The chan-
nel size (z−direction) is 1 using a gray image.
We use a for loop to develop the training input
tensor Input train. It stores each image’s pixel
brightness intensity values at their respective posi-
tion. Likewise, the output tensor Output train is
developed.
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6.4 Developing the CNN model

This part of the code develops the proposed CNN
architecture (line 29-44).

model = Sequential ()
#CONVOLUTIONAL LAYER 1
model.add(Conv2D(filters =128,

kernel_size =(2,2),strides =(1,1),
padding=’same’,input_shape
=(100 ,100 ,1),activation=’relu’))

#MAXPOOLING LAYER
model.add(MaxPool2D(pool_size =(2,2),

strides =(2 ,2)))
#CONVOLUTIONAL LAYER 2
model.add(Conv2D(filters= 256,

kernel_size =(2,2),strides =(1,1),
padding=’same’,activation=’relu’))

#MAXPOOLING LAYER
model.add(MaxPool2D(pool_size =(2,2),

strides =(2 ,2)))
#CONVOLUTIONAL LAYER 3
model.add(Conv2D(filters= 512,

kernel_size =(5,5),strides =(1,1),
padding=’same’,activation=’relu’))

#MAXPOOLING LAYER
model.add(MaxPool2D(pool_size =(5,5),

strides =(5 ,5)))
## FLATTENING THE ABOVE LAYER
# DENSE LAYER 1
model.add(tf.keras.layers.Flatten ())
# DENSE LAYER 2
model.add(tf.keras.layers.Dense(units

=8000, activation=’relu’))
# DENSE LAYER 3
model.add(tf.keras.layers.Dense(units

=12800 , activation=’relu’))
# RESHAPING THE ABOVE LAYER
model.add(tf.keras.layers.Reshape(

target_shape =(5 ,5 ,512)))
#TRANSPOSE CONVOLUTIONAL LAYER 1
model.add(Conv2DTranspose(filters =256,

kernel_size =(2,2),strides =(2,2),
activation=’relu’))
#TRANSPOSE CONVOLUTIONAL LAYER 2
model.add(Conv2DTranspose(filters =128,

kernel_size =(5,5),strides =(5,5),
activation=’relu’))
#TRANSPOSE CONVOLUTIONAL LAYER 3
model.add(Conv2DTranspose(filters=1,

kernel_size =(2,2),strides =(2,2),
activation=’relu’))
#COMPILING THE MODEL
model.compile(optimizer=’adam’, loss=’

mean_squared_error ’)

Each layer of the proposed network contains sin-
gle input and output tensors; thus, the sequential
model is used herein, which is simple. The pro-
posed network can be defined step-by-step; that
is, the network can be built by adding one layer
at a time. Sequential is defined as (line 30)

model = Sequential ()

To incorporate different layers in the sequential
model, model.add() function is utilized. We start
with the first convolution layer; for that, Conv2D
function is employed (line 31). The key parameters
of the Conv2D function are:

• filters: It is the number of kernels or channels
in the convolutional layer. Each filter detects
different features in the input.

• kernel size : Size of the convolutional kernels.
It can be a single integer or a tuple (height,
width) for square and rectangular kernels.

• strides: The step size used by the convolu-
tional kernel as it moves across the input. It
is a tuple (stride vertical, stride horizontal).

• padding : This parameter determines the
padding strategy.

• activation: An activation function applied to
convolution’s output.

• input shape: It specifies the shape of the
input data.

maxPool2D function (line 32) is used for the max-
pooling purposes (Sec. 2.2) with pool size of
(2, 2). Likewise, convolutional layer 2 (line 33) and
layer 3 (line 35) are defined, which are followed
by maxPool2D function (line 34 and line 36). The
output of the last max-pooling layer is flattened
to form the first dense layer with 12800 neu-
rons using tf.keras.layers.Flatten() func-
tion (line 37). After that, the adaptive layer
(line 38) and third layers are added using
tf.keras.layers.Dense function (line 39). Note,
one comments out/remove the adaptive layer
while using the base architecture. units and
activation are the key parameters, wherein
the former specifies the number of neurons
or nodes in the dense layer. On line 40, the
output of the last layer is reshaped using
function tf.keras.layers.Reshape. Lines 41-43
add three transpose convolutional layers using
Conv2DTranspose function. The function takes
same parameter as Conv2D function. On line 44,
the model is compiled using model.compile func-
tion that also specifies the optimizer and loss func-
tions used. optimizer indicates the optimization
algorithm used during training. We use ‘adam,’
which stands for Adaptive Moment Estimation
during training (line 44). It adapts the learn-
ing rates of each parameter based on their past
gradients, providing a balance between efficiency
and simplicity. The parameter ‘loss’ specifies the
loss function that the model uses during training
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Table 1: Optimized design for mid-load problem (Fig. 6). Verr and Objerr are the volume fraction and
objective errors between CNN results and corresponding target outputs generated by MATLAB code,
top88.

Vf Input CNN results Target Verr (%) Objerr (%)

0.05 5.4 1.65

0.15 0.53 2.66

0.20 0.20 0.041

0.25 0.48 0.51

0.35 0.057 0.144

0.50 0.10 0.075

0.75 0.053 0.096

(line 44). The ‘mean squared error’ is used, as the
goal is to minimize the squared difference between
the predicted and actual values (line 44). Next,
training is performed.

6.5 Training command

In this part of the code, the training of the model
is performed (line ) using the following piece of
codes.

model.summary ()
model.fit(Input_train ,Output_train ,

epochs = 2000)

model.summary (line 46) provides the architec-
ture’s summary, including information about the
layers, the number of parameters in each layer,
and the total number of parameters in the model.
model.fit (line 47) instructs to train the model

12



(a) CNN output (b) Target design

Fig. 8: Results comparison for volume fraction
0.25

on a data set that has been provided (Input data,
Output data). “epochs = 2000” (line 47) indi-
cates that the model should undergo 2000 training
iterations on the provided data.

7 Results and discussion

In this section, we generate optimized designs for
problems mentioned in Fig. 6 to demonstrate the
versatility of the proposed CNN.

When applying the proposed architecture
(Fig. 5) to automate various optimization prob-
lems, it is observed that in the majority of cases,
the base architecture, post training, generated
accurate optimized designs that closely resembled
those produced by the problem specific open-
source MATLAB codes. In problems where the
outputs generated by the base architecture fail
to meet the required standards, incorporating the
adaptive layer may enhance quality of the opti-
mized designs produced by the CNN. This is
because addition of the adaptive layer significantly
increases the number of learnable parameters in
the network which increases capacity of the model
to map complex functions to a large extent

We determine volume fraction and objective
errors between the results provided by the CNN
and MATLAB codes to note the closeness between
the results. As the network gives the output image
in grayscale, we get the xphysCNN vector from
it. VCNN = mean(xphysCNN) × nel is determine;

thus, Verr = V ∗−VCNN

Vf
× 100%. nel is the num-

ber of FEs utilized. Likewise, using xphysCNN in
the employed codes (top88, TOPress, and, topX),

determine CCNN and Cerr =
Copt−CCNN

Copt
× 100%,

where Copt is the objective value directly obtained
from the MATLAB codes for the same volume
fractions.

7.1 Results with base architecture

The Python code, PyTOaCNN for the proposed
CNN model is provided in Appendix A. The
base architecture part is obtained by comment-
ing line 38 (i.e., removing line 38). After that, the
training procedure is performed as mentioned in
Sec. 6.5.

Herein, the derived base architecture is used
to obtain the optimized solutions for the mid-load
problem (Fig. 6a), cantilever beams with end con-
stant load (Fig. 6c), design-dependent pressure
loadbearing arch structure (Fig. 6d), and mate-
rial bulk modulus optimization problems (Fig. 6e).
The results are depicted in Tables 1-6. The first
and second columns give the utilized volume frac-
tion and input images, respectively. The third
and fourth columns provide results obtained by
the proposed CNN model and by the MATLAB
codes, respectively. The fifth and sixth columns
furnish the volume fraction and objective errors,
respectively.

(a) CNN output (b) Target design

Fig. 9: Optimized designs comparison for volume
fraction 0.70

7.1.1 Mid-load problem

The mid-load problem is solved first. The design
domain, boundary conditions, and the applied
load are shown in Fig. 6a. We generate 95 train-
ing samples by varying the volume fraction from
0.01 to 0.95 with an increment of 0.01 using top88
MATLAB code (Sec. 5). We train the base archi-
tecture using the generated data for 2000 epochs
per Sec. 6.5.

Results obtained with different volume frac-
tions are shown in Table 1, obtained in a frac-
tion of a second. One notes that the proposed
model can yield accurate, optimized designs with
low volume fraction and objective function value
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Table 2: Optimized cantilever beam with a load at free end (Fig. 6). Verr and Objerr are the volume frac-
tion and objective errors between CNN results and corresponding target outputs generated by MATLAB
code, top88.

Vf Input CNN results Target % Verr % Objerr

0.10 1.2 0.20

0.25 0.36 0.50

0.40 0.23 0.29

0.50 0.22 0.14

0.60 0.40 0.24

0.70 0.19 0.063

0.85 0.11 0.025

errors (Table 1). For the volume fraction 0.20,
the Objerr is minimum, whereas it is higher for
volume fraction 0.15. Results obtained using the
proposed CNN model closely (exactly) resemble
those obtained using the MATLAB code. There-
fore, the model successfully captures the most
complex and intricate patterns in the optimized
designs. A closer look reveals that the output
results have, by and large, the same features as

those of the MATLAB code but may not precisely
resemble them. However, such negligible devia-
tions have insignificant effects on the performance.
For example, the result shown in Fig. 8 for vol-
ume fraction 0.25. Corresponding Verr and Objerr
are 0.48 and 0.51, respectively, close to 0.5%, i.e.,
negligible. Note that the number of training data
used is significantly less than the previous efforts
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Table 3: Optimized cantilever beam with a load at free end (Fig. 6). Input volume fractions are not
available in the training datasets. Verr and Objerr are the volume fraction and objective errors between
CNN results and corresponding target outputs generated by MATLAB code, top88.

Vf Input CNN results Target % Verr % Objerr

0.175 2.17 0.49

0.366 0.79 0.17

0.447 0.67 0.098

0.558 0.197 0.25

0.721 0.11 0.097

(a) n = 0 (b) n = 8000 (c) Target design

Fig. 10: Optimized design comparison

in this directions (Ramu et al., 2022) still, the pro-
posed model successfully provides the optimized
designs with marginal errors.

7.1.2 Cantilever beam with end load

We next solve the cantilever beam with an
end load problem (Fig. 6c). The design domain,
boundary conditions, and applied load are shown
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Table 4: Optimized cantilever beam with a load at free end (Fig. 6) with low training datasets. Input
volume fractions are not available in the training datasets. Verr and Objerr are the volume fraction and
objective errors between CNN results and corresponding target outputs generated by MATLAB code,
top88.

Vf Input CNN results Target % Verr % Objerr

0.15 14.4 2.36

0.25 11.2 2.03

0.40 0.85 1.22

0.60 2.2 0.07

0.70 1.31 0.41

0.85 0.39 0.13

in Fig. 6c. Like the mid-load problem, we gener-
ated a total of 95 training examples using top88

MATLAB code (Sec. 5) and trained the CNN
architecture for 2000 epochs.

Different volume fractions are used to pro-
duce the CNN results, as shown in Table 2.
Once the model is trained, the results are
obtained in a fraction of a second. One notes
that the optimized designs obtained by the pro-
posed CNN model closely topologically resemble
those obtained using the MATLAB code. The
model generated optimized designs having low vol-
ume fraction and objective function value errors

(Table 2). As noted in the mid-load problem, negli-
gible deviations in the feature shape and size with
insignificant effects on the performance can be
noted. For example, the result obtained with Vf =
0.70, is very close to the target with little deviation
marked in red rectangular, see Fig. 9. Correspond-
ing Verr and Objerr are 0.19% and 0.063%, which
are negligible.

The used volume fractions in Table 1 and
Table 2 are chosen arbitrary for generating the
CNN results, though they are available in the
training dataset. Note that the trained neural net-
work is not just regurgitating designs from the
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Table 5: Pressure loadbearing arch structure (Fig. 6). Verr and Objerr are the volume fraction and
objective errors between CNN results and corresponding target outputs generated by MATLAB code,
TOPress.

Vf Input CNN results Target % Verr % Objerr

0.05 4.20 4.90

0.15 1.86 0.46

0.25 0.96 0.048

0.35 0.45 0.039

0.45 0.22 0.065

0.55 0.11 0.87

0.75 0.08 0.29

dataset and is producing these outputs by learn-
ing the relationships within the provided training
data; that is why Verr and objerr are noted. We
provide results with a set of different volume frac-
tions not present in the training dataset. This is to
emphasize that once the proposed CNN model is
trained, it produces results for any volume fraction
in a fraction of a second.

Table 3 shows results for volume fractions (not
present in the training dataset) 17.5%, 36.6%,
44.7%, 55.8%, and 72.1%. The associated Verr and
objerr are also provided. The topologies of the
CNN results exactly resemble those of their target
designs. The maximum Verr = 2.17% is noted for
Vf = 17.5%; however, negligible objerr = 0.49% is
noted, as topologies obtained via CNN model and
target resemble closely. For this case, too, Verr and
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Table 6: Bulk Modulus optimization problem (Fig. 6). Verr and Objerr are the volume fraction and
objective errors between CNN results and corresponding target outputs generated by MATLAB code,
TopX.

Vf Input CNN results Target % Verr % Objerr

0.10 6.4 3

0.20 5.15 0.43

0.25 4 0.12

0.30 1.67 0.61

0.35 1.31 1.38

0.40 2.325 0.112

0.50 1.10 1.86

objerr are relatively less, indicating the robustness
of the proposed CNN model.

Influence of number of the training set

Next, we demonstrate the capability of the pro-
posed CNN model to produce decent results even
with a few training datasets. We train the pro-
posed CNN architecture with 32 training samples
(volume fractions ranging from 0.02:0.03:0.95).

Table 4 displays the results for volume fractions
15%, 25%, 40%, 60%, 70%, and 85%. These vol-
ume fractions are not a part of the provided
training dataset. Results in Table 4 have relatively
higher Verr and Objerr compared with Table 2,
which is obvious since the former is trained with
32 training datasets, whereas the latter is trained
with 95 training datasets. However, the topologies
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Table 7: Optimized cantilever beam with center load with different n in the adaptive layer (Fig. 6). Verr

and Objerr indicate the volume and objective error between the results obtained by the proposed CNN
and the target output.

Vf Input CNN results Target

0.05

# neurons in adaptive layer (n)

0 1000 2000 4000 8000 12000

{Verr , Objerr} (%)

{7.4, 3.8263} {12.4, 0.1351} {2.2, 10.1873} {6, 2.67} {3.4, 2.9814} {0.6, 2.8736}

0.15

{Verr , Objerr} (%)

{1.67, 0.0356} {0.867, 0.1048} {0, 0.7071} {1.73, 0.7150} {0.067, 0.1337} {0.53, 0.4479}

0.25

{Verr , Objerr} (%)

{0.88, 0.2312} {0.4, 0.2615} {0.16, 0.9801} {0.36, 0.6686} {0.44, 0.4134} {0.24, 0.3365}

0.40

{Verr , Objerr} (%)

{0.75, 0.0852} {0.275, 0.0654} {0.2, 0.1345} {0.4, 0.2571} {0.175, 0.0648} {0.125, 0.2143}

0.60

{Verr , Objerr} (%)

{0.25, 0.0252} {0.183, 0.0092} {0.033, 0.013} {0.183, 0.0788} {0.067, 0} {0.017, 0.025}

0.65

{Verr , Objerr} (%)

{0.23, 0.007} {0.1076, 0.067} {0.77, 0.094} {0.139, 0.105} {0.1692, 0.056} {0.077, 0.044}

0.75

{Verr , Objerr} (%)

{0.027, 0.112} {0.013, 0.022} {0.093, 0.112} {0.13, 0.097} {0, 0.011} {0.347, 0.343}

of the CNN results closely resemble those with
target designs.

7.1.3 Design-dependent pressure
loadbearing arch structure

To demonstrate the versatility of the proposed
model, a design-dependent pressure loadbearing
arch structure is optimized here. The design
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domain, boundary conditions, and applied pres-
sure loads are shown in Fig. 6d. 95 training
examples are generated using TOPress MATLAB
code (Kumar, 2023). The CNN architecture is
trained using the generated data for 2000 epochs.

Results obtained using the base CNN model
are depicted in Table. 5 for different volume frac-
tions. The trained model takes a fraction of a
second to produce the optimized results. Deal-
ing with design-dependent pressure loads in TO
has several unique challenges, as the direction,
magnitude, and/or location get updated with TO
evolution (Kumar et al., 2020; Kumar, 2023).
However, once the neural network model is trained
for the specific problem, the user naturally gets
rid of such challenges and generates the optimized
designs in a fraction of a second.

The model generates correct optimized designs
as Verr and Objerr are within the acceptable range,
and they topologically resemble those obtained
using TOPress (Kumar, 2023). Though the prob-
lem is challenging in nature (Kumar et al., 2020;
Kumar, 2023), its optimized design lacks complex
patterns. For such problems with simple optimized
designs, the proposed base CNNmodel is sufficient
to capture the topology accurately.

7.1.4 Bulk Modulus optimization
problem

Having demonstrated the compliance minimiza-
tion problem with and without design-dependent
loads using the proposed CNN model, this section
provides a material bulk modulus optimization
problem (Fig. 6e). We generate 68 training exam-
ples by varying the volume fraction from 0.03 to
0.70 with an increment of 0.01 using topX MAT-
LAB code (Xia and Breitkopf, 2015). The training
data used for this case is relatively low due to lim-
itations of topX MATLAB code. Using the data,
the model is trained with 2000 epochs.

The results obtained using the CNN model
and the MATLAB code are depicted in Table 6.
The results obtained using the former topolog-
ically resemble those obtained from the latter.
However, one notices relatively high Verr compare
to previous instances (Table 6).

7.2 Results with the adaptive layer

This section presents solutions to a cantilever
beam problem with center load (Fig. 6b) using
the model with an adaptive layer in the dense
layer (Fig. 5). The layer is added by uncomment-
ing line 38. Using this example, we go ahead and
explain how the optimized designs generated by
the model can be improved by the addition of
the adaptive layer. An additional adaptive layer
with n neurons can help capture intricate image
patterns as the number of learning parameters
increases in the CNN model. We generate 95 train-
ing examples using the same procedure employed
previously. In addition to training the base archi-
tecture, we train different networks with different
n for the adaptive layer with 2000 epochs.

Table 7 displays the results obtained for differ-
ent volume fractions with various n in the adaptive
layer. We also include {Verr, Objerr} correspond-
ing to each solution. One notes that given the
measure {Verr, Objerr} and a visual inspection,
the CNN provides the highest quality results with
n = 8000. A close look for results with a volume
fraction of 0.75 is displayed in Fig. 10.

8 Concluding remarks

This paper proposes an adaptive deep Convo-
lutional Neural Network architecture to tackle
the multidisciplinary TO problems. The model
employs an encoder-decoder type architecture
with dense layers introduced to help capture the
complex geometrical features for the optimized
designs. The incorporation of the adaptive layer
introduces flexibility to the initially rigid architec-
ture, granting users a degree of control over the
outputs generated by the model. Publicly avail-
able MATLAB codes are used to generate the
data for training purposes. The efficacy and suc-
cess of the developed CNN architecture are tested
by generating optimized designs for compliance
minimization problems with constant and design-
dependent loads, and also on a material bulk
modulus maximization problem. Once the net-
work is trained with a certain number of epochs,
it gives the sought-after optimized designs instan-
taneously.

Despite the slight inaccuracies observed in the
outputs generated by the CNN when intricate
patterns are present in optimized designs, the
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introduced deep learning architecture represents
a valuable endeavor to leverage machine learning
for expediting the TO process. In contrast to prior
automation efforts of TO problems using con-
volutional neural networks, our approach yields
remarkably precise outcomes while requiring sig-
nificantly less training data.

The proposed model has a fixed domain of
100× 100, and output (optimized designs) can be
generated explicitly for the boundary and force
conditions for which the training data has been
provided. Tapping the power of the deep neu-
ral network, generalizing the proposed network
for design domain size, and obtaining the output
results for the boundary and force conditions that
are not used for the training data open up exciting
avenues for further research.

The paper also provides the Python code,
called PyTOCNN, for the proposed CNN model in
Appendix A. Each part of the code is explained in
detail. PyTOCNN is included to facilitate the repro-
ducibility of the presented results. Additionally,
we believe that PyTOCNN can provide a potential
gateway and tool for students and newcomers in
the field of TO with machine learning.
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Appendix A PyTOaCNN: CNN topology optimization Python
code

1 #=============== PyTOaCNN: A CNN topology optimization Python code ========
2 #================== Installing Tensorflow and importing libraries =========
3 pip install tensorflow
4 import os
5 import numpy as np
6 import matplotlib.pyplot as plt
7 import tensorflow as tf
8 from matplotlib.image import imread
9 from tensorflow.keras.models import Sequential

10 from tensorflow.keras.layers import Conv2D , Conv2DTranspose , MaxPool2D
11 #========================= Providing training data file path ===============
12 Input_train_folder_path =’main\input_data ’
13 Output_train_folder_path =’main\output_data ’
14 Input_train_elements = os.listdir(Input_train_folder_path)
15 Output_train_elements = os.listdir(Output_train_folder_path)
16 #======================= Developing the input and output training tensors ==
17 Input_train = np.zeros ((95 ,100 ,100 ,1))
18 Output_train= np.zeros ((95 ,100 ,100 ,1))
19 for index , Input_train_element in enumerate(Input_train_elements):
20 element_path = os.path.join(Input_train_folder_path , Input_train_element)
21 img = imread(element_path)
22 img = img.reshape ((100, 100, 1))
23 Input_train[index] = img
24 for index , Output_train_element in enumerate(Output_train_elements):
25 element_path = os.path.join(Output_train_folder_path , Output_train_element)
26 img = imread(element_path)
27 img = img.reshape ((100, 100, 1))
28 Output_train[index] = img
29 #========================== Developing the CNN Model ========================
30 model = Sequential ()
31 model.add(Conv2D(filters =128, kernel_size =(2 ,2),strides =(1 ,1),padding=’same’,input_shape =(100 ,100 ,1),

activation=’relu’))
32 model.add(MaxPool2D(pool_size =(2,2),strides =(2,2)))
33 model.add(Conv2D(filters= 256, kernel_size =(2,2),strides =(1,1),padding=’same’,activation=’relu’))
34 model.add(MaxPool2D(pool_size =(2,2),strides =(2,2)))
35 model.add(Conv2D(filters= 512, kernel_size =(5,5),strides =(1,1),padding=’same’,activation=’relu’))
36 model.add(MaxPool2D(pool_size =(5,5),strides =(5,5)))
37 model.add(tf.keras.layers.Flatten ())
38 model.add(tf.keras.layers.Dense(units= n , activation=’relu’)) # Provides values for n
39 model.add(tf.keras.layers.Dense(units =12800 , activation=’relu’))
40 model.add(tf.keras.layers.Reshape(target_shape =(5 ,5 ,512)))
41 model.add(Conv2DTranspose(filters =256, kernel_size =(2 ,2),strides =(2 ,2),activation=’relu’))
42 model.add(Conv2DTranspose(filters =128, kernel_size =(5 ,5),strides =(5 ,5),activation=’relu’))
43 model.add(Conv2DTranspose(filters=1, kernel_size =(2,2),strides =(2,2),activation=’relu’))
44 model.compile(optimizer=’adam’, loss=’mean_squared_error ’)
45 #=========================== Training command ===================================
46 model.summary ()
47 model.fit(Input_train ,Output_train ,epochs = 2000)
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