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Abstract

In this note, we revisit the problem of the pressure-driven transport of a meniscus through a
narrow cylindrical capillary or pore. This generic process finds many applications in science and
technology. As it is known that Direct Numerical Simulations of moving contact line problems
are highly demanding in terms of computational costs, simplified models in the form of ordinary
differential equations offer an interesting alternative to perform a mathematical optimization of the
flow. Blake and De Coninck studied the pressure-driven transport of a meniscus and identified two
major competing mechanisms. While a hydrophilic surface is favorable to enhance the spontaneous
imbibition into the pore, the friction is known to be significantly reduced on a hydrophobic surface.
Blake and De Coninck showed that, depending on the applied pressure difference, there exists an
optimal wettability that minimizes the time required to move the meniscus over a certain distance.
We revisit this problem and derive analytical solutions in the limiting cases of negligible inertia and
negligible contact line friction.

1 Introduction

Understanding the propagation of a liquid within a pore network due to pressure gradients presents a
multifaceted challenge rooted in the complex dynamics of fluid flow through porous media. Prominent
instances encompass the extraction of petroleum [20], geological sequestration of CO2 [2] and the remedi-
ation of groundwater contaminants [1] within the realm of engineering. Additionally, precise drug delivery
and the dynamics of gas–liquid flow are pivotal in the pharmaceutical domain [18]. Meanwhile, in the
industrial sphere, microfluidic-based chemical and physical processes hold significance [7]. The dynamics
of fluid displacement in these contexts stand as paramount concerns. At the heart of this challenge lies
the intricate interplay of various factors governing fluid behavior across both micro and macro scales.

One primary complexity lies in the irregular geometry of pores found in porous media, which is es-
sential for predicting how pressure gradients will affect the movement of liquid within the pore network.
Capillary forces further complicate the picture, exerting significant influence on fluid behavior. Surface
tension, contact angles, and pore size distribution all play crucial roles in determining whether and how
fast a liquid column will rise or fall within the pores, adding another layer of complexity to the characteri-
zation process. Moreover, the heterogeneity inherent in porous media introduces non-uniformities in fluid
flow patterns. Variations in pore size, shape, and connectivity lead to diverse flow behaviors, making it
challenging to predict the propagation of a liquid column accurately. Accounting for these effects is cru-
cial for accurately characterizing liquid column propagation under pressure gradients. Additionally, fluid
flow in porous media occurs across a wide range of time and length scales, from pore-scale phenomena
like viscous fingering to macroscopic phenomena like Darcy flow. Bridging the gap between these scales
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is essential for gaining a comprehensive understanding of liquid column propagation. While theoretical
models offer insights into fluid behavior, experimental validation is indispensable. However, conducting
experiments in realistic porous media environments presents challenges such as scale-up, accessibility,
and measurement limitations. Overcoming these challenges requires a multidisciplinary approach that
combines theoretical modeling, experimental techniques, and computational simulations to unravel the
complexities of fluid flow in porous media under pressure gradients. As a first step, we revisit here the
propagation of a liquid into a single pore. Our goal is to derive (for a simplified model) the exact solution
for the propagation of a liquid column into a single pore. Firstly, it would provide insights into the funda-
mental processes governing fluid flow at the pore scale. Understanding these processes, such as capillary
action and interfacial interactions, is important for a wide range of applications, including groundwater
hydrology, oil recovery, and filtration systems. Understanding the behavior of fluid flow at the pore scale
serves as a fundamental basis for comprehending the dynamics of fluid movement throughout the entire
porous media network. By delving into the intricacies of how fluids behave within individual pores, we
may hope to extrapolate this knowledge to predict how fluid flow interacts and propagates across the
entire network. Moreover, the exact solution acts as a crucial reference point for validating and refining
multiscale models that aim to bridge the gap between pore-scale phenomena and macroscopic behavior.
Comparing the predictions of these models with the analytical solution at the single pore level helps
ensure their accuracy and reliability when applied to more complex pore networks. Additionally, the
insights gained from the exact solution inform parameter estimation and calibration processes in complex
pore network models. By understanding how parameters such as pore geometry and fluid properties
influence fluid behavior at the single pore level, researchers can effectively tune these parameters to ac-
curately represent experimental observations in more complex systems.

Let us introduce the variables of the problem. The pore itself is considered a perfect cylinder with
radius R. The liquid is characterized by its density ρ, its viscosity η and surface tension σ. The affinity
between the liquid and the solid is quantified by the contact angle at equilibrium θ0. The imposed pres-
sure difference is denoted ∆P ≥ 0. We denote by h(t) the imbibition height (or length) at time t. An
optimization of the transport process is interesting to, e.g., maximize the imbibition speed or to minimize
the energy consumption. Blake and De Coninck [4] showed that imbibition speed can be maximized with
respect to the wettability of the surface. This can be achieved in practice by a suitable surface coating.
In this note, we derive an analytical expression for the optimal wettability, resulting from the model by
Blake and De Coninck.

ρ, η σ > 02R

∆hh0

θ

h, ḣ, ∆P

Figure 1: Sketch of the problem for a fluid traveling from h(0) = h0 to h0 +∆h.

Following [4], the single pore system can be modeled reasonably well by an ordinary differential
equation which approximates the forces acting on the liquid column. It is based on the work by Bosanquet
[6], and later Martic et al. [19]. The model reads as

πR2∆P + 2πRσ cos θ0 − 2πRζḣ = 8πηhḣ+
d

dt

(
πR2ρhḣ

)
. (1)

Here ∆P > 0 denotes an externally applied pressure difference that drives the flow. The capillary force
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2πRσ cos θ0 = −2πRσw sucks the liquid into the capillary if the surface is hydrophilic (i.e., if θ0 < π/2)
or pushes it out of the capillary if the surface is hydrophobic (i.e., if θ0 > π/2). The contact line friction
force 2πRζḣ is one of the major dissipative mechanisms in the system and is linked to the dynamics of
the microscopic contact angle θm according to

−ζVΓ = σ(cos θm − cos θ0). (2)

Here VΓ denotes the speed of the contact line. In our case, it can be identified with the rate-of-change of
the imbibition height, i.e.

VΓ = ḣ.

The viscous force 8πηhḣ arises from the viscous friction due to the Hagen-Poiseuille flow inside the liquid
column sufficiently away from the interface. It is the second dissipative mechanism present in the model
(1). Finally, the last term in (1) describes the rate-of-change of the total momentum inside the liquid
column. We will refer to it as the inertial term in the following. It is, however, important to note that
these expressions are all approximations to the forces in a full continuum mechanical description of the
system (see [12,21,22,27] for more details on the modeling). A more accurate description can be achieved
by using CFD simulations based on the two-phase Navier Stokes equations (see, e.g., [14, 16, 23, 26]).
However, these simulations have much higher computational costs due to the multiscale nature of the
moving contact line problem [13]. Therefore, simplified models like (1) offer an interesting alternative.

Recently, it has been shown that the friction mechanism described by the parameter ζ is related to
the fluctuations of the contact line [10, 11]. The importance of the fluctuations is related to the size of
the system, i.e. the value of the radius R in the present case. In small systems, such as those consisting
of a small number of molecules, fluctuations can indeed have a significant impact due to the relatively
small number of constituent particles. Because there are fewer particles to average out the effects of
random motions, the system’s properties can fluctuate more dramatically. These fluctuations can influ-
ence various thermodynamic properties such as, here, the dissipation of energy at the contact line. In
large systems with a large number of molecules, fluctuations tend to average out due to the law of large
numbers. The behavior of individual particles becomes less significant compared to the overall behavior
of the system, leading to smoother, more predictable properties. Eq (1) is thus particularly well suited
to describe how a liquid column is propagating into a micro pore due to a gradient of pressure ∆P .

1.1 The Lucas-Washburn equation

In the seminal work by Lucas and Washburn [17, 25], a simplified version of (1) is studied, where the
viscous friction due to the Poiseuille flow is balancing the capillary driving force. In this case, the model
reads as

2πRσ cos θ0 = 8πηhḣ. (3)

We transform (3) into non-dimensional form by choosing the radius R as the length scale and (yet
unspecified) τ as a time-scale. This yields the problem

τ
σ cos θ0
4ηR

= H(s)H ′(s).

This suggests choosing the time-scale τ = 4ηR/σ leading to the ODE

H(s)H ′(s) = cos θ0. (4)

The goal is now to compute the time that it takes the fluid front to travel from H0 to H0 +∆H. In the
following, we apply a phase space approach (see, e.g., [15,24]) to solve the ODE problem. This approach
is convenient here because it can also be applied for more general situations (see below). We write the
imbibition speed V = H ′ as a function of the penetration height H, i.e.

H ′(s) =
cos θ0
H(s)

⇒ V (H) =
cos θ0
H

. (5)
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Then, the elapsed (non-dimensional) time to move the meniscus from H0 to H0 + ∆H is given as the
integral of the inverse speed, i.e.

∆s =

∫ H0+∆H

H0

dH

V (H)
=

1

cos θ0

∫ H0+∆H

H0

H dH =
1

2 cos θ
((H0 +∆H)2 −H2

0 ). (6)

Converting back this relation into physical units leads to

∆t =
2η

Rσ cos θ0
∆h(∆h+ 2h0). (7)

1.2 Non-dimensional form of the governing equation

Using the length and time scales from the Lucas-Washburn equation (i.e., R and τ = 4ηR/σ), we may
write equation (1) in non-dimensional form as

∆P̃ + cos θ0 = HH ′ +
1

32Oh2
(HH ′)′ +

1

4
ζ̃H ′, (8)

where
Oh =

η√
Rρσ

, ζ̃ = ζ/η, ∆P̃ = ∆P/(2σ/R).

Notice that the Ohnesorge number Oh appears as a non-dimensional parameter. Below, we will derive
analytical solutions of this problem in the limiting cases of negligible inertial effects and negligible friction
ζ̃.

2 Analytical solution and optimal transport in the absence of
inertial effects

For large values of the Ohnesorge number, the inertial term in (8) may be neglected, leading to

∆P̃ + cos θ0 = HH ′ +
1

4
ζ̃H ′. (9)

We rewrite (9) in the phase space formulation as

H ′(s) =
∆P̃ + cos θ0

H + ζ̃/4
= V (H(s)). (10)

Assuming
α := ∆P̃ + cos θ0 > 0,

we can directly compute the required time to move the meniscus using the relation

∆s =

∫ H0+∆H

H0

dH

V (H)
=

1

∆P̃ + cos θ0

∫ H0+∆H

H0

(
H +

1

4
ζ̃

)
dH =

∆H
(
H0 +

∆H
2 + 1

4 ζ̃
)

∆P̃ + cos θ0
.

Converting back the expression to physical units leads to the expression

∆t =
4η∆h

(
h0

R + ∆h
2R + 1

4
ζ
η

)
σ cos θ0 +R∆P/2

. (11)
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Optimal wettability: In [4], it has been shown that there exists an optimal wettability for the transport
of liquid within a pore. This is a consequence of the competition of two important influencing factors in
(11), namely

(i) the surface should be hydrophilic, i.e. σ cos θ0 should be large to increase the driving force,

(ii) but on the other hand, the surface should be hydrophobic to decrease the friction coefficient. Blake
and De Coninck use the following model for the contact line friction coefficient (see [3, 4])

ζ = η
Vl

λ3
exp

(
σ(1 + cos θ0)λ

2

kBT

)
. (12)

We will now derive the optimal wettability from the expressions (11) and (12). Combining (12) and (11)
leads to

∆t =
4η∆h

(
h0

R + ∆h
2R + 1

4ηη
Vl

λ3 exp
(

σ(1+cos θ0)λ
2

kBT

))
σ cos θ0 +R∆P/2

.

From [4], we know that Vl is proportional to λ3, where we assume this constant is equal to one. We thus
obtain

∆t =
η∆h

(
4h0

R + 2∆h
R + exp

(
σ(1+cos θ0)λ

2

kBT

))
σ cos θ0 +R∆P/2

. (13)

Our goal is now to find a formulation for a critical point of the required time with respect to cos θ0.
Since (13) is differentiable, we can apply the necessary first order optimality condition to calculate a local
minimum x̄ by setting the derivative equal to zero. Doing so, we substitute some quantities in (13) for a
clearer presentation, viz. let

a :=
4h0 + 2∆h

R
, b :=

R∆P

2σ
, c :=

σλ2

kBT
.

Furthermore, we write x = cos θ0. This leads to

∆t =
η∆h (a+ exp (c(1 + x)))

σ(x+ b)
.

Now we obtain for the derivative of ∆t with respect to x the identity

∆t′ =
η∆hσ (exp (c(1 + x)) (c(x+ b)− 1)− a)

(σ(x+ b))
2 .

The above expression has to be equal to zero to fulfill the required optimality condition. The right-hand
side can only be equal to zero if the numerator is equal to zero, so necessarily

exp (c(1 + x)) (cx+ bc− 1) = a.

Such a type of equation can be solved with the Lambert W function to the result

x =
1

c
(W (a exp ((b− 1)c− 1))− bc+ 1) .

Hence, a critical point of the required time appears at

cos θ∗0 =
kBT

σλ2

(
W

(
4h0 + 2∆h

R
exp

((
R∆P

2σ
− 1

)
σλ2

kBT
− 1

))
− R∆Pλ2

2kBT
+ 1

)
. (14)

From equation (14), we can immediately infer some physical properties of the optimal solution; see
Figures 2 and 3. In particular, we see that the optimal contact angle is monotonically increasing with
the imposed pressure ∆P . This is because a low value of the friction coefficient defined in the model (12)
is preferred for a high external forcing. On the other hand, the required time in the optimal state is
monotonically decreasing with the imposed pressure (see Fig. 3).
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Figure 2: Optimal contact angle in dependence of
the imposed pressure for water, see Table 1. We
choose R = 1 mm, h0 = 1 cm, ∆h = 10 cm,
∆P = 150 Pa and T = 297.15 K.

Figure 3: Optimized time in dependence of the
imposed pressure for water. The parameters and
setup are the same as for Figure 2.

3 Inertial effects in the absence of contact line friction

Another limiting case that allows for an analytical solution is the one with vanishing friction ζ̃. In this
case, we obtain the problem

α = HH ′ + ε(HH ′)′, (15)

where α = ∆P̃ + cos θ0 and ε = 1/(32Oh2) are positive constants. To solve (15), we substitute

z(s) = H(s)H ′(s) =
1

2

d

ds
H(s)2.

Obviously, H(s) can be inferred from the integral of z(s). The equation for z simply reads as

α = z + εz′ (16)

with the general solution
z(s) = α+ (z(0)− α) e−s/ε, z(0) ∈ R.

We hence obtain

H(s)2 = H(0)2 + 2

∫ s

0

z(y) dy

= H(0)2 + 2αs+ 2ε(H(0)H ′(0)− α)(1− e−s/ε).

(17)

4 Optimization procedure

Since the goal of this paper is to minimize the wetting time in a horizontal pore and thus to maximize the
speed of wetting for a liquid that has already reached a length of h0 to wet another ∆h, the optimization
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problem for the contact angle θ and the analytical solution of ∆t has the following form:

min
θ

∆t s.t. ζ̃ = η exp

(
σ(1 + cos(θ)λ2

kBT

)
,

∆s =
∆H(H0 +

∆H
2 + ζ̃

4 )

∆P̃ + cos(θ)
,

∆t = τ∆s,

bl ≤ θ ≤ bu,

where H0 > 0 is the initial length that has already been reached by the liquid, bl ∈ R is the lower bound
of θ and bu ∈ R the upper bound. We choose bl = 0◦, bu = 180◦ for all our investigations.
Moreover, instead of using the analytical solution, we also solve the following equivalent ODE-constrained
optimization problem by using the model (10):

min
θ

∆t s.t. ζ̃ = exp

(
σ(1 + cos(θ)λ2

kBT

)
,

H ′ =
∆P̃ + cos(θ)

H + ζ̃
R

,

H(∆s) = H0 +∆H,

∆t = τ∆s,

H(0) = H0,

bl ≤ θ ≤ bu,

where H0 > 0.

Furthermore, the consideration of additional inertial effects is of interest. Therefore, we use the ODE
(8) instead of (10) and consider a dimensionless initial velocity H ′(0) ≥ 0, which is calculated by the
equation (10), and thus coincides with the initial velocity of the non-inertial model. Overall, we obtain
the following optimization problem with inertial effects for the contact angle

min
θ

∆t s.t. ζ̃ = exp

(
σ(1 + cos(θ)λ2

kBT

)
,

H ′′ = 32Oh2 ·
∆P̃ + cos(θ)−HH ′ − ζ̃

4H
′ − H′2

32Oh2

H
,

H(∆s) = H0 +∆H,

∆t = τ∆s,

H(0) = H0, H ′(0) =
∆P̃ + cos(θ)

H0 +
ζ̃
4

,

bl ≤ θ ≤ bu,

where H0 > 0 and Oh= η√
Rρσ

> 0.

5 Numerical Results

The optimization is performed in MATLAB® using an interior point algorithm fmincon without pro-
viding gradient information and the ordinary differential equation solver ode45 based on a Runge-Kutta
method. In the first step of the optimization, the friction coefficient ζ̃ based on the contact angle θ is
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solution shear viscosity η surface tension σ density ρ λ
(mass % glycerol) (mPa · s) (mN/m) (kg/m3) (nm)

0 1.0 72.46 997 0.62
20 1.8 70.62 1043 0.62
40 3.6 67.60 1090 0.62
60 10.2 66.15 1140 0.62
80 48.5 64.29 1196 0.599
90 158.6 64.36 1225 0.641

Table 1: Physical properties on glass for water-aqueous glycerol solutions

solution (mass % glycerol) 0 20 40 60 80 90
Ohnesorge 0.0037 0.0066 0.0133 0.0371 0.1749 0.5648

Table 2: Ohnesorge number for different water-aqueous glycerol solutions

computed and in the case of inertial effects, we additionally calculate the initial velocity H ′. Then, the
optimization problem is solved by computing the analytical solution or by ode45, using adaptive time
steps for the optimization of the ODE. This means that in each optimization step, ∆s is first evaluated
on a coarser time mesh and use this result to compute a finer time mesh for a more accurate evaluation of
the ODE. More precisely, the new time period is chosen ten times larger than the result and the number
of time steps two times larger. Further, we simplify the solving procedure for the second order ODE (8)
by substituting H̃ = 1

2H
2 and obtain an ODE of the form

H̃ ′′ = 32Oh2

(
∆P̃ + cos(θ)− H̃ ′ − ζ̃H̃ ′

4
√
2H̃

)
.

The dimensionless time ∆s is then approximated by using the solution of the ODE and a linear
interpolation. In the last step of the optimization, we compute ∆t = τ∆s.
As an application of the optimization, water-aqueous glycerol solutions from [9] with different mass
fractions of glycerol are considered, see Table 1. These solutions have the property that the viscosity
increases while the surface tension and density change only slightly. Furthermore, kB is the Boltzmann
constant and we choose a temperature of T = 297.15 K, a pressure difference of ∆P = 150 Pa, and an
initial equilibrium contact angle of θ0 = 100◦. For the setup of the radius R, the initial length H0, and
∆H, the same values as in [4] are selected. Hence, we assume a capillary radius of R = 1 mm, an initial
length H0 = 10, and ∆H = 100 so that h0 = 1 cm and ∆h = 10 cm.

The results of the optimization are presented in the Tables 3, 4, 5 and 6, showing the comparison be-
tween the optimization of the analytical solution and the numerical solution of the non-inertial model as
well as the numerical solution of the model including inertial effects. It can be observed that the optimal
contact angle θ obtained using the analytical and numerical solution of the non-inertial model are almost
identical. Hence, the minimized wetting times are also nearly the same. Furthermore, the optimal contact
angle θ of the model with inertial effects approach the analytical solution of the non-inertial model with in-
creasing viscosity, i.e. with increasing glycerol mass fraction and Ohnesorge number, see Tables 2, 3 and 5.

The notation ‘# It.’ denotes the number of iterations, ‘# f’ is the number of function evaluations, ∆t
is the value of the objective function at the optimal contact angle θopt and time is the overall execution
time in seconds.
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solution (mass % glycerol) # It. # f ∆t θopt first-order optimality time
0 7 18 6.474e-1 112.09 1.688e-08 0.44
20 7 18 1.122 111.44 1.672e-08 0.26
40 8 20 2.113 110.29 1.644e-08 0.23
60 8 20 5.823 109.69 9.925e-08 0.26
80 8 21 2.529e+1 105.84 3.826e-07 0.20
90 8 20 9.234e+1 111.70 1.678e-06 0.24

Table 3: Results of the optimization for the analytical solution of the non-inertial model.

solution (mass % glycerol) # It. # f ∆t θopt first-order optimality time
0 7 18 6.475e-1 112.08 1.687e-8 1.90
20 7 18 1.122 111.43 1.671e-8 1.58
40 8 20 2.113 110.27 4.042e-8 1.39
60 9 25 5.824 109.67 5.644e-8 1.58
80 8 21 2.529e+1 105.82 1.337e-7 1.26
90 10 24 9.235e+1 111.68 2.453e-6 1.89

Table 4: Results of the optimization for the numerical solution of the non-inertial model.

solution (mass % glycerol) # It. # f ∆t θopt first-order optimality time
0 7 18 7.523e-1 111.08 1.663e-8 2.68
20 8 20 1.184 111.11 1.673e-8 2.57
40 8 20 2.146 110.21 1.642e-8 2.22
60 9 22 5.835 109.68 3.698e-8 3.17
80 12 31 2.530e+1 105.84 3.448e-6 7.83
90 12 33 9.234e+1 111.70 1.699e-4 72.16

Table 5: Results of the optimization including inertial effects with an initial velocity ḣ > 0.

solution (mass % glycerol) # It. # f ∆t θopt first-order optimality time
0 7 18 7.524e-1 111.07 2.168e-8 2.73
20 8 20 1.184 111.11 1.673e-8 2.54
40 8 20 2.146 110.21 1.642e-8 2.23
60 8 20 5.835 109.68 1.498e-7 3.02
80 13 33 2.529e+1 105.84 3.090e-7 9.01
90 12 30 9.234e+1 111.70 3.355e-5 77.93

Table 6: Results of the optimization including inertial effects with an initial velocity ḣ = 0.

9



Figure 4: The time ∆t required for water-aqueous glycerol solutions to wet ∆h = 10cm depending on
the contact angle θ. The time ∆t is calculated by numerically solving the non-inertial model.

6 Summary and Outlook

In this note, we derived analytical solutions of the model by Blake and De Coninck [4], i.e.

∆P̃ + cos θ0 = HH ′ +
1

32Oh2
(HH ′)′ +

1

4
ζ̃H ′, (18)

in the limiting cases of negligible inertia (i.e. ε = 1/(32Oh2) → 0) and negligible dimensionless contact
line friction ζ̃ = ζ/η. By using the model by Blake et al. for the contact line friction, i.e.

ζ = η
Vl

λ3
exp

(
σ(1 + cos θ0)λ

2

kBT

)
,

one can show that a pressure dependent optimum contact angle exists, which maximizes the imbibition
speed. The validity of the analytical expression (14) for the optimal contact angle is confirmed via a
comparison to a numerical optimization. Moreover, the effect of inertia on the optimal contact angle
was investigated. As a physical example, we considered different water-aqueous glycerol solutions. As
expected, it is found that the optimization results of the model with inertial effects approach the optimal
values of the non-inertial model as the viscosity increases.

Several improvements of the model (18) may be investigated in the future. For example, for high imbibi-
tion rates, a non-linear model like the Molecular Kinetic Theory [3–5] should be applied rather than the
linear friction model (2). The analytical solution derived in this work does not cover this more general
case. Moreover, it was recently shown that the hydrodynamic friction due to the viscous dissipation in
the flow close to the contact line should be added to the model (see [8,12,13]). This is a rather important
improvement of the model but, fortunately, the resulting model has still the same mathematical structure
like (18) (at least for small contact line velocities). In this case, the analytical solution (11) is still ap-
plicable, but ζ̃ will then contain contributions from both the contact line friction and the hydrodynamic
friction. This case shall be studied in detail in the future.
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