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Stability of Klartag’s improved Lichnerowicz inequality
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Abstract

In a recent work, Klartag gave an improved version of Lichnerowicz’ spec-
tral gap bound for uniformly log-concave measures, which improves on the
classical estimate by taking into account the covariance matrix. We ana-
lyze the equality cases in Klartag’s bound, showing that it can be further
improved whenever the measure has no Gaussian factor. Additionally, we
give a quantitative improvement for log-concave measures with finite Fisher
information.

1 Introduction and main results

The Poincaré constant of a probability measure µ on R
d, which we shall denote

by CP ≡ CP (µ), is the smallest constant C such that for any locally Lipschitz
function f , we have

Varµ(f) :=

∫

f2dµ−
(
∫

fdµ

)2

≤ C

∫

|∇f |2dµ.

This inequality has many applications in probability, analysis and statistics, in-
cluding concentration inequalities and estimates on rates of convergence for Markov
processes. We refer to the monograph [1] for background on this inequality.

The goal here is to study the equality cases and near-equality cases of the
following result of [11]:

Theorem 1.1 (Improved log-concave Lichnerowicz theorem, Klartag 2023). Let
µ be a t-log-concave probability measure with covariance matrix A. Then

CP (µ) ≤
√

‖A‖op
t

. (1)
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This theorem improves on the Lichnerowicz bound on the spectral gap for log-
concave measures (which states that CP ≤ t−1 in the Euclidean setting), since for
such measures the variance in any direction is always at most t−1. This bound is
not actually due to Lichnerowicz, the name stems from an analogy with his work
on the spectral gap of positively curved Riemannian manifolds [12, 1].

The Kannan-Lovasz-Simonovits conjecture predicts a dimension-free upper
bound of the form CP ≤ c‖A‖op for numerical constant c, but there is no pre-
dicted value of c. The best result currently known is an upper bound of the form
c ≤ α log d, where α is a numerical constant. This was derived in [11] using the
above improved Lichnerowicz bound.

The equality cases in the original Lichnerowicz bound were shown to split off a
Gaussian factor in [3, 9], in a broader geometric setting. A similar splitting result
for the stronger logarithmic Sobolev inequality is also available in the geometric
setting [14]. Our first result is the analysis of equality cases in Klartag’s improved
inequality, showing that equality holds only if µ is a product measure with a
Gaussian factor in the direction of largest variance:

Theorem 1.2 (Rigidity). If µ is a t-log-concave probability measure satisfying (1)
with equality, then µ splits off a Gaussian factor in a direction of largest variance.
More precisely, up to a rotation and translation, µ is of the form µ̄⊗γ1/t, where µ̄
is the marginal of µ on the first d− 1 coordinates and γ1/t is the one-dimensional
Gaussian measure with variance 1/t = ‖A‖op.

We remark that the Poincaré constant CP (µ) is invariant to translations and
rotations of µ, so the Gaussian direction cannot be identified without further
assumptions. Measures which split off a Gaussian factor in the direction of max-
imum variance are also equality cases in the unimproved Lichnerowicz theorem
[3, 9]. Hence, while the improved Lichnerowicz theorem is almost always strictly
better than the unimproved inequality, whenever it actually improves, it is not
sharp.

Recently, there has been much interest in quantitative stability for functional
inequalities. The problem consists in identifying an explicit improvement in the
original functional inequality, that involves some distance to the set of equality
cases. We refer to the surveys [7, 8] for the broader context (including Sobolev
inequalities, isoperimetric inequalities and the Brunn-Minkowski inequality as em-
blematic examples). For stability in the Lichnerowicz spectral gap bound in Eu-
clidean space, the first results were obtained in [5] using regularity properties of
the Monge-Ampère equation, and were later improved in [4] using Stein’s method.
There are also partial results in the geometric setting [2, 6]. In the present work,
we also rely on Stein’s method — indirectly, through the results of [4] — to study
stability for Klartag’s improved estimate.

Theorem 1.3 (Stability). Let µ be a t-uniformly log-concave probability measure
with covariance matrix A, and β2 := supv∈Sd−1

∫

〈∇V (x), v〉2dµ. There is an
absolute constant c > 0 (that in particular does not depend on d) such that, up to
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a rotation and translation,

CP ≤
(

‖A‖2op(1 + β)2

‖A‖2op(1 + β)2 + c(‖A‖2op ∧W1(µ, µ̄ ⊗ γ1/t)4)

)
√

‖A‖op
t

,

where µ̄ is the marginal of µ on the first d−1 coordinates and γ1/t is the Gaussian
measure with variance 1/t.

Remark 1.1. We can trivially bound β2 by the Fisher information
∫

|∇V |2dµ
(and also control it by the Fisher information relative to the Gaussian, up to an
additive constant), but this comparison typically loses a dimensional factor.

The sequel consists in the proofs of these two theorems.
Acknowledgments: This work was done during the workshop Interactions
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2 Proofs

In the sequel, the covariance matrix of a probability measure is defined by

Cov(µ)ij :=

∫

xixjdµ−
(
∫

xidµ

)(
∫

xjdµ

)

.

It is a well-defined matrix when µ is a log-concave probability measure, and is
symmetric positive semidefinite.

A probability measure is said to be t-log-concave for some t ∈ R if it has a
density e−V with respect to the Lebesgue measure, and such that the function
x 7→ V (x)− t|x|2/2 is convex. We shall only consider the case t > 0 here.

Given a t-log-concave probability measure µ, we define the linear operator L
by the relation

∫

(Lf)gdµ = −
∫

∇f · ∇gdµ

for all smooth compactly supported functions f, g. When µ has a positive density
e−V on its support (which is the case in non-degenerate situations), L is given by
the formula

Lf = ∆f −∇V · ∇f.

The operator L can be viewed as the generator of a drift-diffusion process that is
reversible with respect to µ. The measure µ satisfies a Poincaré inequality iff L
has a spectral gap, and C−1

P is the infimum of the positive eigenvalues of −L.
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While the spectral gap might not be attained in general, the spectral gap is
a true eigenvalue of the generator for uniformly log-concave measures. That is,
there exists a non-zero eigenfunction f such that Lf = −C−1

P f (as a consequence
of [10, Proposition 6.7], for example).

2.1 Proof of Theorem 1.2

The proof consists in keeping track of equality cases in the proof of the improved
Lichnerowicz inequality [11], to see that an eigenfunction associated with the spec-
tral gap CP (µ)

−1 is affine, which then forces equality in the original Lichnerowicz
inequality. A more general result of E. Meckes [13] also states that, even with-
out log-concavity, if an eigenfunction of a Markov diffusion generator is affine,
then the measure is Gaussian in the associated direction. However, this result of
Meckes does not automatically imply independence of the Gaussian factor relative
to orthogonal directions.

Proof. The Poincaré inequality is equivalent to the inequality

∫

|∇g|2dµ ≤ CP (µ)

∫

(Lg)2dµ.

By the Bochner formula

∫

(Lg)2dµ =

∫

‖∇2g‖2HSdµ +

∫

〈∇2V∇g,∇g〉dµ

≥
∫

‖∇2g‖2HSdµ + t

∫

|∇g|2dµ

≥ C−1
P

(

∫

|∇g|2dµ−
∣

∣

∣

∣

∫

∇gdµ

∣

∣

∣

∣

2
)

+ t

∫

|∇g|2dµ. (2)

Without loss of generality, we can rescale the measure µ so that ‖A‖op = 1. After
rescaling, the value of t is necessarily smaller than 1 (for example, by testing the
Lichnerowicz bound on CP (µ) with affine functions). The goal is to show that if
CP = t−1/2 then t = 1. This will imply that equality cases in the improved Lich-
nerowicz inequality are also equality cases in the original Lichnerowicz inequality,
and then we will just apply the rigidity result of [3].

Assume that f is an eigenfunction of −L with eigenvalue t1/2, normalized so
that

∫

f2dµ = 1. Note that we necessarily have
∫

fdµ = 0 since f is orthogonal
to the kernel of L, which is the set of constant functions. We also have

∫

|∇f |2dµ = −
∫

(Lf)fdµ =
√
t;

∫

(Lf)2dµ = t.

If
∫

∇fdµ = 0 then taking g = f in (2) would yield t ≥ t+ t3/2 which would
be a contradiction. So without loss of generality we can assume

∫

∇fdµ 6= 0. Let
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θ =
∫
∇fdµ

|∫ ∇fdµ| . We have

∣

∣

∣

∣

∫

∇fdµ

∣

∣

∣

∣

2

=

(
∫

∇f · θdµ
)2

=

(
∫

∇f · ∇(〈θ, x〉)dµ
)2

=

(
∫

(Lf)〈θ, x〉dµ
)2

≤
∫

(Lf)2dµ
∫

〈θ, x〉2dµ (3)

≤
∫

(Lf)2dµ‖A‖op|θ|2 =
∫

(Lf)2dµ = t. (4)

Combined with (2) we get t ≥ t− t3/2 + t3/2. But since there is equality, there is
actually equality at every step along the way, and in particular in (3) and (4).

Equality in (4) means that θ is a direction of unit variance (i.e. maximal in
the scaling we consider). Equality in (3) means that Lf(x) = λ〈x, θ〉 for some
λ ∈ R. Equating the L2 norms of both sides identifies λ = ±

√
t, and since f

is an eigenfunction, we have f(x) = ±〈θ, x〉. But then ∇f = ±θ and therefore√
t =

∫

|∇f |2dµ = 1 so that t = 1 = ‖A‖op, and also CP (µ) = 1. The conclusion
follows from the equality case in the unimproved Lichnerowicz theorem on R

d [3,
Theorem 2], and rescaling.

2.2 Proof of Theorem 1.3

We will show that near-equality in the improved Lichnerowicz inequality forces t to
be close to 1, which forces near-equality in the unimproved Lichnerowicz theorem.
The conclusion will then follow from the results of [4], which we quote here in a
suitable form.

Proposition 2.1 ([4, Theorem 1.2]). Let µ be a t-uniformly log-concave probability
measure. If C−1

P ≤ t(1 + δ), then then up to a rotation and translation

W1(µ, µ̄⊗ γ1/t) ≤ 26
√
δ,

where µ̄ is the projection of µ onto the first d − 1 coordinates and γ1/t is the
Gaussian measure on the real line with variance 1/t.

Proof of Theorem 1.3. Assume that µ is centered and rescaled so that ‖A‖op = 1.
Begin by defining ǫ ≥ 0 via C−1

P =
√
t(1 + ǫ). Consider an eigenfunction f

associated with the spectral gap (that is Lf = −t1/2(1 + ǫ)f), normalized so that
∫

f2dµ = 1. As before, we have
∫

fdµ = 0 since f is orthogonal to the kernel of
L, which is the set of constant functions.
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Testing (2) with g = f , we have

t(1 + ǫ)2 ≥ t(1 + ǫ)2 + t3/2(1 + ǫ)−
√
t(1 + ǫ)

∣

∣

∣

∣

∫

∇fdµ

∣

∣

∣

∣

2

and hence
∣

∣

∣

∣

∫

∇fdµ

∣

∣

∣

∣

2

≥ t.

In particular, |
∫

∇fdµ| 6= 0, and θ =
∫
∇fdµ

|∫ ∇fdµ| is well-defined. Put

A := 1−Varµ(〈x, θ〉); B :=

∫

(Lf)2dµ
∫

〈θ, x〉2dµ−
(
∫

Lf〈x, θ〉dµ
)2

.

Arguing as in (3), we have

B + t(1 + ǫ)2A ≤ t
(

(1 + ǫ)2 − 1
)

.

Both A and B are nonnegative. In particular,

1−A ≥ 1

(1 + ǫ)2
; B ≤ t

(

(1 + ǫ)2 − 1
)

.

As is standard in a Hilbert space with norm ‖ · ‖, we have

inf
λ∈R

‖x− λy‖2 ≤ ‖x‖2 − 〈x, y〉
‖y‖2 .

Using this inequality with the L2(µ) Hilbert structure, we get

inf
λ

∫

(Lf − λ〈x, θ〉)2dµ ≤ B
∫

〈x, θ〉2dµ =
B

1−A
≤ t(1 + ǫ)2

(

(1 + ǫ)2 − 1
)

.

Denoting by λ0 the optimal λ, we have

‖Lf − λ0〈x, θ〉‖2L2(µ) ≤ t(1 + ǫ)2
(

(1 + ǫ)2 − 1
)

.

In particular, by the triangle inequality

|(1 + ǫ)
√
t− λ0

√
1−A|2 ≤ t(1 + ǫ)2

(

(1 + ǫ)2 − 1
)

so that another application of the triangle inequality gives

|λ0 −
√
t| ≤

√
t
(

(1 + ǫ)2
√

(1 + ǫ)2 − 1 + (1 + ǫ)2 − 1
)

,

where we used
√
1−A ≥ (1 + ǫ)−1. Therefore,

‖Lf −
√
t〈x, θ〉‖L2(µ) ≤ ‖Lf − λ0〈x, θ〉‖L2(µ) + |λ0 −

√
t|‖〈x, θ〉‖L2(µ)

≤ 2
√
t
(

(1 + ǫ)2
√

(1 + ǫ)2 − 1 + (1 + ǫ)2 − 1
)

,
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and we conclude
√
t‖f + 〈x, θ〉‖L2(µ) ≤

√
t‖(1 + ǫ)f + 〈x, θ〉‖L2(µ) +

√
tǫ‖f‖L2(µ)

= ‖Lf −
√
t〈x, θ〉‖L2(µ) +

√
tǫ

≤ 3
√
t
(

(1 + ǫ)2
√

(1 + ǫ)2 − 1 + (1 + ǫ)2 − 1
)

.

Dividing through by
√
t, we can estimate

‖∇f − θ‖2L2(µ) = −
∫

(Lf + L〈x, θ〉)(f + 〈x, θ〉)dµ

≤ (‖Lf‖L2(µ) + ‖L〈x, θ〉‖L2(µ))‖f − 〈x, θ〉‖L2(µ)

≤ 3(t1/2(1 + ǫ) + ‖L〈x, θ〉‖L2(µ))
(

(1 + ǫ)2
√

(1 + ǫ)2 − 1 + (1 + ǫ)2 − 1
)

.

(5)

Moreover, since L〈x, θ〉 = 〈∇V (x), θ〉, we have

‖L〈x, θ〉‖2L2(µ) =

∫

〈∇V (x), θ〉2dµ ≤ β2. (6)

Combined with (5) and t ≤ 1, we get

‖∇f − θ‖2L2(µ) ≤ 3(1 + ǫ+ β)
(

(1 + ǫ)2
√

(1 + ǫ)2 − 1 + (1 + ǫ)2 − 1
)

.

Let’s now consider what happens when
√
ǫ ≤ 1/(25(1 + β)). In this case, the

above can be crudely bounded as

‖∇f − θ‖2L2(µ) ≤ 12(1 + β)
√
ǫ ≤ 1

2
.

But then

√
t(1 + ǫ) = ‖∇f‖2L2(µ) ≥ (|θ| − ‖∇f − θ‖L2(µ))

2 ≥ 1− 12(1 + β)
√
ǫ ≥ 1

2
,

so that

C−1
P =

√
t(1 + ǫ) ≤ t

(1 + ǫ)2

1− 12(1 + β)
√
ǫ
.

Hence, we may take

δ =
12(1 + β)

√
ǫ+ 2ǫ+ ǫ2

1− 12(1 + β)
√
ǫ

≤ 26(1 + β)
√
ǫ

in Proposition 2.1 to conclude, up to rotation and translation (which we assume
henceforth),

W1(µ, µ̄⊗ γ1/t)
2 ≤ (26)3(1 + β)

√
ǫ.

Hence, there is a universal constant c > 0 such that

c

(1 + β)2
W1(µ, µ̄ ⊗ γ1/t)

4 ≤ ǫ,
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and using C−1
P = t1/2(1 + ǫ),

CP ≤
(

(1 + β)2

(1 + β)2 + cW1(µ, µ̄ ⊗ γ1/t)4

)

1√
t
.

In the complementary case where
√
ǫ > 1/(25(1 + β)), we may again use C−1

P =
t1/2(1 + ǫ) to write

CP ≤
(

(1 + β)2

(1 + β)2 + (25)−2

)

1√
t
.

We conclude that there is a universal constant c > 0 such that, up to rotation and
translation of µ,

CP ≤
(

(1 + β)2

(1 + β)2 + c(1 ∧W1(µ, µ̄⊗ γ1/t)4)

)

√

1

t
.

Since β is invariant to dilation of µ, the claim follows by rescaling.
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