
LIFTING MAPS BETWEEN GRAPHS TO EMBEDDINGS

ALEXEY GORELOV

Abstract. In this paper, we study conditions for the existence of an embedding
f̃ : P → Q × R such that f = prQ ◦f̃ , where f : P → Q is a piecewise linear map
between polyhedra. Our focus is on non-degenerate maps between graphs, where non-
degeneracy means that the preimages of points are finite sets.

We introduce combinatorial techniques and establish necessary and sufficient con-
ditions for the general case. Using these results, we demonstrate that the problem of
the existence of a lifting reduces to testing the satisfiability of a 3-CNF formula. Addi-
tionally, we construct a counterexample to a result by V. Poénaru on lifting of smooth
immersions to embeddings.

Furthermore, by establishing connections between the stated problem and the ap-
proximability by embeddings, we deduce that, in the case of generic maps from a tree
to a segment, a weaker condition becomes sufficient for the existence of a lifting.

1. Introduction

1.1. Background. In this paper, we consider the following problem: given compact
one-dimensional polyhedra P and Q, and a piecewise linear map f : P → Q, what
conditions must be satisfied for the existence of a piecewise linear embedding f̃ : P → Q×
R such that f = prQ ◦f̃? If such an embedding exists, we refer to it as a (codimension
one) lifting of f to an embedding, and we say that f lifts to an embedding. This
problem can also be formulated in other contexts, such as for smooth maps between
manifolds or continuous maps between topological spaces. Additionally, it is possible
to consider liftings of codimension k, namely embeddings f̃ : P → Q × Rk such that
f = prQ ◦f̃ . In this case, maps that admit such lifting are sometimes referred to as
k-prems (short for k-projected embedding), see [28, 1, 15].

In this paper, our focus is on non-degenerate maps. A piecewise linear map f : P → Q is
called non-degenerate if the set f−1(q) is finite for every point q ∈ Q. Additionally, we
call a simplicial map f : K → L non-degenerate if the corresponding piecewise linear
map |f | : |K| → |L| is non-degenerate. It is easy to see that a simplicial map f : K → L
between finite simplicial complexes is non-degenerate if and only if it is injective on each
simplex; that is, a k-simplex A ∈ K maps to a k-simplex f(A) ∈ L.

In the one-dimensional case, non-degenerate simplicial maps are synonymous with graph
homomorphisms. This establishes an interesting connection between the problem we
are addressing in this paper and certain problems in graph theory. In fact, a graph
homomorphism f : G → H is known as an H-colouring of the graph G. Each lifting
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of the map f to an embedding introduces orders on sets of vertices of the same colour,
which, in turn, determine the orders on the edges. These constructions, which involve
colourings along with orders, are actively studied in graph theory, see e.g. [7]. For
example, so-called track layouts can be viewed as liftings of graph homomorphisms to
complete graphs.1

It should be highlighted that the one-dimensional piecewise linear version of the lifting
to an embedding problem plays a special role among other versions of this problem.
For instance, the problem of liftability to an embedding of smooth immersions between
manifolds can be reduced to the one-dimensional piecewise linear version of the prob-
lem [5, 21]. Also, as we will show below in Theorem 3, the multidimensional piecewise
linear version of the problem reduces to the one-dimensional case.

1.2. Structure. Let us now outline the general structure of the paper.

The second section introduces several combinatorial concepts that are utilized through-
out the rest of the paper. In particular, we prove the following necessary conditions for
the existence of a lifting to an embedding:

Theorem 1. Let f : K → L be a non-degenerate simplicial map between finite simplicial
complexes such that |f | : |K| → |L| lifts to an embedding. Then the following holds:

(1) all the covering maps pn : |K(n)
f | → |K̃(n)

f |, n > 1 are trivial;
(2) there are no n-obstructors for f for any n > 1.

Here K(n)
f and K̃(n)

f denote simplicial models for the ordered and unordered configuration
spaces of n points with the same image under f , and an n-obstructor is a path in K

(n)
f

that realises a cyclic permutation of points; the reader may refer to the next section for
the formal definitions.

Further, we prove two necessary and sufficient conditions for the existence of a lifting.

Theorem 2. Let f : K → L be a non-degenerate simplicial map between finite simplicial
complexes. Then the piecewise linear map |f | : |K| → |L| lifts to an embedding if and only
if there is a collection of mutually compatible linear orders on the sets f−1(v), v ∈ V (L).

Furthermore, there is a bijection between such collections of linear orders and the isotopy
classes of liftings.

Informally, the compatibility here means that the orders on the vertices induce orders
on the simplices; again, we postpone the formal definition until the second section.

Theorem 4. Let f : K → L be a non-degenerate simplicial map between finite simplicial
complexes. Assuming that the covering map p2 : |K(2)

f | → |K̃(2)
f | is trivial, there is a 3-

CNF formula Γf ,2 such that the piecewise linear map |f | : |K| → |L| lifts to an embedding

1It is worth noting that the author has not come across research on track layouts for other types of
colouring.

2A boolean formula Γ is said to be in 3-CNF if it can be expressed as Γ =
∧

i(αi ∨ βi ∨ γi), where
each of αi, βi, and γi is either a variable or its negation.
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if and only if Γf is satisfiable. Furthermore, there is a bijection between the assignments
that satisfy Γf and the isotopy classes of liftings.

We will explicitly describe the formula Γf just before we state Theorem 4 in the second
section.

In the third section, we explore connections between the problem of lifting of maps
between graphs and the problem of lifting of smooth immersions to embeddings. In
particular we show that the assumptions in a result stated by V. Poénaru in [21] need to
be strengthened by including the condition of the satisfiability of Γf . The main result
in this section demonstrates that without this stronger assumption, the main result on
the existence of liftings of immersions stated in [21] cannot hold:

Theorem 6. Each 3-CNF formula Γ of a specific form, as described in the statement
of Theorem 6 on page 18, can be realised as Γf of a map f : G → H between graphs.
Moreover, there exists a generic immersion g : S ↬ B of a surface S with boundary into
a handlebody B, such that H is the graph of multiple points of g, and f is the restriction
of g on f−1(H).

In the last section, we establish a connection between the problem of the existence of
liftings of maps between graphs and the problem of approximation by embeddings. By
using this connection, we deduce the main result of the section:

Theorem 11. For the generic simplicial maps from a tree to a segment the non-existence
of 2-obstructors is a necessary and sufficient condition for the existence of a lifting.

1.3. Conventions. Throughout this paper, we adhere to the following notation and
conventions.

We use the letters K and L to represent finite simplicial complexes, with |K| and |L| de-
noting their geometric realisations. All maps between simplicial complexes are assumed
to be simplicial. Additionally, for a simplicial map f : K → L, we denote the induced
piecewise linear map between |K| and |L| by |f |.
Given a simplicial complex or a graph K, we use V (K) and E(K) to denote the set of
vertices and the set of edges of K, respectively. Moreover, sknK denotes the n-skeleton
of K — a simplicial complex consisting of all simplices of K of dimension lower than or
equal to n.

As previously noted, non-degenerate simplicial maps between one-dimensional simplicial
complexes are essentially graph homomorphisms. Occasionally, particularly in examples,
it will be more convenient to consider multigraph homomorphisms.

Let G and H be multigraphs.3 A pair (fV , fE) of maps fV : V (G) → V (H) and
fE : E(G) → E(H) is called a multigraph homomorphism f : G → H if, for any
edge e ∈ E(G), the map fV takes the endpoints of e to the endpoints of fE(e).

As a graph, a multigraph G has a geometric realisation denoted by |G|. Specifically, |G|
is the union of |V (G)| points pv representing the vertices v ∈ V (G), and |E(G)| segments

3Graphs that can contain loops and multiple edges.
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Ie representing the edges e ∈ E(G), where the segments are glued to the points according
to the incidence relation.4 Clearly, |G| is a one-dimensional polyhedron uniquely defined
up to piecewise linear homomorphism.

Furthermore, a multigraph homomorphism f : G→ H induces a piecewise linear map |f |
between the geometric realisations of G and H, which maps pv ∈ |G| to pfV (v) ∈ |H| and
homeomorphically maps Ie to IfE(e). Thus, by taking triangulations of |G| and |H| in
which |f | is simplicial, we can obtain a simplicial map. Therefore, whenever multigraph
homomorphisms are used in this text, they can be replaced by simplicial maps after
subdividing the involved multigraphs. However, to simplify the notation, we choose to
use multigraph homomorphisms in some places of the text.

2. Combinatorics of liftings to embeddings

In this section, we will discuss combinatorial techniques that are useful for studying the
existence of liftings to embeddings of maps between graphs.

Following our conventions, letK and L be simplicial complexes, and f : K → L be a non-
degenerate simplicial map between them. Let us denote by K

(n)
f a simplicial complex

whose vertices are n-tuples of distinct vertices of K that map to the same vertex by
f . Additionally, a set {(v11, . . . , v1n), . . . , (vk+1

1 , . . . , vk+1
n )} of vertices forms a k-simplex

if for each j = 1, . . . , n the set {v1j , . . . , vk+1
j } forms a k-simplex Aj in K. Note that

Aj ∩ As = ∅ for all j ̸= s, and all the simplices Aj have the same image under f .

The symmetric group Sn acts naturally on K
(n)
f by permuting the points in n-tuples.

Thus, we can define the unordered version of K(n)
f , which we denote by K̃(n)

f = K
(n)
f /Sn.

Clearly, Sn also acts on the geometric realisation |K(n)
f | of K(n)

f . This action is properly
discontinuous, so it induces a covering map pn : |K(n)

f | → |K̃(n)
f | that forgets the order of

points. Moreover, it is clear that pn is a principal Sn-bundle.5

Definition (n-obstructor). An n-obstructor for f : |K| → |L| is a vertex (x1, x2, . . . , xn) ∈
K

(n)
f and a path from (x1, x2, . . . , xn) to (xn, x1, x2, . . . , xn−1) in K(n)

f .

The reader may refer to Example 1 below to see an example of 2-obstructor.

Lemma 1. For any non-degenerate simplicial map f : K → L and N > 1, the following
statements are equivalent:

(1) all the covering maps pk : |K(k)
f | → |K̃(k)

f |, 1 < k ≤ N are trivial;
(2) there are no k-obstructors for f for 1 < k ≤ N .

Proof. The implication (1) ⇒ (2) is straightforward. Indeed, assume there is a k-
obstructor that defines a path γ : I → |K(k)

f |. Then pk ◦ γ is a loop in |K̃(k)
f |, but γ

is not a loop in |K(k)
f |, implying that pk is not trivial.

4Certainly, loops are represented by loops (or segments with both endpoints identical) in |G|.
5For a short introduction to this topic the reader may refer to [19].
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Now, let us prove the implication (2) ⇒ (1). Assume there are no k-obstructors for any
1 < k ≤ N . Let |K(k)

f | =
⊔

iCi, where {Ci}i are connected components of |K(k)
f |.6

Clearly, the action of Sk on |K(k)
f | induces an action of Sk on {Ci}i. Let us prove that

this action is free. Suppose it is not. Then there exists σ ̸= id ∈ Sk and a connected
component C such that σ(C) = C. Let p be a prime divisor of ord(σ), and define
σ′ = σ ord(σ)/p. Clearly, σ′(C) = σ ord(σ)/p(C) = C. Moreover, since ord(σ′) = p, the cycle
decomposition of σ′ consists of cycles of length one, and one or more disjoint cycles of
length p. Let (s1 s2 . . . sp) be one of them.

Now consider any vertex x ∈ C. As σ′(x) ∈ C, there exists a path γ in C connecting x
and σ′(x). In fact, it defines k paths in K

γ1 : x1 → y11 → . . .→ yl1 → xσ′(1)

γ2 : x2 → y12 → . . .→ yl2 → xσ′(2)

...
...

...

γk : xk → y1k → . . .→ ylk → xσ′(k)

such that yki ̸= ykj for i ̸= j, and f(yki ) = f(ykj ). By taking the paths γs1 , . . . , γsp , we
obtain a path in K(p)

f . It can be seen that this path defines a p-obstructor.

Therefore, the action of Sn on {Ci}i is free. Let {Oα}α be the set of orbits of the action.
For each orbit Oα, fix an arbitrary connected component Cα ∈ Oα, and let T =

⊔
αCα.

For every point x ∈ |K̃(k)
f |, the preimages p−1

k (x) form an orbit of the action of Sn on
|K(k)

f |. Thus, the connected components containing these preimages also form an orbit.
Moreover, since the action of Sn on them is free, two distinct preimages cannot lie in
the same connected component. The construction of T ensures that exactly one of the
points in p−1

k (x) lies in some of Cα ⊂ T . Therefore, the restriction pk
∣∣
T

is bijective, and
we can define a map s : |K̃(k)

f | → |K(k)
f | by putting s(x) =

(
pk
∣∣
T

)−1
(x).

Note that pk is an open map; indeed, for any open set U ⊂ |K(k)
f | we have p−1

k (pk(U)) =⋃
σ∈Sk

σ(U), and all the sets σ(U) are open. Thus, for an open U ⊆ |K(k)
f |, we have

s−1(U) = s−1(U ∩T ) = pk(U ∩T ) which is open since pk is open, and both U and T are
open.

Therefore, s is a continuous map defining a section of a principal Sk-bundle pk, which
implies that pk is trivial by [19, Proposition 2.1]. □

Now, we will state necessary conditions for the existence of a lifting. It is worth men-
tioning that the necessity of (2), for the case of generic immersions between manifolds
and in a slightly different formulation, is proven in [21, Lemme 1.1]. The necessity of (1)
for n = 2 was discussed in [2, §3.1] for maps to RN and proven in [10, Corollary 3] for
generic immersions of surfaces into R3.

6Since the polyhedra are locally path-connected spaces, connectedness and path-connectedness are
equivalent in this case.



LIFTING MAPS BETWEEN GRAPHS TO EMBEDDINGS 6

Theorem 1. Let f : K → L be a non-degenerate simplicial map such that |f | : |K| → |L|
lifts to an embedding. Then the following holds:

(1) all the covering maps pn : |K(n)
f | → |K̃(n)

f |, n > 1 are trivial;
(2) there are no n-obstructors for f for any n > 1.

Proof. Let us begin by noting that the points of |K(n)
f | and |K̃(n)

f | can be considered as
ordered and unordered n-tuples of distinct points of |K| with the same image.

Suppose there is a lifting |̃f | : |K| → |L| ×R. Let h = prR |̃f | : |K| → R. This induces a
continuous map that takes (x1, . . . , xn) to (h(x1), . . . , h(xn)). Since |̃f | is an embedding,
all h(xi)’s are distinct. Thus, it actually maps |K(n)

f | to the configuration space Confn(R)
of n distinct points of R. Moreover, it is equivariant with respect to the actions of Sn on
both spaces.7 It is easy to see that Confn(R) equivariantly deformation retracts to the
discrete space Confn({1, 2, . . . , n}) of all n! permutations of the numbers {1, . . . , n} with
the natural action of Sn. By taking an equivariant isomorphism that sends the n-tuple
(1, 2, . . . , n) to id ∈ Sn, we can identify Confn({1, 2, . . . , n}) with Sn.

Therefore, we have an equivariant map H : |K(n)
f | → Sn. Now define g : |K(n)

f | → Sn ×
|K̃(n)

f | as g(x) = (H(x), pn(x)). Clearly, g is a morphism between the principal Sn-
bundles pn and the trivial bundle pr|K̃(n)

f | : Sn×|K̃(n)
f | → |K̃(n)

f |, thus, it is an isomorphism
by [19, Proposition 2.1]. Therefore, pn is trivial.

The non-existence of n-obstructors then follows from Lemma 1. □

Example 1. This example, along with the description of a 2-obstructor, is presented
in [2, §3.1]. The map f : G→ H first appeared in the proof of Theorem 2.1 in [26].

Consider the graphs G and H and the simplicial map f : G→ H as in Fig. 1. As shown
in the figure, there is a 2-obstructor for f given by the path in G

(2)
f defined by the two

paths in G:
γ1 : a3 → b4 → c4 → d3 → c3 → b3 → a1 → b1 → c1 → d1 → c1 →

→ b1 → a1 → b3 → c3 → b2 → a2

γ2 : a2 → b2 → c2 → d2 → c2 → b2 → a2 → b2 → c3 → d3 → c4 →
→ b4 → a3 → b4 → c4 → b4 → a3

Therefore, f does not lift to an embedding.

Theorem 1 provides only the necessary conditions for the existence of a lifting (see Ex-
ample 2 and Example 3). The next two theorems, however, provide conditions that are
both necessary and sufficient.

Definition (admissible collection of linear orders). Let f : K → L be a non-degenerate
simplicial map between finite simplicial complexes. For each simplex C ∈ L, let KC be

7F : X → Y is equivariant with respect to actions of a group G on X and Y if F (g(x)) = g(F (x))
for any x ∈ X and g ∈ G.
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G

a3 b4 c4 d3

b3 c3

a2 b2 c2 d2

a1 b1 c1 d1

H a b c d

f

(a) The map f : G → H.

a3 b4 c4 d3

b3 c3

a2 b2 c2 d2

a1 b1 c1 d1

(b) The first part.

a3 b4 c4 d3

b3 c3

a2 b2 c2 d2

a1 b1 c1 d1

(c) The middle part.

a3 b4 c4 d3

b3 c3

a2 b2 c2 d2

a1 b1 c1 d1

(d) The end part.

Figure 1. Siekłucki’s example and the 2-obstructor for it shown as a pair
of paths in G (in three stages).

the set of simplices A ∈ K that map to C under f . Note that since f is non-degenerate,
all the simplices in KC have the same dimension as C. Furthermore, let V (L) be the set
of vertices of L.

We call a collection {(≺v, Kv)}v∈V (L) of linear orders on the setsKv = f−1(v) admissible
if it induces linear orders on all the sets KC , C ∈ L.

Specifically, given a pair of simplices A,B ∈ KC , let Vf (A,B) ⊂ V (A)×V (B) represent
all pairs of vertices (v, w) satisfying f(v) = f(w). Then it is required that either v ⪯f(v)

w holds for all (v, w) ∈ Vf (A,B), or v ⪰f(v) w holds for all (v, w) ∈ Vf (A,B).

Theorem 2. Let f : K → L be a non-degenerate simplicial map between finite simplicial
complexes. Then the piecewise linear map |f | : |K| → |L| lifts to an embedding if and
only if there exists an admissible collection of linear orders on the sets Kv, v ∈ V (L).

Furthermore, there exists a bijection between the admissible collections of linear orders
and the isotopy classes of liftings.

The reader may refer to [10, Proposition 4], [21, Lemme 1.4], and [16, Theorem 5] for
variants of the stated theorem.
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Proof. Let us first, by using a lifting of |f |, construct an admissible collection of linear
orders. Assume there is a lifting |̃f | : |K| → |L| × R. It defines a collection of linear
orders as follows: for vertices v, w ∈ V (K) such that f(v) = f(w), we define v ≺f w if
h(v) < h(w), where h = prR ◦|̃f |. Let us prove that this collection is admissible.

Suppose it is not. It implies that there exist simplices A,B ∈ K with the same image
f(A) = f(B) and two pairs of vertices f(v) = f(w), f(v′) = f(w′), where v, v′ ∈ A,
w,w′ ∈ B, such that v ≺f w but v′ ≻f w

′.

Clearly, we have f({v, v′}) = f({w,w′}) = {f(v), f(w)} where {a, b} denotes an edge
with endpoints a and b. Let d : [0, 1] → R be the map defined as d(t) = h((1 − t)v +
tv′) − h((1 − t)w + tw′). Since v ≺f w and v′ ≻f w

′, we have d(0) = h(v) − h(w) < 0
and d(1) > 0. Therefore, there exists t′ ∈ [0, 1] such that d(t′) = 0. However, since |f | is
linear on the simplices of K, this implies that |̃f |((1− t′)v+ t′v′) = |̃f |((1− t′)w+ t′w′),
which contradicts the fact that |̃f | is an embedding.

Now suppose we have an admissible collection of linear orders {(≺v, Kv)}v∈V (L). Let us
construct a lifting |̃f | of |f | based on this collection. First, we define a map h : V (K) → N
as follows: for each Kv, we let h

∣∣
Kv

be the order isomorphism Kv → {1, . . . , |Kv|} that
takes the k-th vertex in Kv (in ascending order with respect to ≺v) to k. By extending
the map h linearly to the entire |K|, we obtain the map h : |K| → R. Take |̃f | = |f |×h.
Now, let us prove that |̃f | is an embedding.

Suppose it is not. Then there exist points v, w ∈ |K| such that |̃f |(v) = |̃f |(w). Since
v and w cannot be vertices of K by the definition of h, they lie in the interior of some
simplices A and B ofK, respectively, with dimA = dimB > 0.8 The last equality follows
from the fact that f is non-degenerate and hence injective on simplices, so f(A) = f(B)
and the simplices A, B, and f(A) have the same dimension. Let a0, . . . , an denote the
vertices of A, and b0, . . . , bn denote the corresponding vertices of B, such that f(ai) =
f(bi) for each i.

Now, let v =
∑n

i=0 αiai where the αi’s are the barycentric coordinates of v in A. Since
|f |(v) = |f |(w), we have w =

∑n
i=0 αibi. Therefore, we have h(v) =

∑n
i=0 αih(ai) =∑n

i=0 αih(bi) = h(w).

Because h was defined using the admissible collection of linear orders, we have either
h(ai) ≤ h(bi) or h(ai) ≥ h(bi) for all i. Moreover, since A ̸= B, at least one of the
inequalities is strict. This implies that either h(v) < h(w) or h(v) > h(w), which
contradicts the assumption that |̃f |(v) = |̃f |(w), where |̃f | = |f | × h.

To establish the bijection between admissible collections of linear orders and isotopy
classes of liftings, we observe that each lifting |̃f | is isotopic to the lifting |̃f |′ constructed
in the previous step using the admissible collection of linear orders induced by |̃f |. The
isotopy F : |K| × [0, 1] → |L| × R is defined as F (x, t) = (|f |(x), (1− t)h(x) + th′(x))

8In this context, we define the interior of a simplex ∆ as |∆| \
⋃

A |A|, where A ranges over all proper
faces of ∆.
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where h = prR |̃f | and h′ = prR |̃f |′. The proof that this is an actual isotopy is left to
the reader. □

The next theorem demonstrates that the problem of determining the existence of a lifting
for a piecewise linear non-degenerate map between polyhedra can be reduced to the case
of graphs.

Theorem 3. Let f : K → L be a non-degenerate simplicial map. Then the corre-
sponding piecewise linear map |f | : |K| → |L| lifts to an embedding if and only if∣∣∣f ∣∣

sk1 K

∣∣∣ : | sk1K| → | sk1 L| lifts to an embedding. Here, sk1K and sk1 L denote the
one-dimensional skeletons of K and L, respectively. Moreover, there is a bijection be-
tween the isotopy classes of liftings of |f | and of

∣∣∣f ∣∣| sk1 K|

∣∣∣.
Proof. Based on Theorem 2, it suffices to show that a collection {(≺v, Kv)}v∈V (K) of
linear orders is admissible with respect to f if and only if it is admissible with respect
to f

∣∣
sk1 K

.

It is clear that once it is admissible with respect to f , it is admissible with respect to
f
∣∣
sk1 K

as well, according to the definition.

Suppose a collection is admissible with respect to f
∣∣
sk1 K

, but not admissible with respect
to f . This implies that there exist simplices A,B ∈ KC and two pairs of vertices
f(v) = f(w), f(v′) = f(w′), where v, v′ ∈ A, w,w′ ∈ B, such that v ≺f(v) w but
v′ ≻f(v′) w

′. The edges {v, v′}, {w,w′} lie in sk1K and have the same image, but their
endpoints are in the opposite order. This leads to a contradiction. □

Note that, while studying the existence of a lifting of a piecewise linear map f , it
suffices to focus attention only on the subpolyhedron of the preimages of the multiple
points of f . In view of Theorem 3, after setting f ′ to be a restriction of f on the set
{x ∈ sk1K | |f−1(f(x))| > 1} ⊆ sk1K, we have that f lifts if and only if f ′ lifts.

For instance, in the case of generic immersions of surfaces into R3, a similar observation
allows us to narrow down the question of liftability of an immersion to the liftability of
its restriction on the preimage of the set of multiple points, see [6, Theorem 3.2]. Note
that this restriction is, in fact, a map between graphs.

The next theorem demonstrates that the liftability of a non-degenerate piecewise linear
map |f | : |K| → |L| corresponding to a simplicial map f : K → L, can be encoded as
the satisfiability of a 3-CNF boolean formula, which we will define below.

The key idea is as follows: assuming the covering map p2 : |K(2)
f | → |K̃(2)| is trivial,

each trivialization of it yields two mutually inverse collections of binary relations on the
preimages of the vertices of L. Specifically, by selecting a section s : |K̃(2)| → |K(2)

f | of p2,
we define the relation as xR y when (x, y) lies in s(|K̃(2)|). This relation is antisymmetric
and irreflexive; therefore, to be a (strict) order, it only needs to satisfy the transitivity
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property. Transitivity, in turn, can be represented by a set of conditions of the form
xR y ∧ y R z → xR z.9

More precisely, let us define a boolean formula Γf . Denote by C the set of connected
components of |K(2)

f |. The involution τ on |K(2)
f | induces an involution on C. Let us

assume that the covering map p2 is trivial, therefore, the latter involution is fixed-point
free.

Let O1, O2, . . . , On be the orbits of the involution on C. For each orbit Oi, pick an
element Ci ∈ Oi in the orbit, so Oi = {Ci, τ(Ci)}, and associate a boolean variable xi
with Ci. Next, we associate the literal ¬xi with each τ(Ci). As a result, each connected
component C in C is associated with either a variable or its negation. We refer to the
literal corresponding to C as αC .

Let T be the set of ordered triples (C,D,E) of connected components, with C ̸= E
and D ̸= E, such that there exist three vertices a, b, c ∈ V (K) satisfying (a, b) ∈ C,
(b, c) ∈ D, (a, c) ∈ E. Let Γf be the boolean function

Γf (x1, . . . , xn) =
∧

(C,D,E)∈T

((αC ∧ αD) → αE) =
∧

(C,D,E)∈T

(¬αC ∨ ¬αD ∨ αE)

Note that, aside from reordering the clauses, literals, and renaming variables, the only
source of variability in the form of Γf arises from the initial choice of representatives for
the orbits Oi. However, it is easy to check that once Γf contains a clause ¬αC∨¬αD∨αE,
then it must also contain the clause αC ∨ αD ∨ ¬αE.10 This is because, once we have
(a, b) ∈ C, (b, c) ∈ D, and (a, c) ∈ E, we have (c, b) ∈ τ(D), (b, a) ∈ τ(C), and
(c, a) ∈ τ(E).

Thus, the form of Γf does not actually depend on the choice of representatives, and,
therefore, Γf is uniquely defined up to reordering the clauses and the literals within
clauses, and renaming the variables.

Theorem 4. Let f : K → L be a non-degenerate simplicial map. Then the corresponding
piecewise linear map |f | : |K| → |L| lifts to an embedding if and only if the following
conditions hold:

(1) the covering map p2 : |K(2)
f | → |K̃(2)

f | is trivial,
(2) Γf is satisfiable.

Furthermore, there exists a bijection between the assignments that satisfy Γf and the
isotopy classes of liftings.

Proof. Let us assume that there exists a lifting |̃f | : |K| → |L|×R of |f |. By Theorem 1,
the covering map p2 is trivial. Moreover, as seen in the proof of Theorem 1, we can obtain

9An alternative approach to expressing transitivity in terms of the covering maps pk’s is to find a pair
of “compatible” trivializations for p2 : |K(2)

f | → |K̃(2)| and p3 : |K(3)
f | → |K̃(3)|, refer to [16, Theorem 5]

for further details.
10After double negation elimination, that is ¬¬x = x.
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a continuous equivariant map H from |K(2)
f | to S2 by composing h : |K(2)

f | → Conf2(R)
defined as h((x, y)) =

(
prR ◦|̃f |(x), prR ◦|̃f |(y)

)
, with the retraction Conf2(R) → S2.

Let us define the variable assignment by putting xi = 1 if H(Ci) = id ∈ S2, and xi = 0
otherwise. This assignment is well-defined because H is constant on the connected
components of |K(2)

f |. Moreover, under this assignment, αC = 1 if and only if H(C) = id.

Let us consider an implication (αC ∧ αD) → αE in Γf . According to the definition of
Γf , there exist pairs (a, b) ∈ C, (b, c) ∈ D, and (a, c) ∈ E. Once αC = 1 and αD = 1, we
have αE = 1 by the transitivity of ≺f(a). Therefore, the defined assignment satisfies the
disjunction, and consequently, it satisfies the entire formula Γf .

Let us prove the reverse implication. Assume we have an assignment ψ : {xi}ni=1 → {0, 1}
that satisfies Γf . We denote by ψ(αC) the value of αC under the assignment ψ. Now, we
define a binary relation R on V (K

(2)
f ) as follows: aR b if ψ(αC) = 1 for the connected

component C containing the pair (a, b), if it exists.

It is easy to see that the relation R is antisymmetric and irreflexive. Moreover, it is
transitive. Indeed, suppose that pairs (a, b) and (b, c) lie in connected components C
and D, respectively, and aR b and bR c, or, in other words, ψ(αC) = ψ(αD) = 1. Denote
by E the connected component containing the pair (a, c). If E = C or E = D, then
ψ(αE) = ψ(αC) = 1 or ψ(αE) = ψ(αD) = 1, respectively, hence aR c. Otherwise, we
have a disjunction ¬αC ∨ ¬αD ∨ αE in Γf confirming that ψ(αE) = 1 and hence aR c.
Thus, R defines a collection of linear orders on the sets Kv by putting a ≺f(a) b if aR b.

Note that if (a, b), (c, d) ∈ V (K
(2)
f ) lie in the same connected component of K(2)

f , then,
according to the definition of R, either a ≺f(a) b and c ≺f(c) d, or a ≻f(a) b and c ≻f(c) d.

Next, let us prove that this collection is admissible. To do this, we need to show that,
given simplices A and B with the same image, we have either a ≺f(a) b or a ≻f(a) b
simultaneously for all pairs of distinct vertices (a, b) ∈ V (A)× V (B) with f(a) = f(b).
However, all such pairs lie in the same connected component of K(2)

f , which provides the
desired result.

Thus, we have constructed an admissible collection of linear orders on the sets Kv, and,
by Theorem 2, it defines a lifting of f .

Note that, in the above proof, we established a bijective correspondence between the
assignments satisfying Γf and the collections of admissible orders. Therefore, by The-
orem 2, this establishes a bijection between the assignments and the isotopy classes of
liftings. This observation completes the proof. □

Remark. Both Theorem 2 and Theorem 4 are proven under the assumption that f
is a simplicial map. However, it is easy to see that the statements of these theorems
remain true if we replace simplicial complexes with multigraphs, and simplicial maps
with homomorphisms of multigraphs.

Example 2 (Giller’s example, see [10]). The provided example, known as Giller’s ex-
ample, illustrates an immersion of the 2-sphere S2 into 3-dimensional Euclidean space
R3 that cannot be lifted to an embedding. The example is discussed in the paper by
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Figure 2. Giller’s example: graph of multiple point preimages. Vertices
with the same subscript map to the same vertex, and identically labelled
edges have the same image. In other words, f(xi) = f(yj) if and only if
i = j, and f(e) = f(g) if and only if e and g share the same label.

Giller [10], and we refer the reader to it for details. We focus only on the graph of the
multiple point preimages to understand its liftability. We denote by f the restriction of
the immersion on this graph.

The multigraph of the multiple point preimages is shown in Fig. 2.

Additionally, Fig. 3 shows the corresponding graph G(2)
f , which is the union of two circles.

Note that the covering map p2 is trivial in this case.

However, one can see that the pairs (a4, b4) and (b4, c4) lie in the outer circle of Fig. 3,
while (a4, c4) lies in the inner circle. As a result, Γf contains clauses (x∨ x∨ x)∧ (¬x∨
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Figure 3. Giller’s example: the graph G(2)
f .

¬x∨¬x), where x is a variable corresponding to the inner circle. Since this subformula
is equivalent to x ∧ ¬x, the entire formula Γf is not satisfiable. Therefore, both f and
the initial immersion do not lift to an embedding.

Let us now assume that for an arbitrary map f the formula Γf contains a clause cor-
responding to a triple (C,C,E). Thus, it contains a clause corresponding to a triple
(τ(C), τ(C), τ(E)) as well, and, therefore,

Γf = (¬αC ∨ ¬αC ∨ αE) ∧ (αC ∨ αC ∨ ¬αE) ∧ Γ′ = (αC = αE) ∧ Γ′

This allows us to simplify the formula Γf by “gluing” connected components C and E

(that is, defining an equivalence relation on the points of |K(2)
f | that is coarser than the

one defined by the partition into connected components) once we meet a triple of pairs
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(a, b) ∈ C, (b, c) ∈ C, and (a, c) ∈ D. This idea is implemented in [22, 21]; we will
discuss it, and disprove some of the results stated in these papers, in the next section.

3. Liftings of smooth immersions

In this section, we explore connections between lifting maps between graphs and lifting
generic immersions between smooth manifolds. We provide a counterexample to a result
stated in [22, 21]. Additionally, we show that for each Γ that potentially could be a
formula from Theorem 4, there exists a generic smooth immersion f : X ↬ Y of a
surface X with boundary into a 3-manifold Y with boundary such that the restriction
f ′ of f onto the preimage of the multiple point set forms a map between graphs with
Γf ′ = Γ.

We will use the word “generic” in the same sense in which it is used in [22]. Specifically,
we say that f : X ↬ Y is generic when

(1) f−1(∂Y ) = ∂X,
(2) for y ∈ Y \ ∂Y and f−1(y) = {xi}ni=1, the subspaces dfxi

(Txi
X) are in general

position in TyY , that is

codim
n⋂

i=1

dfxi
(Txi

X) =
n∑

i=1

codim dfxi
(Txi

X),

(3) for y ∈ ∂Y and f−1(y) = {xi}ni=1, the subspaces Ty∂Y and dfxi
(Txi

X) are in
general position in TyY .

Let f : X ↬ Y be a generic immersion. In [22] and [21, Théorème 1], Poénaru claimed
that for the existence of a lifting f̃ : X → Y × R to an embedding, it is necessary and
sufficient that µ2(f) = ν3(f) = 0.

Here, the condition µ2(f) = 0 is equivalent to the triviality of the covering P2 : Conff (X, 2) →
C̃onff (X, 2), where Conff (X, 2) represents the configuration space of ordered pairs of dis-
tinct points with the same image under f , and C̃onff (X, 2) is its unordered version. For
non-degenerate piecewise linear maps between graphs K and L, this condition is equiv-
alent to the first condition in Theorem 4. Indeed, both Conff (X, 2) and C̃onff (X, 2)

equivariantly deformation retract onto |K(2)
f | and |K̃(2)

f |, respectively. Therefore, the
triviality of P2 is equivalent to the triviality of p2 : |K(2)

f | → |K̃(2)
f |.

Now, let us consider the condition ν3(f) = 0. Following Poénaru’s approach, we define a
set S2,3 ⊆ Conff (X, 2)× C̃onff (X, 3) that includes points (a, b)×{c, d, e} where {a, b} ⊂
{c, d, e}. On S2,3, we introduce a collection T of all equivalence relations satisfying the
following properties (denoting unordered triples as T1 and T2 for simplicity):

(1) if (a, b)× T1 ∼ (c, d)× T2, then (b, a)× T1 ∼ (d, c)× T2,
(2) if the points (a, b), (c, d) lie in the same connected component of Conff (X, 2),

then (a, b)× T1 ∼ (c, d)× T2,
(3) once (a, b) × {a, b, c} ∼ (b, c) × {a, b, c}, we have (a, b) × {a, b, c} ∼ (b, c) ×

{a, b, c} ∼ (a, c)× {a, b, c}.
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Since the intersection of two equivalence relations in T belongs to T, the set T forms a
lower subsemilattice of the lattice Eq(S2,3) consisting of all equivalence relations on the
set S2,3. Therefore, let ∼ν denote the smallest (finest) equivalence relation in T. We say
that ν3(f) = 0 if there are no points such that (a, b) × {a, b, c} ∼ν (b, c) × {a, b, c} ∼ν

(c, a)× {a, b, c}.
Considering (a, b) × T1 ∼ (a, b) × T2 for any ∼ from T and for any points T1, T2 ∈
C̃onff (X, 3) with {a, b} ⊂ T1, T2, each equivalence relation ∼ from T defines the equiv-
alence relation ψ(∼) on the set Conff (X, 2) by taking (a, b) ψ(∼) (c, d) if (a, b)× T1 ∼
(c, d)× T2 for some T1, T2 ∈ C̃onff (X, 3). One can check that ψ : T ↪→ Eq(Conff (X, 2))
defines an embedding of the semilattice T into the lattice Eq(Conff (X, 2)) consisting of
all the equivalence relations on Conff (X, 2).

It can be verified that ψ(T) ⊂ Eq(Conff (X, 2)) can be defined using the three conditions
defining T, where instead of the points of the form (x, y) × T , we consider pairs (x, y).
Therefore, the second condition, saying that (a, b) ∼ (c, d) whenever (a, b) and (c, d) lie
in the same connected component of Conff (X, 2), ensures that all equivalence relations
in ψ(T) are coarser than the one defined by the partition of Conff (X, 2) into connected
components.

Moreover, as demonstrated in the proof of [21, Lemme 1.2], the equivalence relation
ψ(∼ν) (and, thus, ∼ν) can be iteratively constructed as follows: we start with the
equivalence relation on Conff (X, 2) defined by the partition into connected components.
We then sequentially join connected components C and D whenever we meet a triple of
pairs (a, b), (b, c) ∈ C, and (a, c) ∈ D.

As discussed in the end of the preceding section, this process corresponds to simplifying
the formula Γf by replacing terms of the form (¬αC ∨ ¬αC ∨ αD) ∧ (αC ∨ αC ∨ ¬αD)
with equalities αC = αD. In view of Theorem 4, Poénaru’s claim is equivalent to the
fact that, for generic immersions between smooth manifolds, the part of the formula
remaining after simplifications is always satisfiable.11 The next example together with
the next theorem show that the latter statement is not true.

Example 3. Let us consider the multigraph homomorphism shown in Fig. 4a. The graph
G

(2)
f (Fig. 4b) consists of 6 connected components that split into pairs with respect to

the involution. Consequently, p2 : |G(2)
f | → |G̃(2)

f | is trivial.

Note that for each triple (p1, p2, p3), where p stands for a, b, c, or d, all the pairs
(pi, pj), i ̸= j lie in different connected components of G(2)

f . Each such triple defines two

11This remark should be understood as an informal comment, since formally, the formulas Γf are
defined only for non-degenerate simplicial maps; however, the fact that the problem of lifting to embed-
dings of generic immersions between manifolds reduces to the problem of lifting maps between graphs
(see [21, pages 1.21–1.22] and [5, Theorem 4.6]) makes this comment meaningful.
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disjunctions in Γf .12 Given that, we can express Γf as follows:

Γf (x1, x2, x3) = ((x1 ∧ x2) → x3) ∧ ((¬x1 ∧ ¬x2) → ¬x3) ∧
((x1 ∧ x2) → ¬x3) ∧ ((¬x1 ∧ ¬x2) → x3) ∧
((x1 ∧ ¬x3) → x2) ∧ ((¬x1 ∧ x3) → ¬x2) ∧
((x1 ∧ ¬x2) → ¬x3) ∧ ((¬x1 ∧ x2) → x3)

Here x1 represents the connected component containing (a1, a2), x2 represents the con-
nected component containing (a2, a3), and x3 represents the connected component con-
taining (a1, a3).

The first four clauses imply that either x1 = 1 and x2 = 0, or x1 = 0 and x2 = 1. In the
former case, the next-to-last disjunction yields x3 = 0, which contradicts (x1∧¬x3) → x2
as x2 = 0. In the latter case, the last disjunction implies x3 = 1, which contradicts
(¬x1 ∧x3) → ¬x2 as x2 = 1. Consequently, Γf is not satisfiable, and, as a result, f does
not lift to an embedding.

In spite of this, it can be seen that in the formula Γf , there are no clauses in which
literals are repeated. In light of the comments above, this means that equivalence classes
under ∼ν , defined as it has been done for generic immersions before, coincide with the
connected components of |G(2)

f |.

Now, using the provided example, we will construct a counterexample to the claim of
[21, Théorème 1] showing that its assumptions need to be strengthened in the sense
of Theorem 4:

Theorem 5. There exists a smooth generic immersion j : T ↬ Y from a compact surface
T to a compact 3-manifold Y that satisfies the conditions µ2(j) = ν3(j) = 0, but does
not lift to an embedding.

Proof. Let f : G→ H be the map from Example 3. We add three multiple edges e1, e2, e3
to H, going from a to d. We also add six edges to G and define f on these edges as
follows:

(1) f({a1, d1}) = f({a2, d2}) = e1,
(2) f({a2, d3}) = f({a3, d2}) = e2,
(3) f({a1, d3}) = f({a3, d1}) = e3.

Let us denote the resulting graphs by the same letters G and H.

It can be observed that the covering map p2 for the resulting map f : G → H remains
trivial; moreover, the formula Γf also coincides with the formula of the original map.13

Now let us construct a surface S with boundary immersed into a handlebody B.

12Actually, each triple defines 6 disjunctions, one for each permutation of three points. However,
after dropping equal disjunctions up to reordering terms, only two disjunctions remain.

13In fact, we have simply replaced the segments that make up the graph G
(2)
f by joining their

endpoints to form circles.
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We represent each vertex a, b, c, d of H as an intersection of three squares with equal
sides parallel to the coordinate planes, and label each square by the number from one to
three. We denote the i-th square in the intersection corresponding to the vertex x by Xi.
For example, the vertex a ∈ V (H) is represented by the intersection of three squares A1,
A2, and A3. Furthermore, each square Xi corresponds to a vertex xi of G. For instance,
the squares A1, A2, and A3 correspond to the vertices a1, a2, and a3, respectively.

Thus, each vertex x ∈ V (H) corresponds to a triple point X1 ∩ X2 ∩ X3. From each
such triple point, six half-edges start: two for each intersection X1 ∩X2, X1 ∩X3, and
X2 ∩X3.

For each unordered pair of edges {xi, yj}, {xk, yl} ∈ E(G) with the same image, where
f(xi) = f(xk) = x and f(yj) = f(yl) = y, we perform the following procedure.

We choose one of the half-edges from Xi ∩Xk and one of the half-edges lying in Yj ∩ Yl
that are currently “free” (that is, not chosen in previous steps). Then, we connect these
half-edges by an X-shaped ribbon,14 so that one plane of the X-shaped ribbon connects
the side of the square Xi with the side of the square Yj, and the other one connects the
sides of the squares Xk and Yl, see Fig. 5.

Note that each vertex of G̃(2)
f has degree two. This ensures that there is always a free

half-edge to choose. Moreover, after processing all the pairs of edges, each half-edge
belongs to some X-shaped ribbon.

Observe that each X-shaped ribbon could be twisted while connecting. Additionally,
when performing the steps described above, there is flexibility in choosing which half-
edges to connect with each other. However, in our construction, this choice is not crucial;
hence, we select free half-edges and twist the ribbons in an arbitrary way.

Next, we take small 3-balls around each triple point (that is, the pointsX1∩X2∩X3 inside
the 3-intersections of squares) and small 3-tubes around each curve of double points (that
is, half-edges connected by the central curve of an X-ribbon). This construction gives
us a handlebody B. The intersections of squares connected by the X-shaped ribbons
within B form a generic surface S immersed into B. Denote the immersion by g. Note
that the multiple points set of g is the graph H embedded into the interior of B, and
its preimage is the graph G embedded into S. The boundary of S is a circle embedded
into the boundary of B.

Furthermore, g
∣∣
|G| acts exactly as f on the curves representing the edges of G embedded

into S: g takes the curve between points xi and yj to the curve between points f(xi)
and f(yj).

To obtain a closed 3-manifold Y , we take the double of B, which is two copies of B
glued along their common boundary. The double of S, denoted as T , is then immersed
into Y by the immersion j induced by g ⊔ g : S ⊔ S ↬ B ⊔B. Clearly, the immersion j
is in general position. The multiple point set of j is a graph H ⊔H embedded into Y ,
and its preimage is a graph G ⊔G embedded into T . Moreover, it is clear that j

∣∣
|G|⊔|G|

acts on the curves representing the edges of G ⊔G as f ⊔ f .

14That is, the product of two intersecting segments (forming the letter X) with another segment.
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Let us note that the set S2,3 in the definition of ∼ν for the map g consists of 24 points.
Each point of S2,3 represents an ordered pair of vertices inG with the same image under g,
or, equivalently, under f . In other words, the set S2,3 coincides with the set of vertices of
the graph G(2)

f . Furthermore, it is straightforward to verify that the equivalence relation
defined by the partition of the vertices of G(2)

f into connected components satisfies all
the properties in the definition of ∼ν ; therefore, these equivalence relations coincide.
Given that, it becomes apparent that ν3(g) = 0. It is also evident that µ2(g) = 0 since
p2 : |G(2)

f | → |G̃(2)
f | is trivial.

As all the multiple points of g lie in the interior of B, the set S2,3 and the relation
∼ν for j coincide with those of g ⊔ g. Therefore, since ν3(g) = µ2(g) = 0, we have
ν3(j) = µ2(j) = 0.

If j lifts to an embedding then so does f . However, as shown in Example 3, the formula
Γf is not satisfiable, and consequently, f does not lift to an embedding. □

It can be observed that Example 3 also provides a counterexample to [21, Lemme 1.7].
One can notice that the preimage of the cycle shown in [21, Fig. 1.3] does not necessarily
have to be the two cycles as shown in [21, Fig. 1.4], as the paper claims, which is where
the proof fails.

It is worth noting that the mentioned mistake only affects [21, Lemme 1.7], which states
that a “labyrinth” (that is, a map fj between graphs, obtained using a given immersion
j of manifolds; see [21, Definition 3] for details) lifts if µ2(fj) = ν3(fj) = 0. However, the
reduction from the considered case of immersions of manifolds to maps between graphs
is itself correct. Thus, the immersion j lifts if and only if fj lifts, or, equivalently, the
covering map p2 for ff is trivial, and Γfj is satisfiable. Our next goal is to show that
these conditions cannot be weakened in the general case: we will demonstrate that for
any suitable boolean formula Γ it is possible to construct a generic immersion j with
Γfj = Γ.

Notice that any Γf , as defined in the previous section, satisfies the following condition:
once it contains a clause of the form (α∧β) → γ, it also contains a clause (¬α∧¬β) → ¬γ,
up to double negation elimination. Additionally, let us note that the formulas that
cannot be simplified by the algorithm described at the end of the previous section are
those where, for each clause (α ∧ β) → γ, all variables constituting α, β, and γ are
distinct.

The next theorem shows that any Γ of the form described above can be realised as Γf

of a multigraph homomorphism f induced by a generic immersion of a surface into a
handlebody, similar to what we have constructed in the previous theorem.

Theorem 6. Let Γ(x1, . . . , xn) be a boolean formula of the form

Γ(x1, . . . , xn) =
m∧
j=1

((αj ∧ βj) → γj)

where αj, βj, and αj are variables or their negations. Assume that for every j

(1) the variables in the literals αj, βj, and γj are distinct,
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(2) there exists j′ such that αj′ = ¬αj, βj′ = ¬βj, and γj′ = ¬γj (after double
negation elimination).

Then there exists a generic immersion g : S ↬ B of a surface S with boundary into
a handlebody B such that the restriction of g onto the preimage of the set of multiple
points induces a homomorphism f : G→ H of multigraphs. Additionally, the formula Γf

is equivalent to Γ, differing only in variable renaming, the presence of duplicate clauses,
and reordering of clauses and literals within clauses.

To prove the theorem, we will use the following lemma, which says, informally, that for
each Γ as in Theorem 6, we can construct a multigraph homomorphism f : G→ H, whose
Γf is equivalent to Γ, and f is similar to that we used in the construction of Theorem 5
which allows us, following this construction, to obtain the needed immersion g : S ↬ B.

Lemma 2. Let Γ(x1, . . . , xn) be the same boolean formula as the one in Theorem 6.

Then, there is a multigraph homomorphism f : G→ H, such that

(1) p2 : |G(2)
f | → |G̃(2)

f | is trivial,
(2) Γf is equivalent to Γ in the sense of Theorem 6,
(3) the edges of H have two preimages,
(4) the vertices of H have three preimages,
(5) the vertices of G have degree 4,
(6) the vertices of H have degree 6,
(7) the vertices of the graph G(2)

f have degree two, or, equivalently, G(2)
f is a disjoint

union of circles.

Proof. First note that all disjunctions that constitute Γ split into pairs (α∧β) → γ, (¬α∧
¬β) → ¬γ. After selecting only one disjunction from each pair, let us renumber them
from 1 to m/2. Thus, we have m/2 disjunctions (α1 ∧ β1) → γ1, . . . , (αm/2 ∧ βm/2) → γm/2.

We will construct the graphs G and H and the map f : G → H iteratively. To begin
with, let G and H be empty graphs.

For each disjunction (αj ∧ βj) → γj, add three vertices vj1, v
j
2, and vj3 to the graph G,

and add one vertex vj to the graph H, and define a map f(vji ) = vj on the new vertices
vij.

Next, we define a set Si for each variable xi, which, at the end of the procedure described
below, will contain all the vertices of the connected component associated with the
variable xi. For simplicity, if y = xi is a variable, denote the corresponding set Si by
S(y).

Initially, let all S(y) be empty. Then, for each of the m/2 disjunctions (αj ∧βj) → γj, we
perform the following steps:

(1) If αj = x, add (vj1, v
j
2) to S(x). Otherwise, if αj = ¬x, add (vj2, v

j
1) to S(x).

(2) Similarly, if βj = y, add (vj2, v
j
3) to S(y). If βj = ¬y, add (vj3, v

j
2) to S(y),

(3) Finally, if γj = z, add (vj1, v
j
3) to S(z). If γj = ¬z, add (vj3, v

j
1) to S(z).
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After performing these steps, for each j and for any 1 ≤ i ̸= k ≤ 3, exactly one of the
pairs (vji , v

j
k) and (vjk, v

j
i ) belongs to some set Sl. Furthermore, Sl∩St = ∅ for l ̸= t, and

Sl ∩ τ(St) = ∅ for any l and t. Here τ(St) = {(y, x) | (x, y) ∈ St} is the set of “reversed”
pairs in St.

We proceed by choosing arbitrary linear orders on each set Sl. Using these orders, we
will add edges to G and H as follows.

Let Sl =
{
(vj1i1 , v

j1
k1
), (vj2i2 , v

j2
k2
), . . . , (vjsis , v

js
ks
)
}
. For each r = 1, . . . , s − 1 we add a new

edge el,r between vjr and vjr+1 in H.15 We add two edges e1l,r and e2l,r connecting vjrir with
v
jr+1

ir+1
, and vjrkr with vjr+1

kr+1
, respectively, to H, and set f(e1l,r) = f(e2l,r) = el,r.

Additionally, we add an edge el,s between vjs and vj1 to H, and two edges e1l,s and e2l,s
between vjsis and vj1i1 , and between vjsks and vj1k1 , respectively, to G. We set f(e1l,s) =

f(e2l,s) = el,s.

It is evident that at each step, two edges ((vjrir , v
jr
kr
), (v

jr+1

ir+1
, v

jr+1

kr+1
)) and ((vjrkr , v

jr
ir
), (v

jr+1

kr+1
, v

jr+1

ir+1
))

are added to G(2)
f . Thus, after processing a single set Sl, we obtain in G(2)

f two circles on
the vertices of Sl and τ(Sl). Therefore, after processing all the sets Sl, the graph G

(2)
f

consists of a disjoint union of circles on the vertices of the sets Sl and τ(Sl).

It is clear that p2 : |G(2)
f | → |G̃(2)

f | is trivial because Sl ∩ τ(Sl) = ∅ for any Sl.

Additionally, if we associate each Sl to a variable xl, it can be seen that each triple
{vj1, v

j
2, v

j
3} contributes two different disjunctions (αj ∧ βj) → γj and (¬αj ∧¬βj) → ¬γj

to Γf . Actually, it adds 6 disjunctions, one for each permutation of the triple, but four
of them can be derived from the other two by permutation of their terms, so we consider
them as duplicates.

Therefore, since these and only these disjunctions form the formula Γ, the formulas Γf

and Γ become equivalent after elimination of the duplicates.

If follows from the construction that the vertices of H have 3 preimages, and the edges
of H have 2 preimages. Furthermore, from the latter fact it follows that the map
f̂ : G̃

(2)
f → H induced by f : G→ H is injective on the edges; thus, because each vertex

v of H have 3 preimages under f̂ (that is, unordered pairs of f−1(v)), and each such
preimage have degree two,16 the vertices of H have degree six.

Finally, let us note that each vertex x of G is included into exactly 2 vertices of G̃(2)
f

(recall that they are unordered pairs of disctinct vertices of G with the same image),
and both of them have degree two. The construction provides that each such vertex
corresponds to a pair of edges in G incident with the vertex x. Therefore, the vertices
of G have degree four. □

15If there are edges between vjr and vjr+1 in H, we add a new one.
16Recall that G

(2)
f is a disjoint union of circles, so G̃

(2)
f is as well.
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Proof of Theorem 6. By using Lemma 2 we obtain a multigraph homomorphism f : G→
H whose formula Γf is equivalent to Γ. To construct a generic immersion g : S ↬ B let
us follow the construction of g : S ↬ B in Theorem 5.

To see that it is applicable in this case, let us note that each vertex v of H has degree
6, and each unordered pair of its distinct preimages form a vertex in G̃

(2)
f of degree 2,

hence it is possible to represent v as an intersection of 3 squares, and assign a half-edge
coming from the triple point of this intersection to each edge in G̃(2)

f incident to the pair
of preimages of v. □

It is worth noting that B can be embedded in R3. Thus, a natural question arises: for
which examples is it possible to glue the boundary of S to a surface embedded in R3 \B
such that we obtain a generic immersion S ↬ R3 that realises Γ?17

In some cases, such as the examples from Theorem 5 and certain examples obtained from
the construction in Example 3 by joining the endpoints of the connected components of
G

(2)
f to obtain circles, it can be shown that it is not possible to glue the boundary of

S in such a way. One can demonstrate this by checking that the boundary of S is not
null-homologous in R3 \H. With a computer, checking this is straightforward, using a
sort of Wirtinger presentation for π1(R3 \H,Z) as described in [4, Proposition 9.1.9].

17Note that this question is different from the [5, Proposition 4.19] and [13], where it is proven that
an appropriate graph H can be realised as the multiple point set of a generic immersion S ↬ R3.
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b1

b2

b3

c1

c2

c3

d1

d2

d3

f

a b c d

G

H

(a) The map f : G → H.

(a1, a2) (b1, b2) (c1, c2) (d1, d2)

(a2, a1) (b2, b1) (c2, c1) (d2, d1)

(a2, a3) (b2, b3) (c1, c3) (d3, d2)

(a3, a2) (b3, b2) (c3, c1) (d2, d3)

(a1, a3) (b3, b1) (c3, c2) (d3, d1)

(a3, a1) (b1, b3) (c2, c3) (d1, d3)

(b) The graph G
(2)
f .

Figure 4. An example of a map with “nontrivial” Γf . The edges of
the graph G and their images in the graph H are coloured identically,
the same holds for edges of G(2)

f and edges of G corresponding to them.
Furthermore, edges of G with the same image are placed closely together,
and the “upper” pairs of edges of G map to the “upper” edges of H; the
same holds for the “middle” and the “lower” pairs.
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Figure 5. Two triples of intersecting squares, representing triple points,
and an X-ribbon between them, representing a double edge. The preim-
ages of the pink double edge are an edge lying on the blue squares and the
blue ribbon between them, and an edge lying on the orange squares and
the orange ribbon.



LIFTING MAPS BETWEEN GRAPHS TO EMBEDDINGS 24

4. Approximation by embeddings

In this section, we will establish a connection between the existence of a lifting to an
embedding and the concept of approximation by embeddings for generic maps. We will
define the notion of generic maps in our context and show that the condition of the
triviality of the covering map p2 becomes sufficient for the existence of a lifting in the
special case of generic maps from trees to segments.

Before we proceed, let us introduce some definitions.

Definition (approximability by embeddings). Let f : G → H be a simplicial map be-
tween graphs, and let i : |H| ↪→ S be a continuous embedding of |H| into a surface S
with a metric d. We say that f is approximable by embeddings if for every ε > 0,
there exists a continuous embedding j : |G| ↪→ S such that d(j(x), i(|f |(x))) < ε for
every x ∈ |G|.

It is worth noting that the approximability of f generally depends on the embedding
i. However, as we will demonstrate later, it does not depend on the choice of a metric
on S. Moreover, as we will show later, the approximability of f is equivalent to the
existence of a compatible with f embedding of |G| into a neighborhood of i(|H|) in S,
and, therefore, depends only on the geometry of this neighborhood.

Definition (ribbon graph, see [8, Definition 1.5] or [18, Definition 2.4]). A ribbon
graph H is a surface with boundary represented as the union of two sets of discs: a
set V (H) of vertices or 0-handles, and a set E(H) of edges or 1-handles, satisfying the
following conditions:

(1) Dv ∩Dw = ∅ and De ∩Dg = ∅ for different vertices v, w ∈ V (H) and different
edges e, g ∈ E(H),

(2) for each edge De there are exactly two vertices Dv and Dw that intersect De;
moreover, De ∩ Dv and De ∩ Dw are two disjoint arcs lying in the boundary of
De, and in the boundaries of Dv and Dw, respectively.

By [12, Theorem 1.3], an embedded graph f : |H| → S lies in a triangulation of S;
that is, there are a homeomorphism hs : S → |Ks|, a piecewise linear homeomorphism
gs : |H| → |Hs|, where Hs subdivides H, and a simplicial embedding fs : Hs ↪→ Ks, such
that f = h−1

s ◦ |fs| ◦ gs.18 Recall that the surface S admits a unique piecewise linear
structure.19 Thus, |fs| is uniquely defined by f up to piecewise linear homeomorphisms
of |Hs| and |Ks|.
Therefore, given an embedding f : |H| → S, let the surface H be a regular neighborhood
of f(|H|) in S, decomposed into discs around the images of the vertices of H (these discs

18In fact, by applying [12, Theorem 1.3] we obtain not a simplicial complex, but a polyhedron with a
graph embedded as a 1-subpolyhedron; however, it is easy to obtain a piecewise linear homeomorphism
gs : |H| → |Hs| and a simplicial embedding fs : Hs → Ks by taking suitable triangulations of these
polyhedra.

19See, for example, [20, Theorem 5, Chapter 8].
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form the vertices of the ribbon graph H), and strips around the edges of H (these strips,
similarly, form the edges of H).20

Explicitly, assume we have a simplicial embedding fs : Hs ↪→ Ks. Take the second
derived subdivisionsH ′′

s andK ′′
s ofHs andKs, respectively, and denote by f ′′ the induced

simplicial embedding f ′′ : H ′′
s ↪→ K ′′

s . Denote by N(H ′′
s , K

′′
s ) the simplicial neighborhood

of f ′′(H ′′
s ) in K ′′

s , that is, the simplicial complex consisting of the simplices that meet
f(H ′′

s ), with their faces. Hence |N(H ′′
s , K

′′
s )| is a regular neighborhood of f(H) in S. As

discussed earlier, we define H to be |N(H ′′
s , K

′′
s )|.

To obtain a decomposition of H into edges and vertices, for each vertex v ∈ V (H), let
us consider its image under the composition F = |f ′′| ◦ g : |H| → |H ′′

s | ↪→ |K ′′
s |, where

g is a homeomorphism |H| ∼= |H ′′
s |, and take the star of F (v) in N(H ′′

s , K
′′
s ) as the disc

Dv ∈ V (H).21

It can be seen that these discs split H into a set of strips, with each strip intersecting
f(|H|) along exactly one curve, which is a portion of the image of one of the edges of
H. Thus, each edge e of the graph H corresponds to a strip De containing a portion of
its image. Let us take these strips as edges of the ribbon graph H.

Since a regular neighborhood of a subpolyhedron is uniquely defined up to piecewise
linear homeomorphism, see [24, Theorem 3.8], a ribbon graph of a graph embedded into
a surface is also uniquely defined.

Furthermore, it follows that there is a natural bijection between the vertices and the
edges of a graph H embedded into a surface S, and the vertices and the edges of an
induced ribbon graph H. Thus, taking this into account, we will label the vertices and
the edges of H and H by the same letters; for example, a vertex v ∈ V (H) corresponds
to a vertex Dv ∈ V (H), and an edge e = {v, w} ∈ E(H) corresponds to an edge
De = D{v,w} ∈ E(H).

It is also important to note that, although our definition of a ribbon graph induced
by an embedding differs from the definition of the normal neighborhood in [18], the
ribbon graph H in our construction is also a normal neighborhood in the sense of [18,
Definition 2.4]; indeed, all conditions from the latter definition, except the second one,
are automatically satisfied. However, it is easy to see that for each edge e incident to
a vertex v of H, its image f(|e|) intersects the boundary of Dv at exactly one point.
Therefore, it follows that the condition (2) from [18, Definition 2.4] is also satisfied. This
allows us to use results from [18], using ribbon graphs in place of normal neighborhoods.
Definition ([18, Definition 2.7]). Let f : G → H be a simplicial map between graphs,
and H be a ribbon graph corresponding to an embedding of |H| into a surface.

We say that f is R-approximable by an embedding if there exists a continuous
embedding j : |G| ↪→ IntH called an R-approximation, satisfying the following condi-
tions:

(1) for a vertex v ∈ V (G), j(v) ∈ Df(v) ∈ V (H),
20For the definitions of regular neighborhoods, derived subdivisions, and simplicial neighborhoods,

the reader may refer to [24].
21Note that the image F (v) is a vertex of K ′′

s since H ′′
s subdivides H.
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(2) if f({v, w}) is a vertex of H, then j(|{v, w}|) ⊂ Df({v,w}), where |{v, w}| is a
segment representing the edge {v, w} in |G|,

(3) if f({v, w}) is an edge of H, then j(|{v, w}|) is a simple arc intersecting Df(v) ∩
D{f(v),f(w)}) at a single point p and Df(w) ∩D{f(v),f(w)} at a single point q.22

If j is a general position map j : |G| → IntH satisfying these conditions, we call j a
generic R-approximation of f .

Lemma 3 ([18, Propositions 2.9]). Let f : G → H be a simplicial map between graphs,
and let i : |H| ↪→ S be an embedding of H into a surface S with a metric. Then the
following statements are equivalent:

(1) f is approximable by embeddings.
(2) f is R-approximable by an embedding.

From this point onwards, we focus on stable maps between graphs. The definition
provided below is a one-dimensional simplicial version of the definition of piecewise
linear stable maps from [16, Appendix B].

Definition. Let f : G→ H be a simplicial map between graphs.

We call a vertex v ∈ G regular with respect to f if f is bijective on the star st(v) =⋃
e∈E(G),v∈e e.

The map f is called stable if, for any vertex w ∈ V (H),

(1) if deg(w) ̸= 2, all the vertices in f−1(w) are regular,
(2) if deg(w) = 2, f−1(w) contains at most one non-regular vertex.

If a simplicial map f is stable, it must also be non-degenerate. Indeed, if f(e) = v,
where e is an edge and v is a vertex, the endpoints of e are non-regular with respect to
f , implying that f is not stable.

Now we are ready to state the theorem.

Theorem 7. Let f : G → J be a stable simplicial map from a graph G to a path graph
J (that is, a triangulation of a segment). Let i : |J | ↪→ R2 be an embedding. Then the
following statements are equivalent:

(1) f is approximable by embeddings with respect to i : |J | → R2.
(2) |f | lifts to an embedding.

Let us start by proving a simple auxiliary lemma.

Lemma 4. Let S be a rectangular region [C,D]× [H,L] in R2. Let α and β denote the
sides {C} × [H,L] and {D} × [H,L], respectively. Let γ be a simple curve connecting
a point a ∈ α and a point b ∈ β, such that γ ∩ (α ⊔ β) = {a, b}. Assume Φ is a path-
connected subset of S not intersecting γ, such that Φ ∩ α and Φ ∩ β are finite sets of
points.

22Thus, the points x = j−1(p) and y = j−1(q) decompose |{v, w}| into three subsegments |{v, x}|,
|{x, y}|, and |{y, w}|, where j(|{v, x}|) ⊂ Df(v), j(|{x, y}|) ⊂ D{f(v),f(w)}, and j(|{y, w}|) ⊂ Df(w).
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Then, for all p ∈ (Φ∩α)⊔ (Φ∩β), either py < s(p)y or py > s(p)y holds simultaneously.
Here s(p) = a if p ∈ α, s(p) = b if p ∈ β, and qy denotes the y-coordinate of a point q.

Proof. Suppose there exists a pair of points p, q ∈ (Φ∩α)⊔ (Φ∩β) such that py < s(p)y
and qy > s(q)y, or py > s(p)y and qy < s(q)y. Since Φ is path-connected and does
not intersect γ, there must be a path ϕ in Φ (and thus in S \ γ) connecting p and q.
However, according to [20, Theorem 8, Chapter 2], S \ γ consists of two path-connected
components with p and q lying in different components. This contradicts the existence
of the path ϕ. □

Proof of Theorem 7. First, let us number the vertices of J according to an arbitrary
orientation on J and denote them by v0, . . . , vN .

Observe that any embedding i : |J | ↪→ R2 induces the same ribbon graph J up to a piece-
wise linear homeomorphism.23 Thus, it follows from Lemma 3 that the approximability
of f by embeddings does not depend on the embedding i.

Therefore, for convenience, we can assume that i embeds |J | into R2 with the Euclidean
distance d2 as a line segment with i(vk) =

(
2k + 1

2
, 0
)
, and J is a ribbon [0, 2N + 1] ×

[−1, 1] in R2, whereDvk = [2k, 2k+1]×[−1, 1] andD{vk,vk+1} = [2k+1, 2(k+1)]×[−1, 1].24

Now suppose that |f | lifts to an embedding |̃f | : |G| → |J |×R. Let M be the maximum
of |h(p)|, where h(p) = prR |̃f |(p). For any ε > 0, let F : |G| → R2 be the composition
Sε ◦ |̃f | where Sε(q, y) =

(
i(q)x,

εy
2M

)
; here i(q)x stands for the x-coordinate of i(q).

Therefore, putting q = f(p), we have

d2 (F (p), i(q)) = d2

((
i(q)x,

εh(p)

2M

)
, (i(q)x, 0)

)
=

∣∣∣∣εh(p)2M

∣∣∣∣ < ε.

Thus, f is approximable by embeddings.

Now let us prove the reverse implication. Suppose f is approximable by embeddings.
By Lemma 3, there exists an R-approximation j : |G| ↪→ IntJ . We are going to define
orders on the sets f−1(vk) and f−1({vk, vk+1}). It will be more convenient to start with
the sets f−1({vk, vk+1}).
Consider the images of the edges from f−1({vk, vk+1}) in the rectangular regionsD{vk,vk+1}.
It follows from the definition of R-approximation that j(|e|) ∩ D{vk,vk+1} for an edge
e ∈ f−1({vk, vk+1}) is a simple curve γe going from the left side of D{vk,vk+1} to its right
side, and intersecting the boundary of D{vk,vk+1} only at the endpoints. Hence, by apply-
ing Lemma 4, for each pair of edges e, g ∈ f−1({vk, vk+1}), the endpoints of γe have both
either larger or smaller y-coordinates than the endpoints of γg lying in the corresponding
sides of the rectangle. Therefore, we can define a linear order by putting e ≺k,k+1 g if
both endpoints of γe have smaller y-coordinates than the corresponding endpoints of γg.

23Given two distinct ribbon graphs J and J ′, we can take arbitrary homeomorphisms between arcs
Dv ∩De and D′

v ∩D′
e and then extend them to a homeomorphism J ∼= J ′ that preserves the handle

decompositions of J and J ′.
24J collapses onto i(|J |), hence it is a regular neighborhood by [24, Corollary 3.30].
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Now let us proceed to the sets f−1(vk). The situation with them, although slightly more
complex, is essentially the same. In what follows, we put γw = j(| stw|) ∩ Df(w) for a
vertex w ∈ V (G).

First note that, since f is stable, all the vertices in f−1(v0) and f−1(vN) have degree
one, and for any w ∈ f−1(v0) the set γw is a simple curve connecting j(w) with a point
on the right side of ∂Dv0 , and this point is the only intersection of γw with the boundary
of Dv0 . Therefore, we can order the vertices {wi} in f−1(v0) with respect to the order of
the y-coordinates of the points γwi

∩ ∂Dv0 , which gives us a linear order ≺0 on f−1(v0).

The same holds true for vertices from the set f−1(vN), with the only difference being that
the curves γw for w ∈ f−1(vN) connect j(w)’s with points on the left side of DvN . As for
f−1(v0), we can order the vertices in f−1(vN) according to the order of the y-coordinates
of the points γw ∩ ∂DvN .

Now consider the set f−1(vk), where 0 < k < N . Since f is stable, for any pair of vertices
w, s ∈ f−1(vk), one of the sets γw and γs is a simple curve connecting a point on the
left side of Dvk and a point on its right side, and intersecting the boundary of Dvk only
at these two points. At the same time, the other set is clearly path-connected, and it
intersects the boundary of Dvk in a finite number of points, these points will be referred
to as “endpoints”. Therefore, by applying Lemma 4 we get that the y-coordinates of the
endpoints of γw are all larger or all smaller than the y-coordinates of the endpoints of
γs once we compare only the pairs of points lying on the same side of Dvk . Hence we
can define a linear order ≺k by letting w ≺k s if all the endpoints of γw lying on the left
and right sides of Dvk have the smaller y-coordinates than all the endpoint of γs lying
on the same sides.

Finally, we are going to prove that {≺k, 0 ≤ k ≤ N} forms an admissible collection of
linear orders, and therefore, |f | lifts to an embedding according to Theorem 2. Indeed,
take a pair of edges e = {we, se}, g = {wg, sg} of G such that f(we) = f(wg) = vk and
f(se) = f(sg) = vk+1. Without loss of generality, assume e ≺k,k+1 g. This implies that
the “left” endpoint of γe, lying on the left side of D{vk,vk+1}, has a smaller y-coordinate
than the “left” endpoint of γg. Hovewer, the “left” endpoints of γe and γg are endpoints
of γwe and γwg , lying on the same side of Dvk ; hence, we ⪯k wg. Repeating this reasoning
for the “right” endpoints of γe and γg, we conclude that se ⪯k+1 sg. Therefore, the orders
≺k form an admissible collection of linear orders. □

The next example shows that the assumption that f is stable in Theorem 7 is needed.

Example 4. Let f be a map G → J , where G triangulates the circle S1, that is
shown on the left-hand side of Fig. 6. It is R-approximable by embeddings, see the
right-hand side of Fig. 6, therefore, it is approximable by embeddings. However, it
does not lift to an embedding, since there is a 2-obstructor for f defined as the path
(a1, a2) → (b1, b2) → (a2, a1) in G(2)

f .

Now we use some known results on the problem of existence of approximation by em-
beddings to obtain sufficient conditions for the existence of a lifting to an embedding in
the case of stable maps from trees to segments.
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a1

a2

b1

b2

a b

f a1

a2

b1

b2

Figure 6. f : G→ I ↪→ R2 and its R-approximation.

Definition. Let f : G → H be a simplicial map between graphs, let i : |H| ↪→ S be
an embedding of H into a surface S, and let H be a corresponding ribbon graph. We
call a generic R-approximation j : |G| → IntH a Z2-approximation if for any pair of
non-adjacent edges e, g ∈ E(G) (i.e., e∩g = ∅) the set j(|e|)∩j(|g|) is finite and consists
of an even number of points.

f is called Z2-approximable if there exists a Z2-approximation of f .

The following theorem is proved in [9] (in general case) and in [27] (for the case when T
is a trivalent tree):

Theorem 8 ([9, Corollary 3] and [27, Theorem 1.5]). Let f : T → J be a simplicial
map from a tree T to a path graph J , and assume that J is embedded into R2. If f is
Z2-approximable then f is approximable by embeddings.

The variant of van Kampen obstruction for Z2-approximability of f by embeddings
described below is taken from [27] and [23].

Assume we have a simplicial map f : G → H between graphs G and H, and H is
embedded into a surface S. Let G be the two-dimensional cubical complex

⋃
{e ×

g | e, g ∈ E(G) : e∩g = ∅}. Clearly, the transposition τ ∈ S2 acts on |G | by τ(p× q) =
q × p. Let G̃ be a two-dimensional cell complex G /S2, whose cells are images of the
cubes of G under the quotient map. Therefore, 2-cells of G̃ might be associated with
unordered pairs of disjoint edges of G.

Take any generic R-approximation j : |G| → H of f , where H stands for a ribbon graph
corresponding to the embedding |H| ↪→ S; by “generic” here we mean that j is injective
on |V (G)|, and for any pair of edges e, g ∈ E(G) the set j(|e|)∩ j(|g|) consists of a finite
number of points.

Let Gf ⊂ G be the subcomplex
⋃
{e × g | e, g ∈ E(G) : e ∩ g = ∅, f(e) ∩ f(g) = ∅}.

Since |Gf | is closed under the involution on |G |, the induced involution on |Gf | is
well-defined. Let G̃f be Gf /S2.

Let us define a cellular 2-cochain cv ∈ C2(G̃ ;Z2) by putting cv(e · g) = |j(|e|) ∩
j(|g|)| mod 2, where e · g is the image of e × g under the projection G → G̃ . Ob-
serve that cv is in fact a relative cochain lying in C2(G̃ , G̃f ;Z2). Indeed, for edges
e, g ∈ E(G) with f(e) ∩ f(g) = ∅, the curves j(|e|) and j(|g|) lie in different discs
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with respect to the chosen generic R-approximation and therefore do not intersect. Let
vf = [cv] ∈ H2(|G̃ |, |G̃f |;Z2) be the corresponding cohomology class.

It can be shown that vf is well-defined by following [25, Lemmas 3.2–3.5]. These lemmas
consider the case of the classical van Kampen obstruction, but it is easy to adapt them
to our case.25

Theorem 9 ([27, Proposition 3.1]). Suppose f : G → H is a simplicial map between
graphs G and H, and H is embedded into an oriented surface S. Then vf = 0 if and
only if f is Z2-approximable.

Now let us introduce a van Kampen-like obstruction for the existence of a lifting. We
start with a cochain-free definition of the corresponding cohomology class inspired by [3]
and [14]. Next, we present an explicit cochain representing it, defined in a way similar
to the cochain cv defining vf .

Recall that f induces the principal S2-bundle p2 : |G(2)
f | → |G̃(2)

f |. Let g : |G̃(2)
f | → RP∞

be a map classifying it.26 Let w1 be the generator of H1(RP∞;Z2) ∼= Z2. We define
wf ∈ H1(|G̃(2)

f |,Z2) as the pullback g∗w1.27

It follows from the definition that wf is the first Stiefel–Whitney class of the one-
dimensional real vector bundle associated with the covering p2.28 Indeed, this vector
bundle is a pullback under g of the canonical line bundle over RP∞, and the latter bun-
dle is associated with the universal bundle S∞ → RP∞. Therefore, wf = 0 if and only
if the bundle associated with p2 is orientable, that is, admits a non-vanishing section.
Hence wf = 0 if and only if p2 is trivial.

Now let f̃ : |G| → |H| ×R be a generic lifting of f ; as before, the word “generic” means
that f̃ is injective on V (G), and for any pair of edges e, g ∈ E(G), the set f̃(|e|)∩ f̃(|g|)
consists of a finite number of points. Let cw be a cochain in C1(G̃

(2)
f ;Z2) that takes the

value |f̃(|e|)∩ f̃(|g|)| mod 2 on an edge e ·g ∈ E(G̃
(2)
f ), where by e ·g we denote the edge

of G̃(2)
f corresponding to an unordered pair of edges e and g.

Lemma. wf = [cw].

Proof. Let F : |G| → |H| × R × R be an embedding such that f̃ = pr|H|×R ◦F , and let
ρ : |G̃(2)

f | → RP 1 be a map that takes an unordered pair {p, q} of points of |G| to an
equivalence class of lines parallel to a vector going from the point prR×R(F (q)) to the
point prR×R(F (p)).

Clearly, we can choose F so that ρ is a local homeomorphism at each {p, q} ∈ |G̃(2)
f |

where f̃(p) = f̃(q).
25Note that vf coincides with the classical van Kampen obstruction for graphs when f : G → {p} ↪→

R2.
26The reader may refer to [19], [17], or [11] for the needed information on universal bundles and

classifying maps.
27See [17, Theorem 7.1] for a computation of the ring H•(RP∞;Z2).
28See [11, Theorem 3.1] or [17, Theorem 7.1].
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It can be seen that p2 is the pullback of the universal S2-bundle under the composition
i◦ρ, where i is the inclusion RP 1 ↪→ RP∞; indeed, it follows from the universal property
of pullbacks that there is a morphism between principal S2-bundles (i◦ρ)∗(S∞ → RP∞)
and p2, which must be an isomorphism by [19, Proposition 2.1].

As the embedding i : RP 1 ↪→ RP∞ induces an isomorphismH1(RP∞;Z2) ∼= H1(RP 1;Z2),29

wf = ρ∗w1, where w1 is the generator of H1(RP 1;Z2).

Note that ρ−1([0× R]) =
{
{p, q} | f̃(p) = f̃(q)

}
⊂ |G̃(2)

f |. Let us consider a (simplicial)
cycle C. Clearly, there is an Euler cycle going through the edges belonging to C.30 Let
ψC be a non-degenerate piecewise linear map ψC : S

1 → |G̃(2)
f | realising it. According to

the definition of cw,

cw(C) =
∣∣∣ψ−1

C

({
{p, q} | f̃(p) = f̃(q)

})∣∣∣ mod 2 =
∣∣(ρ ◦ ψC)

−1([0× R])
∣∣ mod 2.

Since ρ is a local homeomorphism at the points {p, q} where f̃(p) = f̃(q), and ψC is a
local homeomorphism at the preimages of the interior points of the edges of G̃(2)

f , the
last number is, in fact, the sum of the local degrees modulo 2 at the preimages of [0×R].
Therefore, [cw]([C]) is the degree modulo 2 of the map ρ ◦ ψC .

On the other hand, wf ([C]) = w1([ρ ◦ ψC(S
1)]) is also equal to the degree modulo 2 of

the map ρ ◦ ψC . Thus, wf = [cw].31 □

Now, we will prove the following theorem:

Theorem 10. Let f : G → J be a stable simplicial map from a graph to a path graph.
Then wf = 0 if and only if vf = 0.

Sketch of a geometrical proof. Take a small neighborhood of |G̃(2)
f | in |G̃ | homeomorphic

to a one-dimensional disc bundle over |G̃(2)
f |. After taking suitable triangulations, we

can observe that the total space of the bundle is the closure of the complement of |G̃f | in
|G̃ | (see Fig. 7). Therefore, the cohomology class vf belongs to the second cohomology
group of the Thom space of this bundle. Furthermore, it can be shown that the Thom
isomorphism maps wf to vf . □

Cochain-level proof. Let v0, . . . , vN be the vertices of J . By replacing the triangulations
of G and J with their subdivisions, we can assume that if f−1(vi) contains a non-regular
vertex, then all the preimages of vi−1 and vi+1 are regular.

Let |̃f | : |G| → |J | ×R be a generic lifting of f . By choosing Sε as in the proof of Theo-
rem 7, we obtain a generic approximation of f .

29The induced map of (cellular) cochain complexes is essentially truncating the cochains of dimension
two and higher. Since all differentials in both complexes are zero, we obtain the desired isomorphism.

30Recall that an Euler cycle is a cycle that visits every edge exactly once. In our case, it visits each
edge in C exactly once and does not include other edges.

31Note that H1(X;Z2) ∼= HomZ2
(H1(X;Z2),Z2) by the universal coefficient theorem.
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Note that the cellular cochains in C•(G̃ , G̃f ;Z2) and the simplicial cochains in C•(G̃
(2)
f ;Z2)

could be interpreted as, respectively, cubical cochains in C•(G ,Gf ;Z2) and simplicial
cochains in C•(G

(2)
f ;Z2), equivariant (as functions) with respect to the involution. Thus,

let cv ∈ C2(G ,Gf ;Z2) be the equivariant cubical 2-cochain defining vf and correspond-
ing to the generic approximation, and let cw ∈ C•(G

(2)
f ;Z2) be the equivariant simplicial

1-cochain defining wf and corresponding to f̃ .

Note that G(2)
f can be naturally embedded into G as the diagonals of the squares

(a, b)× (c, d) where f(a) = f(c) and f(b) = f(d). It follows from the definition of cw and
cv that cv takes the value 1 on exactly those squares that contain a diagonal lying in G(2)

f

on which cw takes 1. The opposite is also true: cw takes the value 1 on the diagonals of
those squares on which cv takes the value 1.

It can be observed that |G(2)
f | lies in the complement of |Gf | in |G |. Furthermore, as a

subcomplex of G , Gf precisely consists of those squares and edges that do not intersect
|G(2)

f |.

Consider two regular vertices a, b ∈ V (G) with the same image f(a) = f(b) = vi lying
in the interior of J (i.e., 0 < i < N). Let a be incident to edges e1 and e2, and b be
incident to edges g1 and h1, where f(g1) = f(e1) and f(h1) = f(e2). The star of a × b
in G consists of a large square divided into four smaller squares {e1, e2} × {g1, h1}.32

Observe also that G(2)
f forms a diagonal of the larger square composed of diagonals of

e1 × g1 and e2 × h1.

Now, let us consider the case where b is a non-regular vertex (the case where a is non-
regular is symmetrical). We can assume that b is incident to edges g1, . . . , gk, h1, . . . , hl,
and a is incident to edges e1 and e2 such that f(g1) = f(g2) = · · · = f(gk) = f(e1) and
f(h1) = f(h2) = · · · = f(hl) = f(e2). As illustrated in Fig. 7, the star of a × b in G
is a (k + l)-page book, with the spine consisting of two segments, namely e1 × b and
e2 × b. Each page corresponds to an edge v ∈ {g1, . . . , gk, h1, . . . , hl} that is incident to
b and consists of two half-pages, namely e1× v and e2× v. Regarding G(2)

f around a× b,
it consists of k + l diagonals of half-pages, one in each page. Moreover, in the pages
{e1, e2}×gi, those are diagonals of the half-pages e1×gi, while in the pages {e1, e2}×hi,
those are diagonals of the half-pages e2 × hi.

If a, b ∈ f−1(v0) or a, b ∈ f−1(vN), both a and b are regular degree one vertices. There-
fore, the star of a× b in G is a single square formed by the edges incident to them, and
G

(2)
f is a diagonal of that square.

Hence, the closure of the complement of Gf in G can be seen as a collection of books
connected with strips running along the graph G(2)

f . Note that G does not contain any
edges where both endpoints belong to G(2)

f .

For each a× b ∈ V (G
(2)
f ), we choose a subset E(a× b) of edges incident with a× b in G

as follows. When a×b is formed by a pair of regular degree one vertices, we simply select

32The star of a vertex v in a cubical complex C is the union of cubes of C that have v as a vertex.
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Figure 7. The neighborhood of a×b inG . The graphG(2)
f is represented

by the pink lines.

one of the two edges incident with a× b, no matter which one, and put it in E(a× b). In
the case where a is a regular degree two vertex, and b is a regular or non-regular vertex,
we define E(a×b) as either {a×h1, . . . , a×hl, e1×b} or {a×g1, . . . , a×gk, e2×b}, using the
notation provided earlier. The selection of E(b× a) is done symmetrically with respect
to the involution, meaning that E(b× a) = τ(E(a× b)) = {y × x | x× y ∈ E(a× b)}.

We refer to the squares of G that contain the edges of G(2)
f (on the diagonal) as full

squares, while the squares that do not contain such edges are referred to as empty
squares.

An important observation is that for any vertex a× b ∈ V (G
(2)
f ), the following holds for

the squares of its star:

(1) for a full square, exactly one of its sides lies in E(a× b),
(2) for an empty square, either zero or two of its sides lie in E(a× b).

This property is evident for pairs of regular degree one vertices. For pairs of other
types, it can be verified through direct calculations, considering the explicit description
provided earlier of how G

(2)
f intersects the star of a× b.

Suppose wf = 0, and, therefore, there exists an equivariant 0-cocycle c′w ∈ C0(G
(2)
f ;Z2)

with δc′w = cw. Let us introduce an equivariant 1-cocycle c′v ∈ C1(G ,Gf ;Z2).
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For any edge x× y incident with a× b and belonging to E(a× b), we define c′v(x× y) =
c′w(a× b); for other edges, we set c′v(x× y) = 0. Since the sets E(a× b) are compatible
with the involution, and given that c′w is equivariant, it follows that c′v is equivariant
as well. Additionally, note that c′v assigns zero values to edges not intersecting G

(2)
f .

Therefore, c′v is well-defined.

Based on the properties of the sets E(a× b) discussed above, we observe the following:

(1) On empty squares, the coboundary δc′v evaluates to zero. This is because each
empty square contains an even number of edges on which c′v takes the same value.

(2) On full squares, the value of δc′v is equal to the value of cw on the diagonal.
Indeed, a full square contains one edge from each E(a× b) and E(a′ × b′), where
a×b and a′×b′ are the endpoints of the diagonal belonging to G(2)

f . Consequently,
δc′v sums up the values of c′w on a × b and a′ × b′. Since δc′w = cw, their sum is
equal to the value of cw on the diagonal.

Thus, we have δc′v = cv, implying that vf = 0.

Conversely, assume that vf = 0. Let c′v ∈ C1(G ,Gf ;Z2) be an equivariant 1-cochain
such that δc′v = cv. We define an equivariant cochain c′w ∈ C0(G

(2)
f ;Z2) on the vertices

a× b of G(2)
f as follows:

(1) If a and b are regular vertices of degree one, the value of c′w on a× b is the sum
of the values of c′v on the two edges incident to a× b.

(2) Otherwise, it is the sum of the values of c′v on the two “spine edges”, which are
the edges forming the spine of the star of a × b (as we have discussed above,
geometrically, this star is a book). In the case when both a and b are regular
degree two vertices, it is important to carefully choose the “spine edges” for a×b,
so that our choice is compatible with the involution. This means that if x × y
and x′ × y′ are the “spine edges” for a× b, then the edges y× x and y′ × x′ must
be the “spine edges” for b× a.

As mentioned earlier, the values of cv on squares coincide with the values of cw on their
diagonals. Thus, to establish δc′w = cw, it suffices to show that c′w(a × b) + c′w(a

′ × b′)
equals the sum of the values of c′v on the edges of the full square containing a diagonal
{a× b, a′ × b′} ∈ E(G

(2)
f ).

We claim that for a vertex a × b of G(2)
f and a full square S in its star, the value of c′w

on a× b equals the sum of the values of c′v on the two edges of S incident to a× b. If a
and b are regular vertices of degree one, this follows from the definition of c′w.

Otherwise, S contains exactly one of the two spine edges of a × b as a side. Let us
denote this edge by e+, and let the other side of S incident to a × b be denoted by
g. Together with an empty square S ′, S forms a full page in the book of a × b. The
other spine edge e− and g are the sides of S ′ incident to a × b. The other two sides
of S ′ do not intersect G(2)

f , thus, c′v takes the value zero on them. Consequently, since
0 = cv(S

′) = δc′v(S
′) = c′v(e−) + c′v(g), the cochain c′v takes the same value on the edges
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g and e−. Therefore, c′w(a× b) = c′v(e+) + c′v(e−) = c′v(e+) + c′v(g), where e+ and g are
the sides of S incident to a× b.

Therefore, for every full square S containing a diagonal {a×b, a′×b′} ∈ G
(2)
f , we conclude

that c′w(a × b) + c′w(a
′ × b′) equals the sum of the values of c′v on the sides of S. Thus,

we have δc′w = cw and wf = 0. □

Theorem 11. Let f : T → J be a stable simplicial map from a tree to a path graph.
Then the following statements are equivalent:

(1) There are no 2-obstructors for f ;
(2) |f | lifts to an embedding.

Proof. If f lifts to an embedding, the non-existence of 2-obstructors follows from Theo-
rem 1.

Now assume that there are no 2-obstructors for f . Therefore, it follows from Lemma 1
that p2 is trivial, and, thus, wf = 0.

Applying Theorem 10, we conclude that vf = 0. Hence, Theorem 9 says that f is Z2-
approximable with respect to an embedding |J | ↪→ R2. Since T is a tree, by Theorem 8, f
is approximable by embeddings. Finally, f lifts to an embedding by applying Theorem 7.

□

The proven result has the potential for various generalizations. For instance, we believe
that the non-existence of 2-obstructors condition remains sufficient for the existence of
a lifting even for an arbitrary, not necessarily stable, non-degenerate map from a graph
to a segment.

Furthermore, instead of considering maps to a segment, we can consider maps to trees.
However, the following example shows that the stated 2-obstructor condition is not
sufficient for maps from arbitrary graphs to trees, while the question of its sufficiency
for maps from trees to trees remains open.

Example 5. Let T be a tripod with 4 vertices O, a, b, and c, where O is the central
vertex. Let |f | : S1 → |T | be a “walking around” |T |.
Specifically, let C6 be a hexagon triangulating S1, whose six vertices vi numbered in the
counterclockwise order starting from zero, and let g : C6 → T be simplicial map defined
by

f(v0) = a, f(v1) = O,
f(v2) = b, f(v3) = O,
f(v4) = c, f(v5) = O.

Now, consider the composition f : C18
w−→ C6

g−→ T illustrated in Fig. 8, where C18

represents an 18-gon. Here the first map is a simplicial analogue of the standard 3-
winding w : S1 → S1 defined as z 7→ z3 assuming that S1 is embedded into the complex
plane as the unit circle centered at zero. Explicitly, w(ki) = v(i mod 6) where k0, . . . , k17
are the vertices of C18 numbered in the counterclockwise order.
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Figure 8. The 3-winding map f : C18 → T .

Note that f has a 3-obstructor because w does, and, therefore, it does not lift to an
embedding.

We claim that f does not have any 2-obstructors. To demonstrate this, let us look at
the graph (C18)

(2)
f .

In this graph, a vertex corresponding to a pair (ki, kj) of distinct vertices from f−1(O)

has degree two when w(ki) = w(kj), meaning that it is also a vertex of (C18)
(2)
w , and

degree one otherwise.

Consider a vertex (kt, ks) of (C18)
(2)
f where f(kt) = f(ks) ̸= O. This is a degree-four

vertex. Moreover, two of the four vertices adjacent to it have degree one, precisely those
that do not lie in (C18)

(2)
w .

Consequently, by removing the vertices of degree one from (C18)
(2)
f , we get (C18)

(2)
w . Since

the latter graph does not have a 2-obstructor path, the same holds true for the former
graph.
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