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Abstract

We study the limiting dynamics of a large class of noisy gradient descent systems in
the overparameterized regime. In this regime the zero-loss set of global minimizers of the
loss is large, and when initialized in a neighbourhood of this zero-loss set a noisy gradient
descent algorithm slowly evolves along this set. In some cases this slow evolution has been
related to better generalisation properties. We characterize this evolution for the broad
class of noisy gradient descent systems in the limit of small step size.

Our results show that the structure of the noise affects not just the form of the limiting
process, but also the time scale at which the evolution takes place. We apply the theory to
Dropout, label noise and classical SGD (minibatching) noise, and show that these evolve
on different two time scales. Classical SGD even yields a trivial evolution on both time
scales, implying that additional noise is required for regularization.

The results are inspired by the training of neural networks, but the theorems apply to
noisy gradient descent of any loss that has a non-trivial zero-loss set.

Keywords and phrases. Noise injection, stochastic optimization, stochastic gradient
descent, zero-loss set, overparametrization, regularization, dropout.
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1 Introduction

1.1 Noise injection

Modern machine learning and especially the training of neural networks rely on gradient descent
and its many variants. Many of those variants introduce noise (randomness) into the algorithm,
for instance through minibatching, Dropout, or random corruption of the labels. This noise may
be motivated by practical considerations, as in the case of minibatching, but in many cases it is
observed that the noise also improves the quality of the resulting parameter point. In particular,
the noise often leads to parameter points that generalize better. It would be of great practical
value to understand this implicit bias of noisy algorithms, and this currently is an active area of
research.

In a seminal paper, Li, Wang, and Arora [LWA21] focused on a specific class of noisy
gradient-descent algorithms, and showed how the particular form of the noise leads to improved
generalisation. They focused on overparameterized systems, in which the zero-loss set Γ :=
{w : L(w) = 0} is a high-dimensional manifold. Their key observation is that gradient descent
behaves differently with and without noise: in a neighbourhood of Γ, deterministic gradient
descent converges to Γ and then stops, while noisy gradient descent may continue to evolve after
reaching Γ. Figure 1 below shows an example of this. Li, Wang, and Arora characterized this
continuing evolution in a small-step-size limit, and showed its relation to generalisation.

The aim of this paper is to generalize the observations of [LWA21] to a much wider class of
systems, and characterize the behaviour of these systems when they evolve in the neighbourhood
of the zero-loss set Γ. This generalisation was inspired by the case of Dropout, but the resulting
setup covers many more types of noise. This generality also allows us to identify a hierarchy in
scaling of different types of noise, such as minibatch noise, label noise, Dropout, and others. As
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it turns out, the case studied in [LWA21] is not the first but the second level in this hierarchy,
with for instance Dropout occupying the first and more dominant level.

While this work is inspired by the training of neural networks, the main characterizations do
not use any neural-network structure, and therefore apply to noisy gradient descent in other
application areas as well.

We now describe the main results of this paper, and we start by fixing some notation.
Gradient descent for a loss function L : Rm → [0,∞) with parameter dimension m ∈ N and
learning rate α > 0 is the iterative algorithm

wk+1 = wk − α∇wL(wk), for k ≥ 0 .

In this paper we consider a class of random perturbations of gradient descent, that we call
for short noisy gradient descent :

wk+1 = wk − α∇wL̂(wk, ηk), for k ≥ 0 . (1a)

Here L̂ : Rm × Rd → R is an extension of L, each ηk is a random vector in Rd satisfying

E ηk,i = 0 and Var ηk,i = σ2, for i = 1, . . . , d , (1b)

and ηk,i is independent from ηℓ,j for (k, i) ̸= (ℓ, j). The connection between L̂ and L is enforced
by the following consistency requirement at η = 0:

L̂(w, 0) = L(w) for all w ∈ Rm . (1c)

Apart from (1c) we only require a certain regularity of the function (w, η) 7→ L̂(w, η) (for the
full setup, see Section 3.2).

As mentioned above, many common forms of noise injection can be written in the form (1).
In the training of neural networks, the most common form of noise arises from evaluating the
loss on random minibatches; we discuss this in Section 5.2.1. Dropout [HSK+12, SHK+14] is
another example of (1), both in the more common ‘Bernoulli’ form and in the ‘Gaussian’ form.
Other forms are ‘label noise’ [BGVV20, DML21, LWA21] and ‘stochastic Langevin gradient
descent’ [RRT17, MMN18]. We discuss all these in Section 5.

1.2 The non-degenerate case

As mentioned above, the focus of this paper lies on the behaviour of the noisy gradient descent (1)
once it has entered a neighbourhood of the zero-loss set Γ. As illustrated by Figure 1c, the
algorithm typically continues to evolve after reaching Γ, and in this paper we aim to characterize
this continued evolution.

We motivate the main results by some heuristic calculations. Let a sequence (wk, ηk)
∞
k=0 be

given by (1), and assume for simplicity that dynamics of the parameters wk is slow compared to
the noise variables ηk. It then becomes reasonable to average over the fast variables ηk:

wk+1 ≈ wk − αEη

[
∇wL̂(wk, ηk)

]
.

If the variance σ2 of the noise is small, then by Taylor expansion we find

wk+1 − wk ≈ −αEη

[
∇wL̂(wk, 0)

]
− αEη

[
∂η ∇wL̂(wk, 0)[ηk]

]
− α

2
Eη

[
∂2η ∇wL̂(wk, 0)[ηk, ηk]

]
. (2)
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(a) Level curves of the function L
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Figure 1: Noisy gradient descent may continue to move after reaching the zero-loss set Γ. The
left-hand panel shows the level curves of a function L : R2 → [0,∞), with the zero-level set Γ
marked in red. The middle panel shows a gradient-descent evolution, starting at the top, and
converging to Γ. The right-hand panel shows an evolution of the noisy gradient descent (1) with
L̂(w, η) := L(w + η). See Appendix A for more details.

(See Section 3.1 for our use of ∂.) Recall that L̂(w, 0) = L(w), so that the first term in (2)
is the gradient of the loss without noise. From the property (1b) we have E[ηk] = 0 and
Eη

[
ηk ⊗ ηk

]
= σ2I, leading to the resulting dynamics

wk+1 − wk ≈ −α∇wL(wk)−
α

2
σ2∇w∆ηL̂(wk, 0) + o(σ2) as σ2 → 0 . (3)

From the equation (3) we can recognize two phases in the evolution of wk. In the first, faster
phase, wk has not yet reached Γ, and the first term −α∇L on the right-hand side dominates.
This leads to an evolution at time scale 1/α.

When wk reaches Γ, however, the term −α∇L becomes small, since ∇L = 0 on Γ, and the
second term on the right-hand side of (3) becomes important. This term leads to a slower
evolution, at time scale 1/ασ2, which is driven by the combination of the two terms on the
right-hand side in (3).

These observartions are made rigorous in the following non-rigorous formulation of our
first main result, Theorem 4.1. This theorem states a convergence result after accelerating the
evolution by a factor 1/ασ2, thus capturing the second, slower phase.

Formal Theorem A (Non-degenerate case). Assume αn → 0 and σn → 0. Set

Wn(αnσ
2
nk) := wk .

Then the sequence Wn converges to a limit W = (W (t))t>0, that satisfies the constrained gradient
flow

∂tW (t) = −PΓ ∇wReg(W (t)), with W (t) ∈ Γ for t > 0. (4)

Here PΓ is the orthogonal projection onto the tangent plane of Γ at W (t), and

Reg(w) :=
1

2
∆ηL̂(w, 0) =

1

2

d∑
i=1

∂2

∂η2i
L̂(w, η)

∣∣∣
η=0

for w ∈ Γ.
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(a) Noisy gradient descent
as in Fig. 1c
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(b) Vertical coordinate of noisy
and constrained gradient descent
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(c) Same as (b), but over longer
time

Figure 2: This figure shows the evolution of Fig. 1c in more detail, and compares it to the
solution of the constrained gradient flow. Panel (a) is the same as Fig. 1c; panels (b) and (c)
show the vertical coordinate over different periods of time (iterations). Panels (b) and (c) clearly
illustrate the difference in time scales between the fast evolution towards Γ and the much slower
evolution along Γ. The green circle and lines mark the minimizer of ∆ηL̂(w, 0), which in this
case equals ∆wL(w). The orange curves are the solution of the constrained gradient flow (4),
started from the first point at which wk came close to Γ. More details are given in Appendix A.

Remark 1.1 (Projection onto the tangent plane). The appearance of the projector PΓ in (4)
can be understood in two complementary ways. To start with, if W remains in Γ, then the
right-hand side in (4) has to be a tangent vector; since ∇w∆ηL̂(w, 0) has no reason to be tangent
at w, the projection is necessary.

The formal calculation (3) also shows how this projection is generated in the evolution: if
the increment −(ασ2/2)∇w∆ηL̂(wk, 0) pushes wk+1 away from Γ, then in the next iteration the
first term −α∇wL(wk+1) will not be zero, but point ‘back to Γ’. Since the prefactors of the
first and second term on the right-hand side of (3) differ by a factor σ2 ≪ 1, the first term is
asymptotically much stronger than the second, and this generates in the limit the projection. ◁

Example 1.2 (The example in Figures 1 and 2). In the examples of Figures 1-2 we have chosen
L̂(w, η) := L(w + η), and therefore the function Reg in Theorem A is

Reg(w) :=
1

2
∆ηL(w + η)

∣∣∣
η=0

= ∆wL(w).

The gradient flow (4) of Reg along Γ therefore evolves towards points on Γ where ∆wL is smaller,
i.e. where the ‘valley’ around Γ is wider. In Figure 2 one can recognize the widening of the valley
in the spreading of the level curves of L, and indeed the evolution converges to the minimizer of
∆wL on Γ, indicated by the green circle and line. ◁

Example 1.3 (Bernoulli DropConnect). Dropout is a particular form of noise injection that
consists of ‘dropping out’ parameters or neurons randomly at each iteration. In Section 5 we
discuss various types of Dropout; here we give one example, the case of DropConnect with
Bernoulli random variables.

5



Given a loss function L on Rd, we define L̂ : Rd × Rd → R by

L̂(w, η) := L(w⊙(1 + η)) ,

where ⊙ is coordinate-wise multiplication. We choose a dropout probability p ∈ [0, 1] and we
let each filter variable ηi have the distribution

ηi =

−1 w.p. p ,
p

1− p
w.p. 1− p .

With this choice, ηi = −1 corresponds to ‘dropping’ or ‘killing’ the parameter wi, and the other
value ηi = p/(1− p) corresponds to a rescaling such that in expectation we have η = 0. This
choice satisfies (1b) with σ2 = p/(1− p), and the limit σ → 0 is the one in which a vanishingly
small number of parameters are dropped.

For this case Theorem A applies (see Proposition 5.5) and gives the formula for the corre-
sponding function Reg as

Reg(w) := w · ∇L(w) +
m∑
j=1

(
L(w ⊙ e

j)− L(w)
)
.

Here e

j is the inverted unit vector in Rm,

e

j := (1, . . . , 1, 0,
jth position

1, . . . , 1) = 1− ej.

This function can be interpreted as a non-local approximation of the second derivative of L
(see Remark 5.6). The non-locality is a consequence of the large modification of individual
coordinates wi by multiplication by 1 + ηi, which can be zero (albeit with small probability p).
We discuss DropConnect in more detail in Section 5.1. ◁

Remark 1.4. Note that DropConnect noise is different from the classical Dropout training of
neural networks. In contrast to zeroing single parameters Dropout zeroes output of the neurons.
Theorem A is also applicable Dropout noise, we study it for the cases of neural networks and
overparametrized linear models in Section 5.3. ◁

1.3 The degenerate case

In at least three important examples of noise injection, namely minibatching, label noise, and
stochastic gradient Langevin descent, the procedure above applies, but the limiting constrained
gradient flow is trivial: ∂tW = 0. This is because for those examples it happens that ∆ηL̂(w, η)
is constant in w and η, and for this reason we call these types of noise degenerate.

To determine the behaviour for these degenerate forms of noise we return to the formal
calculation (2). Instead of taking the expectation we write, assuming ∇2

η L̂ ≡ 0 for simplicity,

wk+1 − wk ≈ −α∇wL̂(wk, 0)− α∂η ∇wL̂(wk, 0)[ηk]−
α

2
∂2η ∇wL̂(wk, η

∗)[ηk, ηk]

= −α∇wL(wk)− α∂η ∇wL̂(wk, 0)[ηk] . (5)

Take for instance the case that the ηk,i are i.i.d. centered normal random variables with
variance σ2. Then the second term on the right-hand side is again a centered normal random
variable, with variance that scales as α2σ2. As a result, we expect that the noise has a non-trivial
contribution when the accumulated quadratic variation is of order one, namely after k ∼ 1/α2σ2

steps.
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a: Non-degenerate noisy GD,
L̂(w, η) = L(w) + 1

2
a(w)η2
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b: Vertical coordinate of noisy and
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c: Degenerate noisy GD,
L̂(w, η) = L(w) + 1

2
|w|2η
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d: Vertical coordinate of noisy and
constrained GD

Figure 3: Non-degenerate (top row) and degenerate evolution (bottom row); note how the
evolution is much faster in the non-degenerate top row than in the degenerate bottom row.
In both cases α = 0.1 and η is a scalar centered normal random variable with variance
σ2 = 0.01. In the top row, L̂(w, η) = L(w) + 1

2
a(w)η2 with a(w) = 1 − 0.7 cos 2w1. For this

case Theorem A applies and gives the regularizer as 1
2
∆ηL̂(w, 0) = 2a(w). In the bottom row

L̂(w, η) = L(w) + 1
2
|w|2η, and Theorem B applies, with the limiting evolution (7) reduing to

the deterministic constrained gradient flow ∂tW = −PΓ∇w
1
4
log∆wL(W ). The green circles and

lines mark the minimizers of the respective regularizers. More details are given in Appendix A.
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These remarks motivate the following formal version of the second main result, Theorem 4.7.
For this theorem we assume that the function L̂ has the more specific form

L̂(w, η) = L(w) + f(w) · η + 1
2
H(w) : (η ⊗ η) + g(η), (6)

for certain smooth maps f , H, and g. We assume that g(0) = 0 and that each diagonal
element Hii vanishes, so that ∆ηL̂(w, 0) =

∑d
i=1Hii(w) = 0. It follows that the non-degenerate

evolution (4) is trivial, and by the argument above we expect the evolution to take place at the
slower time scale 1/α2σ2 (see Definition 4.6 for details).

Formal Theorem B (Degenerate case). Let L̂ be a degenerate loss function as described above.
For αn → 0 and σn → σ0 ≥ 0, let (wn

k )k≥ be the noisy gradient descent (1) and set

Wn(α
2
nσ

2
nk) := wk .

Then the sequence Wn converges to a limit W = (W (t))t>0 that satisfies the constrained stochastic
differential equation

dW (t) = PΓβ(W (t)) dBt + F (W (t)) : β(W (t))β(W (t))⊤ dt, with W (t) ∈ Γ for t > 0. (7)

Here β and F are given in terms of f and H, and B is a multidimensional standard Brownian
motion.

Remark 1.5 (Time scale). The time scale is now 1/α2σ2, a factor 1/α longer than in the
non-degenerate case. Figure 3 illustrates this difference in speed with two functions L̂ that are
constructed from the same L as in Figures 1 and 2. ◁

Remark 1.6 (Limiting equation). In contrast to the non-degenerate case, the limiting equa-
tion (7) is a constrained stochastic differential equation (SDE), not a constrained ODE. This
difference arises from the fact that the second term on the right-hand side in (5) is now a
mean-zero random variable of variance O(α2σ2), and the time scaling is such that we observe a
sum of O(1/α2σ2) of these, leading to a random variable of variance O(1). ◁

Example 1.7 (Minibatch noise). In Section 5.2.1 we apply Theorem B to the case of minibatch
noise. The resulting evolution is trivial even on the time scale 1/α2

nσ
2
n, meaning that the

evolution on Γ induced by minibatch noise is even slower than this. This also is consistent with
the observation by Wojtowytsch [Woj23, Woj24] that for small step sizes minibatch SGD may
collapse onto Γ and become completely stationary. ◁

Example 1.8 (Label noise). The result of [LWA21] also is a case of degenerate noise, and we
revisit it in Section 5.2.2. For this case the limiting constrained SDE (7) is in fact a deterministic
equation (i.e. the first term vanishes), in the form of a constrained gradient flow driven by the
function Reg(w) := (2N)−1∆wL(w). ◁

See Section 5 for more examples.

1.4 Contributions

The main contributions of the paper are:

1. We introduce a specific class of ‘gradient-descent algorithms with noise injection’ that
unifies a number of existing noise-injection schemes, such as minibatch SGD, Bernoulli and
Gaussian Dropout, Bernoulli and Gaussian DropConnect, label noise, stochastic gradient
Langevin descent, ‘anti-correlated perturbed gradient descent’, and others.
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2. For this class of noise-injected gradient-descent schemes we give an explicit and rigorous
characterization of the regularization induced by the noise in the non-degenerate (The-
orem 4.1) and degenerate cases (Theorem 4.7), and we identify the corresponding time
scales.

3. In particular, we prove convergence of gradient descent with Dropout and DropConnect
noise to manifold-constrained gradient flows (Sections 5.1 and 5.3).

4. We demonstrate that a version of minibatch SGD shows no regularization effect on the
two fastest time scales (Section 5.2.1) and does not change the form of the regularizer
induced by Dropout or label noise (Section 5.2.2 and Remark 5.20).
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Mark Peletier and Anna Shalova are supported by the Dutch Research Council (NWO), in the
framework of the program ‘Unraveling Neural Networks with Structure-Preserving Computing’
(file number OCENW.GROOT.2019.044). André Schlichting is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2044 –390685587, Mathematics Münster: Dynamics–Geometry–Structure.

2 Related Work
Convergence results to stationary points. In the asymptotic analysis of stochastic gradient
schemes, such as for instance [Tad15, FGJ20], a large body of literature considers also the
question of convergence of the iterates wk to a single point as k → ∞. For instance Tadic [Tad15,
Section 3] proves such a statement for stochastic gradient algorithms with Markovian dynamics,
which takes a very similar form as the noisy gradient descent (1a). However, the main difference
is that in [Tad15] the learning rate α is chosen to be k-dependent and to tend to zero as k tends
to infinity, whereas we consider a fixed learning rate.

More recent works [Woj23, DK24] prove convergence of similar systems to a single point
under a Łojasiewicz condition on the loss manifold in comparison to the local quadratic behavior,
which we assume below (see Assumption 3.5).

These convergence results are consistent with the characterizations that we give in Theorems A
and B, since vanishing learning rates may generate different types of behaviour from the fixed
learning rates that we consider.

Noise injection: minibatch SGD. The most common source of noise in training algorithms
results from the use of random minibatches in gradient descent, often simply called ‘stochastic
gradient descent’ (SGD). Experimentally this noise is known to lead to better generalisation,
and various studies have focused on determining the dependence of this effect on parameters
such as the batch size [KMN+16, JKA+17, WME18, Woj23] and learning rate [JKA+17, HHS17,
WME18, Woj23, AVPVF22]. The particular structure of minibatch noise has been shown to
create a ‘collapse’ effect [Woj23, Woj24] when the learning rate is small, and the same noise
structure makes minibatch SGD incapable of selecting narrow minima [WWS22]. In this paper
we also apply the techniques to a modification of minibatch SGD (Section 5.2.1).

Noise injection: Dropout. The most common form of Dropout is ‘Bernoulli Dropout’, i.e.
randomly ‘dropping’ neurons, input nodes, or weights with probability p [HSK+12, WWL13,
WZZ+13], but the Gaussian Dropout in Section 5.3 has also been reported to give good
results [SHK+14, MAV17]. Random networks generated by Dropout noise have the same
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universal-approximation properties as deterministic ones [MPP+22], and the convergence of
Dropout-Gradient-Descent algorithms has been rigorously characterized [SCS20, SCS22].

A common explanation of the regularizing effect of Dropout centers on an interpretation of
the Dropout-SGD iterates as a Monte-Carlo sampling of a deterministic augmented loss, where
the loss term resembles L2-type weight penalization. Various forms of this additional loss term
have been derived, sometimes while assuming the Dropout noise to be ‘small’ [BS13, WWL13,
WM13, GBC16, MAV18, MA19, ZX22]. Dropout-noise fluctuations have also been shown to
have a significant effect in addition to this regularization-in-expectation [WKM20, ZX22, MA20,
CLSH23]. Finally, very recently the effectiveness of Dropout regularisation has been connected
to ‘weight expansion’ [JYY+22].

Other types of noise injection. ‘Label noise’, the situation in which ‘mistakes’ are
present in the data set, is a challenge for the training of classification methods [FV13]. One
method to deal with this is to artifically perturb the labels during training; this can also
be seen as a form of noise injection, and it recently has also been applied to the context of
regression [BGVV20, LWA21]. We comment on label noise in Section 5.2.2.

The ‘anti-correlated’ noise injection of [OKP+22] is of the same form as we study in this
paper, and we comment on this connection in Section 5.1.3.

Evolution along the zero-loss manifold. For overparameterized networks the training takes
place in close proximity of the zero-loss set. The framework by Katzenberger [Kat91] that we
use provides a powerful tool to characterize such behaviour, and has been used extensively in the
probability and other literature (see e.g. [FN93, Fun95, CM97, Par12, PR15] and also [FKVE10]).
Li, Wang, and Arora used the same framework to characterize the behaviour of gradient descent
with label noise in the limit of small step size [LWA21]. This same point of view has also been
used to analyse ‘local SGD’ [GLHA23] and the impact of normalization [LWY22].

In addition to the asymptotically continuous-time approaches above, the discrete-time nature
of gradient descent and stochastic gradient descent generates an additional implicit bias, which
is related to the form of the loss landscape close to zero loss [ALP22, WWS22].

Training and flatness of minima. There is growing experimental and theoretical evidence
that ‘flatter minima generalize better’ (see e.g. [HS97, KMN+16, JKA+18, CCS+19, JNM+19]),
and various properties of SGD and other training algorithms have been interpreted in this light
(see e.g. [ZLR+18, JKA+18, WME18, SED20, PPVF21, OKP+22, WWS22]). The results of
this paper relate to this ‘flatness’ hypothesis, since in many cases the regularization term in
e.g. (38) can be recognized as some measure of ‘flatness’. The examples in the introduction
illustrate this: for instance, the choice L̂(w, η) := L(w + η) in Figure 2 leads to the constrained
gradient flow driven by ∆wL(w), which is indeed a measure of the ‘flatness’ of the loss landscape
around Γ, and the evolution moves towards the minimizer of this ‘flatness’, as indicated by
the green circle. In the case of label noise, it was already shown in [LWA21] that the resulting
regularizer also is proportional to ∆wL(w), with the same effect. As yet another example,
the regularizer that we derive for DropConnect in Section 5.1 is closely related to the concept
of ‘robustness’ developed in [PKA+21], which those authors connect in turn to generalization
performance (see Remark 5.4).

3 Notation and Preliminaries

After setting up the notation in Section 3.1 we introduce the notion of gradient descent algorithms
with noise injection in Section 3.2. We discuss the assumptions on the zero-loss set and the
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behaviour of the system around it in Section 3.3. We give the necessary background and results
on the convergence of the suitable type of stochastic processes (sometimes called Katzenberger
processes after [Kat91]) in Section 3.4. Finally we introduce the characterization of the limit
map following the derivation from [LWA21] in Section 3.5.

3.1 Notation

Convergence of random variables We work with an abstract filtered probability space
(Ω,F ,F,P), on which all random variables are defined. For a sequence of Rm-valued random
variables (Xn)nN we denote with Xn ⇒ X the convergence in distribution to some random
variable X, that is Ef(Xn) → E f(X) for all f ∈ Cb(Rm).

We denote with DRm [0,∞) the space of m-dimensional càdlàg processes equipped with the
Skorokhod topology (see e.g. [Bil68, Chapter 3]).

For two càdlàg paths F,M ∈ DRm [0,∞), we denote with Vt(F ) and [M ](t) the total and
quadratic variation (see (23) for their definitions in the case of pure-jump paths).

Estimates and bounds We use the floor operation by ⌊·⌋ : R → Z to give the largest integer
smaller than the argument, that is ⌊x⌋ = max{z ∈ Z : z ≤ x}. Indices in sums will be always
integers and we use shorthand notation

∑
k≤x for real positive x to denote the sum

∑⌊x⌋
k=0.

The notation a ≲ b is understood as a ≤ Cb for some constant C depending on stated
assumptions, but never on the hyperparameters α, σ. We also use the Landau notation f = O(g)
and f = o(g) to denote that |f |/|g| is bounded or converges to zero, respectively, with the limit
under consideration made clear in the context.

Vector and matrix operations We denote with |·| the usual Euclidean norm on Rm. For
some v, w ∈ Rm, the usual vector product is denoted with v · w :=

∑m
i=1 viwi. In addition, the

vector v⊙w ∈ Rm is defined by component-wise multiplication (v⊙w)i := viwi for i = 1, . . . ,m.
Likewise, we denote with v ⊗ w ∈ Rm×m the standard tensor product of vectors defined by
(v ⊗ w)i,j = viwj for i, j = 1, . . . ,m. For x0 ∈ Rm and r ∈ R+ we use B(x0, r) to denote a ball
with center x0 and radius r.

The product of two matrices A,B ∈ Rm×n is given by A : B :=
∑m

i=1

∑n
j=1AijBij. For a

linear map A : Rn → Rm we write A† : Rm → Rn for its Moore-Penrose pseudoinverse. For a
symmetric positive definite matrix A ∈ Rm×m

sym , we denote with |A|+ the product of the non-zero
eigenvalues.

Derivatives For a map Ψ : Rm → Rn, the first and second variations in x ∈ Rm are denoted
by ∂Ψ(x) and ∂2Ψ(x). The action of these linear maps on directions v ∈ Rm and Σ ∈ Rm×m is
denoted by

∂Ψ(x)[v] :=
m∑
i=1

∂xi
Ψ(ξ)vi and ∂2Ψ(x)[Σ] :=

m∑
i=1

m∑
j=1

∂2xi,xj
Ψ(x)Σij .

By contrast, for a scalar map Ψ : Rm → R, the notations ∇Ψ and ∇2Ψ indicate the vector and
matrix of first and second partial derivatives. This distinction in notation allows us to write e.g.
∂η∇wL(w, η)[v] to indicate that the direction v is to be contracted against the derivatives in
η. By slight abuse of notation, if Σ = σ⊗σ for some σ ∈ Rm, then we also write ∂2Ψ(x)[σ, σ]
instead of ∂2Ψ(x)[σ⊗σ].
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3.2 Problem Setting

In this work we study the following class of noisy gradient descent systems.

Definition 3.1 (Noisy gradient descent). Given a loss function L ∈ C3
(
Rm,R

)
, any function

L̂ ∈ C3
(
Rm+d, [0,∞)

)
with L̂(w, 0) = L(w) is called a noise-injected loss function. A noisy

gradient descent for the noise-injected loss L̂ is the dynamics given by

wk+1 = wk − α∇wL̂(wk, ηk), for k ∈ N0; (8a)
ηk,i ∼ ρ(σ), i.i.d., for i = 1, . . . , d . (8b)

Here w0 ∈ Rm is a given initialization and α > 0 is the step size. The family of probability
distributions {ρ(σ) ∈ P(Rm)}σ>0 characterizes the noise injection and ηk,i ∼ ρ(σ) for i = 1, . . . , d
are i.i.d. random variables distributed according to ρ(σ) such that ηk is an m-dimensional vector.
The family {ρ(σ)}σ>0 is assumed to be centered with variance σ2, that is

Eη∼ρ(σ) η = 0 and Varη∼ρ(σ) η = σ2. (9)

We require the noisy loss L̂ together with the distribution ρ to satisfy the following compati-
bility and growth assumptions.

Assumption 3.2 (Compatibility between L̂ and ρ(σ)). There exists p ∈ [1,∞) such that

1. for any compact K ⊂ Rm there exists C1 = C1(K) and C2 = C2(K) with∣∣∇w∇2
ηL̂(w, η)−∇w∇2

ηL̂(w̃, η)
∣∣ ≤ C1(1 + |η|p)|w − w̃| , for all w, w̃ ∈ K and all η ∈ Rd,

(10)∣∣∇w∇2
ηL̂(w, η)−∇w∇2

ηL̂(w, 0)
∣∣ ≤ C2|η|

(
1 + |η|p−1

)
, for all w ∈ K and all η ∈ Rd.

(11)

2. Setting
Mk(σ) := Eη∼ρ(σ)|η|k,

we have for all k ∈ {3, . . . , 2(p+ 2)},

if C2 > 0: Mk(σ) = o(σ2) , (12a)
if C2 = 0: Mk(σ) = O(σ2) . (12b)

If σ is clear from the context, we briefly write Mk := Mk(σ).

Remark 3.3 (Examples of noise distributions). The conditions (9) and bounds (12) for any
p ≥ 1 are satisfied for the centered Gaussian distribution N (0, σ2) and the uniform distribution
Unif(−

√
3σ,

√
3σ) Note that in both cases we have Mp = O(σp

n) and thus for q ≥ 2(1 + 2) = 6
we have Mq = O(σ6

n). ◁

Remark 3.4 (More general noise properties). In the proofs we actually do not require the
noisy variables ηnk,i to be sampled from the same distribution. It is sufficient that the ηk,i are
independent and that for every i the conditions (9) and (12) are satisfied. We stick to the
assumption of ηk,i being i.i.d. for the purpose of readability. ◁

A noisy gradient system as in Definition 3.1 is characterized by two hyperparameters, the
step size α and the noise variance σ. For the main results of this paper we give ourselves two

12



positive sequences (αn)n∈N and (σn)n∈N and study the limit of interpolations (w̃n)n∈N, where
w̃n : R+ → Rm is the m-dimensional càdlàg process defined by

w̃n(t) = wn
⌊ t
αn

⌋ for every t ∈ R+ . (13a)

Here ⌊x⌋ is the integer part of x, and {wn
k}k∈N0 is the noisy gradient descent for hyperparameters

(αn)n∈N and (σn)n∈N, given by

wn
k+1 = wn

k − αn∇wL̂(w
n
k , η

n
k ), for l ∈ N0; (13b)

ηnk,i ∼ ρ(σn), for i = 1, . . . , d . (13c)

Depending on the structure of L̂ we consider two scaling regimes, where either both αn, σn → 0
or only αn → 0 for constant noise variance σn = σ ≥ 0. Consider the space DRm [0,∞) of all
m-dimensional càdlàg processes equipped with the Skorokhod topology. We study the limiting
behaviour of the interpolations w̃n(t) in DRm [0,∞) for the two different cases and characterize
the limit processes in terms of the noise-injected loss function L̂.

3.3 Zero-loss set

The key assumption in our analysis is the structure of the zero-loss set Γ = {w ∈ Rm : L(w) = 0}.
We consider systems in which the zero-loss set is locally a C2 manifold satisfying some non-
degeneracy assumptions. The zero loss set is defined in terms of the ω-limit set of the flow
associated to the gradient flow of L on Rm, that is

ẋ(t) = −∇L(x(t)) with x(0) = x0 ∈ Rm . (14)

We define the flow map ϕ : Rm × [0,∞) → Rm as the solution of (14), and we have the integral
representation

ϕ(x, t) = x−
∫ t

0

∇L(ϕ(x, s)) ds . (15)

Then, any initial point x0 ∈ Rm has an ω-limit set which is denoted by

ω(x0) =
⋂
s>0

{ϕ(x0, t) : t > s}. (16)

To establish local attractiveness of the loss manifold, we require the loss function L : Rm → [0,∞)
to satisfy a number of non-degeneracy assumptions.

Assumption 3.5 (Non-degeneracy of the loss manifold).
The set Γ := {x ∈ Rm : L(x) = 0} is a non-degenerate loss manifold in the following sense:

1. manifold: it forms an M-dimensional C2 manifold;

2. constant rank: the rank of ∇2L is constant and maximal on Γ, that is rank(∇2L(x)) =
m−M for all x ∈ Γ;

3. spectral gap: there exists δ > 0 such that for all x ∈ Γ, all non-zero eigenvalues λ of
∇2L(x) satisfy λ > δ.

By the manifold condition in Assumption 3.5, there exists a tangent space Tx0Γ for each
x0 ∈ Γ. Moreover, for any x0 ∈ Γ, there exists an ϵ > 0 such that the projection operator
PΓ : Bϵ(x0) → Γ is well-defined. Then, the rank and spectral gap condition in Assumption 3.5
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ensure that locally for every x0 ∈ Γ and every non-tangent direction v /∈ Tx0Γ the loss function
locally grows quadratically, that is there exists some c > 0 such that

L(x0 + ϵv) ≥ cϵ2 |(I − PΓ)v|2 .

The assumption is satisfied by many existing overparameterized systems. In particular, overpa-
rameterized linear models [LWA21] and feedforward neural networks [Coo18] have been shown
to satisfy conditions similar to Assumption 3.5.

Remark 3.6 (Localizing the smoothness requirement). For many interesting losses, for instance
those based on ReLU neural networks, the function L and the zero-loss set Γ are not differentiable,
and Assumption 3.5 is not satisfied. For those systems, the results of this paper can be adapted
by localizing. Since the main theorems characterize training behaviour up to the time of leaving
a compact set K, the results can be applied within a set K such that Γ ∩K and L|K do satisfy
Assumption 3.5. ◁

We study the behaviour of the noisy gradient descent (13) in the proximity of Γ and thus
require initial conditions that guarantee the convergence of the flow map ψ in (15) to Γ. In terms
of the ω-limit, we define a locally attractive neighbourhood U of the zero loss manifold Γ such
that the deterministic gradient flow trajectory (14) with initial conditions within U converges
to a point on Γ.

Definition 3.7. An open set U ∈ Rm is a locally attractive neighbourhood of Γ if Γ ⊂ U and
there exists a map Φ ∈ C2(U ; Γ) which satisfies ω(x) = {Φ(x)} for all x ∈ U . In this case, Φ is
called the limit map and satisfies

Φ(x) = lim
t→∞

ϕ(x, t) for all x ∈ U. (17)

The existence of a locally attractive neighbourhood is guaranteed by [Kat91, Proposition 3.5]
whenever Γ satisfies Assumption 3.5. In addition, we use the regularity of the limit map for which
a direct application of [Fal83, Theorem 5.1] guarantees that if L is three times differentiable
with locally Lipschitz third derivative, the limit map satisfies Φ ∈ C2(U) [Kat91, Corollary 5.1].

Remark 3.8. Note that for initial conditions x0 ∈ U the (unperturbed) gradient flow (14)
converges to x∗ = Φ(x). As remarked in the introduction, the noise injection drastically changes
this behaviour, since instead of converging to a stationary point the system then approximately
follows a manifold-constrained deterministic or stochastic flow. ◁

Proposition 3.9 (Exponential convergence of the flow). Let U be a locally attractive neigh-
bourhood (Definition 3.7) of the loss manifold Γ satisfying Assumption 3.5, then there exists
β > 0 such that for any W (0) ∈ U exists C > 0 with∣∣ϕ(W (0), t

)
− Φ

(
W (0)

)∣∣ ≤ Ce−βt .

In particular, the constants C > 0 can be chosen uniformly among W (0) ∈ K ∩ U for any
compact set K.

Proof. The proof is not exactly contained in [Kat91], however it is implied by [Kat91, Lemma
3.2] together with a standard localization procedure as used in the proof of [Kat91, Lemma
3.3].
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3.4 Katzenberger’s Therorem

In this section we present a simplified version of the main tool of our analysis, Katzenberger’s
Theorem 6.3 [Kat91]. We fix a filtered probability space (Ω,F ,F,P) and consider formal
‘stochastic differential equations’ of the form

dXn = −∇L(Xn) dAn + dZn, (18)

or in integrated form

Xn(t) = Xn(0)−
∫ t

0

∇L(Xn(s)) dAn(s) + Zn(t),

where (An)n∈N is a sequence of deterministic non-decreasing càdlàg processes, also called
an integrator sequence, and (Zn)n∈N is a sequence of Rm-valued semimartingales with respect to
P. We assume that Zn(0) = 0.

Remark 3.10 (Generality of (18)). Katzenberger’s setup in [Kat91] is more general than (18);
in particular, it allows for a splitting of the process Zn into a ‘noise’ and a ‘mobility’ part, with
different assumptions on these two parts. For our purposes the simpler form (18) suffices. ◁

We impose the following conditions on the integrator sequence An.

Assumption 3.11 (Assumptions on (An)n∈N). The family (An)n∈N of non-decreasing càdlàg
deterministic processes in (18) satisfies

1. An(0) = 0;

2. An asymptotically puts infinite mass onto every interval, that is, for every δ > 0,

inf
0≤t≤T

(
An(t+ δ)− An(t)

)
−→ ∞, as n→ ∞ ; (19)

3. An is asymptotically continuous, that is,

sup
t≥0

(
An(t)− An(t−)

)
−→ 0, as n→ ∞, (20)

with An(t−) := lims↗tAn(s).

For any compact K ⊂ UΓ we define the stopping time

λn(K) = inf {t ≥ 0 | Xn(t) /∈ K◦} (21)

and for a process Y : [0,∞) → Rd the notation Y λ for denotes the stopped process

Y λ(t) := Y (t∧λ) for all t ∈ [0,∞) . (22)

The family (Zn)n∈N of Rm-valued semimartingales in (18) needs to satisfy the following two
assumptions.

Assumption 3.12 (Vanishing increments of (Zn)n∈N). For all T ∈ R+ and all compact K ⊂ UΓ

we have
sup

0<s≤T∧λn(K)

|∆Zn(s)| ⇒ 0, as n→ ∞,

where ∆Zn(s) := ∆Zn(s)−∆Zn(s−) denotes the increment.
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In the following we use the notation Vt(F ) and [M ](t) to denote the total and quadratic
variation of càdlàg paths F,M ∈ DRd [0,∞). For pure-jump paths, which is the only case we
will be using, these are defined by

Vt(F ) :=
∑
0<s<t

|∆F (s)| and [M ](t) :=
∑
0<s<t

|∆M(s)|2 . (23)

Assumption 3.13. The family (Zn)nN is a sequence of semimartingales with sample paths in
DRd [0,∞). For every n ≥ 1 there exist stopping times

{
τ kn | k ≥ 1

}
and a decomposition of Zn

into a local martingale Mn plus a finite variation process Fn such that

P
[
τ kn ≤ k

]
≤ 1/k and

(
[Mn](t ∧ τ kn) + Vt∧τkn (Fn)

)
n∈N

is uniformly integrable for every t ≥ 0, k ≥ 1 and

lim
γ→0

lim sup
n→∞

P
[
sup

0≤t≤T

(
Vt+γ(Fn)− Vt(Fn)

)
> ε

]
= 0, (24)

for every ε > 0 and T > 0.

Remark 3.14. Assumption 3.13 requires both the quadratic variation of the martingale part
of the noise and the total variation of the drift to be bounded. One can interpret this as a
requirement to accumulate an order one perturbation for any fixed time t > 0 in the limit
n→ ∞. In our analysis we encounter cases when one of the components dominates, namely the
drift in the general case and the martingale part in the degenerate case. Nevertheless, in the
general case Katzenberger’s theorem allows for a balanced contribution of both terms. ◁

Before introducing Katzenberger’s result we need to do a shift of the variable Xn. If we
consider a solution Xn of the system (18) with Xn(0) = x0 ∈ UΓ but x0 /∈ Γ, then for any t > 0
we have An(t) → ∞ and thus by definition of UΓ we have

ϕ(x0, An(t)) −→ Φ(x0) ∈ Γ as n→ ∞ .

As we can take arbitrarily small t, by a simple Gronwall inequality argument, we obtain that
the limiting process X for n→ ∞ must be discontinuous at t = 0. To avoid this discontinuity
we consider the shifted process

Yn(t) = Xn(t)− ϕ (Xn(0), An(t)) + Φ (Xn(0)) . (25)

Note that at t = 0 we have ϕ (Xn(0), An(0)) = Xn(0) and thus Yn(0) = Φ (Xn(0)) ∈ Γ. The
main theorem of [Kat91] states that the limiting dynamics of Yn(t) lie on Γ and can be expressed
in terms of the limit map Φ and the limit Z of the process Zn.

Theorem 3.15 ([Kat91, Theorem 6.3]). Assume that the loss manifold Γ satisfies Assump-
tion 3.5. Assume that L ∈ C3(UΓ), for a neighbourhood UΓ of Γ. Assume that the shifted
processes (Xn)n∈N (18) satisfy Assumptions 3.11, 3.12, and 3.13 with Xn(0) ⇒ X(0) ∈ UΓ. For
a compact K ⊂ UΓ, let

µn(K) := inf
{
t ≥ 0 | Yn(t) /∈ K◦} . (26)

Then, for every compact K ⊂ UΓ, the sequence
(
Y

µn(K)
n , Z

µn(K)
n , µn(K)

)
N of stopped processes

and stopping times is relatively compact in DRd×Rm [0,∞)× [0,∞]. If (Y, Z, µ) is a limit point
of this sequence, then (Y, Z) is a continuous semimartingale, Y (t) ∈ Γ for a.e. t ∈ [0,∞),
µ ≥ inf {t ≥ 0 | Y (t) /∈ K◦} a.s., and

Y (t) = Y (0) +

∫ t∧µ

0

∂Φ(Y ) dZ +
1

2

∑
ij

∫ t∧µ

0

∂2ijΦ(Y ) d[Zi, Zj]. (27)
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Remark 3.16. For a given processGt on the locally attractive neighbourhood UΓ (Definition 3.7),
the process Φ(Gt) satisfies Φ(Gt) ∈ Γ by definition. In addition, we note that Φ satisfies Φ(x) = x
for all x ∈ Γ so if Gt ∈ Γ almost surely, we also have Gt = Φ(Gt) almost surely. Thus, if a
sequence of stochastic processes converges to a process on the zero-loss manifold, the limiting
process must coincide with its image under map Φ. Thus, Theorem 3.15 can be interpreted as
an application of Itō’s lemma to the limit map Φ. ◁

3.5 Characterization of the limit map

The characterization of the limit behaviour in Theorem 3.15 makes use of the first and second
derivatives of the limit map Φ that was defined in Definition 3.7. In this section we recall the
relevant characterizations of these derivatives that were proved in [LWA21].

For a linear map A we write A† for its Moore-Penrose pseudoinverse. For H ∈ Rk×k, we
define the Lyapunov operator LH : Rk×k → Rk×k by

LH(X) := H⊤X +XH.

For a non-negative symmetric matrix A, we define |A|+ to be its ‘pseudo-determinant’, the
product of its non-zero eigenvalues. With this preliminary considerations, we can refer to the
first and second derivatives of Φ contained in [LWA21, Lem. 4.5 and Cor. 5.1 & 5.2].

Lemma 3.17 (First and second derivatives of Φ). Let L ∈ C3(Rm,R+) and assume that Γ is a
lower-dimensional manifold in Rm of class C1 satisfying Assumption 3.5.

1. For any ξ0 ∈ Γ the limit below exists, and the identities hold:

∇Φ(ξ0) = lim
t→∞

e−t∇2L(ξ0) = PTξ0
Γ. (28)

Here PTξ0
Γ is the orthogonal projection onto Tξ0Γ. We write P = PTξ0

Γ for short, and Q :=

QTξ0
Γ := I − PTξ0

Γ for the corresponding orthogonal projection onto Tξ0Γ⊥.

2. The second derivative ∂2Φ is characterized by

∂2Φ(ξ0)[Σ] = (∇2L)†∂2(∇L)
[
PΣP

]
− P∂2(∇L)

[
L†

∇2L(QΣQ)
]

+ 2P∂2(∇L)
[
(∇2L)†QΣP

]
,

(29)

for any symmetric Σ ∈ Rm×m.

3. For the special case of the identity matrix, Σ = Im, we have

∂2Φ(ξ0)[Im] = (∇2L)†∂2(∇L)
[
P
]
− P∇ log |∇2L|+ . (30)

4. For the special case Σ = ∇2L(ξ0) we have

∂2Φ(ξ0)[∇2L] = −1

2
P∇∆L(ξ0). (31)

4 Main Results
The main theorems of this paper are Theorems 4.1 and 4.7 below, which were already mentioned
in the introduction as Theorems A and B. Both characterize convergence of time-rescaled noisy
gradient systems to a limiting evolution that is a constrained ODE or SDE on Γ.

17



The starting point for both theorems is the dynamics of the parameters wn from (1) or
equivalently (13b), which we rewrite as

= wn
k − αn∇wL(w

n
k ) + αn

(
∇wL̂(w

n
k , 0)−∇wL̂(w

n
k , η

n
k )
)
, (32)

where we used that L̂(w, 0) = L(w) by Definition 3.1. As described in the Introduction, in
order to follow the evolution on Γ we need to speed up the process, by a factor 1/αnσ

2
n in the

non-degenerate case or 1/α2
nσ

2
n in the degenerate case.

4.1 Non-degenerate case

In the non-degenerate case the rescaling by 1/αn/σ
2
n leads us to consider the sequence of

processes

Wn(t) = w̃n

(
t

σ2
n

)
= wn⌊

t

αnσ2
n

⌋, (33)

where w̃ and wn are the solution to (13). Here αn, σn → 0 are chosen in some way to be specified.
Out of the sequences (αn)n∈N, (σn)n∈N we define the sequence of integrators

An(t) := αn

⌊ t

αnσ2
n

⌋
. (34)

For any n the dynamics of Wn can then be written in the form (18) as

dWn(t) = −∇L(Wn(t)) dAn(t) + dZn(t), (35a)

Zn(t) =
∑
s≤t

∆Zn(s) = αn

∑
k≤ t

αnσ2
n

(
∇wL̂(Wn(αnσ

2
nk), 0)−∇wL̂(Wn(αnσ

2
nk), η

n
k )
)
, (35b)

ηnk,i ∼ ρ(σn). (35c)

Theorem 4.1 (Main convergence theorem in the non-degenerate case). Consider a loss function
L and noise-injected loss L̂ in the sense of Definition 3.1 with loss manifold Γ satisfying
Assumption 3.5. Let Wn(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ in the
sense of Definition 3.7. Let ρ satisfy the assumption (9) and let αn, σn → 0 as n→ ∞. Let L̂
and ρ satisfy the compatibility Assumption 3.2 for some p ≥ 1 and assume

sup
k≤1/αnσ2

n

αn|ηnk |p+2 ⇒ 0 , as n→ ∞. (36)

Let Wn be a solution to (35) and the shifted process Yn be defined as in (25) by

Yn(t) := Wn(t)− ϕ
(
Wn(0), An(t)

)
+ Φ(Wn(0)) . (37)

For compact K ⊂ UΓ, define the exit time of K by

µn(K) := inf
{
t ≥ 0 | Yn(t−) /∈ K◦or Yn(t) /∈ K◦} .

Then for any compact set K ⊂ UΓ, the sequence
(
Y

µn(K)
n , µn

)
n∈N is relatively compact in

the Skorokhod topology. Moreover, for any limit point (Y, µ) of
(
Y

µn(K)
n , µn

)
, Y is a continuous

function of time, it satisfies Y (t) ∈ Γ a.s. for any t, and

Y (t) = Φ(W0)−
∫ t∧µ

0

PTY (s)Γ∇wReg(Y (s)) ds, Reg(w) :=
1

2
∆ηL̂(w, 0) , (38)

where PTξΓ is the orthogonal projection onto the tangent space of Γ at the point ξ ∈ Γ. In
addition,

µ ≥ inf
{
t ≥ 0 | Y (t) /∈ K◦}. (39)
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The limiting equation (38) is a deterministic evolution equation for Y , and as long as t < µ it
can be written in differential form as

d

dt
Y (t) = −PTY (t)Γ∇wReg(Y (t)), with Y (t) ∈ Γ for t ≥ 0, and Y (0) = Φ(W0). (40)

It is a constrained gradient flow of the functional Reg, under the constraint that Y ∈ Γ; the
role of the projection PTY Γ is to project the vector field −∇Reg onto the tangent space of Γ
at Y , which is necessary to maintain Y ∈ Γ.

Remark 4.2 (Convergence of the whole sequence). If the functional Reg is Lipschitz continuous
(e.g. if L̂ ∈ C4) then solutions of the constrained gradient flow (38) or (40) are unique up to
time µ. This implies that defining

τ := inf
{
t ≥ 0 | Y (t) /∈ K◦},

we have the Skorokhod convergence of the full sequence up to time τ ,

Y µn(K)∧τ
n ⇒ Y τ .

In addition, the exponential estimate (51) below then implies that for any δ > 0, we get the
convergence W µn(K)∧τ

n |[δ,∞) ⇒ Y τ |[δ,∞) in Skorokhod topology.
Note that we can not exclude the existence of different limit points (Y, µ). Imagine, for

instance, that ∂K contains part of a solution curve of the gradient flow (40); then one can easily
understand how for some n the hitting time µn(K) may be triggered earlier than for others.
The uniqueness argument above, however, shows that as long as Y (t) ∈ K◦, i.e. t < τ , all limit
points Y coincide. ◁

Remark 4.3 (Skorokhod and locally-uniform convergence). Convergence to a continuous process
in Skorokhod topology implies uniform convergence on compact time intervals. Moreover,
convergence in distribution to a deterministic object implies convergence in probability, so for
any ε > 0 we have

lim
n→∞

P
[
sup
0≤s≤t

∣∣Y t∧µn(K)
n (s)− Y t∧µ(K)(s)

∣∣ > ε

]
→ 0.

◁

Remark 4.4 (Convergence of Zn). In the proof we also show that the sequence of noise processes
Zn converges to a deterministic process. This behaviour corresponds to the case in which the
total variation term in Assumption 3.13 dominates the quadratic variation. ◁

Proof of Theorem 4.1. The proof consists of two parts: the first part is an application of
Theorem 3.15, which leads to the characterization (27). In the second step we convert that
equation to a more explicit form, by giving an explicit characterization of the limit process Z.

For both parts it is convenient to collect a number of properties of the process Zn. We set

∆Zn(w, η) := αn

(
∇wL̂(w, 0)−∇wL̂(w, η)

)
, so that ∆Zn(αnσ

2
nk) = ∆Zn(Wn(αnσ

2
nk), η

n
k ) ;

(41a)
∆Fn(w) := Eη∼ρ(σn)[∆Zn(w, η)] ; (41b)

Reg(w) :=
1

2
∆ηL̂(w, 0) . (41c)

Similarly to Zn we assemble the jumps ∆Fn into a process with jumps at times separated
by αnσ

2
n,

Fn(t) :=
∑
s≤t

∆Fn(s) :=
∑

k≤ t

αnσ2
n

∆Fn(Wn(αnσ
2
nk)).
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Lemma 4.5 (Properties of Zn and Fn). Let the compact set K ⊂ Rm and the sequences αn, σn
be as in Theorem 4.1. Let T > 0. Let K̂ = K +B(0, C), where C is the corresponding constant
in Proposition 3.9. Then Wn(t) ∈ K̂ for all t ≤ T ∧ µn(K) and

sup
t≤T∧µn(K)

|∆Zn(t)| ⇒ 0 as n→ ∞ ; (42)

sup
w∈K̂

∣∣∆Fn(w) + αnσ
2
n∇Reg(w)

∣∣ = o(αnσ
2
n) as n→ ∞ ; (43)

Eη∼ρ(σn)

[
sup
w∈K̂

(∆Zn(w, η))
2
]
+ sup

w∈K̂
(∆Fn(w))

2 = o(αnσ
2
n) as n→ ∞ . (44)

We prove this lemma below, and continue in the meantime with the proof of Theorem 4.1.
To apply Theorem 3.15 we verify Assumptions 3.11, 3.12, and 3.13. Note that we fix the set K
for once and for all, and we show that the stopped processes Zµn(K)

n satisfy Assumptions 3.12
and 3.13.

Part 1: Verification of the assumptions of Theorem 3.15.
Verification of Assumption 3.11. The condition (19) on the integrator sequence An(t) =

αn

⌊
t

αnσ2
n

⌋
is verified for σn → 0 and for any δ > 0 by the estimate

inf
0<t≤T

(
An(t+ δ)− An(t)

)
= inf

0<t≤T

(
αn

⌊
t+ δ

αnσ2
n

⌋
− αn

⌊
t

αnσ2
n

⌋)
≥ αn

⌊
δ

αnσ2
n

⌋
→ ∞ .

Likewise, we verify the assumption (20) by using at the same time αn → 0 to deduce

sup
t≥0

(
An(t)− An(t−)

)
= αn → 0 .

Verification of Assumption 3.12. Assumption 3.12 for the stopped process Zµn(K)
n follows

immediately from (42).

Verification of Assumption 3.13. We use the martingale decomposition of Zn =Mn + Fn, with
martingale part

Mn(t) := Zn(t)− Fn(t) =
∑
s≤t

(
∆Zn(s)−∆Fn(s)

)
=

∑
k≤ t

αnσ2
n

[
∆Zn(Wn(αnσ

2
nk, η

n
k )) + ∆Fn(Wn(αnσ

2
nk))

]
.

The expected quadratic variation of Mµn(K)
n is estimated by

E[Mn](t ∧ µn(K)) = E[Zn − Fn](t ∧ µn(K)) ≤ 2E
[
[Zn] + [Fn]

]
(t ∧ µn(K)) (45)

= 2 E
∑

k≤ t∧µn(K)

αnσ2
n

[
∆Zn(Wn(αnσ

2
nk, η

n
k ))

2 +∆Fn(Wn(αnσ
2
nk))

2
]

(44)−→ 0 as n→ ∞ .

This proves the uniform integrability of [Mn](t∧ µn(K)) in Assumption 3.13 (where we can take
τ kn = +∞ for all k and n).

We next show condition (24). From (43) and the regularity of Reg we have

sup
w∈K̂

∣∣∆Fn(w)
∣∣ ≤ sup

w∈K̂

∣∣∆Fn(w) + αnσ
2
n∇Reg(w)

∣∣+ αnσ
2
n sup
w∈K̂

∣∣∇Reg(w)
∣∣ ≲ αnσ

2
n.
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Therefore, since Wn(t) ∈ K̂ as defined in Lemma 4.5,

Vt+γ(F
µn(K)
n )− Vt(F

µn(K)
n ) =

∑
t∧µn(K)

αnσ2
n

<k≤ (t+γ)∧µn(K)

αnσ2
n

∣∣∆Fn(Wn(αnσ
2
nk))

∣∣ ≲ γ , (46)

and the property (24) follows. Finally, the estimate (46) for t = 0 implies that Vt(F
µn(K)
n ) is

almost surely bounded uniformly in n, thus establishing the unform integrability condition on
Vt(F

µn(K)
n ) in Assumption 3.13 (again with τ kn = +∞).

Having verified the three assumptions, we apply Theorem 3.15 and conclude that the triplet
(Y

µn(K)
n , Z

µn(K)
n , µn(K)) converges along a subsequence to a limit that satisfies the equation (27).

We now show that that equation reduces to (38).
Part 2: Characterization of Z and identification of the limiting dynamics.

To recover the limiting dynamics we study the limit of the sequence of processes Zn. Note
that Theorem 3.15 establishes joint convergence of triplets (Y µn

n , Zµn
n , µn) but does not state

any explicit result on the process Wn in (35a) and its limit. Even though Zn is defined through
Wn but not Yn in (37), the initial jump does not play a role for the limiting behaviour of Zn.
Hence, we introduce an intermediate process defined in terms of Yn by

ZY
n (t) :=

∑
k≤ t

αnσ2
n

αn

(
∇wL̂(Yn(αnσ

2
nk), 0)−∇wL̂(Yn(αnσ

2
nk), η

n
k )
)
. (47)

We then estimate

sup
0<t≤T∧µn(K)

∣∣∣∣Zn(t) +

∫ t

0

∇Reg(Yn(s)) ds

∣∣∣∣
≤ sup

0<t≤T∧µn(K)

∣∣Zn(t)− ZY
n (t)

∣∣+ sup
0<t≤T∧µn(K)

∣∣∣∣ZY
n (t) +

∫ t

0

∇Reg(Yn(s)) ds

∣∣∣∣. (48)

We first show that the second term vanishes in probability. Note that Yn is again a pure-jump
process, so that ∫ t

0

∇Reg(Yn(s)) ds = αnσ
2
n

∑
k≤ t

αnσ2
n

∇Reg(Yn(αnσ
2
nk)) .

Writing the corresponding martingale

MY
n (t) = ZY

n (t)− F Y
n (t) =

∑
k≤ t

αnσ2
n

(
∆Zn(Yn(αnσ

2
nk, η

n
k )) + ∆Fn(Yn(αnσ

2
nk))

)
,

we have by the same argument as in (45) that

E[MY,µn(K)
n ](t) −→ 0 as n→ ∞ ,

and by Doob’s inequality that for all t

E
[
sup
0≤s≤t

|MY,µn(K)
n |2(s)

]
≤ 4 E

[
[MY,µn(K)

n ](t)
]
−→ 0.

We then estimate

E sup
0<t≤T∧µn(K)

∣∣∣∣ZY
n (t) +

∫ t

0

∇Reg(Yn(s)) ds

∣∣∣∣
≤ E sup

0<t≤T∧µn(K)

|Mn(t)|+ E sup
0<t≤T∧µn(K)

∣∣∣∣F Y
n (t) +

∫ t

0

∇Reg(Yn(s)) ds

∣∣∣∣
≤ o(1) + E

∑
k≤T∧µn(K)

αnσ2
n

∣∣∣∆Fn(Yn(αnσ
2
nk)) + αnσ

2
n∇Reg(Yn(αnσ

2
nk))

∣∣∣,
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and the right-hand side vanishes by (43).
For the first term in the splitting (48), we get

∣∣Zn(t)− ZY
n (t)

∣∣ = αn

∣∣∣∣ ∑
k≤ t

αnσ2
n

(
∇wL̂(Wn(αnσ

2
nk), 0)−∇wL̂(Wn(αnσ

2
nk), η

n
k )
)

−
(
∇wL̂(Yn(αnσ

2
nk), 0)−∇wL̂(Yn(αnσ

2
nk), η

n
k )
)∣∣∣∣

≤ αn

∣∣∣∣ ∑
k≤ t

αnσ2
n

(
∇w∇ηL̂(Wn(αnσ

2
nk), 0)−∇w∇ηL̂(Yn(αnσ

2
nk), 0)

)
ηnk

∣∣∣∣ (49)

+ αn

∣∣∣∣ ∑
k≤ t

αnσ2
n

d∑
i,j=1

gi,j(W
n
k , Y

n
k , η

n
k )η

n
k,iη

n
k,j

∣∣∣∣ , (50)

where we use Taylor’s theorem to write the remainder term as

gij(W
n
k , Y

n
k , η

n
k ) :=

∫ 1

0

(1− r)∂ηiηj
(
∇wL̂(Wn(αnσ

2
nk), rη

n
k )−∇wL̂(Yn(αnσ

2
nk), rη

n
k )
)
dr .

Recall that the definition of Yn in (37) implies

Wn(t)− Yn(t) = ϕ (Wn(0), An(t))− Φ
(
Wn(0)

)
.

Then for the first term (49) we have

αn

∑
k≤ t

αnσ2
n

(
∇w∇ηL̂(Wn(αnσ

2
nk), 0)−∇w∇ηL̂(Yn(αnσ

2
nk), 0)

)
ηnk

=
√
αn

∫ t

0

(
∇w∇ηL̂(Wn(s), 0)−∇w∇ηL̂(Yn(s), 0)

)
dhn.

Here hn is defined as
hn(t) :=

√
αn

∑
k≤ t

αnσ2
n

ηnk

and hn converges to a standard Brownian motion by the Functional Central Limit Theorem [Bil68,
Th. 8.2]. Since ∇w∇ηL̂(w, 0) is bounded on K̂, the characterization [Kat91, Prop. 4.4] then
implies that the term (49) converges to zero in probability.

For the second term (50) we use Assumption 3.2 and obtain

∣∣gij(W n
k , Y

n
k , η

n
k )
∣∣ = ∣∣∣∣∫ 1

0

(1− r)∂ηiηj
(
∇wL̂(Wn(αnσ

2
nk), rη

n
k )−∇wL̂(Yn(αnσ

2
nk), rη

n
k )
)
dr

∣∣∣∣
≤ sup

0≤r≤1

∣∣∣∇2
η

(
∇wL̂(Wn(αnσ

2
nk), rη

n
k )−∇wL̂(Yn(αnσ

2
nk), rη

n
k )
)∣∣∣

≲
(
1 + |ηnk |p

)∣∣Wn(αnσ
2
nk)− Yn(αnσ

2
nk)
∣∣.

By applying this bound to the residual in estimate (50), we obtain

αn

∣∣∣∣ ∑
k≤ t

αnσ2
n

d∑
i,j=1

gij(W
n
k , Y

n
k , η

n
k )η

n
k,iη

n
k,j

∣∣∣∣ ≲ αn

∑
k≤ t

αnσ2
n

(
|ηnk |2 + |ηnk |p+2

)∣∣Wn(αnσ
2
nk)− Yn(αnσ

2
nk)
∣∣.
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By an application of Proposition 3.9, we have the exponential convergence

|Wn(t)− Yn(t)| =
∣∣ϕ(Wn(0), An(t)

)
− Φ

(
Wn(0)

)∣∣ ≲ e−βAn(t) . (51)

Hence, we conclude

E
[
αn

∑
k≤ t

αnσ2
n

(
|ηnk |2 + |ηnk |p+2

)
e−βAn(t)

]
= αn

∑
k≤ t

αnσ2
n

e−βAn(t)E
[
|ηnk |2 + |ηnk |p+2

]
≤
(
σ2
n +Mp+2(σn)

) ∫ t

0

e−βAn(t) dAn(t) −→ 0 as n→ ∞ ,

because Mp+2(σn) = O(σ2
n) by Assumption 3.2 and σn → 0. So we conclude

(50) ≲ αn

∑
k≤ t

αnσ2
n

(
|ηnk |2 + |ηnk |p+2

)∣∣Wn(αnσ
2
nk)− Yn(αnσ

2
nk)
∣∣⇒ 0.

Hence, we have shown that

Zn ⇒ Z, where Z(t) := −
∫ t

0

∇Reg(Y (s)) ds.

Note that the limit Z is a continuous process of finite variation and therefore [Z,Z] = 0.
Combining this with (28) we find that (27) reduces to (38). Since the right-hand side of (38) is
continuous in t for any Y , the process Y is a continuous function of t. By the definition (37) we
have Yn(0) = Φ(Wn(0)) ⇒ Φ(W0), implying that Y (0) = Φ(W0).

This concludes the proof of Theorem 4.1.

We still owe the reader the proof of Lemma 4.5.

Proof of Lemma 4.5. To begin with, note that the stopping time µn(K) restricts Yn(t ∧ µn(K))
to the compact set K, which combined with Proposition 3.9 guarantees that Wn(t ∧ µn(K)) is
restricted to the larger but still compact set K̂. We first prove (42). We use Taylor expansion
in η to obtain

∇wL̂(w, 0)−∇wL̂(w, η) = −∇w∂ηL̂(w, 0)[η]−
1

2
∇w∂

2
ηL̂(w, 0)[η, η]−Rn(w, η) , (52)

where the error term Rn is given by

Rn(w, η) :=

∫ 1

0

(1− ξ)
(
∂2η∇wL̂(w, ξη)[η, η]− ∂2η∇wL̂(w, 0)[η, η]

)
dξ . (53)

Using the compactness of K̂ and Assumption 3.2, we then bound

sup
0<t≤T∧µn(K)

|∆Zn(t)| ≤ sup
k≤T∧µn(K)

αnσ2
n

αn|∇w∂ηL̂(Wn(αnσ
2
nk), 0)[η

n
k ]|

+ sup
k≤T∧µn(K)

αnσ2
n

αn

∣∣∣∣12∇w∂
2
ηL̂(Wn(αnσ

2
nk), 0)[η

n
k , η

n
k ]

∣∣∣∣
+ sup

k≤T∧µn(K)

αnσ2
n

αn

∣∣Rn(Wn(αnσ
2
nk), η

n
k )
∣∣

≲ sup
k≤T∧µn(K)

αnσ2
n

αn|ηnk |+ sup
k≤T∧µn(K)

αnσ2
n

αn|ηnk |2 + sup
k≤T∧µn(K)

αnσ2
n

αn

(
|ηnk |3 + |ηnk |p+2

)
. (54)
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Thus, by the assumption (36), we conclude with the estimate

sup
0<t≤T∧µn(K)

|∆Zn(t)| ≲ αn

{
1 + sup

k≤T∧µn(K)

αnσ2
n

|ηnk |p+2

}
⇒ 0.

We next prove (43). First note that for any w ∈ K̂

Eη

∣∣Rn(w, η)
∣∣ (11)
≲ Eη C2

∫ 1

0

(1− ξ)
(
|η|3+ |η|p+2

)
dξ =

1

2
C2

(
M3+Mp+2

) (12)
= o(σ2

n) as n→ ∞ .

(55)
We then write, using the independence of the coordinates of η,∣∣∆Fn(w) + αnσ

2
n∇Reg(w)

∣∣ = αn

∣∣∣∣Eη

[
∇wL̂(w, 0)−∇wL̂(w, η)

]
+

1

2
σ2
n∇w∆ηL̂(w, 0)

∣∣∣∣
= αn

∣∣∣∣−1

2
Eη

[
∇w∂

2
ηL̂(w, 0)[η, η]

]
+

1

2
σ2
n∇w∆ηL̂(w, 0)︸ ︷︷ ︸

=0

−Eη Rn(w, η)

∣∣∣∣
= o(αnσ

2
n) as n→ ∞.

Since the estimates are independent of w ∈ K̂, this proves (43).
We finally show (44). Since ∇Reg is continuous on K̂, it is bounded, and therefore∣∣∆Fn(w)

∣∣2 ≤ 2
∣∣∆Fn(w) + αnσ

2
n∇Reg(w)

∣∣2 + 2α2
nσ

4
n

∣∣∇Reg(w)
∣∣2 (43)

= o(αnσ
2
n) .

For ∆Zn we use a similar calculation as in (54) above and estimate

E sup
w∈K

∣∣∆Zn(w, η)
∣∣2 ≲ α2

n E
[
|η|2+|η|4+|η|2p+4

]
= α2

n(M2+M4+M2p+4) = o(αnσ
2
n) as n→ ∞ .

This concludes the proof of Lemma 4.5.

4.2 Degenerate case

As discussed in the Introduction, for some forms of noisy gradient descent the limiting dynamics
of Wn characterized by Theorem 4.1 is trivial. Examples of this are label noise, minibatching,
and stochastic gradient Langevin descent; we discuss these in more detail in Section 5. In this
section we present the second main convergence result, in the more strongly accelerated regime,
which applies to functions L̂ for which the evolution (40) is trivial.

Label noise does not only have a trivial limiting dynamics according to Theorem 4.1, but it
happens to have an even more specific structure which allows to prove convergence under milder
assumptions. Namely, label noise has a loss function that is polynomial in η, and this both
significantly simplifies the calculations and does not require the variance of the noise to vanish.
It is enough to consider the limit of infinite-small step size αn → 0 with σn either constant or
converging to some σ0 ≥ 0. The same structure is shared by a number of other degenerate
functions L̂ that we study in Section 5.

To characterize this structure we make a more specific assumption on the noise-injected loss
function L̂(w, η) that augments Definition 3.1.

Definition 4.6 (Degenerate quadratic noise-injected loss). For a given loss function L ∈
C3
(
Rm, [0,∞)

)
, a noise-injected loss function L̂ ∈ C3

(
Rm+d, [0,∞)

)
in the sense of Definition 3.1

is called degenerate quadratic provided that

L̂(w, η) = L(w) + f(w) · η + 1
2
H(w) : (η ⊗ η) + g(η) (56)
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for some f ∈ C3(Rm,Rd) and a field of quadratic forms H ∈ C3(Rm,Rd×d
sym) with zero diagonal

entries Hii(w) = 0 for all w ∈ Rm, where H : (η ⊗ η) =
∑

i,j Hijηiηj.
Moreover, g ∈ C3(Rd,R) with g(0) = 0.

For any L̂ of the form given in Definition 4.6 we obtain ∇w∆ηL̂(w, η) = 0, indeed leading to
trivial dynamics on the time scale αnσ

2
n. We define the corresponding sequence of integrators

Ân(t) = αn⌊ t
α2
nσ

2
n
⌋ (note the difference with (34) in the power of αn in the denominator). The

corresponding accelerated process of noisy gradient descent (13) are then of the form

Ŵn(t) = wn⌊
t

α2
nσ2

n

⌋ . (57a)

Due to the specific structure of the noise-injected loss from Definition 4.6, we can bring the
process into the form (18) (compare also with (35) in the first case), and obtain a simplified
expression for the noise process Z̃n given by

dŴn = −∇L(Ŵn) dÂn + dẐn, (57b)

Ẑn(t) =
∑
s≤t

∆Ẑn(s) = αn

∑
k≤ t

α2
nσ2

n

(
∇wf(Ŵn(α

2
nσ

2
nk)) · ηnk + 1

2
∇wH(Ŵn(α

2
nσ

2
nk))[η

n
k , η

n
k ]
)
, (57c)

ηnk,i ∼ ρ(σ0). (57d)

We formulate the analogue of Theorem 4.1 for the rescaled process defined by (57).

Theorem 4.7 (Main convergence theorem in the degenerate case). Assume that L, L̂ are C3, L̂
is of the form (56), and L satisfies Assumption 3.5. Let Ŵn(0) ⇒ Ŵ (0) ∈ UΓ for some locally
attractive neighbourhood UΓ of Γ. Fix a sequence (σn > 0)n∈N such that σn → σ0 ≥ 0 as n→ 0.
Let (ρn ∈ P(Rd))n∈N satisfy Eη∼ρn |η|2 = σ2

n, and let αn → 0 such that

αn sup
k≤1/α2

nσ
2
n

|ηnk |2 ⇒ 0 for i.i.d. ηnk,i ∼ ρn as n→ ∞ . (58)

Let Ŵn be a solution of (57) and define

Ŷn(t) = Ŵn(t)− ϕ
(
Ŵn(0), Ân(t)

)
+ Φ

(
Ŵn(0)

)
.

For compact K ⊂ UΓ, define the stopping time

µ̂n(K) = inf
{
t ≥ 0 | Ŷn(t−) /∈ K◦or Ŷn(t) /∈ K◦

}
.

Then for any K ⊂ UΓ the sequence (Ŷ
µ̂n(K)
n , µ̂n) is relatively compact in Skorokhod topology.

Moreover, any limit point (Ŷ , µ̂) of (Ŷn, µ̂n) satisfies Y (t) ∈ Γ a.s. for any t and solves

Ŷ (t) = Ŷ (0)+

∫ t∧µ̂

0

PTŶ (s)Γ

(
∇wf(Ŷ (s)) · dbs + σ0∇wH(Ŷ (s)) : dBs

)
+
1

2

∫ t∧µ̂

0

∂2Φ(Ŷ )[Σ(Ŷ (s))] ds ,

(59)
where (bs)s≥0 is a d-dimensional Brownian motion and Bs,k,ℓ for 1 ≤ k < ℓ ≤ d are Brownian
motions with Bs,ℓ,k := Bs,k,ℓ and

Σ(w)ij := ∂wi
f(w) · ∂wj

f(w) + σ2
0∂wi

H(w) : ∂wj
H(w) , for 1 ≤ i, j,≤ d .

Here PTyΓ is the orthogonal projection onto the tangent space TyΓ of Γ at y. In addition,

µ̂ ≥ inf
{
t ≥ 0 | Ŷ (t) /∈ K◦} almost surely. (60)
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Remark 4.8 (Convergence of the whole sequence). Similarly to the remark after Theorem 4.1,
whenever the weak solution of (59) is unique, the usual argument implies that the whole sequence
Ŷ

µn(K)
n converges up to the time τ ,

τ := inf
{
t ≥ 0 | Ŷ (t) /∈ K◦}.

A sufficient condition for such weak uniqueness is local Lipschitz continuity of the drift and
mobility functions in (59) (see e.g. [Hsu02, Th. 1.1.10]). ◁

Remark 4.9 (Implicit Itō correction terms). Since (59) is a stochastic differential equation
in Itō form, the noise term should be accompanied by a corresponding drift term in order to
preserve the condition Ŷ (t) ∈ Γ. Li, Wang, and Arora [LWA21] discuss this aspect in some
detail, and show how the final integral contains, as part of this integral, the necessary ‘Itō
correction terms’. ◁

Remark 4.10 (Comparison with [LWA21]). At a high level of abstraction, Theorem 4.7 above
is similar to [LWA21, Th. 4.6]. However, in Theorem 4.7 the conditions on L̂ and on the noise
are much more general, opening the door to e.g. the applications to minibatching and stochastic
gradient Langevin descent in Section 5. ◁

Proof. As in the proof for the general case in Theorem 4.1, we begin by checking the assumptions
of Theorem 3.15.

Verification of Assumption 3.11. By definition of Ân we get for αn → 0 and bounded σn for any
δ > 0

inf
0<t≤T

(Ân(t+ δ)− Ân(t)) = inf
0<t≤T

(
αn

⌊
t+ δ

α2
nσ

2
n

⌋
− αn

⌊
t

α2
nσ

2
n

⌋)
≥ αn

⌊
δ

α2
nσ

2
n

⌋
→ ∞.

At the same time
sup
t≥0

Ân(t)− Ân(t−) = αn → 0 for αn → 0 .

Verification of Assumption 3.12. Since L̂ is quadratic in η, we get from assumption (58) the
estimate

sup
0<t≤T∧µ̂n(K)

|∆Ẑn| = αn

(
1 + sup

0<t≤T∧µ̂n(K)

|ηnk |2
)

⇒ 0.

Verification of Assumption 3.13. Note that due to the structure of L̂ the noise process is a
martingale because ∇wHi,i = 0 and has a simplified form:

∆Ẑn = αn∇wf(Ŵ
µ̂n(K)
n (α2

nσ
2
nk))η

n
k + 1

2
αn∇wH

(
Ŵ µ̂n(K)

n (α2
nσ

2
nk)
)
[ηnk , η

n
k ]

We verify that
[
Ẑ

µ̂n(K)
n

]
(t) is uniformly integrable for any t ∈ R+ by estimating

[
Ẑ µ̂n(K)

n

]
(t) ≤ 2α2

n

∑
k≤ t

α2
nσ2

n

sup
w∈K

|∇wf(w))|2
d∑

i=1

(ηnk,i)
2 + α2

n

∑
k≤ t

α2
nσ2

n

sup
w∈K

|∇wH(w)|2
d∑

i,j=1
i ̸=j

(ηnk,iη
n
k,j)

2.

By assumption Var(ηnk,i) = σ2
n and as E ηnk,i = 0 also Var(ηnk,iη

n
k,j) = Var(ηnk,i)Var(η

n
k,j) = σ4

n, so
by the Functional Central Limit Theorem (see e.g. [Bil68, Th. 8.2]) we have for i = 1, . . . , d and
1 ≤ ℓ ̸= m ≤ d the convergence∑

k≤ t

α2
nσ2

n

αnη
n
k,i =: bnt,i ⇒ bt,i, and

∑
k≤ t

α2
nσ2

n

αnη
n
k,ℓη

n
k,m =: Bn

t,ℓ,m ⇒ σ0Bt,ℓ,m, as n→ ∞ , (61)
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where bt,i for i = 1, . . . , d and Bt,ℓ,m for 1 ≤ ℓ ̸= m ≤ d are standard Brownian motions. We
have the symmetry Bt,ℓ,m = Bt,m,ℓ. We note that bnt,i for 1 ≤ i ≤ d and Bn

t,ℓ,m for 1 ≤ ℓ < m ≤ d
are uncorrelated for any n. Hence, so are the limits and as normal random variables, we find
that bt,i for i = 1, . . . , d and Bt,ℓ,m for 1 ≤ ℓ < m ≤ d are independent standard Brownian
motions. We then combine [Kat91, Proposition 4.3] and [Kat91, Proposition 4.4] and conclude
that Ẑ µ̂n(K)

n satisfies Assumption 3.13.
We then apply Theorem 3.15 and obtain the convergence of Ŷn to a limiting process Ŷ that

follows the limiting evolution (27).

Identification of the limiting dynamics. For studying the limiting dynamic of Ẑn, we introduce
the intermediate process

ẐY
n (t) = αn

∑
k≤ t

α2
nσ2

n

(
∇wf(Ŷn(s)) · ηnk + 1

2
∇wH(Ŷn(s))[η

n
k , η

n
k ]
)
,

with which we obtain the estimate

sup
0<t≤T

∣∣∣∣Ẑn(t)−
∫ t

0

∇wf(Ŷ (s)) · dbs − σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣ (62)

≤ sup
0<t≤T

∣∣∣Ẑn(t)− ẐY
n (t)

∣∣∣+ sup
0<t≤T

∣∣∣∣ẐY
n (t)−

∫ t

0

∇wf(Ŷ (s)) · dbs − σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣,
where (bs,i)s≥0, (Bs,k,l) for i = 1, . . . , d and 1 ≤ k < l ≤ d are independent Brownian motions
and we set Bs,l,k := Bs,k,l. For the first term analogously to the main theorem we get∣∣∣Ẑn(t)− ẐY

n (t)
∣∣∣ ≤ αn

∣∣∣∣∣ ∑
k≤ t

α2
nσ2

n

(
∇wf(Ŵn(s))−∇wf(Ŷn(s))

)
· ηnk

∣∣∣∣∣ (63)

+
1

2
αn

∣∣∣∣∣ ∑
k≤ t

α2
nσ2

n

(
∇wH(Ŵn(s))−∇wH(Ŷn(s))

)
[ηnk , η

n
k ]

∣∣∣∣∣. (64)

Recall from Proposition 3.9 that

Ŵn(t)− Ŷn(t) = ϕ
(
Ŵn(0), An(t)

)
− Φ

(
Ŵn(0)

)
= u(t)e−βAn(t)

for some u ∈ Cb([0, T ]). Note that both terms are martingales, so E
(
(Xn

T )
2
)
→ 0 implies

supt≤T |Xn
t | ⇒ 0. Then by compactness of K and regularity of L̂ similarly to the proof of

Theorem 4.1, we conclude that

E
[
αn

∣∣∣∣ ∑
k≤ t

α2
nσ2

n

(
∇wf(Ŵn(s))−∇wf(Ŷn(s))

)
· ηnk
∣∣∣∣]2

≲ α2
n

∑
k≤ t

σ2
n

e−2βAn(α2
nσ

2
nk) E|ηnk |2 = αnσ

2
n

∫ t

0

e−2βAn(s) dAn(s)

=
αnσ

2
n

β
(1− e−βAn(t)) → 0 as n→ ∞ .

Hence, we obtain for term (63) the convergence

sup
0≤t≤T

αn

∣∣∣∣ ∑
k≤ t

α2
nσ2

n

(
∇wf(Ŵn(s))−∇wf(Ŷn(s))

)
ηnk

∣∣∣∣⇒ 0 .
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Analogous bound holds for the second term (64).
We split the second component in (62) into the two contributions

sup
0<t≤T

∣∣∣∣ẐY
n (t)−

∫ t

0

∇wf(Ŷ (s)) · dbs − σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣ (65)

≤ sup
0<t≤T

∣∣∣∣∣αn

∑
k≤ t

α2
nσ2

n

∇wf(Ŷn(s)) · ηnk −
∫ t

0

∇wf(Ŷ (s)) · dbs

∣∣∣∣∣
+ sup

0<t≤T

∣∣∣∣∣αn

∑
k≤ t

α2
nσ2

n

∇wH(Ŷn(s))[η
n
k , η

n
k ]− σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣∣.
By using the processes (bnt )t≥0 and Bn

t )t≥0 from (61), we decompose the error terms further into

sup
0<t≤T

∣∣∣∣ẐY
n (t)−

∫ t

0

∇wf(Ŷ (s)) · dbs − σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣ (66)

≤ sup
0<t≤T

∣∣∣∣∫ t

0

∇wf(Ŷ (s)) dbns −
∫ t

0

∇wf(Ŷ (s)) · dbs
∣∣∣∣ (67)

+ sup
0<t≤T

∣∣∣∣∫ t

0

∇wf(Ŷn(s)) · dbns −
∫ t

0

∇wf(Ŷ (s)) · dbns
∣∣∣∣ (68)

+ sup
0<t≤T

∣∣∣∣∫ t

0

∇wH(Ŷ (s)) : dBn
s − σ0

∫ t

0

∇wH(Ŷ (s)) : dBs

∣∣∣∣ (69)

+ sup
0<t≤T

∣∣∣∣∫ t

0

∇wH(Ŷn(s)) : dB
n
s −

∫ t

0

∇wH(Ŷ (s)) : dBn
s

∣∣∣∣ . (70)

We recall the convergence from (61) and observe that all the integrals are relatively compact by
[Kat91, Proposition 4.4]. By noting that Ŷ (s), Ŷn(s) ∈ K with K compact, by using assumption
on the regularity of L̂, by [KP91, Theorem 2.2] we conclude that the terms (67) and (69)
converge ⇒ 0. The terms (68) and (70) convergence by the continuous mapping theorem

∇wf(Ŷn(s)) ⇒ ∇wf(Ŷ (s)) and ∇wHf (Ŷn(s)) ⇒ ∇wHf (Ŷ (s)) .

Hence, by an application of [KP91, Theorem 2.2], we get the convergence

sup
0<t≤T

∣∣∣∣∫ t

0

∇wf(Ŷn(s)) · dbns −
∫ t

0

∇wf(Ŷ (s)) · dbns
∣∣∣∣

≤ sup
0<t≤T

∣∣∣∣∫ t

0

∇wf(Ŷn(s)) · dbns −
∫ t

0

∇wf(Ŷ (s)) · dbs
∣∣∣∣

+ sup
0<t≤T

∣∣∣∣∫ t

0

∇wf(Ŷ (s)) · dbns −
∫ t

0

∇wf(Ŷ (s)) · dbs
∣∣∣∣⇒ 0.

And similarly (70) ⇒ 0. Finally note that

d[Ẑi, Ẑj]s = ∂wi
f(Ŷ (s)) · ∂wj

f(Ŷ (s)) + σ0∇wi
Hf (Ŷ (s)) : σ0∇wj

Hf (Ŷ (s)) = Σ(Y (s))ij ds .

Hence, the stated result in Theorem 4.7 follows by applying Theorem 3.15.

5 Examples
In this section we apply Theorems 4.1 and 4.7 to a number of examples. Table 1 gives an
overview.
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Type L̂(w, η) Reg(w) Rate Section

Independent of the structure of L, with η having the same dimension as w:

Gaussian D-Connect L(w⊙(1+η)) 1
2∂

2L(w)[w,w] αnσ
2
n 5.1.1

Bernoulli D-Connect L(w⊙(1+η)) (80) αnσ
2
n 5.1.1

SGLD L(w) + 1
2w

⊤η 1
2 log |∇

2L|+ α2
nσ

2
n 5.1.2

Anti-PGD L(w + η) 1
2∆wL(w) αnσ

2
n 5.1.3

Variables η indexed by i, the index of the samples:

Mini-batching 1
N

∑N
i=1(1+ηi)ℓ(w, xi, yi) 0 ≪ α2

nσ
2
n 5.2.1

Label noise 1
N

∑N
i=1(fw(xi)− yi − ηi)

2 1
2N∆L(w) α2

nσ
2
n 5.2.2

Classical Dropout, with mean-square loss:

OLM-DO fdrop
w (x, η) = ⟨u⊙2−v⊙2, x⊙(1+η)⟩ 1

2N

∑
i,j(u

2
j − v2j )

2x2ij αnσ
2
n 5.3.1

ShNN-DO fdrop
w (x, η) =

∑
j aj(1+ηj)s(b

⊤
j x)

1
N

∑
i,j a

2
js(b

⊤
j xi)

2 αnσ
2
n 5.3.2

DeepNN-DO (95) 1
2∆ηL̂(w, 0) αnσ

2
n 5.3.2

Table 1: List of examples discussed in Section 5. The column ‘Rate’ indicates the rate at which
iterations should be mapped to continuous time in order to follow the evolution; for instance,
‘αnσ

2
n’ means that step k is mapped to time tk := αnσ

2
nk. Therefore smaller numbers mean

slower evolution, requiring stronger speedup to see non-trivial evolution. See the referenced
sections for details.

In each of the examples below we apply either Theorem 4.1 or Theorem 4.7 to obtain
a convergence result. Because the statements of those theorems involve a specific type of
convergence, which deals with the initial jump and requires a proper speedup and restriction to
a compact set, we introduce the notion of Katzenberger convergence to simplify the formulation
of the results below.

As in Section 4, consider a sequence of stochastic processes (Wn)n∈N and a sequence of
integrators (An)n∈N, and let Yn be the process after the jump correction

Yn(t) := Wn(t)− ϕ
(
Wn(0), An(t)

)
+ Φ(Wn(0)) . (71)

For a compact set K we again set

µn(K) := inf
{
t ≥ 0 | Yn(t−) /∈ K◦ or Yn(t) /∈ K◦}.

Let Y be a deterministic or stochastic process with continuous sample paths and set

τ := inf
{
t ≥ 0 | Y (t) /∈ K◦}.

Theorems 4.1 and 4.7 provide convergence in distribution; by the Skorokhod representation
theorem, we can assume without loss of generality that the processes Wn, Yn, and Y are defined
on the same probability space.

Definition 5.1 (Katzenberger convergence). We say that Wn converges in the sense of Katzen-
berger in U to Y if for every compact subset K ⊂ U we have

Y µn(K)∧τ
n ⇒ Y τ and for all δ > 0, W µn(K)∧τ

n

∣∣
[δ,∞)

⇒ Y τ
∣∣
[δ,∞)

.

Here the convergences are in Skorokhod topology.

In Section 4 we discussed that Theorems 4.1 and 4.7 provide such convergence when the
limiting process Y has a uniquely defined deterministic or stochastic evolution up to time τ .
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5.1 Methods independent of L: DropConnect and SGLD

5.1.1 DropConnect

Dropout is a regularization technique originally introduced for neural networks in [WWL13,
SHK+14]. The idea is to balance the importance of all the neurons by temporarily disabling
some of them at every iteration of the optimization. In this section we study the specific case of
DropConnect [WZZ+13], which is more general than other types of Dropout, in the sense that
it can be applied to ‘any’ loss function L, not just those generated by neural networks.

In DropConnect, given a loss function L, we construct the noise-injected loss L̂ by

L̂(w, η) := L(w ⊙ (1 + η)) . (72)

In the most common form the filters η are chosen to be i.i.d. Bernoulli random variables,

ηi =

−1 w.p. p ,
p

1− p
w.p. 1− p .

(73)

Note that Eηi = 0 and σ2 := Var(ηi) = p/(1− p) → 0 as p → 0. When ηi = −1, the
corresponding parameter is zeroed, or dropped out, which explains the name. Note that the
limit of small σ2 is the limit in which p ↓ 0, i.e. in which vanishingly few parameters are dropped.

As an alternative for Bernoulli DropConnect we also consider Gaussian DropConnect, in
which the ηi are i.i.d. normal random variables

ηi ∼ N (0, σ2). (74)

Gaussian DropConnect. The case of Gaussian noise variables η fits directly into the structure
of Theorem 4.1, and we now state the corresponding result.

Corollary 5.2 (Convergence for Gaussian DropConnect). Let L ∈ C4(Rm) satisfy Assump-
tion 3.5, and assume that L has at most polynomial growth. Define L̂ by (72), and let Wn be the
process characterized in (35), where the ηk,i are i.i.d. Gaussian variables as in (74). Assume
that Wn(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Finally, let αn and
σn be arbitrary sequences converging to zero.

Then for any compact set K ⊂ UΓ, the process Wn converges to Y in the Katzenberger sense
(see Definition 5.1), where Y solves the constrained gradient-flow equation

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0),

with

Reg(w) :=
1

2
∆ηL̂(w, 0) =

1

2
∂2L(w)[w,w] =

1

2

m∑
j=1

w2
j∂

2
wjwj

L(w) . (75)

Proof of Corollary 5.2. The result follows fairly directly from Theorem 4.1. If L grows at most
polynomially, then L̂ and the Gaussian random variables satisfy Assumption 3.2 for some p,
and by Lemma B.1 the condition (36) also is satisfied. The assertion of Corollary 5.2 is then a
translation of the assertion of Theorem 4.1.

Remark 5.3 (Empirical loss). If L is an empirical loss of the form

L(w) :=
1

N

N∑
i=1

(
f(w, xi)− yi

)2
, (76)
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then on Γ the function Reg can be written as

Reg(w) =
1

N

N∑
i=1

∣∣w ⊙∇wf(w, xi)
∣∣2 . (77)

◁

Remark 5.4 (Connection with generalisation). The form of the function Reg in (75) is very
similar to the ‘relative flatness’ introduced by Petzka et al. [PKA+21], and for which they prove
rigorous generalisation benefits.

Petzka and co-authors consider functions f of the form f(w, x) = g(wϕ(x)), where w is
organized as a matrix, with w ∈ Rm1×m2 and x ∈ Rm2 . Taking ϕ(x) = x to connect with this
paper, the ‘relative flatness’ [PKA+21, Def. 3] of the empirical loss of such an f can be written
as

2

N

N∑
i=1

m1∑
s,s′=1

m2∑
j,j′=1

wsjws′j∂wsj′
f(w, xi)∂ws′j′

f(w, xi) (78)

To compare, we can write the expression (77) in a very similar form,

1

N

N∑
i=1

m1∑
s,s′=1

m2∑
j,j′=1

wsjws′j∂wsj′
f(w, xi)∂ws′j′

f(w, xi) δss′δjj′ . (79)

Note how (79) is a ‘diagonal’ form of (78).
The two expressions (79) and (78) share a number of properties that are consistent with

good generalisation behaviour. To start with, as also remarked in [PKA+21], both are invariant
under coordinate-wise rescaling of the parameters w, because each derivative is accompanied by
a multiplication with the corresponding coordinate of w. They also scale quadratically in f , just
as the loss function (76), and if one considers f to be a neural network of depth D (see below)
then the scaling in terms of w is of the form w2D, both for the loss and for the expressions (79)
and (78). These scaling properties are necessary for a functional to be admissible as a measure
of generalisation ability. ◁

Bernoulli DropConnect. The case of Bernoulli-distributed η as in (73) is not covered by
Theorem 4.1, because all higher moments Mk for k ≥ 3 scale as σ2, and therefore violate the
condition (12a). In general, we have C2 > 0 in Assumption 3.2, and therefore they also do not
satisfy condition (12b), except for the special case of shallow neural networks—see Section 5.3.2
below. As it turns out, however, the proof of Theorem 4.1 does apply to this situation, provided
we prove the three statements of Lemma 4.5 for this particular case. This leads to the following
proposition.

Proposition 5.5 (Convergence for Bernoulli DropConnect). Let L ∈ C4(Rm) satisfy Assump-
tion 3.5. Define L̂ by (72), and let Wn be the process characterized in (35), where the ηk,i
are i.i.d. Bernoulli random variables as in (73), with dropout probability pn. Assume that
Wn(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Finally, let αn → 0 and
σ2
n := pn/(1− pn) → 0.

Then for any compact set K ⊂ UΓ, the process Wn converges to Y in the Katzenberger sense
(see Definition 5.1), where Y solves the constrained gradient-flow equation

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0),
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with

Reg(w) := ∂L(w)[w] +
m∑
j=1

(
L(w ⊙ e

j)− L(w)
)
. (80)

Here e

j is the inverted unit vector in Rm,

e

j := (1, . . . , 1, 0 ,
jth position

1, . . . , 1) = 1− ej.

Remark 5.6 (Structure of the Bernoulli DropConnect regularizer). The functional form of Reg
in (80) can be interpreted as a version of the Gaussian regularizer (75) with the local derivative
replaced by a non-local one. Indeed, writing e

j = 1− ej we Taylor-develop L as

L(w ⊙ e

j) = L(w ⊙ (1− ej))

= L(w)− ∂L(w)[ej ⊙ w] +
1

2
∂2L(w)[ej ⊙ w, ej ⊙ w] +O(|ej ⊙ w|3).

If we pretend for the moment that ej is ‘small’, and discard the final term, then
m∑
j=1

(
L(w ⊙ e

j)− L(w)
)
≈

m∑
j=1

[
−∂L(w)[ej ⊙ w] +

1

2
∂2L(w)[ej ⊙ w, ej ⊙ w]

]
= −∂L(w)[w] + 1

2

m∑
j=1

w2
j∂

2
wjwj

L(w).

In this approximation, therefore, the Bernoulli regularizer (80) reduces to the Gaussian regular-
izer (75). ◁

Proof. As described above, we re-prove the assertions of Lemma 4.5, i.e. properties (42–44), for
this case. Given those assertions the proof of Theorem 4.1 applies to this situation.

We first estimate ∆Zn(w, η) = αn∇L(w)−αn∇w

(
L(w⊙ (1+ η))

)
for this setup. Let K̃ ⊃ K̂

be a compact set that is large enough to contain w(1 + η) for all η and all w ∈ K̂. Using the
boundedness of derivatives of L̂ on K̃, we then have for all η and all w ∈ K̂

|∆Zn(w, η)| ≤ αn

(
1 +

1

1− pn

)
∥∇L∥L∞(K̃) = O(αn),

which proves (42). To prove the estimate on |∆Zn|2 in (44) we note that on the event E that
all coordinates of η are non-zero, which has probability (1 − pn)

m = 1 − O(σ2
n), we have the

additional estimate

sup
w∈K

|∆Zn(w, η)| ≤ αn∥∇2L∥L∞(K̃)

pn
1− pn︸ ︷︷ ︸

σ2
n

sup
w∈K

|w| = O(αnσ
2
n).

It follows that for all w ∈ K̂,

Eη sup
w∈K̂

|∆Zn(w, η)|2 ≤ O(α2
nσ

4
n)P(E) +O(α2

n)P(Ec) = o(αnσ
2
n),

implying the first estimate in (44).
We next estimate ∆Fn as defined in (41b). The expectation over the set of independent

Bernoulli random variables can be expressed in terms of {0, 1}m-valued outcomes b in the form

∆Fn(w) = Eη ∆Zn(w, η) = αn∇L(w)− αn Eη ∇w

(
L(w ⊙ (1 + η))

)
= αn∇L(w)− αn

∑
b∈{0,1}m

pm−|b|
n (1− pn)

|b|−1 b⊙∇L
(

1

1− pn
w ⊙ b

)
.
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We estimate the term inside the sum according to the number of zero coordinates in b:

b ⊙ (∇L)
(

1

1− pn
w ⊙ b

)
=


∇L(w) + pn

1−pn
∂∇L(w)[w] +O(p2n) if |b| = m,

e

j ⊙ (∇L)(w ⊙ e

j) +O(pn) if |b| = m− 1, b = e

j,

O(1) if |b| ≤ m− 2,

with the O symbols being uniform in w ∈ K̂.
Using the expression for the gradient of the regularizer (80),

∇Reg(w) = ∂∇L(w)[w]− (m− 1)∇L(w) +
m∑
j=1

e

j ⊙ (∇L)(w ⊙ e

j).

we then split the sum over b into three parts and estimate accordingly

∆Fn(w) + αnσ
2
n∇Reg(w) = I + II + III,

with

1

αn

I = ∇L(w)− (1− pn)
m−1∇L(w)− pn(1− pn)

m−2∂∇L(w)[w] +O(p2n)

+ σ2
n∂∇L(w)[w]− σ2

n(m− 1)∇L(w),
1

αn

II =
m∑
j=1

[
−pn(1− pn)

m−2 e

j ⊙ (∇L)(w ⊙ e

j) + σ2
n

e

j ⊙ (∇L)(w ⊙ e

j)
]
+O(p2n),

1

αn

III =
∑

|b|≤m−2

pm−|b|
n (1− pn)

|b|−1b⊙∇L
(

1

1− pn
w ⊙ b

)
.

We estimate the terms one by one. For I we find

1

αn

I =
[
1−

(
1− (m− 1)pn +O(p2n)

)
− σ2

n(m− 1)
]
∇L(w) +

(
−pn(1− pn)

m−2 + σ2
n

)
∂∇L(w)[w]

= O(p2n) = O(σ4
n), uniformly in w ∈ K̂.

For II we write

1

αn

II =
m∑
j=1

[
−pn(1− pn)

m−2 + σ2
n

]

e

j ⊙ (∇L)(w ⊙ e

j) +O(p2n) = O(p2n) = O(σ4
n),

and for the third term we immediately find α−1
n III = O(p2n) = O(σ4

n). Combining all these
estimates we conclude that

sup
w∈K

∣∣∆Fn(w) + αnσ
2
n∇Reg(w)

∣∣ = O(αnσ
4
n),

thereby establishing (43).
Finally, to prove the second estimate in (44)2 we write

|∆Fn(w)| ≤ |∆Fn(w) + αnσ
2
n∇Reg(w)|+ |αnσ

2
n∇Reg(w)|,

and the estimate (44)2 follows from (43) and the regularity of Reg.
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5.1.2 Stochastic Gradient Langevin Descent

Stochastic Gradient Langevin Descent [GM91, RRT17, MMN18] is a form of gradient descent
in which at each iteration a centered Gaussian perturbation is added to the gradient. In our
notation this corresponds to

L̂(w, η) := L(w) +
1

2
w⊤η, with η ∼ N (0, σ2Im) i.i.d.. (81)

This structure is of the degenerate form (56) and therefore is covered by Section 4.2. This
results in the following Corollary.

Corollary 5.7 (Convergence for Stochastic Gradient Langevin Descent).
Let L ∈ C4(Rm) satisfy Assumption 3.5. Define L̂ by (81), and let Wn be the process characterized
in (35), where the ηk,i are i.i.d. centered normal random variables with variance σ2

n. Assume
that Wn(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Finally, let αn → 0
and σn → σ0 ≥ 0.

Then for any compact set K ⊂ UΓ, the process Wn converges to Y in the Katzenberger sense
(see Definition 5.1), where Y solves the SDE

dY (t) = PTΓ db(t) +
1

2
(∇2L(Y ))†∂2∇L(Y )[PTΓ] dt−

1

2
PTΓ∇ log|∇2L(Y )|+ dt, (82)

constrained to Y (t) ∈ Γ, with Y (0) = Φ(W0). (Recall that |A|+ is the product of the non-zero
eigenvalues of A, and † indicates the Moore-Penrose pseudoinverse).

Remark 5.8. As observed in [LWA21], the first two terms in (82) form a geometrically intrinsic
Brownian motion on the manifold Γ, while the final term acts as a drift parallel to Γ. ◁

Proof. The assumptions of Theorem 4.7 are satisfied, with f(w) = w/2 and H(w) = 0 in (56)
and using Lemma B.1 to show (58). We conclude that the evolution converges to the constrained
SDE (59), which reduces in this case to

dY (t) = PTΓ db(t) +
1

2
∂2Φ(Y (t))[Im] dt, and Y (t) ∈ Γ,

where b is anm-dimensional Brownian motion and Im is the identity matrix. The formulation (82)
follows from applying the characterization (30).

Remark 5.9 (SGLD and generalisation). Raginsky, Rakhlin, and Telgarsky [RRT17] show
quantitative generalisation bounds on SGLD, using optimal transport and Logarithmic Sobolev
inequalities. Their result is meaningful in a limit of very many data points, and therefore
focuses on an underparameterized setting, rather than the overparameterized setting as in this
paper. ◁

5.1.3 ‘Anti-correlated perturbed gradient descent’

Orvieto and co-workers [OKP+22] gave the name ‘anti-correlated gradient descent’ to the simple
scheme used in the introduction,

L̂(w, η) := L(w + η).

As discussed there, this is an example of non-degenerate noisy gradient descent, with convergence
to the constrained gradient flow driven by

Reg(w) :=
1

2
∆wL(w).

Orvieto et al. also directly investigate the generalisation properties of this type of noise injection.
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5.2 Examples where η is indexed by the sample

We now consider the supervised-learning context, in which the loss L is an empirical average of
a local loss function ℓ ≥ 0 over a set {(xi, yi)1≤i≤N} of ‘training data points’,

L(w) =
1

N

N∑
i=1

ℓ(w, xi, yi). (83)

In this section we consider noise variables η indexed by the same indices as the data points
(xi, yi), i.e. η is a random element of RN .

5.2.1 Minibatching

One of the most widely used noisy gradient descent algorithms is the one with noise induced by the
random sampling of the data points, usually referred simply as stochastic gradient descent (SGD).
In the standard setting the whole dataset is randomly split into disjoint ‘minibatches’ {Bk}
of the same size m, and at every iteration the gradient is calculated only for samples in one
minibatch Bk:

wk+1 = wk − α∇w

( 1

m

∑
(xi,yi)∈Bk

ℓ(w, xi, yi)
)
.

We slightly modify this formulation by introducing i.i.d. random variables ηk,i at every iteration,
with distribution

ηk,i =

−1 w.p. 1− m

N
,

N −m

m
w.p.

m

N
,

and the corresponding noisy loss function L̂:

L̂(w, η) =
1

N

N∑
i=1

(1 + ηi)ℓ(w, xi, yi).

One can see that indeed L̂(w, 0) = L(w). Moreover, if we write the corresponding ‘minibatch’ as

Bk =

{
(xi, yi) : ηk,i =

N −m

m

}
,

then the noisy gradient descent (1) becomes

wk+1 = wk − α∇wL̂(w, ηk) = wk − α∇w

( 1

m

∑
(xi,yi)∈Bk

ℓ(w, xi, yi)
)
.

This version of SGD can be interpreted as deciding at every iteration which data point to
include, independently for each data point and independently for each iteration. In contrast to
the standard SGD algorithm, in such a setting the minibatch size is not fixed, and during every
epoch the same data point might not occur or can occur multiple times. The parameter m also
is not a deterministic minibatch size but the expectation of the minibatch size.

We show that for this modification of minibatch SGD the limiting dynamics are trivial on the
time scale 1/α2

n for any fixed parameter m, by applying Theorem 4.7. Similarly, one can show
that the joint limit mn → N , αn → 0 also results in a trivial process by applying Theorem 4.1.
Thus, we argue that minibatch noise affect the training dynamics around the zero-loss manifold
only in a weak way, and additional forms of noise injection might be required to ensure good
generalization properties on this time scale.
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Corollary 5.10. Let L̂, ηk,i be as defined above. Assume that ℓ is C3 in w and that L satisfies
Assumption 3.5. Let Ŵn(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Let
αn → 0 and σn → σ0 ≥ 0. Then Ŵn given by (57a) converges in the sense of Katzenberger (see
Definition 5.1) to the trivial process

Ŷ (t) = Φ(W0) for all t ≥ 0.

Proof. The function L̂(w, η) is of the form (56) with f(w)i = N−1ℓ(w, xi, yi), i = 1, . . . , N , and
applying Theorem 4.7 we find the limiting dynamics

Ŷ (t) = Φ(Ŵ (0)) +
1

N

∫ t∧µ

0

PTΓ∇wf(w)dbs +
1

2

∫ t∧µ

0

∂2Φ(Ŷ (s))[Σ(s)]ds, (84)

where

Σ(s) =
1

N2

N∑
i=1

∇wℓ(Ŷ (s), xi, yi)⊗∇wℓ(Ŷ (s), xi, yi) .

As Ŷ (s) ∈ Γ a.s., we have

L(Ŷ (s)) =
1

N

N∑
i=1

ℓ(Ŷ (s), xi, yi) = 0,

implying that
∇wℓ(Ŷ (s), xi, yi) = 0. (85)

In turn this implies that f and Σ vanish on Γ, resulting in the trivial dynamics Ŷ (t) = Φ(Ŵ (0))
for all t.

5.2.2 Label Noise

Label noise is the specific case of mean squared error L with noisy perturbation of the labels yi,
which in our setting takes the form

L̂(w, η) =
1

N

N∑
i=1

(fw(xi)− yi − ηi)
2. (86)

The consequences of label noise for the training iterates were studied by Blanc et al. [BGVV20]
and the already-mentioned Li, Wang, and Arora [LWA21].

The function L̂ is of the degenerate form (56), with f(w)i = −2(fw(xi)− yi)/N , H(w) = 0,
and g(η) = N−1

∑N
i=1 η

2
i . As a result, Theorem 4.7 provides the limiting dynamics at rate

1/α2
nσ

2
n, both for σn → 0 and σn → σ0 > 0.

Corollary 5.11 (Convergence for Label Noise). Let L̂ be as defined in (86) for some family of
functions fw such that L is of class C3 and satisfies Assumption 3.5. Let W̃n(0) ⇒ W0 ∈ UΓ for
some locally attractive neighbourhood UΓ of Γ. Let αn → 0 and σn → σ0 ≥ 0. Let ηk,i ∼ ρ(σn)
i.i.d., where ρ satisfies (9) and (58).

Then Ŵn given by (57a) converges in UΓ in the sense of Katzenberger to the constrained
gradient flow Y given by

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0),

with
Reg(w) =

1

2N
∆L(w). (87)
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Corollary 5.11 is effectively the same result as [LWA21, Cor. 5.2]; we give the proof both for
completeness and to allow us to re-use the arguments in Corollary 5.12.

Proof. As remarked above, the function L̂ in (86) is of the form (56) with f(w)i = −2(fw(xi)−
yi)/N , H(w) = 0, and g(η) = N−1

∑N
i=1 η

2
i . Theorem 4.7 then provides Katzenberger conver-

gence to the limiting SDE (59).
To simplify this SDE, note that

∇wf(w)i = − 2

N
∇w(fw(xi)− yi − ηi) = − 2

N
∇wfw(xi),

and for w ∈ Γ

∇2L(w) =
2

N
∇w

N∑
i=1

(fw(xi)− yi)∇wfw(xi) =
2

N

N∑
i=1

∇wfw(xi)∇wfw(xi)
⊤.

It follows that ∇wf(w) ∈ Range(∇2L(w)), and therefore PTΓ∇wf(w) = 0, implying that the
noise term in (59) vanishes.

We also find that

Σkℓ :=
N∑
i=1

∂wk
f(w)i∂wℓ

f(w)i =
4

N2

N∑
i=1

∂wk
fw(xi)∂wℓ

fw(xi),

implying that Σ = 2∇2L(w)/N . Applying (31) to the final term in (59) yields the expression (87).

A minor modification of the discussion above shows that combination of minibatching and
label noise results in the same limiting dynamics. Consider the following loss that combines
minibatching noise variables η̃ and label noise variables η,

L̂(w, η̃, η) =
1

N

N∑
i=1

(1 + η̃i)(fw(xi)− yi − ηi)
2, (88)

and for simplicity let both distributions have the same variance Var(ηk,i) = Var(η̃k,j) = σ2. The
loss (88) has the degenerate form (56),

L̂(w, η, η̃) = L(w) + f(w) · η + f̃(w) · η̃ +H(w) : (η⊗ η̃) + g(η, η̃),

with

f(w)i = − 2

N
(fw(xi)− yi), f̃(w)i =

1

N
(fw(xi)− yi)

2,

and H(w)ij = − 2

N
(fw(xi)− yi)δij.

From Theorem 4.7 we obtain the following characterization.

Corollary 5.12 (Convergence for combined Label Noise and Minibatching). Let L̂ be as defined
in (88) for some family of functions fw such that L is of class C3 and satisfies Assumption 3.5.
Let W̃n(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Let αn → 0 and
σn → σ0 ≥ 0. Let ηk,i, η̃k,i ∼ ρ(σn) i.i.d., where ρ satisfies (9) and (58).

Then Ŵn given by (57a) converges in the sense of Katzenberger to the constrained gradient
flow Y given by

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0),

with

Reg(w) =

√
1 + σ2

0

2N
∆L(w). (89)
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Proof. Similarly to the cases of Corollaries 5.10 and 5.11 we have on Γ that

∇wf(w)i = − 2

N
∇wfw(xi),

∇wf̃(w)i = − 2

N
∇w(fw(xi)− yi)

2 = 0,

and
∇wH(w)ij = − 2

N
∇wfw(xi)δij,

and thus by the same orthogonality argument as in Corollary 5.11 we conclude that the noise is
orthogonal to TΓ. We apply Theorem 4.7 and find the resulting evolution (82), where the first
integral vanishes by orthogonality and we have the expression for Σ,

Σkℓ =
4

N2

N∑
i=1

∂wk
fw(xi)∂wℓ

fw(xi) + σ2
0

4

N2

N∑
i=1

∂wk
fw(xi)∂wℓ

fw(xi)

=
4

N2
(1 + σ2

0)
N∑
i=1

∂wk
fw(xi)∂wℓ

fw(xi).

Similarly to Corollary 5.11 it follows that Σ = 2(1+σ2
0)∆L(w)/N , resulting in the expression (89).

5.3 Classical Dropout

We finally discuss the case of ‘classical’ Dropout as applied in neural networks and other systems.
We consider the mean-square error loss for a function fdrop

w (x, η) that depends both on the
parameter w and the noise variable η:

L̂(w, η) =
1

N

N∑
i=1

(fdrop
w (xi, η)− yi)

2. (90)

5.3.1 Overparameterized linear models

The first example of this type is the class of overparameterized linear models, in which w = (u, v),
u, v ∈ Rdin , and fw has the following form:

fw(x) =
〈
u⊙2 − v⊙2, x

〉
, x ∈ Rdin . (91)

Note that the model is linear in x but non-linear in parameters w. We introduce Dropout filters
η ∈ Rdin and a corresponding function fdrop

w as

fdrop
w (x, η) =

〈
u⊙2 − v⊙2, x⊙ (1 + η)

〉
. (92)

In comparison to DropConnect, the filter ηi alters the magnitude of the ith feature of the
input vector, rather than the corresponding feature of w. The following corollary is a direct
consequence of Theorem 4.1.

Corollary 5.13 (Convergence for Dropout in overparametrized linear models).
Let fdrop

w be as defined in (92) and L̂ as in (90). Assume that L(w) := L̂(w, 0) satisfies
Assumption 3.5. Let W̃n(0) ⇒ W0 ∈ UΓ for some locally attractive neighbourhood UΓ of Γ. Let
ηk,i be Bernoulli or Gaussian dropout noisy variables. Let αn, σn → 0.
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Then W̃n as defined in (35) converges to Y in the sense of Katzenberger (see Def. 5.1),
where Y is the constrained gradient flow defined as

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0),

and

Reg(w) :=
1

2
∆ηL̂(w, 0) =

1

2N

din∑
j=1

(u2j − v2j )
2

N∑
i=1

x2ij, (93)

and where xij is the jth feature of the ith data point xi.

Remark 5.14. The expression (93) coincides with a weighted L2-regularization term in linear
models—treating u⊙2 − v⊙2 as a single linear parameter—in which the weights are chosen equal
to the average amplitude of the corresponding feature 1

N

∑N
i=1 x

2
ij. ◁

Remark 5.15. In [LWA21, Lemma 6.2, Lemma 6.3] sufficient conditions are given for over-
parametrized linear models to satisfy the manifold Assumption 3.5. ◁

Remark 5.16 (Two Laplacians as regularizer). Both for Dropout and for label noise the
regularizer is a Laplacian, but one is with respect to η and the other with respect to w; thus
these two forms of regularization may lead to different types of behaviour. We illustrate this on
the example of overparameterized linear models, where fw(x) = ⟨u⊙2 − v⊙2, x⟩ as in (91).

With Dropout noise we obtain the regularizer (93). With label noise the regularizer is given
by (87) instead, and we now make this label-noise regularizer more explicit. On the zero loss
manifold we have ⟨u⊙2 − v⊙2, xi⟩ = yi for all i and thus

1

2N
∆wL =

1

2N2
∆u

N∑
i=1

(〈
u⊙2 − v⊙2, xi

〉
− yi

)2
+

1

2N2
∆v

N∑
i=1

(〈
u⊙2 − v⊙2, xi

〉
− yi

)2
=

1

2N2

N∑
i=1

din∑
j=1

4u2jx
2
ij +

1

2N2

N∑
i=1

din∑
j=1

4v2jx
2
ij =

2

N2

N∑
i=1

din∑
j=1

(u2j + v2j )x
2
ij. (94)

Note how the Dropout regularizer (93) regularizes the difference (u2j − v2j )
2, and the label noise

regularizer above penalizes both u and v separately. Also note how the two regularizers differ in
their scaling in N , with label noise leading to an additional slow-down factor 1/N . ◁

5.3.2 Feedforward neural networks

We say that fw : Rdin → R is a p-layered feedforward neural network if it is a composition of p
blocks in which each block consists of a linear layer and a pointwise nonlinearity. Each block is
a mapping ϕk : yk → yk+1 (Rdk → Rdk+1) of the form:

zk+1 = W k+1yk + bk+1,

yk+1 = s(zk+1),

where W k+1 ∈ Rdk+1×dk , bk+1 ∈ Rdk+1 , the input dimension is d0 = din and the output dimension
dp = 1. The map fw(x) then takes the form:

fw(x) = ϕp(ϕp−1(· · ·ϕ1(x))).

We introduce dropout filters ηk that perturb the input features at the k-th layer. The
resulting maps ϕk

d : (η
k, yk) → yk+1 (R2dk → Rdk+1) then are

zk+1 = W k+1(yk ⊙ (1 + ηk)) + bk+1,

yk+1 = s(zk+1),
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and the corresponding fdrop
w is given by

fdrop
w (x, η) = ϕp

d(η
p, ϕp−1

d (ηp−1 · · ·ϕ1
d(η

1, x))), (95)

Here we distinguish the same two choices as in Section 5.1, namely Bernoulli and Gaussian
filters.

In the Bernoulli case ηk,i are i.i.d. Bernoulli random variables for some 0 < p < 1:

ηk,i =

{
−1, w.p. p
p

1−p
w.p. 1− p.

In the Gaussian case ηk,i are i.i.d. normal random variables,

ηk,i ∼ N (0, σ2).

With Gaussian filters, no input is ever ignored, as P(ηk,i = −1) = 0. Note that Gaussian noise
also allows to change sign of some inputs.

First consider feedforward neural networks with a single hidden layer:

fdrop
w (x, η) =

n∑
j=1

aj(1 + ηj)s(b
⊤
j x), (96)

where dropout is only applied to the output layer. As an example we consider the smooth
rectified linear unit as activation function,

s(x) =

{
0, x ≤ 0

xe−1/x, x > 0.
. (97)

Corollary 5.17. Let fdrop
w as defined in (96) with rectified smooth activation function (97).

Assume that L(w) := L̂(w, 0) satisfies Assumption 3.5. Let W̃n(0) ⇒ W̃ (0) ∈ UΓ for some locally
attractive neighbourhood UΓ of Γ. Let ηk,i be Bernoulli or Gaussian Dropout noisy variables as
defined above. Let αn, σn → 0.

Then W̃n as defined in (35) converges to Y in the sense of Katzenberger, where Y is the
constrained gradient flow defined as

dY

dt
= −PTΓ∇wReg(Y ), Y (t) ∈ Γ, and Y (0) = Φ(W0), (98)

with

Reg(w) =
1

2
∆ηL̂(w, 0) =

1

N

n∑
j=1

N∑
i=1

a2j s(b
⊤
j xi)

2. (99)

Remark 5.18 (Known properties of the zero-loss manifold). In [Coo18] it is proven that for
overparameterized shallow neural networks with the rectified smooth activation function (97)
the zero-loss set of L(w) := L̂(w, 0) is a smooth manifold and L satisfies Assumption 3.5. The
result also holds for deep feedforward neural networks if the size of the last layer is greater than
the size of the training dataset, i.e. dk > N .

Similar results are known for the ReLU activation function ReLU(y) = max(0, y) [PTS20,
DK22]. Even though the ReLU is not differentiable in y = 0, the manifold is locally smooth away
from the hyperplanes Qi = {x : w⊤

i x = 0}, so that the analysis holds for every set K satisfying
K ∩Qi = ∅ for every Qi. In [BPVF22] the authors study the structure of the neighbourhood U
and propose an initialization scheme guaranteeing convergence of the gradient flow for shallow
ReLU networks. ◁

40



Proof. First note that the smoothness of s guarantees the regularity of L̂, and since s has
sublinear growth, L̂ has at most growth of order 6 in (w, η).

Next, note that we can write L̂ in the form

L̂(w, η) = L(w) + f(w) · η + 1

2
H(w) : (η⊗ η),

with

f(w)j = − 2

N
aj

N∑
i=1

s(b⊤j xj)yi and Hjj′ =
2

N

N∑
i=1

ajs(b
⊤
j xi)aj′s(b

⊤
j′xi).

This structure is similar to (56), which we require for the degenerate case, but note that for
the degenerate case we require trH = 0, while here trH does not vanish. Consequently the
evolution takes place at the time scale 1/αnσ

2
n. This function L̂ satisfies conditions (10) and (11)

with C2 = 0.
We now turn to condition (12). Gaussian noise satisfies this condition as mentioned in

Remark 3.3, and for the q-th absolute moment of Bernoulli random variables, where q ≥ 1, we
have

Mq = 1 · p+ pq

(1− p)q
· (1− p) =

pq + p · (1− p)q−1

(1− p)q−1
= O(p) = O(σ2) as p→ 0.

Since C2 = 0, condition (12) also is satisfied. The condition (36) in Theorem 4.1 is satisfied for
Bernoulli filters by construction and for Gaussian filters by Lemma B.1.

Theorem 4.1 then yields Katzenberger convergence to the constrained gradient flow (98),
with Reg(w) = 1

2
∆ηL̂(w, 0) =

1
2
trH(w) as given in (99).

For deep neural networks, with multiple hidden layers, and for Gaussian filters Theorem 4.1
again implies a convergence result. Due to the complexity of deep neural networks we do not
provide an explicit form of the regularizer in this case.

Corollary 5.19 (Convergence for Dropout noise in deep neural networks). Let fdrop
w be as

defined in (95) for some p ≥ 2 with rectified smooth activation function s (97) Assume that
L(w) := L̂(w, 0) satisfies Assumption 3.5. Let W̃n(0) ⇒ W̃ (0) ∈ UΓ for some locally attractive
neighbourhood UΓ of Γ. Let ηk,i be Gaussian filter variables as defined above. Let αn, σn → 0.

Then Wn as defined in (35) converges to Y in the sense of Katzenberger, where Y is the
constrained gradient flow defined as

dY

dt
= −1

2
PTΓ∇w∆ηL̂(Y, 0), Y (t) ∈ Γ, and Y (0) = Φ(W0).

Proof. The proof is analogous to the proof of Corollary 5.17 with the only difference caused by
the composition of several layers. Using the global boundedness of the derivatives of activation
function |s′(x)|, |s′′(x)| < C for all x ∈ R one can see that for any fixed w ∈ K the expression
|∇w∇2

ηL̂(w, η1)−∇w∇2
ηL̂(w, η2)| scales at most polynomially in η1,2 and thus the assumptions

of Theorem 4.1 are satisfied.

Remark 5.20 (Combining Dropout with Minibatching). It is easy to see that the combination
of Dropout noise and minibatching results in the same dynamics as Dropout gradient descent
without minibatching. Consider the loss

L̂(w, η̃, η) =
1

N

N∑
i=1

(1 + η̃i)ℓ̂(w, η, xi, yi).

As L̂ is linear in the minibatching noise variables η̃, we have ∆η̃L̂(w, η̃, η) = 0 and thus the
regularizer takes the same form as the regularizer of the corresponding dropout gradient descent
1
2
∆η̃,ηL̂(w, η̃, η) =

1
2
∆ηL̂(w, η̃, η). The same holds for the DropConnect case. ◁
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6 Discussion and outlook

In this paper we define a class of noisy gradient-descent systems and prove their convergence in
the limit of small step size and in some cases also small noise. This class of systems unifies a
broad collection of existing training algorithms in a common structure, and the convergence
theorems thus give a more global understanding of the effect of noise in various overparametrized
training situations.

In this section we add some more remarks and discuss various generalizations.

6.1 Constant step sizes

It is common to change the step size α during training, for instance to generate phases of larger
and smaller noise in minibatch SGD. For some such non-constant step-size training algorithms
the results of this paper should continue to hold. The essential properties that need to be
verified are Assumptions 3.11, 3.12, and 3.13, which are all formulated in terms of the integrator
sequences An and Ân and therefore are also meaningful for non-constant step sizes.

6.2 Correlated noise

Similarly, we have chosen to make the coordinates ηk,i of each iterate ηk independent from each
other, but this again only for simplicity of formulation.

To give an example of a generalization, consider again the example of Figures 1 and 2 in the
introduction. Figure 4 compares the effect of uncorrelated (left) and correlated noise. Here we
choose as uncorrelated noise

ηk,i ∼ N (0, σ2I2)

and as correlated noise

ηk ∼ N (0, C), C =
σ2

2

(
1 1
1 1

)
.

The corresponding regularizers are

uncorrelated:
1

2
∆wL(w)

correlated:
1

2
∇2

wL(w) : C =
1

4
(∂11L+ 2∂12L+ ∂22L),

and the minimizers of these two functions are indicated by green circles.

6.3 Constrained gradient flow and regularisation

In this paper we have used the term ‘regularizer’ and the notation ‘Reg’ for the function that
drives the limiting constrained gradient flow (4). This terminology is inspired by its relationship
with Tychonov regularization of inverse problems.

To explain this, note that solutions of the constrained gradient flow tend to converge to
local minimizers of Reg, or if one is ‘lucky’, even to a global minimizer, i.e. a solution of the
constrained problem

min
w

{
Reg(w) : w ∈ Γ

}
.

This situation is reminiscent of regularized inverse problems of the form

min
u

∥Tu− f∥2 + λR(u),
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Figure 4: When the coordinates of the vector ηk are correlated, the resulting regularizer Reg
is modified, and the evolution follows a different path along Γ. In both diagrams each ηk is a
centered normal two-dimensional random variable with covariance C, independent for each k; in
the left-hand picture C = σ2I2, implying independence of ηk,1 from ηk,2, while in the right-hand
picture C = 1

2
σ2( 1 1

1 1 ), implying that ηk,1 and ηk,2 are fully correlated.

for which in the ‘weak-regularisation’ limit λ→ 0 the minimizers uλ converge to the solution of
the constrained minimization problem

min
u

{
R(u) : Tu = f

}
.

This is why we call Reg, the driving functional in the constrained gradient flow, the (implicit)
regulariser of the noisy gradient descent.

Theorem A opens the door to a form of reverse engineering. Given a loss L, the choice of L̂
is only limited by the consistency L̂(w, 0) = L(w), and one therefore has a wide freedom to
tailor L̂ to have particular properties. Assuming that one has an understanding of what ‘good’
and ‘bad’ points w ∈ Γ look like, Theorem A suggests to look for functions L̂ such that ∆ηL̂
gives high value to ‘bad’ points and low value to ‘good’ ones.

Some pointers to how ‘good’ and ‘bad’ points can be recognized or characterized are given
by the ‘robustness’ criterion of [PTS20] (see Remark 5.4) or the discussion in [OKP+22] of the
connection with PAC-Bayes bounds. We leave this aspect to future work.

6.4 Convergence results in Skorokhod spaces and Katzenberger’s
theorem

The first (to our knowledge) application of Katzenberger’s theorem to machine learning models
was in [LWA21]. In that paper the dynamics the noise is assumed to be of minibatch-type,
namely

dWn = −∇L(Wn)dÂn +
√
Σσηk(Wn),

where ηk is sampled uniformly from the set B = {1, 2, . . . , N}, and for every i ∈ B, σi(Wn) is a
deterministic function and Eσηk(W ) = 0. Note that by definition the noise process in such a
setting is a martingale. Our definition of noisy gradient-descent systems generalizes this, and
allows us to study for instance the effect of dropout noise.

The result of [LWA21] has also been generalized to SGD with momentum. In [CCG22], the
authors study the interplay between the momentum parameter and the noise distribution. The
structure of the noise is the same as in [LWA21], and one direction of future work is the study
of SGD with momentum with general noise.
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Another type of convergence results in the sense of processes are so-called mean-field limit
results. In contrast to this work, mean-field convergence describes the behaviour of the models
with variable number of parameters. For example, for shallow neural networks it studies the
limiting training dynamic of models

fn(Wn, x) =
1

n

n∑
i=1

aiσ(b
⊤
i x+ ci),

where wi = (ai, bi, ci) and W = (w1, ...wn). It turns out that under suitable assumptions for µn

defined as

µn(s) =
1

n

n∑
i=1

δwi(s),

it holds that µn ⇒ µ in Skorokhod topology on [0, T ], where µ is a solution of a measure-valued
evolution equations characterized by the loss function [SS20, RVE18]. Similar results have
been derived for deep neural networks [SS22, Ngu19]. Note that the mean-field setting does
not involve rescaling of time, implying that only the main (the fast) time scale is considered.
Another direction of future work is to study the slow time scale dynamics in the measure-valued
setting. Methods such as those in [DLPS17, DLP+18] could be useful for this.

A Details of numerical simulations

The function L : R2 → R depicted in Figures 1, 2, and 3 is

L(w) =
(|w|2 − 1)2

(|w|2 + 1)2
(1 + a sin(bw1)), a = 0.7, b = 5.

The step size in those figures is α = 0.3, and η has a centered normal distribution with covariance
σ2I2 with σ = 0.03.

The constrained gradient flow in Figures 2 and 3 is implemented by parametrizing by Γ by
polar angle θ and writing the regularizer as a function of θ.

B Auxiliary results

The following lemma shows that for i.i.d. Gaussian noise variables η the two conditions (36)
and (58) follow from the assumption αn → 0.

Lemma B.1 (Gaussian filters satisfy the noise-decay condition). Let αn and σn be positive
sequences such that αn → 0 and σn → σ0 ≥ 0. Let for each n, Y n

k , k ∈ N, be i.i.d. centered
Gaussian random variables with variance σ2

n. Then for any T ∈ R+, for any p ≥ 1 the following
convergence holds in probability and in distribution:

sup
k≤ T

α2
nσ2

n

αn|Y n
k |p −→ 0 as n→ ∞
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Proof.

P
(

sup
k≤ T

α2
nσ2

n

αn|Y n
k |p > ε

)
≤

∑
k≤ T

α2
nσ2

n

P
(
|Y n

k |p >
ε

αn

)
≤ T

α2
nσ

2
n

P
(
|Y n

1 | >
ε1/p

α
1/p
n

)

=
T

2α2
nσn

erfc

(
ε1/p

σnα
1/p
n

√
2

)
≤ α

−2+1/p
n T

ε1/p
√
2π

exp

(
− ε2/p

2σ2
nα

2/p
n

)

=
β
−p+1/2
n T

ε1/p
√
2π

exp

(
− ε2/p

2σ2
nβn

)
, with βn = α2/p

n ,

and for every fixed ε > 0 this vanishes as βn → 0.
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