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We explore new aspects of internal fermionic shifting symmetries, present in physical systems such as free Dirac
spinors and p-form tensor-spinor fields. We propose a novel procedure to gauge these global symmetries, which
also introduces a new Stückelberg mechanism to give a mass to free fermionic fields. Furthermore, we find new
magnetic fermionic symmetries in these physical systems whose charged objects are disorder operators. For the
case of a 4d Dirac spinor, we discuss a dual description, where the magnetic symmetry acts on the holonomies of
a dual 2-form tensor-spinor. Further generalizations such as higher-group-like structures are also discussed.

Introduction. Symmetry is one of the most important guid-
ing principles in the understanding of nature. In recent years,
the study of generalized global symmetries has become a thriv-
ing field in theoretical physics, with applications in both high
energy and condensed matter physics [1–6]. Comparing to the
“ordinary” global symmetry group acting on local operators,
one way to generalize is to consider higher-group symmetries
which act on extended operators by linked topological opera-
tors. Another generalization is to extend the symmetry group
to more general algebraic structures such as higher-groups,
non-invertible and higher-categorical symmetries.

Among the literature of generalized symmetries, the symme-
try group/algebra themselves are almost always bosonic, such
as finite groups, Lie groups and Lie algebras. In contrast, there
has not been enough attention on the aspects of fermionic sym-
metries, despite of their appearance in many physical models.
In this letter, we define a symmetry to be fermionic if the com-
ponents of its symmetry parameter ϵ take value in the odd part
of some Grassmann algebra1. For instance, global supersym-
metry is a fermionic spacetime 0-form symmetry, generated by
the codimension-one topological operator Uϵ(M(d−1)) which
is constructed with the supercurrent J, J̄ :

Uϵ(M(d−1)) = exp

(∫
M(d−1)

i(ϵ̄ ⋆ J + ⋆J̄ϵ)

)
. (1)

As an even simpler example, we can consider a massless Dirac
spinor in a d-dimensional flat spacetime

S = −
∫

ddx ψ̄γµ∂µψ . (2)

This action is invariant under a 0-form internal fermionic shift-
ing symmetry ψ → ψ + ϵ, where ϵ is a constant spinor sat-
isfying ∂µϵ = 0. In [11], this was generalized to the notion
of fermionic higher-form symmetries, which can act on free
fermionic p-form tensor-spinors, described by the action (8).

1 The symmetry group for fermionic symmetry can be taken as R0|s, which
is the odd part of some supergroup. Note that the topology of such space
is the discrete topology [7–10], under which it is not sensible to define the
notion of U(1) or ZN subgroups.

In this letter, we are going to investigate a number of fun-
damental physical questions for these internal fermionic sym-
metries. The first question is about the gauging thereof. It
is well known that global fermionic symmetries can be some-
times gauged [11], for instance, gauging global supersymmetry
would lead to supergravity theories. Here, we propose a rather
complete discussion of how to gauge fermionic p-form shifting
symmetries of free tensor-spinor fields on flat-spacetime by
minimal coupling to (p + 1)-tensor-spinor gauge field, with
unconventional gauge transformation (11), whose structure
resembles the one of (A)dS supersymmetry, and indeed can
be described as an Inönü-Wigner contraction of (A)dS super-
algebra. We present a physical model for our gauged system
as a truncation of the Volkov-Akulov (VA) model [12] with
non-zero cosmological constant.

The second question we address is the existence of magnetic
symmetries for fermionic p-form tensor-spinors. Bosonic p-
form gauge fields in d spacetime dimensions possess both an
electric p-form symmetry and a dual magnetic (d−p−2)-form
symmetry [1]. The latter acts on disorder operators (such as
the ’t Hooft line operator when p = 1), or on the holonomies
of the electromagnetic (EM) dual (d − p − 2)-form gauge
field in the magnetic frame. This motivates us to revisit the
long-standing question [13, 14] of dualization of fermionic
fields. Here, we extend this to the fermionic case, illustrat-
ing that free p-form tensor-spinor fields also enjoy magnetic
(d− p− 2)-form fermionic symmetries whose charged object
are disorder operators. For the specific case of d = 4, p = 0,
we also present a dual magnetic description, where the mag-
netic symmetry and its charged operators are represented as
holonomies of dual magnetic variables.

We conclude the letter by exploring fermionic algebraic
structure beyond supergroup/superalgebra. We analyze a phys-
ical model for massive tensor-spinors in AdS spacetime, which
has the structure of a gauged fermionic 2-group symmetry, for
which we find a gauge-invariant fake curvature in the system.
Finally, in Appendix B we comment on how to extend the
discussion of this letter to curved spacetimes with covariantly
constant spinors.

Gauging shifting symmetry of Dirac spinors. Consider a
generic massless Dirac fermion ψ in d dimensions described
by the standard action (2), which is invariant under the global
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shifting symmetry:

δψ = g ϵ , (3)

by a constant spinor parameter ϵ with mass dimension d−3
2 .

g is a constant with the dimension of mass, whose meaning
will be clear in the following. This symmetry is analogous to
the shifting symmetry ϕ → ϕ + θ of a free boson ϕ. How-
ever, unlike the former case, the gauging of this fermionic
0-form symmetry is non-standard due to the first order deriva-
tive nature of the Lagrangian (2). Indeed, in order to pro-
mote the global shifting (3) to a local symmetry, one would be
tempted to introduce a background vector-spinor gauge field
λµ, with prescribed gauge symmetry δλµ = ∂µϵ, and min-
imally couple by upgrading partial derivatives ∂µψ to their
covariantized version Dµψ := ∂µψ − gλµ (and its left-acting
version ψ̄

←−
Dµ := −∂µψ̄ + gλ̄µ). Yet, this would not lead to a

gauge invariant action:

δ

(
−1

2
[ψ̄γµDµψ + ψ̄

←−
Dµγ

µψ]

)
= −1

2
g[ϵ̄ /Dψ+ ψ̄

←−
/Dϵ]. (4)

In order to construct a gauge-invariant system where the
fermionic shift (3) is gauged, we propose2 the following modi-
fication of the gauge transformation of the background Rarita-
Schwinger field as follows:

δλµ = ∂µϵ+
g

d
γµϵ , δψ = αg ϵ , (5)

where α =

√
(d−1)(d−2)

d . The unique action invariant under
the gauge symmetry (5), and that minimally couples the con-
served 1-form currents:

Jµ = αgγµψ , J̄µ = −αgψ̄γµ , (6)

to a dynamical Rarita-Schwinger gauge field, is:

Sgauged =

∫
ddx

[
− ψ̄γµ∂µψ − gψ̄ψ − λ̄µγµρν∂ρλν

+
d− 2

d
gλ̄µγ

µνλν − λ̄µJ µ − J̄ µλµ

]
.

(7)

This action necessarily contains mass terms for both the gauge
field and Dirac field. Indeed, this gauged system can be in-
terpreted as a fermionic equivalent to the Stückelberg mech-
anism [16, 17] describing a massive Rarita-Schwinger field
with gauge symmetry (5), where the Dirac spinor realizes the
shifting symmetry (3). Upon fixing unitary gauge for the gauge
field ϵ = −ψ/(αg) in (5), ψ is set to zero and the action re-
duces to the action for an ordinary massive Rarita-Schwinger
field3. In this case, the degrees of freedom of ψ are absorbed
as longitudinal modes of the massive λµ, and the fermionic
gauge symmetry of λµ is broken by its mass term. This should
be thought as the fermionic analogous of recovering the Proca
equation by gauge fixing the Stückelberg action.

Finally, note that the coupling strength g smoothly regulates
a decoupling limit g → 0, where the theory reduces to a free
massless Dirac spinor and a massless Rarita-Schwinger field
with ordinary gauge symmetry δλµ = ∂µϵ.

Gauging shifting symmetries of tensor-spinors. The con-
struction proposed above admits a direct generalization to the
case of free fermionic p-form fields ψ(p). It is convenient to
express all the Lagrangians in a coordinate-free notation using
the conventions in Appendix A for the p-forms spinors.

A free action describing free antisymmetric tensor-spinor
field of rank p in d spacetime dimensions (d ≥ 2p + 1) is a
direct generalization of the Rarita-Schwinger action4 [18–21]:

Sfree

[
ψ(p)

]
= −

∫
M(d)

ψ̄(p) ∧ γ(d−2p−1) ∧ dψ(p) . (8)

This theory exhibits a global p-form shifting symmetry:

δψ(p) = αg ϵ(p) , dϵ(p) = 0 , (9)

generated by the conserved (p+ 1)-form currents J(p+1) and
J̄(p+1) given by:

⋆J(p+1) = αg γ(d−2p−1) ∧ ψ(p) ,

⋆J̄(p+1) = −αg ψ̄(p) ∧ γ(d−2p−1) ,
(10)

where α =

√
(d−2p−1)(d−2p−2)

d . As a direct generalization of
the (0-form) Dirac spinor story, to promote this global symme-
try to a local one, we introduce a rank-(p+ 1) antisymmetric
tensor-spinor gauge field λ(p+1), that we must provide with
the following modified gauge variation:

δλ(p+1) = dϵ(p) +
g

d
γ(1) ∧ ϵ(p) . (11)

Then, the unique minimally coupled gauged action is:

2 An analogous modification was also proposed in [15], where the author
considered in d = 4 spacetime dimensions the gauging of the shifting
symmetry of 2-components spinors, yet failing to construct a coupled system
with dynamical gauge fields, invariant under simultaneous variations (5).

3 Alternatively, fixing gamma-traceless gauge γµλµ = 0 effectively decou-
ples the two fields, and leads to a free massive Dirac and a free massive

Rarita-Schwinger with an off-shell constraint.
4 In even dimensions, one has the freedom to add terms containing the chirality

matrix γd+1. E.g. terms of the form ψ̄(p) ∧ γ(d−2p−1)γd+1 ∧ dψ(q) still
exhibit the shifting symmetry in (9), (cfr. (3.5) of [11]).
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Sgauged = Sfree

[
λ(p+1)

]
− (−1)p+1 g(d− 2p− 2)

d
Smass

[
λ(p+1)

]
+ Sfree

[
ψ(p)

]
− (−1)p g(d− 2p)

d
Smass

[
ψ(p)

]
−
∫
M(d)

[
λ̄(p+1) ∧ ⋆J(p+1) + ⋆J̄(p+1) ∧ λ(p+1)

]
,

(12)

where5 the mass term for a p-form tensor-spinor is:

Smass[ψ(p)] = −
∫
M(d)

ψ̄(p) ∧ γ(d−2p) ∧ ψ(p) . (13)

It is clear that upon p = 0, this action reduces to (7), and all
the considerations made with regards to the 0-form gauging
continue to hold here.

Gauged theory from non-linearly realized SUSY. The
fermionic generators Sα of the global abelian shifting symme-
try of the Dirac spinor satisfy the algebra (also known some-
times as internal supersymmetry, cfr. e.g. [22]):

{Sα, Sβ} = 0 , [Mµν , Sα] =
1

2
(γµν)α

βSβ , (14)

where Mµν are the Lorentz generators and we omitted the
non-vanishing commutation relations among them. This alge-
bra can be obtained via Inönü-Wigner (IW) contraction of the
N = 1 super-Poincaré algebra [22–24], where the fermionic
generators Qα are not internal symmetry generators but space-
time ones. This contraction amounts to introducing a contin-
uous parameter ω such that Qα = ωSα and to take the limit
ω → ∞, and reduces the generators of the spacetime SUSY
in the N = 1 Poincaré algebra to interal fermionic generators
satisfying (14).

The IW contraction we described above, can be realized by
embedding the free Dirac field as small field limit (SFL) [22] of
the Goldstone fermion in the Volkov-Akulov (VA) model [12].
The Lagrangian for the VA Goldstino λ is expressed using the
field Eµ

ν = δµν + a2λ̄γµ∂νλ as:

Lλ = − 1

a2
det(E) = − 1

a2
− λ̄/∂λ+O(λ3) , (15)

where a is the order parameter regulating the spontaneous
global supersymmetry breaking. In the VA model, supersym-
metry is only non-linearly realized on the Goldstino, that trans-
forms as: δλ = 1

aϵ+ a(ϵ̄γµλ− λ̄γµϵ)∂µλ. In the SFL, once
the Goldstino is appropriately scaled λ → λ/ω, the former
symmetry transformation reduces to: δλ = 1

aϵ [22–24]. This,
as expected, matches the global symmetry algebra (14) of the
Dirac field shifting symmetry, and, in particular with (5) upon
identifying the SUSY breaking scale with a = 1/(αg). As a
matter of fact, one can also check at the level of the Lagrangian
description, that the VA model truncates, after IW contraction,
to a free Dirac fermion in the presence of a constant −1/a2
term in the Lagrangian.

5 For a version of this action in components, the reader can refer to (58) up to
the replacement ∂µ ↔ ∇µ.

Interestingly, the VA model also offers a concrete realization
of the gauged system we propose (7). Indeed, it is well estab-
lished how to gauge the non-linearly realized SUSY in the VA
model: it leads to a supergravity theory with spontaneously
broken local supersymmetry [25, 26]. This is best understood
in unitary gauge, where the Goldstone fermion disappears, and
one is left with an unusual supergravity action consisting of
a Rarita-Schwinger field with an associated Lagrangian mass
term6, coupled to gravity with a cosmological constant whose
effective value (and sign) depends on both a and the Rarita-
Schwinger mass (cfr. section 4 [26]). To see how this reduces
to (7), let us start by describing how the the global minimal
(A)dS superalgebra [28] reduces under the IW contraction. For
this limit, the relevant part thereof is given by:

{Qα, Qβ} = (γm)αβPm +
1

L
(γmn)αβMmn ,

[Mmn, Qα] =
1

2
(γmn)α

βQβ , [Qα, Pm] =
1

L
(γm)α

βQβ ,

(16)
where L is just the AdS radius (the dS case just amounts to
take L2 → −L2), and lower case letters indicate flat indices.

Under the same IW contraction considered above Qα =
ωSα, the first two commutation relations in (16) reduce to
(14), while the latter gives: [Sα, Pm] = 1

L (γm)α
βSβ . This

non-trivial commutation relation in the algebra, is the one
responsible for the unusual gauge transformation for the Rarita-
Schwinger background field we have proposed in (5).

This can be also checked the level of field action. Consider
the gravitino ψµ gauge transformation dictated by the gauged
(A)dS supersymmetry algebra: [28]

δψµ = ∂µϵ−
1

2L
eµ

nγnϵ+
1

4
ωµ

mnγmnϵ . (17)

Under IW contraction, we must rescale the Gravitino field and
the gauge parameter as ψµ → ψµ/ω , ϵ→ ϵ/ω. Furthermore,
being interested in confronting this with the gauged action on
flat-space background (7), we take a weak-field limit of the
gravitational field where eµn → δµ

ν (n→ ν) and ωµ
mn → 0.

After this contraction and limit7 (17) reproduces exactly the
modified gauge variation we propose (5) upon identifying the

6 In curved background the Rarita-Schwinger field acquires an effective mass
that depends on the cosmological constant [26, 27]. In particular, it becomes
massless whenever the (A)dS local supersymmetry invariance is restored
[27].

7 See also a later article [29] that generalizes the original VA model on
Minkowski spacetime to AdS spacetime and there the same mass term is
needed even when the AdS global supersymmetry is ungauged.
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gauge coupling with the (A)dS radius8 as:

g = − d

2L
, a = − 2L√

(d− 1)(d− 2)
. (18)

While the weak-field limit is needed to confront directly with
the flat-space system (7), if one were to consider the gauging
of the shifting symmetry on arbitrary curved manifolds, this
would not be needed. Indeed, the transformation (17) cor-
responds to the modified gauge variation of the background
gauge field on arbitrary backgrounds (57) as described in Ap-
pendix B.

Magnetic symmetries. The free tensor-spinor fields de-
scribed by the action (8), in addition to the symmetries gener-
ated by the (higher-form) currents (10), also possess conserved
(p+ 1)-form currents:

dH̄(p+1) = dH(p+1) = 0 , H(p+1) = dψ(p) , (19)

as a consequence of Bianchi identity. They act as infinitesimal
generators for a continuous magnetic (d− p− 2)-form sym-
metry, whose topological operators are labeled by a spinorial
charge θ and topological choice of cycleM(p+1):

U
(m)
θ (M(p+1)) = exp

(
i

∫
M(p+1)

(
θ̄H(p+1) + H̄(p+1)θ

))
(20)

The charged objects under this symmetry are disorder operators
with prescribed singularity along (d− p− 2)-cycles, inducing
non-trivial holonomy along the dual intersecting cycles. This
generalizes to this context the notion of ’t Hooft operators, well
established in the bosonic case [1]. As a prototypical example,
take d = 4, p = 1 and consider the line operator Tm(Γ(1))
imposing the following prescribed singularity of the Rarita-
Schwinger field: λ(1) = m(1 − cos θ) dψ + c.c. , along the
1-dimensional cycle Γ(1). This line operator is readily shown
to be charged under U (m)

θ (S(2)) through the Ward Identity:

Uθ(S
(2))Tm(Γ(1)) = ei(θ̄m+m̄θ)⟨Γ(1),S(2)⟩Tm(Γ(1)) , (21)

valid inside any correlation function.
Dual magnetic description. In the bosonic case, it is often

possible to find an equivalent descriptions of the theory, where
disorder operators have a representation as holonomies of dual
variables. For instance, in generalized Maxwell theory, this
is achieved upon going to the dual EM frame, obtained by
dualizing the p-form connection A(p) ↔ Â(d−p−2), where
F (p+1) → (⋆F )(d−p−1). Indeed, in this dual frame, ’t Hooft
operators are simply worldlines of the magnetic connection
Â(d−p−2). Our proposal of magnetic symmetries in fermionic
free theories motivates us to revisit the long-standing problem

8 Note that this gives a precise relation between the parameter f and m in
eq. (4.10) of [26], m2 = 2√

3
fκ dictating a precise value of the effective

cosmological constant.

of the dualization procedure for fermionic fields. Here we
exhibit a rather complete discussion, focusing on a Dirac spinor
in four spacetime dimensions. The generalization to higher
dimensions and form degree will be discussed in [30].

The equivalence between a Dirac field ψ and a fermionic
2-form χ(2) is shown [13, 14] upon considering, as an interme-
diate step, the parent Lagrangian:

Lparent =ε
µναβχ̄µν (∂αψβ + γαϕβ)

+ ξ̄µν∂µϕν + ψ̄µγ
µνϕν + c.c. ,

(22)

and introducing an extra gamma-traceless fermionic 2-form
ξ(2). On one hand, by integrating out the two fields χ(2) and
ξ(2), one enforces constraints that are solved by: ψµ = ∂µα+
γµψ, ϕµ = ∂µψ for two Dirac spinors α and ψ; once those
are substituted back into (22), one obtains the electric frame
free Dirac Lagrangian for the single spinor ψ. On the other
hand, integrating out the fields ψµ and ϕµ gives the equivalent
magnetic frame description of the free Dirac Lagrangian in
terms of the degrees of freedom of the magnetic dual χ(2):

Ldual =− 6∂[µχ̄αβ]γ
µχαβ − 2

3
∂µχ̄αβγ

µαβγρσχρσ

− χ̄αβε
µναβ∂µ∂

λξλν + c.c. ,
(23)

where the last term should be regarded as a partial gauge fixing
term enforcing the correct amount of degrees of freedom on
χ(2). The latter enjoys the gauge freedom: δχαβ = 2∂[αγβ]ϵ.
We shall regard (23) as a magnetic frame description of a
Dirac fermion. The unconventional form of the Lagrangian
(23), compared to (8), is a consequence of having considered a
2-form in d = 4 (that does not satisfy d ≥ 2p+ 1).

A direct relation between the Dirac spinor ψ in the electric
frame and its dual magnetic 2-form χ(2) can be inferred from
the identity:

1

2
εαβρσγρσ∂[µχαβ] +

2

3
εµναβ∂

νχαβ = ϕµ = ∂µψ , (24)

that should be regarded as a fermionic analogous of its bosonic
counterpart dϕ = ⋆ dB(2). In the magnetic frame one has the
two conserved currents:

J (e)
µ = εµναβ∂

νχαβ

J (m)
µνρ = 6γ[µχνρ] +

2

3
γµνργστχ

στ − εµνρσ∂λξλσ
(25)

that generate respectively a 0-form and a 2-form shifting sym-
metry: δχµν = 2γ[µϵν]. The charged objects under the 2-form
symmetry, that were ’t Hooft disorder operators in the electric
frame, in the magnetic frame admit a representation in terms
of holonomies of χ(2):

Tθ(M(2)) = exp

(
i

∫
M(2)

(
θ̄χ(2) + χ̄(2)θ

))
, (26)

charged under the action of the topological operators

Uλ(S(1)) = exp

(
i

∫
S(1)

(
λ̄ ⋆ J (m)

(3) + ⋆J̄ (m)
(3) λ

))
, (27)
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as easily verifiable using the Ward Identity associated to
J (m)
(3) . The opposite holds true for the 0-form symmetry whose

charged objects in the magnetic frame are disorder operators.

Fermionic Higher-group structures. In recent years, there
has been a consistent effort devoted to generalize the algebraic
structure behind bosonic symmetry beyond ordinary 1-group

case, cfr. e.g. [31–34] and references therein. Here, we ex-
plore higher-algebraic structures of fermionic symmetries. We
present an example of 2-group fermionic (gauge) symmetry
in a free massive 2-form spinor Ψµν in fixed (A)dSd (d ≥ 5)
background coupled to an additional Goldstone field Φµ. This
system, also previously considered in [19], can be described
by the Lagrangian:

L = −Ψ̄µνγ
µναβγ∇αΨβγ +mΨ̄µνγ

µναβΨαβ − Φµγ
µνρ∇νΦρ + b2Φ̄µγ

µνΦν + b1
(
Ψ̄µνγ

µναΦα + Φ̄αγ
αµνΨµν

)
, (28)

where∇µ is the (A)dS covariant derivative. This model admits
a fermionic shifting 2-group gauge symmetry

δΦµ = ∇µη − 2b1ξµ +
b2

d− 2
γµη

δΨµν = 2∇[µξν] −
2m

d− 4
γ[µξν] −

b1
(d− 3)(d− 4)

γµνη ,

(29)

whenever the parameters b1, b2, the mass m, and radius of
(A)dS L (L2 → −L2 for dS), are related to each other by:

b2 = −d− 2

d− 4
m, m2 =

d− 4

d− 3
b21 −

(d− 4)2

8L2
. (30)

Exactly as in in the bosonic case (cfr. [35]), the structure of
fermionic 2-group gauge transformation allows us to introduce
a gauge-invariant fake-curvature, taking the form

Fµν = ∇[µΦν] + b1Ψµν −
m

d− 4
γ[µΦν] , (31)

which can serve as a building block for 2-gauge-invariant ac-
tions. This structure is not limited to this specific example, but
is rather general: it is straightforward to generalize this discus-
sion [19] to coupled system of p and (p− 1)-form spinors on
(A)dSd backgrounds with (d ≥ 2p+ 1).

Outlook. In this letter we explored various aspects of
fermionic symmetries of free tensor-spinor fields, including
free Dirac fermions. Many interesting points remain open to
investigation. First of all, it would be worth studying examples
of interacting theories exhibiting fermionic higher-form sym-
metries. Following the discussions of the VA model, it appears
natural to investigate whether non-trivial fermionic general-
ized symmetries survive in the full supergravity theory with
non-linear realization of SUSY (e.g. in [26]), that is the (A)dS
supergravity uplift of the VA model reduction. Moreover, with
regards to possible physical models realizing these symme-
tries, the novel Stückelberg mechanism we propose to give
mass to spinors might find non-trivial applications in particle
physics or condensed matter physics that are worth explor-
ing. A further natural setting to study fermionic symmetries
would be the supersymmetric version of Vasiliev higher-spin-
gravity, and their realization in CFT dual theory [36, 37]. In
this letter we started exploring the realm of higher-categorical

structure by considering some examples of fermionic higher-
groups, and the landscape of possible algebraic structures is
yet to be fully unveiled. For instance, by now many instances
of bosonic non-invertible symmetries are known ([3, 38] and
references therein) in arbitrary dimensions. It is intriguing to
study whether similar constructions admit a fermionic general-
ization.
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Hermitian property of gammas is (γµ)† = γ0γµγ0. In d = 2m dimensions the chirality matrix is defined as

γd+1 = (−i)m+1γ0γ1 . . . γd−1 . (33)

In components, we have the gamma matrices p-forms

γ(p) =
1

p!
γµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (34)

One can deduce the useful identity:

γµ1...µrν1...νkγνk...ν1
=

(d− r)!
(d− r − k)!

γµ1...µr . (35)

For a spinor ψ, its Dirac conjugate is ψ̄ = iψ†γ0.
A differential p-form ω(p) is expressed in components as
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The Hodge star operator ⋆ maps p-forms to (d− p)-forms and our convention is

(⋆ω)µ1...µd−p
=

1

p!
εµ1...µd−p

ν1...νpων1...νp , (40)

where εµ1...µd
is the Levi-Civita symbol and ε01...d−1 = 1, ε01...d−1 = −1.

For odd dimensions

γµ1...µp = i
d+1
2

1

(d− p)!
εµ1...µpν1...νd−pγνd−p...ν1 , (41)

while for even d, this identity becomes

γµ1...µpγd+1 = −(−i) d
2+1 1

(d− p)!
εµp...µ1ν1...νd−pγν1...νd−p

. (42)

On a curved manifold with metric gµν , the Levi-Civita symbol ε generalizes to a tensor according to the normalization

ε01...d−1 =
√
|det{g}| , ε01...d−1 =

−1√
|det{g}|

. (43)

The invariant volume form is√
|det{g}| ddx ≡

√
|det{g}| dx0 ∧ . . . ∧ dxd−1 =

1

d!
εµ1...µd

dxµ1 ∧ . . . ∧ dxµd , (44)

here we would also write dV µ1...µd ≡ dxµ1 ∧ . . . ∧ dxµd for short.
Integration of d-forms over the manifoldM(d) is given as∫

M(d)

υ(d) =

∫
M(d)

1

d!
υµ1...µd

dxµ1 ∧ . . . ∧ dxµd =

∫
M(d)

1

d!
υµ1...µd

dV µ1...µd

=

∫
M(d)

υ01...d−1 d
dx ≡

∫
M(d)

υ(x)01...d−1dx
0dx1 . . . dxd−1 ,

(45)

and integration of a scalar (0-form) ϕ is defined as the integral of its Hodge dual∫
M(d)

⋆ϕ =

∫
M(d)

ϕ
√
|det{g}| ddx . (46)

Useful formulae:

⋆ω ∧ η = ⋆η ∧ ω =
1

p!
ωµ1...µp

ηµ1...µp
√
|det{g}| ddx ,

d ⋆ υ ∧ ω = (−1)d−p−1 1

p!
∂µυ

µν1...νpων1...νp

√
|det{g}| ddx ,

(47)

where ω and η are both p-forms and υ is a (p+ 1)-form.
For submanifolds U and V with dimension p and d − p − 1 and such that V is the boundary of a (d − p)-dimensional

submanifold W , i.e. ∂W = V (in fact, both U and V should be boundaries of some other submanifolds in order to define the
linking number). The linking number ⟨U, V ⟩ is given as the intersection number I(U,W ) of U and W

⟨U, V ⟩ = I(U,W ) =

∫
M(d)

J(d−p)(U) ∧ J(p)(W ) =

∫
U

J(p)(W ) . (48)

Appendix B: Fermionic Symmetries on Curved Manifolds

We discuss the presence of fermionic higher-form symmetries on a fixed curved manifoldM(d), that we must endow with a
spin structure. We first consider the fermionic shifting symmetry of a free Dirac spinor ψ, which has the action

S[ψ] = −
∫
M(d)

eψ̄γµ∇µψ . (49)
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The theory still have a fermionic symmetry δψ = ϵ, where the spinor parameter ϵ obeys

∇µϵ = 0 . (50)

This entails that a shifting symmetry only exists on manifoldsM(d) with covariantly constant spinors. We can also derive this
result from the operator Uϵ(M(d−1)), associated with this shifting symmetry:

Uϵ(M(d−1)) = exp

(
i

∫
M(d−1)

ϵ̄ ⋆ J(1) + c.c.
)
, (51)

that is only topological only if

d(ϵ̄ ⋆ J(1) + c.c.) =
∇(ϵ̄ ∧ ⋆J(1) + c.c.) =

∇ϵ̄ ∧ ⋆J(1) + ϵ̄ ∧∇(⋆J(1)) + c.c. = 0 ,

(52)

which is only possible when ∇µϵ = 0 and ∇µϵ̄ = 0.
For different spacetime backgroundMd, the dimension of solution space to (50) is also different. This is a unique feature of

fermionic symmetry which is different from the bosonic case, where the global symmetries defined by topological currents are
background independent.

The argument can be applied to fermionic p-form symmetries as well. Consider the generator

Uϵ(M(d−p−1)) = exp

(
i

∫
M(d−p−1)

ϵ̄ ∧ ⋆J(p+1) + c.c.
)
. (53)

It is only topological if

d(ϵ̄ ∧ ⋆J(p+1) + c.c.) = ∇ϵ̄ ∧ ⋆J(p+1) + ϵ̄ ∧∇(⋆J(p+1)) + c.c. = 0 . (54)

We can also study systems of fermions compact spin manifoldsM(d) that admit more than one spin structure. For example,
we can consider a free Dirac spinor ψ on a torus T d; this manifold admits 2d spin structures labeling the periodic/anti-periodic
boundary conditions for the fermionic degrees of freedom around each cycle S1

i ⊂ T d. Also in the case of anti-periodic boundary
conditions around a circle S1

i : ψ(x + 2π) = −ψ(x), the fermionic shifting symmetry ψ → ψ + ϵ remain unbroken as, for
consistency, we must impose the same boundary conditions on the symmetry parameter ϵ(x+ 2π) = −ϵ(x). This holds more
generally for fermionic p-form symmetries. Indeed, since all topological operators: (χ(p) represents some fermionic p-form here)

Uϵ(C(p)) = exp

(
i

∫
C(p)

ϵ̄χ(p) + c.c.
)
, (55)

and the all charged operators:

Vη(C(d−p−1)) = exp

(
i

∫
C(d−p−1)

η̄ψ(d−p−1) + c.c.
)

(56)

are built out of fermionic bilinears, they are still well-defined under anti-periodic boundary conditions.
Finally, we briefly comment on the gauging of fermionic shifting symmetries on a curved spacetime with covariantly constant

spinors. As in flat space, we promote the global shifting symmetry of a p-form tensor spinor to a local one, by introducing a
(p+ 1)-form gauge field with modified gauge transformation:

δλµ1···µp+1
= ∇[µ1

ϵµ2···µp+1] +
g

d
γ[µ1

ϵµ2,···µp+1] , δψ = αg ϵ , (57)

where ∇µ is the covariant derivative on (A)dS. A direct generalization of what presented in the main text allow us to deduce
that the minimally coupled action compatible with the gauge transformations (57), can be simply obtained by promoting all the
partial derivatives to covariantized ones in (12). Just for the sake of clarity, we report here the final form of the Lagrangian in
components:

L =− λ̄µ1···µp
γµ1···µpνρ1···ρp∇νλρ1···ρp

− (−1)pg d− 2p

d
λ̄µ1···µp

γµ1···µpρ1···ρpλρ1···ρp

− ψ̄µ1···µp+1γ
µ1···µp+1νρ1···ρp+1∇νλρ1···ρp − (−1)p+1g

d− 2p− 2

d
ψ̄µ1···µp+1γ

µ1···µp+1ρ1···ρp+1ψρ1···ρp+1

+ ψ̄µ1···µp+1J µ1···µp+1 + J µ1···µp+1
ψµ1···µp+1 ,

(58)



9

On arbitrary curved backgrounds, this action is invariant for any values of two scales: the radius of (A)dS L (L2 → −L2 for dS)
and the gauge coupling strength g. This matches exactly the linearized version of the (A)dS supergravity with spontaneously
broken SUSY presented in [26] (cfr. with section 4 thereof).The one we present in the main text has only a single scale g, as we
decided to gauge the shifthing symmetry in flat space. This fixes the effective cosmological constant to be zero (see footnote 8 in
the main text).
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