
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SAFLA: Semantic-aware Full Lifecycle Assurance
Designed for Intent-Driven Networks

Shiwen Kou1, Chungang Yang1, Mingji Wu1,
1The State Key Laboratory on Integrated Services Networks, Xidian University, Xi’an, China.

shiwenkou@gmail.com, chgyang2010@163.com; 15120292580@163.com
Corresponding Author: Shiwen Kou Email: shiwenkou@gmail.com

Abstract—Intent-driven Networks (IDNs) are crucial in en-
hancing network management efficiency by enabling the trans-
lation of high-level intents into executable configurations via
a top-down approach. The escalating complexity of network
architectures, however, has led to a semantic gap between
these intents and their actual configurations, posing significant
challenges to the accuracy and reliability of IDNs. While existing
methodologies attempt to address this gap through a bottom-up
analysis of network metadata, they often fall short, focusing pri-
marily on intent extraction or reasoning without fully leveraging
insights to tackle the inherent challenges of IDNs. To mitigate this,
we introduce SAFLA, a semantic-aware framework specifically
designed to assure the full lifecycle of intents within IDNs.
By seamlessly integrating top-down and bottom-up approaches,
SAFLA not only provides comprehensive intent assurance but
also effectively bridges the semantic gap. This integration fa-
cilitates a self-healing mechanism, substantially reducing the
need for manual intervention even in dynamically changing
network environments. Experimental results demonstrate the
framework’s feasibility and efficiency, confirming its capacity
to quickly adapt intents in response to network changes, thus
marking an important advancement in the field of IDNs.

Index Terms—IDNs, Intent Assurance, Semantic Consistency,
Intent Management, Software Defined Networks

I. INTRODUCTION

In today’s world, digital connectivity is integral to virtually
every aspect of our lives. However, the conventional methods
of managing network service relies on static and script-based
systems, which may not always meet the diverse and changing
requirements of user who seek more adaptable services. To
tackle this challenge, Software-Defined Networking (SDN)
steps in, redefining the behavior of data plane switches through
a software-centric approach. Nevertheless, a significant gap
persists between the intricate complexities of network manage-
ment and the dynamic needs of users. This growing divergence
underscores the critical need for reducing human intervention
in the control loop. In response, Intent-Driven Networks
(IDNs) have been introduced as an innovative solution, of-
fering automation for more adaptive and responsive network
management [1]. As a self-orchestrating network, IDNs permit
users to specify their service needs through high-level intents
[2], obviating the need to worry about intricate details of how
these requirements are translated into hardware configurations.
Previous research indicated that IDNs predominantly utilize
a top-down methodology, primarily centering on an intent
refinement process, which is geared towards translating high-
level human languages into intent policies [3]. In the top-down

methodology, the process of intent refinement often overlooks
the negotiation of underlying states, specifically configuration
and network statuses. This oversight presents challenges in
ensuring the intent’s feasibility. In summary, the major novel
technical challenges of the top-down method are as follows:

• Completeness: We observe that network configurations
and network states serve as excellent examples of net-
work knowledge, which illustrate its internal logic and
operations. However, this knowledge has been largely
overlooked in prior studies.

• Correctness: As the network state undergoes dynamic
changes, deployed intents may experience disruption if
significant alterations do not align with the requirements
of the user’s intents. An intent mismatch detection mech-
anism is required to maintain the intent’s full lifecycle.

• Autonomy: It is crucial to recover intent when disruption
emerges due to network changes, enabling automatic
maintenance of semantic alignment between the user’s
intent and the real configurations.

Based on the aforementioned analysis, we notice that the
top-down approach in recent IDNs often encounters limitations
due to its partial visibility to fully comprehend and integrate
underlying knowledge, indicating a notable semantic gap. This
gap suggests that there is an urgent need for frameworks within
IDNs that can adeptly navigate and resolve intent disruptions
from both a comprehensive (top-down) and a detailed (bottom-
up) perspective.

To address the semantic gap, a few methods employing
a bottom-up approach have been introduced. These methods
involve an in-depth analysis of network operations, with a
particular focus on the detailed aspects of network hardware
and software status. Among these, PROVINTENT [4] intro-
duced an intent provenance model that is critical in tracking
and interpreting the state and semantics of network intents,
thereby providing key insights into the operational dynamics
of network policies. Similarly, SCRIBE [5] adopted a deter-
ministic method to reverse-engineer configuration information
from configuration files, ultimately presenting it in the Nile
language, which simplifies the understanding and management
of network configurations. Furthermore, the Policy Intent
Inference (PII) system underscores that the semantic gap
between higher and lower network layers is a major barrier
in deploying intent-driven approaches in traditional networks
[6]. PII introduced a system to infer policy intents, effectively

ar
X

iv
:2

40
4.

12
30

5v
1

 [
cs

.N
I]

 1
8

A
pr

 2
02

4

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

addressing this challenge. Collectively, these methods concen-
trate on the semantic flow of software or hardware status,
addressing the network visibility issues mainly in a bottom-up
paradigm.

While these methods effectively reduce the semantic gap
and provide valuable insights into the network state, there still
exists a pressing need for an integrated framework that adeptly
combines both approaches, leaving the stated challenges for
the current IDNs framework unsolved. Therefore, we propose
the Semantic-aware Framework for Full Lifecycle Assurance
(SAFLA), which aims to reconceptualize the IDNs process by
synergizing both perspectives. In contrast to existing methods,
the motivation behind our proposed framework, as depicted in
1, centers on ensuring the full lifecycle integrity of network
intents. By systematically analyzing network configurations
from the bottom-up and aligning these with the user’s in-
tent from the top-down, our approach aims to guarantee the
correctness of intents throughout their entire lifecycle. This
dual perspective allows for a comprehensive understanding
and management of network behaviors, ensuring that opera-
tional configurations accurately reflect the strategic objectives
set forth by network administrators. In summary, the main
contributions of our work are listed as follows:

• To the best of our knowledge, such a holistic IDNs
framework that bridges both top-down and bottom-up
methodology does not yet exist in the current IDNs
landscape. Therefore, we present an integrated framework
for IDNs to ensure comprehensive lifecycle assurance of
network intents by analyzing the underlying knowledge.
As a result, SAFLA enhances the robustness and adapt-
ability of network management by autonomously main-
taining the alignment between user intents and network
configurations. We believe this paper could provide novel
insight into IDNs, preserving intent within its full-life
cycle.

• SAFLA can detect intent inconsistency and repair such
errors due to network dynamics, which helps reduce
the complexity of manual troubleshooting and ensures
network operations remain aligned with the user’s intent.

• We present the results of experiments on routing con-
figurations in SDN. SAFLA detects intent inconsistency
and counteracts it in a matter of a few seconds, show-
casing its efficiency and feasibility in real-time network
management.

II. RELATED WORKS

A. Top-down Methodology for IDN

Currently, IDN research follows two technical approaches:
top-down and bottom-up paradigms. The top-down approach
aims to translate users’ uttered intent expectations into low-
level network policies and configurations. Extensive studies
have proposed natural language processing methods to trans-
late ambiguous human intent into concrete network configura-
tions. Several studies have applied natural language processing
(NLP) to parse intents and generate policies. For example, the
authors in [3] present an intelligent intent translation frame-
work. It employs a bi-directional long and short-term memory

and conditional random field. Other works like VIVoNet
[7] supply a voice-assistant interface for operators to input
intents and convert intents to network configurations afterward.
Like other deep learning methods, this data-driven approach
enable predictive translation but require large training data. To
improve translation performance, some works explore interme-
diate representations between intents and policies. The authors
in [8] proposed an intermediate intent language called Network
Intent LanguagE (Nile) to address challenges in decoupling
policy extraction from deployment. Building on this, Lumi [9]
incorporates users’ real-time feedback into the intent confir-
mation state. By this approach, Lumi’s design leverages user
expertise as a critical resource for constantly augmenting and
updating its existing dataset, which in turn, significantly bol-
sters the accuracy of the intent translation. Recently, SMART
[10], ingeniously introduced the concept of an intent quin-
tuple, denoted as ⟨domain, attribute, object, operation, result⟩,
which specified the scope that an intent expression should
cover. This quintuple serves as a comprehensive framework
that significantly enhances the precision and efficacy of net-
work management. Despite the success of the aforementioned
efforts, the top-down paradigm may fail when deploying new
intents with limited network capabilities. As such, the top-
down approach remains limited in generalized intent trans-
lation and policy enforcement. This motivates research into
bottom-up paradigms, which will be discussed next.

B. Bottom-up Methodology for IDN

To address the limitation of the top-down methodology
in dynamic network management and intent assurance, some
studies have explored a bottom-up approach. The bottom-
up approach collects underlying network configurations and
intrinsic network knowledge to infer the intents behind ex-
isting policies. For example, SCRIBE introduces a bottom-
up approach to extract higher-level intent from the lower-
level configuration files. As a variant, PII improves upon
it by incorporating semantic metadata in the network as
auxiliary information to aid in extracting already deployed
intents. Moreover, PROVINTENT extends the SDN control
plane by recording the provenance and evolution of all intents,
and reasoning about intents by analyzing past intent state
changes. A key advantage of the bottom-up approach is that
it strengthens the relations between the current configurations
and past intents, providing a heuristic to derive applicable and
sound policies. While existing IDNs approaches effectively
employ either a top-down or bottom-up methodology, they of-
ten fall short of merging these strategies in a way that ensures
semantic consistency across the full lifecycle of intents. This
shortfall points to the necessity for an IDNs framework that not
only combines the strengths of both methodologies but also
guarantees the semantic integrity of intent throughout their
entire lifecycle. Such a framework is crucial for achieving a
deep and dynamic alignment of intent semantics with the ever-
evolving requirements of the network, ensuring that intents are
consistently understood and applied as intended.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

ONOS

Nile
Intent

Nile
Intent

Nile
Intent

Nile
Intent

Verification

Intent
Databse

Southbound
Interface

Consistency Check

Intent Full-life Assurance

Nile
Intent

Intrinsic
Intent

t+1 t+n

ꞏꞏꞏ

t+3t

Deployment

Verification

t+2

Remediate Intent Reasoning

P
roven

an
ce testin

g

P
roven

an
ce testin

g

P
roven

an
ce testin

g

P
roven

an
ce testin

g

config

topo

config

topo

config

topo

config

topo

Intent
Lifespan

Fig. 1. The motivation of the proposed framework.

III. AN OVERVIEW OF THE PROPOSED FRAMEWORK

In this section, we introduce the proposed SAFLA and
detail its integration with the existing top-down methodology
through a deterministic bottom-up approach. Moreover, we de-
scribe our deterministic method for inferring deployed intents.
Our framework proactively responds to network dynamics
by automatically reasoning and deploying remediation intents
based on these inferred results.

The proposed framework is built upon three fundamental
components: top-down intent refinement, bottom-up intent
extraction, and repair intent reasoning. As depicted in Fig.
2, SAFLA takes both the network configurations and the
underlying network topology as its input. Through semantic
feature extraction, it discerns the remediation intent embedded
within the configurations and states. This feature is crucial,
especially when the network’s current capabilities conflict
with the user’s original intent due to changes in the network.
The configuration analyzing component extracts rules from
the network policies. The network abstracting component
monitors the network status in real time. Lastly, the remediate
intent reasoning component pinpoints the remediation intent
from the derived semantic features. In the following sections,
we will delve into each of these components in greater detail.

A. Top-down Components in Intent-Driven Networks

In IDN, a top-down approach plays a pivotal role in
steering network behaviors and operations towards desired
outcomes. The process begins with Intent Refinement, a crucial
phase where high-level business objectives or user intents
are translated into detailed, deployable network policies. This
refinement involves decomposing broad, often abstract goals
into specific, measurable network configurations. Following
this, Intent Verification is employed to ensure that the re-
fined intents align with the overall network capabilities and
constraints. This step acts as a safeguard against impractical
or conflicting intents, incorporating simulations or predictive

models to verify the feasibility and efficiency of the proposed
network configurations. Lastly, Conflict Resolution is an es-
sential mechanism within IDN to address any discrepancies
or clashes that arise between multiple intents or between
intents and existing network policies. This involves a sophis-
ticated analysis to identify and reconcile conflicts, ensuring
harmonious coexistence of various intents and maintaining
network integrity. Through these integrated processes, the top-
down approach in IDN fosters a seamless translation of user
objectives into efficient network operations, paving the way for
agile and responsive network environments. For further details
on the intricacies and implementation of these processes within
the Intent-Driven Networks framework, we refer the interested
reader to our previously published literature [3], [11]–[13].

B. Bottom-up Analysis and Intent Assurance

As depicted in Fig. 2, our methodology primarily relies on
configuration files and the current network status as inputs.
These configuration files are exported from the underlying
switches, whereas the network state includes elements such
as endpoint names, links, interfaces and IP addresses. In this
section, we outline a bottom-up methodology for analyzing
network behavior and translating it into an intent-level lan-
guage. Our methodology takes flow tables exported from SDN
switches as input. Upon acquiring these flow tables, during
step 1, we categorize them into two primary groups: forward-
ing and functional. Based on their specific functionalities, we
consolidate them in a centralized database, synthesize the data,
and then represent them using an intermediate format. In step
2, we identify network entities to produce an abstract model.
Step 3 involves augmenting this model with supplementary
data sourced from NSKG, culminating in the Aggregated
Model. This model offers an enhanced depiction of switch
behavior, characterized as meta-intents. Finally, in step 4, we
convert these meta-intents into the network intent language,
where we carry out conflict evaluation and policy management.

1) State Abstraction: Given the increasing complexity and
diversity of modern networks, our framework initiates the
process by analyzing the extracted network state. To tackle the
challenges of network heterogeneity, we employ a knowledge
graph (KG) to abstract the physical network. This KG enables
a comprehensive network analysis across various dimensions,
levels, and granularities, allowing for an in-depth exploration
of network attributes from different perspectives. Furthermore,
we use a vendor-neutral template to extract essential features
from the network state, including topology, endpoint groups,
links, and their associated attributes. In our case, we focus
on endpoint entities and their related attributes. It is worth
noting that these network endpoints largely remain static,
prompting us to gather it using both real-time and offline
methods. As we collect this data, our framework automatically
constructs a Network State Knowledge Graph (NSKG) from
the relevant entities and attributes. Consequently, this NSKG
can dynamically update its nodes and relation properties
based on real-time data. This provides a way to represent
dynamic network changes in a format that’s both machine-
compatible and human-readable. The NSKG is capable of not

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Top-down Methodology Bottom-up Methodology

Intent
Translation

Intent
Verification

Conflict
Resolution

Policy Generation

Network
Topology

Intent
Synthesizing

Network
Configuration

Consistency Check

Repair Intent Reasoning

Semantic Fusion

State
Abstraction

Intent Full-life
Assurance LoopIntent

Repository

Intrinsic
Intent

feedback

Policy Deployment

flow table state capture

Intent specification semantic-aware policy generation

generated-intent

recovery

back-up

original-intent

Fig. 2. The architecture of the semantic-aware full lifecycle assurance framework

just detecting changes in network status, but also of being
utilized to determine whether these changes could result in
an intent disruption. If such disruption occurs, the NSKG can
provide data to infer the underlying remediation intent and act
on it by utilizing the attributes of the affected endpoint group.

2) Intent Synthesising: We first export flow tables from the
programmable SDN switches. Our objective is to synthesize
these flow tables into a standard intermediate representation
that denotes high-level intents. It is crucial to ensure that
the exported flow tables are complete and unaltered as they
form the most primitive description of the SDN switches. Our
ultimate goal is to unify the underlying flow entries, which
will abstract the underlying configuration files into an inter-
mediate representation. By synthesizing such a representation,
it became feasible to analyze and extract high-level intents.

In SDN environments, the flow tables play a critical role in
directing how a switch handles traffic. A flow table consists
of multiple flow entries, each of which specifies the rules
for handling particular traffic patterns. the flow entries have
match fields that determine which packets align with the entry
and actions that define what should happen to the matching
packets, such as forwarding or dropping them. Moreover, the
entries have priority attributes that decide which entry should
be applied when multiple matches are found for a packet.
Such flow tables and their entries serve as the core mecha-
nism in SDN for directing traffic, establishing network paths,
and implementing network policies. To effectively manage
and analyze the flow tables, a unified representation model
becomes essential. In this phase, SAFLA utilizes graph as

the representation model to facilitate subsequent analysis and
processing.

The extraction of entities from network configuration rules
is an essential step for grouping similar intents. This process
not only enables a compact representation of these rules but
also facilitates a bottom-up extraction of high-level intents.
The procedure takes as its input flow tables from switches
across the entire network.

A flow table contains multiple flow entries, each defining
the rules for processing specific traffic. Every flow entry
comprises certain key fields. As depicted in Fig. 3, this entry
is designed for packets originating from IP 192.168.1.10
sent over TCP to the IP range 10.0.0.1/24 on port 443
with specific VLAN and MAC details. When this entry
is matches, the switch modifies the packet’s VLAN and
destination MAC, forwards it to Port 6, and sends a copy
to the controller. This entry has a high priority of 1500,
has matched 3450 packets so far, and will auto-expire
under certain conditions. To raise the abstraction level
of a flow entry, we define each flow entry as: Entity =
{MatchFields,Priority,Acttion,Counters,Timeout},
where:

• MatchFields: determine which packets match the flow
entry. Generally, match fields include but are not limited
to the source IP address, destination IP address, source
port number, destination port number, transport protocol,
input port, Ethernet type, VLAN identifier, MAC address,
etc.

• Priority: When multiple entries match a packet, this field

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

{''Flow Table Entry Details'':[
{''Match Fields'':[

{''Source IP Address'': ''192.168.1.10''},
{''Destination IP Address'': ''10.0.0.1/24''},
{''Transport Protocol'': ''TCP''},
{''Source Port Range'': ''1000-2000''},
{''Destination Port'': ''443'' (HTTPS)},
{''VLAN ID'': 105},
{''Ethernet Type'': ''0x0800'' (indicating IPv4)},
{''MAC Source Address'': ''AA:BB:CC:DD:EE:FF''},
{''MAC Destination Address'': ''FF:EE:DD:CC:BB:AA''},]

},
{''Actions'':[

{''Change VLAN ID to'': 110},
{''Modify MAC Destination Address to'': ''00:11:22:33:44:55''},
{''Forward to Port'': 6},
{''Send a copy to the controller'':1},]

},
{''Priority'': 1500},
{''Counters'':[

{''Number of Matched Packets'': 3450},
{''Bytes processed'': ''4.5MB''},]

},
{''Timeouts'':[

{''Idle Timeout'': 300},
{''Hard Timeout'': 3600},]

}
]}

Fig. 3. Examples of flow entry details

determines which entry should be applied. Entries with a
higher priority are considered first.

• Actions: define the operations that should be executed on
packets matching this entry. Common actions include for-
warding to a specific port, Dropping the packet, Sending
to the controller, etc.

• Counters: These track the number of packets matching
the flow entry.

• Timeout: Some flow entries are temporary and might
have a defined lifetime. When the timeout is reached, the
entry can be automatically removed from the flow table.

Clustering: We convert the flow tables into a preliminary
representation that is structurally consistent. As depicted in
Fig. 4, we group the flow tables in each switch according
to their endpoint groups. To be specific, flow entries with
differing source and destination must be classified into distinct
intents, whereas flow entries with identical addresses should be
grouped to the same intent, which is denoted as Si. Therefore,
our grouping process aims to categorize flow entries according
to their address information in the match fields. The function
that defines the grouping of related flow entries within a switch
is thus given by

g : M ×N → S

where Si ∈ 2S . M and N are subset of E, representing flow
table entries taken from each switch. Formally, ∀M,N ⊂ E,
if M.addr ≡ N.addr, then we group these two entries by
g(M,N). By taking this step, we can effectively reduce the
redundancy of the flow table, thereby decreasing the total set
of flow entries and consequently simplifying the complexity
of the intent extraction process.

Semantic Linking: It is important to highlight that a single
forwarding intent typically spans configurations across several

 Clustering

Network device
flow tables

 Semantic
 linking

Clustered
Flow tables

Intermediate
representation

Fig. 4. Flow tables synthesis.

switches in SDN. Due to the semantically related nature of
forwarding flow entries across these various switches, the
amalgamation of grouped flow entries is imperative. We refer
to this process as semantic linking. As a result, in the following
phase, we interconnect the flow entries from all switches
throughout the network, constructing a unified model that
closely approximates the actual user’s intent. Therefore, the
process of semantic linking is given by

f1 : S1 × S2 × · · · × Sn → Z

where Si and Z are the clustered flow entries and the in-
termediate representations. Formally, ∀S1, S2, ..., Sn ∈ 2S , if
S1.addr ≡ S2.addr ≡, ...,≡ Sn.addr, then we link them
by f(S1, S2, ..., Sn). Thus, each Zi ∈ 2Z can be regarded
as a long chain that collectively constitutes a singular intent.
The significance of the linking function becomes clear in the
context of associated intents that operate within the same
domain. This approach guarantees that potential redundancies
are prevented across different intermediate representations. In
the following step, we will incorporate topological information
from the NSKG to ascertain the correctness of these interme-
diate representations.

3) Semantic Fusion: As illustrated in Fig. 5, the semantic
fusion process within our framework is meticulously designed
to convert intermediate representations back into a compre-
hensible and high-level set of intents, leveraging the power of
network state knowledge graphs for verification. This process
unfolds in several structured steps as outlined below:

Abstract Model: This step involves mapping the previously
obtained intermediate representations into a knowledge graph
format, referred to as the abstract model. In this model, nodes
represent switches, encapsulating detailed switch information,
while edges denote the semantic linking between these nodes.
This stage sets the foundation for transforming the raw data
into a structured format that highlights high-level network
functions and relationships.

Aggregation: Utilizing the Network Semantic Knowledge
Graph (NSKG), this phase subjects each intermediate repre-
sentation to rigorous scrutiny, focusing primarily on verifying
the connectivity of switches within the actual network topol-
ogy. This step, known as aggregation, is pivotal in ensuring
that the abstracted representations reflect feasible network
configurations, thereby validating the structural integrity of the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Intermediate
Representation

 Generating
 Graph

 Aggregation

Meta-Intent Graph

Abstract Model

NSKG

sn

s4

s2s1

s3

s5

Fig. 5. The process of intent semantic fusion.

modeled intents. It ensures that the abstract models are not
only theoretically valid but also practically applicable within
the current network state.

Meta-Intent Graph: Upon successful validation through
NSKG, the abstract models are transformed into what we
term as meta-intent graphs. These graphs not only precisely
delineate high-level intents but also detail the connectivity
paths through the network’s switch nodes.

Through these steps, the semantic fusion phase delineates
a robust methodology for back-translating intermediate rep-
resentations into high-level network intents, grounded in the
actual network topology and operational semantics. This ap-
proach not only enhances the precision of intent extraction but
also enriches the network’s semantic understanding, laying a
solid foundation for subsequent intent consistency verification.
This methodical process ensures that the derived intents are not
only aligned with the network’s current state but also provide
a reliable basis for further analysis and optimization, thereby
facilitating more informed and effective network management
strategies.

4) Consistency Check: In this step, we systematically com-
pare the endpoint group information extracted from each meta-
intent graph with the intents stored in the intent repository.
This comparison is performed by extracting the endpoint group
information from the meta-intent graphs as tuples and match-
ing them against the intents defined in the intent repository
through a mathematical process. The core of this process
involves defining two sets: G = {g1, g2, ..., gn} representing
the set of all endpoint group information tuples in the meta-
intent graphs, and I = {i1, i2, ..., ik}, representing the set of
all intents in the intent repository. The goal is to find a bijective
function f2 : G → I that matches each tuple gn from G to
an intent ij in I, indicating a one-to-one correspondence and
thus semantic consistency between the extracted intents and

the user’s intents.
If a tuple gi in G cannot find a corresponding intent ij in

I, it suggests that the particular intent has become obsolete
and needs to be reinstalled. Conversely, if there exists an
intent ij in I without a matching tuple in G, it signals an
inconsistency, indicating that the configuration semantics and
intent semantics are misaligned, necessitating further analysis
to resolve the discrepancy.

5) Repair Policy Reasoning: We introduce two methods
to effectively address semantic inconsistencies within the
network’s operational framework.

For scenarios where elements in G cannot be matched with
tuples in I, this discrepancy is often due to structural changes
in the network topology. Such changes might result from
network upgrades or reconfigurations, potentially rendering
certain intents obsolete or misaligned with the network’s
current configuration. To tackle this issue, our strategy includes
a comprehensive review of the intents stored in the intent
repository. We identify those impacted by the recent topology
changes and proceed to reinstall them, ensuring they accu-
rately represent the updated network layout. This procedure
guarantees that the operational state of the network continues
to reflect its strategic goals.

On the other hand, when elements in I cannot find corre-
sponding tuples in G, it may signal unauthorized interventions,
notably the injection of malicious flow entries by unauthorized
applications. This scenario compromises both the network’s
intended functionality and its security. To counteract this, our
framework leverages a combined top-down and bottom-up
consistency check to implement a robust detection mechanism
for such irregularities. Upon identifying these discrepancies,
the framework purges the extraneous gi to maintain semantic
consistency across the network.

By employing a methodical approach that combines top-
down and bottom-up strategies within an INDs framework, we
ensure the effective management of intents throughout their
lifecycle. This holistic methodology not only facilitates the
swift resolution of semantic inconsistencies but also enhances
the network’s security and resilience against unauthorized
modifications, maintaining the integrity and alignment of
network operations with the organizational objectives.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the SAFLA
framework across various application scenarios and network
configurations. Initially, we conduct a case study to demon-
strate SAFLA’s effectiveness in a corporate network setting,
focusing on its capability to ensure semantic consistency
and counteract potential hijacking attack. Subsequently, we
examine the efficiency of our proposed bottom-up approach
for high-level intent extraction, which is essential for the
framework’s functionality. Furthermore, we have benchmarked
SAFLA with the ONOS’s Intent Framework [14], comparing
their abilities to maintain intent viability during hijacking at-
tacks in runtime. Lastly, we have conducted stress tests on the
SAFLA framework to evaluate its scalability on large network
with an increase in the number of intents and switches.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

A. Evaluation Environment

To thoroughly access the SAFLA framework, we employ
a network topology ranging from 1 to 400 nodes. This
topology was realized through the use of Containernet [15].
Containernet is a versatile network emulation tool, allows for
the creation and manipulation of network topologies in a con-
trolled environment. This tool was instrumental in constructing
the varied network topologies necessary for our tests. The
experimental setup was hosted on a robust Ubuntu desktop
equipped with 64GB RAM and an Intel(R) Core(TM) i7-
9700K CPU operating at 3.60GHz. The desktop was running
Ubuntu 20.04.1, with resources efficiently allocated among
Containernet (to handle hosts and Open vSwitch), the SDN
Controller (ONOS version 2.7.0), and the SAFLA framework
itself. This configuration ensured a reliable and realistic en-
vironment for evaluating the performance and scalability of
SAFLA under various network conditions.

B. Corporate Network Scenario

In this section, we present a case study of a small company
that illustrates the applicability of our solution in maintaining
the intent life cycle, demonstrating its effectiveness and tech-
nical feasibility. The goal is to ensure that network behavior
semantically aligns with its declared intent throughout its full
lifecycle, thereby avoiding potential disruptions during the
operational phase.

As shown in Fig. 6, the case study outlines a network with
two primary intents. However, it also highlights a potential
threat: a rerouted flow table with a higher priority between
’desktop’ and ’server1’, often overlooked by administrators
due to its stealthy nature and the complexity of analyzing
the underlying flow tables. Conventionally, network admin-
istrators are required to engage in continuous monitoring,
which includes checking anomaly logs and observing network
behavior. This task encompasses regular reviews of network
performance metrics, timely adjustments to configurations as
necessary, and comprehensive testing to ensure each intent
functions as intended throughout its lifecycle. However, this
approach to network management is often challenged by the
reactive nature of traditional network management practices.
Many business disruptions related to network intents only
become apparent after they have caused significant disrup-
tions. Consequently, administrators might only become aware
of these issues after they have led to notable performance
degradation or even critical system disruptions. This delayed
detection and response underscores the need for a shift to-
wards a more proactive framework that maintains the semantic
consistency between high-level intent and low-level configu-
rations.

In our proposed SAFLA, once an intent is successfully
translated and implemented in hardware, it initiates a con-
tinuous assurance loop that persists throughout the intent’s
lifecycle. This involves periodically monitoring intents ex-
tracted from lower-level configurations, ensuring they align
with the original user intent. Maintaining this alignment from
the bottom up is crucial to preserve the semantic integrity
of the intent and guarantee semantic consistency. In cases of

s1

s6

s11

r1

server1

NAT

1

1

2

1
2

3

2

3
00:00:00:00:00:0200:00:00:00:00:01

192.168.1.212 192.168.1.213

fl
ow

s

Network Intents

Network Hijacking

server1 desktop

desktop r1




hijackHost

desktop

Internet

ONOS

server1 hijackHost

Fig. 6. A case study of a small corporate network with SDN switches

FLOW
PRIORITY

SELECTOR TREATMENT APP NAME

40000
ETH_TYPE:lldp,

bddp,arp
imm[OUTPUT:ONOS]

,cleared:true
*core

55

55

IN_PORT:1,
ETH_DST:00:00:00:00:00:02,
ETH_SRC:00:00:00:00:00:01

IN_PORT:2,
ETH_DST:00:00:00:00:00:01,
ETH_SRC:00:00:00:00:00:02

imm[OUTPUT:2]
,cleared:false

imm[OUTPUT:1]
,cleared:false

*net.intent

*net.intent

65535
ETH_TYPE:ipv4,

IPV4_SRC:192.168.1.212/32
imm[OUTPUT:3] ,

cleared:false
*hijack

FLOW
PRIORITY

SELECTOR TREATMENT APP NAME

40000
ETH_TYPE:lldp,

bddp,arp
imm[OUTPUT:ONOS]

,cleared:true
*core

55

55

IN_PORT:1,
ETH_DST:00:00:00:00:00:02,
ETH_SRC:00:00:00:00:00:01

IN_PORT:2,
ETH_DST:00:00:00:00:00:01,
ETH_SRC:00:00:00:00:00:02

imm[OUTPUT:2]
,cleared:false

imm[OUTPUT:1]
,cleared:false

*net.intent

*net.intent

0 10 20 60 70 80

0

10

20

30

40

50

(a) Bandwidth Over Time: OIF vs SAFLA

B
an

dw
id

th
 (

G
bi

ts
/s

ec
)

30 40 50

Simulation time (s)

 OIF
 SAFLA

(b) Flows for Device S1(before hijack attack)

(c) Flows for Device S1(during hijack attack)

hijack attack remediation

Fig. 7. This analysis showcases the performance of the proposed framework
in ensuing intent full life assurance. As the intensity of attacks escalates,
including increased disrupted topology nodes and malicious flow entries, the
framework consistently demonstrates a robust intent survival rate.

discrepancies, an intent remediation process is initiated. If a
rectification policy is applicable, this intent will then adopt a
top-down approach again to repair/remove malicious flows to
maintain the intent’s semantic integrity.

To validate the effectiveness of our proposed SAFLA ap-
proach, we conducted a comparative experimental analysis
against the ONOS’s intent framework that employs a strictly
top-down design. As depicted in Fig. 7(a), we initiated an
intent that maintains a desktop’s request for resources from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
COMPARISON OF THE EXTRACTION TIMES (IN SECONDS) OF FWS SCRIBE AND THE PROPOSED SAFLA.

Methods Info. Holistic
Analysis

Standalone
Capability

Number of Intents vs. Processing Time

10 20 30 40 50 60 70 80 90 100

SCRIBE [5] iptables ✗ ✗ 0.2071 0.4333 0.8037 1.3124 2.0986 3.0047 4.1298 5.4272 7.2575 8.6499
FWS [16] iptables ✗ ✓ 0.2064 0.4336 0.8028 1.3136 2.0972 3.0031 4.1274 5.4251 7.2552 8.6457
SAFLA flowtables ✓ ✓ 0.0001 0.0002 0.0004 0.0005 0.00006 0.0007 0.0009 0.0013 0.0015 0.0015

server1, with the flow table illustrated in Fig. 7(b). Initially,
from 0 to 37 seconds, the services under both SAFLA and
ONOS’s intent frameworks were operational, reaching a trans-
mission rate of approximately 45 Gbit/sec. However, at the
37.5-second mark, a simulated hijack attack was executed,
diverting all traffic intended for the desktop to the hijackHost,
detailed in the flow table in Fig.7 (c). The immediate con-
sequence was a cessation of service, with the transmission
rate plummeting to zero in both approaches. Notably, within
approximately 5 seconds, the services utilizing the SAFLA
framework demonstrated a robust recovery. This resilience
is made possible by continuously reconciling the lower-level
configurations with the original user intent through an inte-
grated assurance loop. Upon detecting discrepancies, SAFLA
promptly enacted a rectification policy, purging the errant flow
tables and thus resuming the intended services.

C. Intent Extraction Performance

To assess the feasibility of our framework, we explored its
applicability in the context of SDN routing. Our evaluation
hinged on two critical factors: (i) the capability of our frame-
work to efficiently extract and generate remediation intent;
and (ii) the resilience demonstrated by the intent survival rate,
particularly when intents faced with disruptions due to switch
breakdown and malicious flow injection.

1) Single Device Analysis: To validate the performance of
our proposed framework, we conduct a comparative analysis
focusing on the time efficiency of intent extraction. In this
analysis, we compared our framework with FWS and SCRIBE,
which are both network configuration analyzing tools that
automatically interpret network behavior in higher-level repre-
sentations (intents). Our comparison involves extracting high-
level intents, varying in quantity from 10 to 100. The results
of this evaluation are presented in Table I, where the best
outcomes are highlighted in bold. The ’Info’ column in the
tables provides details on the input for each method: ’iptables’,
a widely used packet filtering tool in Linux operating systems
that functions as a software firewall, and ’Flowtables’, a high-
performance, programmable forwarding engine in software-
defined networking environments, also capable of acting as a
software firewall.

For the single-node intent extraction experiment, we employ
Containernet to emulate a network environment that mirrors
the one under iptables. This emulation is achieved by employ-
ing SDN switches within Containernet to simulate firewall
functionalities, thereby allowing us to ensure uniformity in
network capabilities across all three tested methods. To ensure

this, we focus on accessibility intents, which permit the
forwarding of specific IPs or protocols. Meanwhile, both FWS
and SCRIBE utilize iptables’ filter rules, creating a level basis
for comparing these different intent extraction methods. This
uniformity in network setup and application of rules ensures
that all methods are evaluated under consistent conditions,
particularly at the configuration level, thereby facilitating a
fair comparison.

As highlighted in Table I, our experiment reveals that the
proposed OFIAL outperforms FWS and SCRIBE in terms of
time efficiency. Figure 8 illustrates our framework’s superior
efficiency over a range of 10 to 100 intents, consistently
exceeding others at least by an order of magnitude. This
disparity in efficiency becomes even more pronounced at the
100-intent benchmark, where our method is observed to be
three orders of magnitude faster in time efficiency compared
to both SCRIBE and FWS.

These results unequivocally highlight the superior perfor-
mance of our framework in single-node scenarios, indicating
its potential for more effective application in large-scale net-
work intent consistency assurance, compared with the other
methods examined. Furthermore, our framework has the ad-
vantage of being able to analyze global network intents in
scenarios involving more than two switches. In the following
subsection, we evaluate the SAFLA framework’s capability in
extracting intents at a large-scale network level.

2) Multi-device analysis: We access the SAFLA frame-
work’s performance in extracting intent within a network that
comprises 100 intents. Our experimental setup explores a
range of network sizes by progressively increasing the number
of switch nodes. Starting from a single node, the network
expands to include 50 (10x5), 100 (10x10), 200 (10x20),
and 400 (10x40) switch nodes, all interconnected in a mesh
topology to ensure maximal connectivity. Furthermore, we
arrange 20 hosts as the endpoints for these intents. These hosts
are placed at the network’s polar ends, which allows for the
flow entries to be evenly installed across the switches in the
network.

As depicted in Fig. 9, we observe a stable increase in the
time required for intent extraction as the number of nodes
grows. Crucially, there is no abrupt surge in the time needed,
despite the network’s increasing complexity. This steadiness
underscores the framework’s scalability and robustness, il-
lustrating its ability to handle complex network configura-
tions without a loss in performance efficiency. Moreover,
the SAFLA framework particularly excels when managing a
network with 100 intents across 400 switch nodes, achieving

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

10 20 30 40 50 60 70 80 90 100
Number	of	Intents

10-4

10-3

10-2

10-1

100

101

Ti
m
e	
(s
)

SAFLA
FWS
SCRIBE

Fig. 8. A comparison of the intent extraction time across SCRIBE, FWS,
and SAFLA, demonstrating that SAFLA significantly outperforms the other
two methods. At the same number of intents, SAFLA’s extraction time is up
to four orders of magnitude faster than both SCRIBE and FWS.

10 20 30 40 50 60 70 80 90 100
Number	of	Intents

10-4

10-3

10-2

10-1

Ti
m

e	
(s

)

1					node
50			nodes
100	nodes
200	nodes
400	nodes

Fig. 9. A comparison of intent extraction times across various switch node
sizes reveals sub-linear scaling with increasing intent counts. Remarkably,
with a network of 400 nodes processing 100 intents, the extraction time is
maintained at a mere 0.1 seconds.

intent extraction in a swift 0.1 seconds. This impressive result
not only demonstrates its capability for real-time efficiency but
also establishes its potential to facilitate full lifecycle intent
assurance at runtime.

D. Runtime Performance

In this section, we evaluate the SAFLA framework’s abil-
ity to maintain intent’s full lifecycle during runtime. Our
assessment focuses on the framework’s handling of intent
disruptions, particularly those arising from topology changes
affecting connectivity intents and hijack attacks impacting
existing intents. Furthermore, we test the framework’s assur-
ance performance at runtime with different topology sizes and
number of intents, highlighting its operational robustness and
adaptability in real-world applications.

1) Intent Assurance: In our evaluation, we sought to assess
the efficacy of our proposed SAFLA framework in managing
the lifecycle of network intents under conditions of varying
network topology completeness, from 40% to 100%. This
range represents the integrity of the network topology, with
100% completeness indicating a fully intact topology and
40% completeness indicating that 60% of switch nodes are
non-functional, simulating the effect of partial to complete
switch failures on network operations. We incorporated ten
critical business intents into a network simulation to ensure
operational continuity. The performance of our framework was
benchmarked against the ONOS’s intent framework which
employs a standard primary backup recovery algorithm, by

60 70 80 90 100
0

20

40

60

80

100

20 40 60 80 100
0

20

40

60

80

100

3
13

31

59

100

60

70

80
90 100

89

67
56

11
0

100 100 100 100 100

(a) Intent Remediation Rate OIF-PB vs SAFLA

In
te

nt
 S
ur
vi
va
l R

at
e

(%
)

Topology Completeness (%)

 OIF-PB SAFLA

(b) Intent Survival Rate OIF vs SAFLA

In
te

nt
 S

ur
vi

va
l R

at
e

(%
)

Attack Rate (%)

 OIF SAFLA

3

Fig. 10. This analysis showcases the performance of the proposed framework
in ensuing intent full life assurance. As the intensity of attacks escalates,
including increased disrupted topology nodes and malicious flow entries, the
framework consistently demonstrates a robust intent survival rate.

measuring the intent survival rate in scenarios of fixed topol-
ogy. Our findings illustrated that our framework consistently
surpassed the standard backup algorithm across varying levels
of topology completeness, significantly enhancing robustness
and the rate of intent recovery even in conditions where
network integrity was compromised.

Specifically, our framework demonstrated a marked superi-
ority when the network’s topology completeness was at 80%,
doubling the performance of the backup algorithm, and further
distinguished itself at 90% completeness, where our intent
survival rate exceeded that of the backup algorithm by 36%.
These results underline our system’s exceptional efficiency in
achieving near-total remediation, particularly under adverse
conditions, and confirm its effectiveness in restoring busi-
ness intents. As the completeness of the network topology
improved to and beyond 80%, both frameworks showed an
improved intent survival rate. Notably, our framework almost
achieved full remediation at 90% completeness. The ONOS’s
intent framework with the Primary backup algorithm, however,
showed comparable effectiveness only when the network’s
integrity was near-perfect or at full capacity.

This experiment reveals that our proposed SAFLA frame-
work is inherently more resilient to significant network impair-
ments, providing a more reliable solution for intent survival
rate. Such resilience is crucial in maintaining uninterrupted
services, particularly in situations where network stability
cannot be guaranteed. The findings underscore the potential
of our framework to adapt dynamically to varying levels of
network disruptions, ensuring service continuity even in the
most unpredictable of scenarios.

To further complement this experiment, we also evalu-
ated the resilience against simulated hijacking attacks, which

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

compromise deployed intents by targeting the network’s flow
tables. To control the intensity of the attacks, we introduced
varying numbers of malicious flow entries into the data plane,
noting that higher attack intensities result in more disrupted
intents. Our methodology encompasses a thorough analysis of
flow entries in each SDN switch to extract and assess higher-
level intents. By comparing these with the user’s original
intents stored in the intents repository, our framework ensures
the integrity and consistency of user intents across their lifecy-
cle by either reinstalling or purging compromised flow entries.
This approach effectively bridges the semantic gap between
actual configurations and the declarative high-level intents.
In comparison, we assessed ONOS’s intent framework to
maintain intent consistency under similar adverse conditions.
For the experimental configuration, we established a network
topology using Containernet, integrating a switch connected
to 11 hosts, over which we installed 9 unique intents for
assurance test. As depicted in Fig. 10(b), our framework signif-
icantly surpasses the ONOS intent framework in maintaining
intent consistency across various attack intensities. Notably,
our framework maintains a nearly constant intent consistency
rate, unaffected by the severity of the attack. Even with the at-
tack intensity reaching up to 100%, our framework’s ability to
preserve intent integrity remains staunchly robust. In contrast,
the ONOS’s intent framework exhibits a pronounced decline
in intent consistency with increasing attack rates. This decline
is attributed to ONOS’s intent framework’s top-down intent
management methodology, which relies on predefined states
to accommodate potential variations throughout the intent’s
lifecycle—from compilation to post-installation phases. At a
100% attack rate, the ONOS framework’s capacity to ensure
intent consistency is virtually nullified, highlighting a critical
susceptibility to network threats. This contrast underscores
our framework’s superior detection and recovery capabilities,
demonstrating its strength in maintaining intent consistency
even under severe network threats. The experiment emphasizes
the importance of a holistic approach that encompasses the
entire lifecycle of network intents. It also confirms the effec-
tiveness of our proposed solution in safeguarding the network’s
intent consistency against network dynamics, offering a robust
mechanism for intent assurance.

TABLE II
IMPACT OF THE NUMBER OF INTENTS ON HIJACK ATTACK

DETECTION/REMEDIATION LATENCY.

No. Intents Recover Time Time Increment

20 2.1925 s -
40 2.2056 s +0.597%
60 2.2034 s -0.099%
80 2.2372 s +1.534%
100 2.2851 s +2.141%

2) Assurance Stalibility: To assess SAFLA’s real-time per-
formance with a varied number of intents and network sizes,
we explored its capability to ensure intent consistency during
runtime.

Our initial setup involved a fixed network configuration with

TABLE III
IMPACT OF THE NUMBER OF SWITCHES ON HIJACK ATTACK

DETECTION/REMEDIATION LATENCY.

No. Switches Recover Time Time Increment

1 0.0365 s -
50 0.7363 s +1917.26%
100 2.2034 s +199.253%
200 8.1112 s +268.122%
400 33.8697 s +317.567%

100 SDN switches. Table II reveals that as we scaled the
number of intents from 20 to 100, the time SAFLA needed
to recover from inconsistencies showed a slight rise from
2.1925 to 2.2851 seconds. The time increment peaked at just
over 2% for the largest set of intents. This finding illustrates
that SAFLA can efficiently handle an increase in intents
without significantly longer recovery times, demonstrating
high analysis efficiency in stable network topologies.

In contrast, when we fixed the number of intents at 60—due
to the performance constraints of the ONOS framework—and
varied the network size, we observed a different pattern. As
depicted in Table III, the recovery time increased markedly
from 0.0365 seconds with one switch to 33.8697 seconds with
400 switches. This substantial rise is mainly due to the in-
creased time needed to export and process the flow tables from
a greater number of switches. However, this challenge could
potentially be mitigated in the future by parallel processing
of flow table exports, which would shorten the overall time
required for larger topologies.

To sum up, the SAFLA framework’s scalability is evident.
It effectively ensures intent assurance quickly across different
numbers of intents and sizes of network topologies. While the
time increase is more noticeable in larger topologies, it remains
within a feasible range, confirming SAFLA’s capability for
large-scale network application.

V. CONCLUSION

In this paper, we have presented SAFLA, a novel semantic-
aware framework that assures the full lifecycle of intents
within intent-driven networks (IDNs). SAFLA innovatively
blends bottom-up insights with the conventional top-down
approach to effectively address disruptions and bridge the se-
mantic gap between the network’s high-level intents and their
executable configurations. Through meticulous case studies,
we developed a method to rectify semantic inconsistencies,
ensuring a robust alignment between the network’s operational
state and its intended objectives. Experiments were conducted
to evaluate SAFLA’s performance in extracting intents and its
operational feasibility in real-time environments. The results
affirm that SAFLA excels in detecting and resolving semantic
inconsistencies during runtime, significantly enhancing the
effectiveness of intent management across its entire lifecycle.
These findings underscore the pivotal role of SAFLA in
advancing the capabilities of IDNs, ensuring that they can
adapt dynamically to changes while maintaining high levels
of accuracy and reliability in intent execution.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

REFERENCES

[1] L. Pang, C. Yang, D. Chen, Y. Song, G. Mohsen. ”A survey on intent-
driven networks.” IEEE Access 8 (2020): 22862-22873. I

[2] E. Zeydan, and Y. Turk. ”Recent advances in intent-based networking: A
survey.” 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring). IEEE, 2020. I

[3] Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani ”A Brief Survey
and Implementation on Refinement for Intent-Driven Networking.” IEEE
Network 35.6 (2021): 75-83. I, II-A, III-A

[4] B. E. Ujcich, A. Bates, and W. H. Sanders. ”Provenance for intent-
based networking.” 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 2020. I

[5] RH. Ribeiro, AS. Jacobs, R. Parizotto, L. Zembruzki, AE Schaeffer-Filho,
and LZ. Granville. ”A bottom-up approach for extracting network intents.”
Advanced Information Networking and Applications: Proceedings of the
34th International Conference on Advanced Information Networking and
Applications (AINA-2020). Springer International Publishing, 2020. I, I

[6] A. Mercian, F. Ahmed, P. Sharma, S. Wackerly, and C. Clark. ”Mind
the semantic gap: Policy intent inference from network metadata.” 2021
IEEE 7th International Conference on Network Softwarization (NetSoft).
IEEE, 2021. I

[7] A. Chaudhari, et al. ”VIVoNet: Visually-represented, intent-based, voice-
assisted networking.” arXiv preprint arXiv:1904.03228 (2019). II-A

[8] AS. Jacobs, RJ. Pfitscher, RA. Ferreira, and LZ. Granville. ”Refining
network intents for self-driving networks.” Proceedings of the Afternoon
Workshop on Self-Driving Networks. 2018. II-A

[9] AS. Jacobs, et al. ”Hey, Lumi! Using Natural Language for Intent-Based
Network Management.” USENIX Annual Technical Conference. 2021.
II-A

[10] C. Yang, X. Mi, Y. Ouyang, R. Dong, J. Guo, M. Guizani. ”SMART
Intent-Driven Network Management.” IEEE Communications Magazine
61.1 (2023): 106-112. II-A

[11] X. Chang, et al. ”KID: Knowledge Graph-Enabled Intent-Driven Net-
work with Digital Twin.” 2022 27th Asia Pacific Conference on Commu-
nications (APCC). IEEE, 2022. III-A

[12] Y. Song, C. Yang, J. Zhang, X. Mi, D. Niyato. ”Full-Life Cycle
Intent-Driven Network Verification: Challenges and Approaches.” IEEE
Network (2022). III-A

[13] Y. Ouyang, F. Li, C. Yang, R. Song, X. Liu, Z. Ji. ”Ontology-Based
Network Intent Refinement Framework.” 2022 IEEE 22nd International
Conference on Communication Technology (ICCT). IEEE, 2022. III-A

[14] A. Campanella. ”Intent based network operations.” 2019 Optical Fiber
Communications Conference and Exhibition (OFC). IEEE, 2019. IV

[15] M. Peuster, H. Karl, and S. Rossem. ”MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments.” 2016
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2016. IV-A

[16] Bodei, C., Degano, P., Galletta, L., Focardi, R., Tempesta, M., &
Veronese, L. (2018, April). Language-independent synthesis of firewall
policies. In 2018 ieee european symposium on security and privacy
(euros&p) (pp. 92-106). IEEE. I

	Introduction
	Related Works
	Top-down Methodology for IDN
	Bottom-up Methodology for IDN

	An Overview of the Proposed Framework
	Top-down Components in Intent-Driven Networks
	Bottom-up Analysis and Intent Assurance
	State Abstraction
	Intent Synthesising
	Semantic Fusion
	Consistency Check
	Repair Policy Reasoning

	Performance Evaluation
	Evaluation Environment
	Corporate Network Scenario
	Intent Extraction Performance
	Single Device Analysis
	Multi-device analysis

	Runtime Performance
	Intent Assurance
	Assurance Stalibility

	Conclusion
	References

