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Abstract

Time series in real-world applications often have missing observations,
making typical analytical methods unsuitable. One method for dealing
with missing data is the concept of amplitude modulation. While this
principle works with any data, here, missing data for unbounded and
bounded count time series are investigated, where tailor-made disper-
sion and skewness statistics are used for model diagnostics. General
closed-form asymptotic formulas are derived for such statistics with
only weak assumptions on the underlying process. Moreover, closed-
form formulas are derived for the popular special cases of Poisson and
binomial autoregressive processes, always under the assumption that
missingness occurs. The finite-sample performances of the considered
asymptotic approximations are analyzed with simulations. The prac-
tical application of the corresponding dispersion and skewness tests
under missing data is demonstrated with three real-data examples.

Key words: amplitude modulation; dispersion index; skewness in-
dex; missing data; Poisson autoregessive model; binomial autoregessive
model

1 Introduction
Count time series have a discrete sample space, i. e., the time series con-
sists of non-negative integers (counts) from N0 = {0, 1, . . .}. These counts
could either be unbounded, i. e., the range is given by the full set N0, or
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the range could be the finite subset {0, . . . , n} with a given upper bound
n ∈ N = {1, 2, . . .}. Many models for count time series have been proposed
during the last decades, see Weiß (2018) for an overview. For example, for
unbounded counts, the first-order integer-valued autoregressive (INAR(1))
model by McKenzie (1985) is quite popular, which is defined by the model
recursion

Xt = ρ ◦Xt−1 + ϵt (1.1)

with ρ ∈ [0, 1). Here, the multiplication of the ordinary AR(1) model’s re-
cursion is replaced by “◦”, which denotes the binomial thinning operation
(Steutel & van Harn , 1979), and (ϵt)Z={...,−1,0,1,...} represents an independent
and identically distributed (i.i.d.) count process of innovations. The bino-
mial thinning is defined by requiring that ρ ◦X|X ∼ Bin(X, ρ), and we as-
sume that these thinnings are executed independently of other thinnings and
innovations. The most popular instance of the INAR(1) family is the Pois-
son INAR(1) model, abbreviated as Poi-INAR(1). This model has Poisson-
distributed innovations, which lead to Poisson-distributed observations, i. e.,
ϵt ∼ Poi(λ) and Xt ∼ Poi(µ) where λ > 0 and µ = E[Xt] = λ/(1 − ρ). A
detailed survey about the properties of the INAR(1) model can be found in
Weiß (2018, Chapter 2.1).
Together with the INAR(1) model, McKenzie (1985) also introduced the
binomial AR(1) model, abbreviated as BAR(1). This model is used if one is
concerned with count data that has a fixed upper limit n ∈ N. In this case,
the INAR(1)’s innovation term is replaced by a further thinning, β ◦ (n −
Xt−1), such that this term cannot be larger than n−Xt−1. Thus, for a fixed
upper bound n ∈ N, the BAR(1) model is defined by the recursion

Xt = α ◦Xt−1 + β ◦ (n−Xt−1), (1.2)

for π ∈ (0, 1), ρ ∈
(
max

{ −π
1−π

, 1−π
−π

}
; 1
)

and β := π(1 − ρ), α := β +
ρ. Here, all thinnings are performed independently of each other, and the
thinnings at time t are independent of (Xs)s<t. In addition, the condition
on ρ guarantees that the thinning parameters α, β ∈ (0, 1). For more details
about the properties of the BAR(1) model, we refer to Weiß (2018, Chapter
3.3).
It is known that the Poi-INAR(1) and BAR(1) processes establish a sta-
tionary and ergodic Markov chain with marginal distribution Poi(λ) and
Bin(n, π), respectively. Furthermore, the autocorrelation function (ACF) is
ρ(h) := Corr[Xt, Xt−h] = ρh for h ≥ 0. Moreover, the Poi-INAR(1) process
as well as the BAR(1) process are α-mixing with exponentially decreasing
weights (Weiß, 2018, p.24 & p.60). Hence, the requirements for the central
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limit theorem (CLT) according to Ibragimov (1962) are satisfied and will
be used later on. For further properties, the reader is referred to Alzaid &
Al-Osh (1988); Weiß (2018).
A wide variety of models and techniques for time series analysis can be found
in (Box et al., 2015; Weiß, 2018). However, when faced with missing data
in real-world applications – stemming from issues such as measuring device
malfunctions (Neave, 1970), outlier removal in statistical process monitor-
ing (Weiß & Testik, 2015), or sporadic failures (Scheinok, 1965; Bloomfield,
1970) – many existing models and tools often cannot be used. The challenge
of incomplete data in count time series has already been acknowledged in
literature (Andersson & Karlis, 2010; Jia et al. , 2014; Yan & Wang , 2022;
Zhang & Zhang , 2023). But while these existing works predominantly fo-
cus on parameter estimation for model fitting using imputation methods, our
emphasis lies in exploring common types of diagnostic statistics. Model diag-
nostics are crucial within the classical Box–Jenkins program, where they are
used for model identification and checks of model adequacy. This perspective
has not been explored for count time series so far.
Existing methods adapting standard analytical tools for real-valued time se-
ries to missing data, such as the sample ACF or spectral estimators (Parzen,
1963; Scheinok, 1965; Bloomfield, 1970; Dunsmuir & Robinson, 1981; Ya-
jima & Nishino , 1999), are influenced by the work of Parzen (1963). They
treat real-valued time series with missing observations as a special case of
amplitude-modulated time series, where the amplitude-modulating process
is binary and independent of the actual process. Subsequently, tools for time
series are applied to the amplitude-modulated time series, with variations in
their asymptotic behaviors based on the type of missing data. Here, Scheinok
(1965) assumed missing data to be i.i.d., while Bloomfield (1970) allowed for
serial dependence.
In this article, we derive the general asymptotic formulas for unbounded
and bounded dispersion and skewness indices in the context of missing data.
Moreover, we are able to derive closed-form formulas for popular special cases
of Poisson and binomial autoregressive processes, and use these expressions
for model diagnostics. This article is organized as follows. Section 2 pro-
vides a brief background on common univariate and bivariate count models.
Section 3 introduces the concept of amplitude modulation, setting the foun-
dation for our subsequent derivations in Sections 4–6. These sections present
crucial results on the asymptotics of various indices, with full derivations
available in the Appendix. Section 7 investigates the finite-sample perfor-
mance of our asymptotic approximations through simulations. In Section 8,
we apply our asymptotic results to three real-data sets. Finally, Section 9
draws conclusions and outlines potential future research directions.

3



2 On univariate and bivariate count models
We consider two types of distribution for a univariate count random variable
X: the Poisson distribution, abbreviated as Poi(µ) with µ ∈ (0, ∞) if we
are concerned with unbounded counts, and the binomial distribution, abbre-
viated as Bin(n, π) with π ∈ (0, 1), if we are concerned with a given upper
bound n ∈ N. The Poisson distribution’s mean and variance coincide and
equal µ, whereas the binomial distribution’s mean and variance are µ = nπ
and σ2 = nπ(1− π), see Johnson et al. (2005, Chapter 3–4) for more details
on these distributions. We pay particular attention to the factorial moments
of both distributions and therefore make use of the following definition.

Definition 2.1 Let (Xt) be a stationary count process with existing mo-
ments. We define the kth factorial moment as µ(k) = E[(Xt)(k)] with k ∈ N0

and µ(1) = µ, where x(k) := x · · · (x − k + 1) for k ∈ N and x(0) = 1 denote
the falling factorial. Furthermore, we define the mixed factorial moments as

µ(k,l)(h) := E[(Xt)(k) · (Xt−h)(l) ], (2.1)

with k, l ∈ N0 and h ∈ Z. Note that

(i) µ(0,0)(h) = 1, (ii) µ(k,0)(h) = µ(k),

(iii) µ(0,l)(h) = µ(l), (iv) µ(k,l)(h) = µ(l,k)(−h).

For count data, factorial moments often take simple expressions, such as
µ(k) = µk for the Poisson distribution and µ(k) = n(k)π

k for the binomial
distribution. When it comes to mixed factorial moments, we make use of
two specific bivariate distributions: If we consider the pair (Xt, Xt−h) from
a Poi-INAR(1) process, with lag h ∈ N, then this pair is bivariate Poisson
distributed, see Alzaid & Al-Osh (1988), i. e.,

(Xt, Xt−h) ∼ BPoi
(
(1− ρh)µ, (1− ρh)µ, ρhµ

)
. (2.2)

When considering the pair (Xt, Xt−h) from a BAR(1) process, this pair is
bivariate binomial distributed, see Aleksandrov et al. (2022), i. e.,

(Xt, Xt−h) ∼ BBin(n, π, π, ρh). (2.3)

Kocherlakota & Kocherlakota (2014, Section 3.2 and 4) provide a comprehen-
sive overview of bivariate Poisson and binomial distributions. Closed-form
expressions for general mixed factorial moments can be found there. In par-
ticular, we obtain for (2.2) and (2.3) the following propositions.
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Proposition 2.2 For the BPoi-distributed pair (Xt, Xt−h) from a Poi-INAR(1)
process, we have a closed-form expression for the joint factorial moments of
lag h ∈ N, that is,

µ(k,s)(h) = µ(k)µ(s)

min {k,s}∑
i=0

(
k

i

)(
s

i

)
i!

(
ρh

µ

)i

.

Proposition 2.3 For the BBin-distributed pair (Xt, Xt−h) from a BAR(1)
process, we have a closed-form expression for the joint factorial moments of
lag h ∈ N, that is,

µ(k,s)(h) = n(k)n(s)π
k+s

min {k,s}∑
i=0

(
k
i

)(
n−k
s−i

)(
n
s

) (
1 + 1−π

π
ρh
)i
.

We have a symmetric parameterization in both propositions, hence µ(k,s)(h) =
µ(s,k)(h).

3 Count time series with missing data
We adopt the idea of amplitude modulation introduced by Parzen (1963) to
handle missing data in count time series. For a count process (Xt), we define
the amplitude-modulation process (Ot) as

Ot =

{
1 if Xt is observed,
0 otherwise.

The concept of amplitude modulation can be applied to any data, but we shall
focus on unbounded and bounded counts. Rubin (1976) concludes that the
type of missingness, whether it is Missing Completely at Random (MCAR),
Missing at Random (MAR), or Missing Not at Random (MNAR), may affect
statistical inference. We follow Bloomfield (1970); Dunsmuir & Robinson
(1981); Yajima & Nishino (1999) by assuming that (Ot) is independent
of (Xt), which corresponds to an MCAR-type of missingness. Weiß (2021,
Example 2) illustrates the challenges that arise if (Ot) is not independent of
(Xt). The derivation of the subsequent asymptotics under different types of
missingness should be further investigated in future research.
We shall consider diagnostic procedures for marginal distributions that use
factorial moment-based statistics. Thus, for (Xt), we consider the vector-
valued process (X t) given by

X t := (Xt,1, . . . , Xt,m)
⊤ = ((Xt)(1) , (Xt)(2) , . . . , (Xt)(m)

)⊤, (3.1)
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which comprises the first m falling factorials. Furthermore, let us define the
amplitude modulation of (X t) as (Ot ·X t), and OX := 1

n

∑n
t=1 OtX t. Thus,

the mean of OX is given by

E[OX] = 1
n

n∑
t=1

E[Ot]E[X t] =
(

1
n

n∑
t=1

E[Ot]
)
µ = E[O]µ, (3.2)

with µ := (µ(1), . . . , µ(m))
⊤ = (E[(Xt)(1) ], . . . ,E[(Xt)(m)

])⊤. This, however,
implies to estimate µ by

µ̂ :=
1
n

∑n
t=1 OtX t

1
n

∑n
t=1Ot

=:
OX

O
, (3.3)

analogous to Weiß (2021). From now on, we assume that (Ot) is stationary
with E[Ot] = τ and autocovariance function γO(h) := CoV [Oh, O0], so τ(h) :=
E[OhO0] = γO(h) + τ2. Let us define the vector (X∗

t ) as

X∗
t := (X∗

t,0, . . . , X
∗
t,m)

⊤ = Ot(1, (Xt)(1) , (Xt)(2) , . . . , (Xt)(m)
)⊤. (3.4)

For the mean of (X∗
t ), we obtain

µ∗ := E[X∗
t ] = τ(1,µ⊤)⊤. (3.5)

Additionally, let us assume that appropriate mixing assumptions on (Xt) and
(Ot) hold, i. e., such that Ibragimov (1962, Theorem 1.7) is applicable:

(A) moments E|Xt|2m+δ < ∞ of order 2m + δ with some δ > 0 exist, and
the process is α-mixing with exponentially decreasing weights.

Here, the stationary process (Xt) with probability space (Ω,A,P) is said to be
α-mixing with exponentially decreasing weights if there exists a non-negative
sequence (αk)N of weights such that αk ≤ e−ϑk for some ϑ > 0 and each k ∈ N
and such that for each t ∈ Z, k ∈ N and all events E1 ∈ A

(
Xt, Xt−1, . . .

)
,

E2 ∈ A
(
Xt+k, Xt+k+1, . . .

)
the following holds:

|P(E1 ∩ E2)− P(E1)P(E2)| ≤ e−ϑk.

Condition (A) is satisfied for both the Poi-INAR(1) and the BAR(1) process,
see Schweer & Weiß (2014); Weiß (2018). The main task here is to derive a
CLT for (X∗

t ) (see Appendix A.1) and then apply the Delta method to it,
resulting in the following theorem.
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Theorem 3.1 Under the aforementioned assumption (A), it holds that
√
T
(
µ̂− µ

)
d−→ N

(
0,Σ

)
with Σ = (σij)i,j=1,...,m,

where N (0,Σ) denotes the multivariate normal distribution, and where

σij =
1
τ
(µ(i,j)(0)− µ(i)µ(j)) +

1
τ2

∞∑
h=1

τ(h)
(
µ(j,i)(h) + µ(i,j)(h)− 2µ(i)µ(j)

)
.

The bias satisfies E[µ̂− µ] = 0 + O(T−1).

Proof: See Appendix A.1. ■

An alternative proof of the CLT with raw moments instead of factorial ones
can be found in Appendix A.8.1.

Corollary 3.2 For the Poisson model (2.2) and binomial model (2.3), the
covariances σij from Theorem 3.1 are computed as

(i) σPoi
ij = 1

τ

[
µ(i,j)(0)− µi+j + 2

τ

∞∑
h=1

τ(h)
(
µ(i,j)(h)− µi+j

)]
,

(ii) σBin
ij = 1

τ

[
µ(i,j)(0)− n(i)n(j)π

i+j + 2
τ

∞∑
h=1

τ(h)
(
µ(i,j)(h)− n(i)n(j)π

i+j
)]

.

4 Poisson index of dispersion
One of the most well-known diagnostic statistic for unbounded counts is the
index of dispersion, defined as IPoi = σ2/µ. The Poisson distribution has
equidispersion since mean and variance always coincide, i. e., IPoi = 1. The
sample counterpart to the index of dispersion is given by ÎPoi = µ̂(2)/µ̂−µ̂+1.
Starting from Theorem 3.1, we derive the asymptotics of ÎPoi, and define the
function g by

g(x1, x2) =
x2

x1

− x1 + 1.

Note that g(µ̂) = (g ◦ f)(X∗) and g(µ) = (g ◦ f)(µ∗) with f(x0, x1, x2) =
(x1

x0
, x2

x0
)⊤. Then, g has the partial derivatives

∂

∂x1

g = −x2

x2
1

− 1,
∂

∂x2

g =
1

x1

,
∂2

∂x2
1

g =
2x2

x3
1

,
∂2

∂x2
2

g = 0,
∂2

∂x2∂x1

g = − 1

x2
1

.
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So, we get the Jacobian D and the Hessian H by evaluating the partial
derivatives in µ, which leads to

D =
(
−

µ(2)

µ2
− 1,

1

µ

)
, H =

1

µ3

(
2µ(2) −µ

−µ 0

)
. (4.1)

This implies the Taylor approximation ÎPoi ≈ IPoi + D(µ̂ − µ) + 1
2
(µ̂ −

µ)⊤H(µ̂ − µ), which can be used to conclude the asymptotic variance and
bias of ÎPoi, that is

σ2
ÎPoi =

1
T

(
d21σ11 + d22σ22 + 2d1d2σ12

)
, (4.2)

BÎPoi = 1
T

(
1
2
h11σ11 + h12σ12

)
. (4.3)

Without making specific assumptions about τ(h), let us derive general ex-
pressions for the asymptotic variance and bias.

Theorem 4.1 For any count process (Xt) and amplitude-modulating pro-
cess (Ot) that satisfy assumption (A), the asymptotic variance and bias of
ÎPoi are given by

(i) σ2
ÎPoi =

1
Tτµ2

[(µ(2)

µ
+ µ
)2
(µ(2) + µ)− 2

(µ(2)

µ
+ µ
)
(µ(3) + 2µ(2))

+ µ(4) + 4µ(3) + 2µ(2) − µ4 + 2
τ

∞∑
h=1

τ(h)
((µ(2)

µ
+ µ
)2
µ(1,1)(h)

−
(µ(2)

µ
+ µ
)(
µ(2,1)(h) + µ(1,2)(h)

)
+ µ(2,2)(h)− µ4

)]
,

(ii) BÎPoi = 1
Tτµ3

[
µ2
(2) − µ

(
µ(2) + µ(3)

)
+ 2

τ

∞∑
h=1

τ(h)
(
µ(2)µ(1,1)(h)

− µ
2

(
µ(2,1)(h) + µ(1,2)(h)

))]
.

The proof of Theorem 4.1 can be found in Appendix A.3.1, and its analogon
with raw moments in Appendix A.8.2. Theorem 4.1 is model independent
and is meant to be applicable across various thinning operators, such as
those discussed in works of Ristíc et al. (2013); Borges et al. (2016); Zhang
et al. (2017). The (Poisson) index of dispersion is commonly used to test a
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Poisson null hypothesis, making it particularly relevant for time series models
with Poisson marginal distribution. Therefore, we selected the Poi-INAR(1)
process as an illustrative example in the following corollary to specify the
asymptotic variance and bias.

Corollary 4.2 If we are concerned with a Poi-INAR(1) process and assume
that the missing data follow a stationary Markov model, i. e., τ(h) = τ2 +
τ(1−τ)rh with τ, r ∈ (0, 1), then we obtain the asymptotic variance and bias
of ÎPoi as

σ2
ÎPoi =

2
T
· κ(2), BÎPoi = − 1

T
· κ(1),

where

κ(s) :=
1

τ

1 + rρs

1− rρs
+

2(1− r)ρs

(1− rρs)(1− ρs)
for s ∈ N. (4.4)

Proof: See Appendix A.3.2. ■

The variance and bias from Corollary 4.2 are illustrated in Figure 1. The
graphs may be interpreted as follows: We consider missing data between the
case where only 25% of the data are known (i. e., τ = 0.25, or equivalently
75% of the data are missing), and the case where all data points are known
(τ = 1). A higher percentage of missing data is not reasonable from a
practical point of view. In the case of complete data (τ = 1), we always have
κ(s) = (1+ρs)/(1−ρs), so Corollary 4.2 coincides to Schweer & Weiß (2014),
where

T · σ2
ÎPoi = 2 · 1 + ρ2

1− ρ2
.

For the fixed ρ = 0.5 in our example from Figure 1, we obtain a value of
10
3
. As one might expect, the variance rises as dependence and the extent of

missing data increase. Similar results are obtained for the bias. The T -fold
bias has a value of −3, which is in the upper right corner, for no dependency
and completely known data. Then, increasing dependence and the rise of
missing data result in stronger negative values for the bias.

5 Binomial index of dispersion
If we would choose the (Poisson) index of dispersion for bounded counts,
then the binomial distribution, which has a finite range, would result in un-
derdispersion, i. e., IPoi < 1. This phenomenon is caused by the fact the
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Figure 1: Plot of T ·variance and T ·bias according to Corollary 4.2 for dis-
persion index of Poi-INAR(1) process with fixed ρ = 0.5 and dependence
parameter r ∈ {0, 0.3, 0.6}.

IPoi does not account for the boundedness of the range. Thus, the binomial
index of dispersion, defined as IBin = σ2/(µ(1 − µ

n
)), is the more appropri-

ate choice, which results in equidispersion if being concerned with binomial
counts. The binomial index of dispersion’s sample counterpart is given by
ÎBin = (µ̂(2) + µ̂− µ̂2)/(µ̂(1− µ̂

n
)). Starting from Theorem 3.1, we derive the

asymptotics of ÎBin, and define the function g by

g(x1, x2) =
n(x2 + x1 − x2

1)

x1(n− x1)
.

Then, g has the partial derivatives

∂

∂x1

g =
n(x2

1(1− n)− nx2 + 2x1x2)

x2
1(n− x1)2

,
∂

∂x2

g =
n

x1(n− x1)
,

∂2

∂x2
2

g = 0,

∂2

∂x2
1

g =
2n
(
x3
1(1− n) + n2x2 + 3x1x2(x1 − n)

)
x3
1(n− x1)3

,
∂2

∂x2∂x1

g =
n(2x1 − n)

x2
1(n− x1)2

.

So, we get the Jacobian D and the Hessian H by evaluating the partial
derivatives in µ, which leads to

D =
n

µ(n− µ)

(
µ2(1− n)− nµ(2) + 2µµ(2)

µ(n− µ)
, 1

)
, (5.1)

h11 =
2n
(
µ3(1− n) + n2µ(2) + 3µµ(2)(µ− n)

)
µ3(n− µ)3

, h12 =
n(2µ− n)

µ2(n− µ)2
.

(5.2)

This leads to the Taylor approximation ÎBin ≈ IBin + D(µ̂ − µ) + 1
2
(µ̂ −

µ)⊤H(µ̂ − µ), which can be used to conclude the asymptotic variance and
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bias of ÎBin as

σ2
ÎBin = 1

T

(
d21σ11 + d22σ22 + 2d1d2σ12

)
, (5.3)

BÎBin = 1
T

(
1
2
h11σ11 + h12σ12

)
. (5.4)

Again, we first derive general expressions for the asymptotic variance and
bias, without making assumptions on τ(h), analogous to Section 4.

Theorem 5.1 For any count process (Xt) and amplitude-modulating pro-
cess (Ot) that satisfies assumption (A), the asymptotic variance and bias of
ÎBin are given by

(i) σ2
ÎBin = n2

Tτµ4(n−µ)4

[(
µ2(1− n)− nµ(2) + 2µµ(2)

)2(
µ(2) + µ− µ2

)
+ 2µ(n− µ)

(
µ2(1− n)− nµ(2) + 2µµ(2)

)(
µ(3) + 2µ(2) − µµ(2)

)
+ µ2(n− µ)2

(
µ(4) + 4µ(3) + 2µ(2) − µ2

(2)

)
+ 2

τ

∞∑
h=1

τ(h)

((
µ2(1− n)− nµ(2) + 2µµ(2)

)2(
µ(1,1)(h)− µ2

)
+ µ(n− µ)

(
µ2(1− n)− nµ(2) + 2µµ(2)

)(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

)
+ µ2(n− µ)2

(
µ(2,2)(h)− µ2

(2)

))]
,

(ii) BÎBin = n
Tτµ3(n−µ)3

[(
µ3(1− n) + n2µ(2) + 3µµ(2)(µ− n)

)(
µ(2) + µ− µ2

)
+ µ(n− µ)(2µ− n)(µ(3) + 2µ(2) − µµ(2))

+ 1
τ2

∞∑
h=1

τ(h)

(
2
(
µ3(1− n) + n2µ(2) + 3µµ(2)(µ− n)

)(
µ(1,1)(h)− µ2

)
+ µ(n− µ)(2µ− n)

(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]
.

The proof of Theorem 5.1 can be found in Appendix A.4.1. Once again, the
theorem is model independent and is meant to be applicable across various
data generating processes as mentioned before. This time, we have chosen the
BAR(1) process as an illustrative example, because it has binomial marginal
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distribution. Thus, the binomial index of dispersion can be used to test
a binomial null hypothesis. The following corollary specify the asymptotic
variance and bias of the BAR(1) process.

Corollary 5.2 If we are concerned with a BAR(1) process and assume that
the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1 − τ)rh, then
we obtain the asymptotic variance and bias of ÎBin as

σ2
ÎBin = 2

T

(
1− 1

n

)
· κ(2), BÎBin = − 1

T

(
1− 1

n

)
· κ(1),

where κ(1), κ(2) are given by (4.4).

Proof: See Appendix A.4.2. ■

Remark 5.3 For the binomial index of dispersion, we can infer the following:
If n → ∞, then the asymptotic variance and asymptotic bias coincide with the
asymptotics for the Poi-INAR(1) process according to Corollary 4.2. In fact, the
variance and bias are just compressed by the factor (1− 1

n), thus we omit a further
illustration here. Note that setting the missingness parameter τ = 1 leads to

σ2
ÎBin =

2

T

(
1− 1

n

)1 + ρ2

1− ρ2
,

which coincides with Weiß (2018, p.62).

6 Skewness index
To analyze the marginal distribution of a count process, one should not solely
look at dispersion properties, but also consider further shape characteristics
such as skewness. Thus, we define the skewness index ISkew = µ(3)/(µ(2)µ) as
in(Aleksandrov et al., 2022, 2023), which, unlike the Poisson/binomial index
of dispersion, is not constrained to unbounded or bounded counts. The
skewness index is IPoi

Skew = 1 for the Poisson distribution since µ(k) = µk, and
IBin
Skew = 1−2/n for the binomial distribution since µ(k) = n(k)π

k. The sample
counterpart to the skewness index is given by ÎSkew = µ̂(3)/(µ̂(2)µ̂). Similar
to how the two other indices’ asymptotic variance and bias are derived, those
for the skewness index can be found in Appendix A.5. In the case that the
skewness index is applied to Poisson or binomial counts, the results for the
Jacobian D and the Hessian H can be found in Lemma A.6. Now, utilizing
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the Taylor approximation ÎSkew ≈ ISkew +D(µ̂−µ) + 1
2
(µ̂−µ)⊤H(µ̂−µ),

we conclude the asymptotic variance and bias of ÎSkew as

σ2
ÎSkew

= 1
T

(
d21σ11 + d22σ22 + d23σ33 + 2d1d2σ12 + 2d1d3σ13 + 2d2d3σ23

)
, (6.1)

BÎSkew
= 1

T

(
1
2

(
h11σ11 + h22σ22

)
+ h12σ12 + h13σ13 + h23σ23

)
. (6.2)

To calculate the variance and bias of the following theorems, we consider the
Poi-INAR(1) and BAR(1) processes.

Theorem 6.1 If we are concerned with a Poi-INAR(1) process and assume
that the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1 − τ)rh,
we obtain the asymptotic variance and bias of ÎPoi

Skew as

σ2
ÎPoi
Skew

= 1
Tµ3

[
8µ · κ(2) + 6 · κ(3)

]
, BÎPoi

Skew
= − 2

Tµ2

[
µ · κ(1) + 2 · κ(2)

]
,

recall (4.4) for the definition of κ(s).

Proof: See Appendix A.5.1. ■

Figure 2 shows the variance and bias from Theorem 6.1. By contrast to
Corollary 4.2, we have dependence on the parameter µ, and thus the variance
and bias both get smaller with increasing µ. Other than that, the results for
growing missingness and increasing dependence are comparable to those from
Figure 1.
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Figure 2: Plot of the T ·variance and T ·bias for the skewness index of a Poi-
INAR(1) process with fixed ρ = 0.5, µ ∈ {3, 4}, and dependence parameter
r ∈ {0, 0.3, 0.6}. Here, we have lighter gray levels for increasing µ.
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Theorem 6.2 If we are concerned with a BAR(1) process and assume that
the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1 − τ)rh, we
obtain the asymptotic variance and bias of ÎBin

Skew as

σ2
ÎBin
Skew

=
(

(n−2)(n−µ)3

(n−1)n3

)
1

Tµ3

[
n−2
n−µ

· 8µ · κ(2) + 6 · κ(3)

]
,

BÎBin
Skew

= −
(

(n−2)(n−µ)2

(n−1)n2

)
2

Tµ2

[
n−1
n−µ

· µ · κ(1) + 2 · κ(2)

]
.

Proof: See Appendix A.5.2. ■

The variance and bias from Theorem 6.2 are displayed in Figure 3. Since the
variance and bias each have an additional parameter n in their equations, we
analyze three options and compare them against each other. The asymptotic
variance of the skewness index for a BAR(1) process is quite similar to that of
the skewness index for a Poi-INAR(1) process, as can be seen by comparing
the aforementioned theorems. For the variance and bias, respectively, we
plotted nine graphs. They are in groups of three, where each group addresses
the same dependence parameter r ∈ {0, 0.3, 0.6} and one choice of n. The
graphs are shifted upwards for the variance and downwards for the bias if n
gets larger. Again, the results for growing dependence and missingness are
comparable to those from Figure 1 for both variance and bias. The skewness
index for the Poi-INAR(1) and BAR(1) processes are clearly linked as follows:

σ2
ÎBin
Skew

−−−→
n→∞

σ2
ÎPoi
Skew

, BÎBin
Skew

−−−→
n→∞

BÎPoi
Skew

,

where µ is kept fixed.

7 Simulation Study
A simulation analysis with 10,000 replications per scenario is done to as-
sess the finite-sample performance of the asymptotic results established in
Sections 4–6. We assume the Poi-INAR(1) model for unbounded counts,
which has the Poisson marginal distribution Poi(µ) with µ ∈ (0,∞), and the
BAR(1) model for bounded counts, which has the binomial marginal distri-
bution Bin(n, π) with π ∈ (0, 1) and n ∈ N. Moreover, in both scenarios, we
take into account the sample sizes T ∈ {100, 250, 500, 1000}, the dependence
parameters r ∈ {0, 0.3, 0.6} (r = 0 leads to i.i.d. (Ot)), and the probability
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Figure 3: Plot of the T ·variance and T ·bias for the skewness index of
a BAR(1) process with fixed ρ = 0.5, µ = 3, dependence parameter
r ∈ {0, 0.3, 0.6}, and n ∈ {5, 10, 25}. Here, we have lighter gray levels for
increasing n.

τ ∈ {1, 0.8, 0.6, 0.4} of the amplitude-modulating process (Ot). Furthermore,
we fix ρ = 0.5 and µ = 3 (nπ = 3), and we consider n ∈ {10, 25} in the
bounded case. We compute the IPoi, IBin, and ISkew for each of these sce-
narios and compare the sample properties obtained from the simulated data
to the asymptotic formulas derived in Sections 4–6. The mean and standard
deviation (SD) (simulated vs. asymptotic) of the ÎPoi and ÎPoi

Skew are presented
in Table 1. Only two degrees of missingness are shown here: τ = 0.8 (20%
missing data) and τ = 0.6 (40% missing data), as well as the dependence
r ∈ {0, 0.6} and sample sizes T ∈ {100, 250, 500}. Appendix A.7 contains
the entire table. With decreasing τ, the negative bias becomes stronger, while
the SDs increase in all scenarios. The crucial takeaway is that the asymptotics
do a good job in capturing these changes, with the exception of T = 100,
where there is a minor difference between simulated and asymptotic SD for
ÎPoi. The differences are not problematic for practice for T = 100, because
test methods based on these asymptotic formulas have only a conservative
effect. Interestingly, the same statements hold for ÎPoi

Skew, where we again see
a modest deviation between simulation and asymptotic SD. As a result, the
derived asymptotics are well-suited to approximate the true finite-sample
distributions of ÎPoi and ÎPoi

Skew. In Table 2, the mean and SD (simulated vs.
asymptotic) of ÎBin and ÎBin

Skew are displayed. In this case, we consider the sam-
ple sizes T ∈ {250, 500} and n ∈ {10, 25}, and we again present two levels
of missingness τ ∈ {0.8, 0.6} as well as dependence r ∈ {0, 0.6}. The whole
table can be found in Appendix A.7. We see a fairly good agreement between
the asymptotic approximation and the true sampling distribution for ÎBin.
Note that decreasing τ intensifies the negative bias and increases the SDs in
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Table 1: Asymptotic vs. simulated mean and SD of ÎPoi and ÎPoi
Skew data;

time series of length T is generated by Poi-INAR(1) counts with fixed µ = 3,
ρ = 0.5.

mean of ÎPoi SD of ÎPoi mean of ÎPoi
Skew SD of ÎPoi

Skew

τ r T sim asym sim asym sim asym sim asym
0.8 0 100 0.967 0.968 0.189 0.196 0.971 0.970 0.132 0.143

0.6 100 0.968 0.965 0.191 0.200 0.971 0.968 0.132 0.146
0 250 0.987 0.987 0.124 0.124 0.989 0.988 0.089 0.090
0.6 250 0.987 0.986 0.126 0.127 0.987 0.987 0.089 0.092
0 500 0.994 0.994 0.088 0.088 0.995 0.994 0.063 0.064
0.6 500 0.994 0.993 0.088 0.090 0.993 0.994 0.063 0.065

0.6 0 100 0.965 0.963 0.210 0.216 0.966 0.965 0.146 0.158
0.6 100 0.956 0.958 0.219 0.227 0.961 0.960 0.151 0.166
0 250 0.987 0.985 0.134 0.137 0.987 0.986 0.096 0.100
0.6 250 0.984 0.983 0.140 0.143 0.985 0.984 0.100 0.105
0 500 0.992 0.993 0.096 0.097 0.992 0.993 0.069 0.071
0.6 500 0.991 0.992 0.100 0.101 0.991 0.992 0.072 0.074

any scenario. There is a minor influence of the two chosen n, which has no
effect on the bias but has a minor effect on the SD. By focusing on ÎBin

Skew, we
can confirm that the asymptotic approximation and the true sampling distri-
bution are in good agreement once more. In every circumstance, decreasing
τ intensifies the negative bias and increases the SDs. The choice of n, on
the other hand, has a considerable impact on the bias and SDs. A larger n
causes a substantial spike in the negative bias as well as a large increase in
the SD, but our asymptotics successfully capture such spikes. Because the
parameter n is significantly more entangled in the equations in Theorem 6.2
than in Corollary 5.2 for the binomial index of dispersion, this divergence
for the skewness index is easily explained. Consequently, the derived asymp-
totics are well-suited for approximating the true finite-sample distributions
of ÎBin and ÎBin

Skew.

8 Real-data applications
The amplitude modulation technique introduced in Section 3 was success-
fully utilized to derive the asymptotic variance and bias of different diag-
nostic statistics. The simulations of Section 7 showed that these asymptotics
provide a good approximation of their true finite sample distributions. Thus,
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Table 2: Asymptotic vs. simulated mean and SD of ÎBin and ÎBin
Skew data;

time series of length T is generated by BAR(1) counts with fixed µ = 3 and
ρ = 0.5.

mean of ÎBin SD of ÎBin mean of ÎBin
Skew SD of ÎBin

Skew

τ n r T sim asym sim asym sim asym sim asym
0.8 10 0 250 0.987 0.988 0.118 0.117 0.793 0.794 0.053 0.053

10 0.6 250 0.986 0.988 0.119 0.120 0.793 0.793 0.054 0.054
25 0 250 0.987 0.988 0.119 0.121 0.910 0.910 0.072 0.074
25 0.6 250 0.987 0.987 0.123 0.124 0.909 0.910 0.074 0.076
10 0 500 0.994 0.994 0.082 0.083 0.797 0.797 0.037 0.037
10 0.6 500 0.993 0.994 0.085 0.085 0.796 0.797 0.038 0.038
25 0 500 0.995 0.994 0.085 0.086 0.916 0.915 0.052 0.053
25 0.6 500 0.995 0.993 0.089 0.088 0.916 0.915 0.054 0.054

0.6 10 0 250 0.986 0.987 0.128 0.130 0.792 0.793 0.057 0.058
10 0.6 250 0.986 0.985 0.135 0.136 0.792 0.792 0.061 0.061
25 0 250 0.986 0.986 0.132 0.134 0.909 0.909 0.080 0.082
25 0.6 250 0.982 0.984 0.137 0.140 0.906 0.907 0.083 0.086
10 0 500 0.992 0.993 0.090 0.092 0.796 0.796 0.040 0.041
10 0.6 500 0.991 0.992 0.096 0.096 0.795 0.796 0.043 0.043
25 0 500 0.991 0.993 0.093 0.095 0.914 0.915 0.057 0.058
25 0.6 500 0.992 0.992 0.099 0.099 0.913 0.914 0.060 0.061

it is justified to use the asymptotics to implement diagnostic tests regarding
the count time series’ marginal distribution. In what follows, we are faced
with two cases for the amplitude-modulating process (Ot), i. e., (Ot) follows
a Markov model or is i.i.d. Thus, we consider Corollary 5.2 and Theorem 6.2
for bounded counts and Corollary 4.1 and Theorem 6.1 for unbounded counts,
which all assume a Markov model, but also include the case of i.i.d.missing
data if r = 0. The next sections discuss three data examples.

8.1 Peak severity counts

In our first data example, we analyze a certain type of migraine data, which
originates from a mobile app, N1-HeadacheTM that was developed by Cure-
lator Inc. Here, patients log various information into the app, like migraine
symptoms and medication as well as a range of factors (moods, weather, diet,
etc.). We are interested in the pain peak severity counts with range {0, . . . , 3}
which originate from applying a rank count approach to the original data.
As an illustration, we look at patient A from Weiß (2021, Figure 1). Due to
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Figure 4: Plot of daily peak severity counts. The vertical lines indicate
missing data.

confidentiality, we read and reproduce the data in Figure 4. We get a time
series of daily peak severity of length T = 225 with (8.4 %) missing data
represented by the gray vertical lines. Here, missingness occurs because the
patient fails to provide the information, e. g., to enter the severity into the
app.
For the peak severity counts, the data set is bounded with an upper bound of
n = 3. We use the asymptotics for bounded counts derived in Sections 5–6.
First, let us analyze the pattern of the amplitude-modulation (Ot) in more
detail. In the left part of Figure 5, the sample ACF and the sample partial
ACF (PACF) of the Ot are presented. Since there are no significant depen-
dencies in eather the ACF or PACF, it is reasonable to assume that Ot can
be treated as i.i.d. data, which is in agreement with analogous conclusions in
Weiß (2021). Thus, we can set the dependence parameter r̂ = 0, which is the
special case of the Markov model considered in our derivations. Furthermore,
we have (8.4 %) missing values which corresponds to τ̂ = 0.916. Next, we
draw our attention to the peak severity counts Xt and calculate the sample
PACF with consideration of missingness. Therefore, we first determine the
sample ACF of Xt using the missing data approach of Dunsmuir & Robinson
(1981) (for more details, see Appendix A.6). Then, we calculate the sample
PACF from the sample ACF by using the Durbin–Levinson algorithm, as
plotted in the right part of Figure 5. Here, we see a decrease to zero after
lag 1, which indicates an AR(1)-like model. Since we are concerned with
bounded counts, our null hypothesis is to assume a BAR(1) process with
µ̂ = 0.6117 according to (3.3) and ρ̂ = 0.3325 according to (A.10). To test
this hypothesis on level 5%, we look at the binomial index of dispersion and
skewness index from Sections 5–6. For the binomial index of dispersion, we
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Figure 5: Sample ACF/PACF of Ot and Xt of the peak severity counts.

get the critical upper value and the test statistic as

1 +
BÎBin

T
+ z0.975 ·

√
σ2
ÎBin

T
= 1.1685 < ÎBin = 1.3451.

Here, zα denotes the α-quantile of the standard normal distribution, N (0, 1).
Obviously, the critical value is violated, so we are not concerned with a
BAR(1) process, but are faced with extra-binomial variation. For the skew-
ness index, in the case of a BAR(1) process, we compute the critical value
and test statistic as

1− 2

n
+

BÎBin
Skew

T
± z0.975 ·

√
σ2
ÎBin
Skew

T
, ÎSkew = 0.3422.

For the upper and lower critical value we get a 0.7337 and −0.1235, respec-
tively. By contrast to the binomial index, the theoretical H0-value for the
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skewness index is equal to 1/3. The critical values are not violated, so the
skewness of the peak severity counts is in agreement with a binomial null.
Altogether, the BAR(1) model is not appropriate, but a modification of it
with extra-binomial variation would be needed.

Remark 8.1 Just as an experiment, let us analyze the data again by simply ig-
noring the missing data. This corresponds to a shorter data length T = 206 and
full observation τ̂ = 1. Additionally, we can directly determine the (P)ACF by
using the R-command pacf and acf together with the option na.pass. Then, our
null hypothesis sets a BAR(1) process with µ̂ = 0.6117 and ρ̂ = 0.3605, the latter
being slightly larger than if correctly considering the missing data. For testing this
hypothesis, we again look at the binomial index of dispersion, for which we get the
upper critical value and the test statistic as

1 +
BÎBin

T
+ z0.975 ·

√
σ2
ÎBin

T
= 1.1728 < ÎBin = 1.3451,

Thus, although the critical value is affected by the ignorance of missing data, we
again reject the null. For the skewness index, we compute the critical values and
test statistic as

1− 2

n
+

BÎBin
Skew

T
± z0.975 ·

√
σ2
ÎBin
Skew

T
, ÎSkew = 0.3422.

For the upper and lower critical value we get a 0.7391 and −0.1331, respectively.
Although we end up with the same decisions, we see an effect on the critical values.
The effect is not particularly large, because we are only confronted with a low
percentage of missing data (8.4%). For larger percentage, recall our results from
Section 7, a more severe effect would be expected. Therefore, our approach is
crucial to avoid incorrect decision making.

8.2 Cloud coverage counts

“Okta”, or the number of eighths of the sky that are covered by clouds, is
the unit of measurement for cloud coverage. Such Okta counts Xt have a
bounded range {0, . . . , 8}. The cloud coverage counts are collected hourly
by the “DWD Climate Data Center” of Deutscher Wetterdienst (German
Weather Service). They may contain missing data because of, e. g., environ-
mental factors such heavy precipitation, fog, or light pollution, as well as
measurement device malfunctions, see Weiß (2021, p. 4676.). As an illustra-
tive example, we study the weather station Glücksburg-Meierwik situated in
Northern Germany in August 2016. Figure 6 shows the corresponding hourly
time series of length T = 744 with (11 %) missing data represented by the
gray vertical lines.
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Figure 6: Plot of hourly cloud coverage counts in Schleswig in August 2016.
The vertical lines indicate missing data.

For the cloud coverage counts the data set is bounded with an upper bound
of n = 8, we again consider the asymptotics for bounded counts derived in
Sections 5–6.
In this context, we examine the pattern of the amplitude-modulation (Ot) in
greater detail. In the left part of Figure 7, the sample ACF/PACF of the Ot

is presented. We have a significant lag-1 value this time, but a rapid decrease
to zero after lag 1, so we can justify to treat Ot as a binary Markov chain.
We estimate the dependence parameter as r̂ = 0.8765 (PACF of lag 1), and
as we have 11% missing values, we get τ̂ = 0.8898. Next, let us analyze
the Okta counts Xt. We compute the sample PACF under missingness in
the same way as in Section 8.1, leading to Figure 7. Here, again, we see a
rapid decrease to zero after lag 1, which indicates an AR(1)-like model. Since
we are concerned with bounded counts, our null hypothesis is to assume a
BAR(1) process with µ̂ = 4.4804 again according to (3.3) and ρ̂ = 0.8285
according to (A.10). To test this hypothesis on the 5% level, we look at the
binomial index of dispersion and the skewness index from Sections 5–6. For
the binomial index of dispersion, the upper critical value is exceeded:

1 +
BÎBin

T
+ z0.975 ·

√
σ2
ÎBin

T
= 1.2169 < ÎBin = 2.6908.

As the critical value is violated, we are not concerned with a BAR(1) pro-
cess. For the skewness index, the upper critical value and test statistic are
computed as

1− 2

n
+

BÎBin
Skew

T
+ z0.975 ·

√
σ2
ÎBin
Skew

T
= 0.7875 < ÎSkew = 0.9788.

By contrast to the binomial index, the theoretical H0-value for the skewness
index is equal to 0.75. As the critical value is violated, we conclued again
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Figure 7: Sample ACF/PACF of Ot and Xt of the Okta counts.

that we are not concerned with a BAR(1) process. Therefore, another AR(1)-
type model with extra dispersion and skewness, like the beta-binomial AR(1)
model, would be required for further modeling these data.

Remark 8.2 Based on our analysis, we have concluded that the beta-binomial
AR(1) model may be better suited for modeling cloud coverage counts compared to
the BAR(1) model. To assess the performance of both models, we conducted model
fitting followed by optimization of the log-likelihood function to obtain maximum
likelihood estimates for the parameters of each model. For the BAR(1) model
(1.2), we obtained the parameter estimates of π̂ML = 0.566 and ρ̂ML = 0.740. For
the beta-binomial AR(1) model, the corresponding estimates were π̂bbin

ML = 0.570,
ρ̂bbin
ML = 0.744, and the dispersion parameter estimate ϕ̂bbin

ML = 0.209 whereas ϕ → 0
corresponds to the BAR(1) model.
Subsequently, we computed the Akaike Information Criterion, resulting in a value
of ≈ 2165.51 for the BAR(1) model and ≈ 1974.67 for the beta-binomial AR(1)
model. This indicates that the beta-binomial AR(1) model provides a better fit for
the cloud coverage counts. Further confirmation of this conclusion was obtained
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by comparing the binomial index of dispersion and skewness index between the
fitted models. For the BAR(1) model, we get IBin = 1 and IBin

Skew = 0.75, while
for the beta-binomial AR(1) model, we get IBin = 1.819 and IBin

Skew = 0.868. In
this context, the indices obtained for the beta-binomial AR(1) model are closer
to the previously determined values of ÎBin = 2.6908 and ÎSkew = 0.9788 for the
cloud coverage data. These findings further support the conclusion that the beta-
binomial AR(1) model provides a more appropriate representation for the cloud
coverage data.

8.3 Compensation data
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Figure 8: Plot of monthly counts of workers collecting disability benefits from
January 1985 to January 1994.

The dataset under consideration is from Freeland (1998). The data origi-
nates from the logging industry, involving claimants who receive short-term
disability benefits from the Workers’ Compensation Board (WCB) of British
Columbia. The study cohort exclusively consists of male claimants aged
between 34 and 54, employed in the logging industry, having experienced
injuries such as cuts, lacerations, and punctures. These claimants reported
their claims to the Richmond service delivery location within the time frame
spanning January 1985 to January 1994 (Freeland, 1998, p.157). The com-
pensation counts Xt have the unbounded range {0, 1, 2 . . .} this time, so now,
the statistics derived in Sections 4 and 6 are relevant for model diagnostics.
The monthly time series of length T = 120 is illustrated in Figure 8. Freeland
(1998) concludes that a Poi-INAR(1) model is a plausible choice for mod-
eling this dataset. Thus, our null hypothesis is to assume a Poi-INAR(1)
process. Since the original data does not include missing observations, we
know the true values of the relevant diagnostic statistics. Therefore, the data
can be used to investigate the effect of different levels of missingness, namely
by randomly excluding 15%, 30%, 45% and 60% of the observations. This
leads, among others, to the modified time series presented in Figure 9. To
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Figure 9: Plot of monthly counts of workers collecting disability benefits
from January 1985 to January 1994. The vertical lines indicate missing data
(15%).

test the aforementioned null hypothesis at a significance level of 5%, we look
at the Poisson index of dispersion and skewness index discussed in Sections 4
and 6. For the Poisson index of dispersion and skewness index, respectively,
we get the critical values and the test statistic as follows:

1 +
BÎPoi

T
± z0.975 ·

√
σ2
ÎPoi

T
, ÎPoi =

µ̂(2)

µ̂
− µ̂+ 1,

1 +
BÎPoi

Skew

T
± z0.975 ·

√
σ2
ÎPoi
Skew

T
, ÎSkew =

µ̂(3)

µ̂µ̂(2)

.

In Table 3, the estimates for the Poisson index of dispersion and the skew-
ness index, along with their critical values for various levels of missingness
are presented. Let us first look at the estimated mean and autocorrelation.
As missingness levels increase, the autocorrelation diminishes, while the esti-
mated mean remains relatively close to the true mean, even when 60% of the
observations are missing. Upon considering the Poisson index of dispersion
and its associated critical values, we observe that the upper critical value is
violated in every case of missingness. Thus we conclude that the Poi-INAR(1)
process is not applicable. Interestingly, our decision remains consistent even
under the highest missingness scenario. Particularly, at τ = 0.4, we observe
a significant deviation in the Poisson index of dispersion (1.62) from the
null value. Consistent findings are observed for the skewness index. Conse-
quently, an alternative AR(1)-type model that incorporates extra dispersion
and skewness is required. In conclusion, our asymptotic results hold up well
in the presence of missing data.
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Table 3: Estimates of the compensation data for different levels of missingness
including full data (τ = 1).

critical values critical values
τ µ̂ ρ̂ ÎPoi lower upper ÎSkew lower upper
1 6.133 0.558 1.907 0.621 1.320 1.328 0.870 1.108
0.85 6.343 0.462 1.853 0.644 1.308 1.314 0.881 1.100
0.70 6.476 0.302 1.836 0.658 1.304 1.306 0.888 1.098
0.55 6.591 0.269 1.977 0.623 1.334 1.333 0.879 1.106
0.40 6.396 0.295 1.620 0.557 1.387 1.164 0.852 1.126

9 Conclusions
In this article, we considered unbounded and bounded count time series with
missing data. We were able to derive general formulas for the asymptotics
of relevant statistics, namely types of dispersion and skewness index. We
derived closed-form expressions for the special cases of Poisson and binomial
autoregressive processes. Thus, the considered indices can be used to test
the null of a Poisson or binomial distribution, respectively, in the presence
of missing data. The developed approaches were applied to two real-world
data examples, and simulations were used to analyze the finite-sample per-
formance of the resulting asymptotic approximations. It became evident
through our simulation study that our asymptotic derivations are well-suited
for approximating the true finite-sample distributions. Therefore, simply
omitting the missing observations may lead to misleading and false conclu-
sions. As a result, when examining count time series, missing observations
should be carefully taken into account.
A task for further research is to investigate the derivation of our asymptotics
under different types of missingness. Additionally, expanding the scope of
the derived asymptotics to higher-order autoregressive processes such as the
Poi-INAR(2) process, or to a different class of processes, such as the integer-
valued moving average (INMA) process could be another research direction.
The parameter estimation in the presence of missing observations, also recall
the existing approach by Andersson & Karlis (2010), might be another field
of research, which could be investigated in the future.
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A Derivations, Proofs & auxiliary results

A.1 Central Limit Theorem
Let us start by deriving Theorem 3.1. For (X∗

t ), we have the CLT
√
T
(
X∗ − µ∗

)
d−→ N

(
0,Σ∗

)
with Σ∗ = (σ∗

ij)i,j=0,...,m, (A.1)

where

σ∗
ij = CoV [X∗

0,i, X
∗
0,j ] +

∞∑
h=1

(
CoV [X∗

0,i, X
∗
h,j ] + CoV [X∗

h,i, X
∗
0,j ]
)
. (A.2)

These covariances compute as

σ∗
ij =


τ(1− τ) + 2

∑∞
h=1 γO(h) if i = j = 0,

σ∗
00µ(j) if i = 0, j > 0,

τ(µ(i,j)(0)− µ(i)µ(j)) + σ∗
00µ(i)µ(j) if i, j > 0.

+
∑∞

h=1 τ(h)
(
µ(j,i)(h) + µ(i,j)(h)− 2µ(i)µ(j)

) (A.3)

Here, X∗ = (O,OX
⊤
)⊤ are the required components for the calculation of µ̂.

Proof: The covariances in (A.2) satisfy

CoV [X∗
t,i, X

∗
s,j ] =


CoV [Ot, Os] = γO(|t− s|), if i = j = 0,

CoV [Ot, Os(Xs)(j)], if i = 0, j > 0,

CoV [Ot(Xt)(i), Os(Xs)(j)], if i, j > 0.

First, let us acknowledge that for i = j = 0, we can conclude σ00. Thus, we
get

σ∗
00 = CoV [X∗

0,0, X
∗
0,0] + 2

∞∑
h=1

CoV [X∗
h,0, X

∗
0,0]

= γO(0) + 2
∞∑
h=1

γO(h)

= τ(1− τ) + 2
∞∑
h=1

γO(h).

Since (Ot) is independent of (Xt), we have

CoV [Ot, Os(Xs)(j)] = E[OtOs(Xs)(j)]− E[Ot]E[Os(Xs)(j)]

= E[OtOs]E[(Xs)(j)]− E[Ot]E[Os]E[(Xs)(j)]

= CoV [Ot, Os]E[(Xs)(j)]

= γO(|t− s|)µ(j).
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This provides σ∗
j0 = σ∗

0j = σ∗
00 · µ(j) for j > 0. Next, we obtain

CoV [Ot(Xt)(i), Os(Xs)(j)] = E[Ot(Xt)(i)Os(Xs)(j)]− E[Ot(Xt)(i)]E[Os(Xs)(j)]

= E[OtOs]E[(Xt)(i)(Xs)(j)]− E[Ot]E[Os]E[(Xt)(i)]E[(Xs)(j)]

= τ(|t− s|)µ(i,j)(t− s)− τ2µ(i)µ(j),

for i, j > 0. Note that this expression can also be expressed as

CoV [Ot(Xt)(i), Os(Xs)(j)] = τ(|t− s|)CoV [(Xt)(i), (Xs)(j)] + γO(|t− s|)µ(i)µ(j).

Finally, we get

σ∗
ij = CoV [O0(X0)(i), O0(X0)(j)] +

∞∑
h=1

(
CoV [O0(X0)(i), Oh(Xh)(j)]

+ CoV [Oh(Xh)(i), O0(X0)(j)]
)

= τµ(i,j)(0)− τ2µ(i)µ(j) +

∞∑
h=1

(
τ(h)µ(j,i)(h) + τ(h)µ(i,j)(h)− 2τ2µ(i)µ(j)

)
.

Using that τ(h) = τ2 + γO(h), we get

σ∗
ij = τµ(i,j)(0)− (τ− γO(0))µ(i)µ(j) + 2µ(i)µ(j)

∞∑
h=1

γO(h)

+
∞∑
h=1

τ(h)
(
µ(j,i)(h) + µ(i,j)(h)− 2µ(i)µ(j)

)
= τ(µ(i,j)(0)− µ(i)µ(j)) + σ∗

00µ(i)µ(j) +
∞∑
h=1

τ(h)
(
µ(j,i)(h) + µ(i,j)(h)− 2µ(i)µ(j)

)
,

where we utilized the calculations of σ∗
00 in the last step. ■

Now, let us define the function f : [0, 1]×[0,∞)m → [0,∞)m by fj(x0, x1, . . . , xm) =
xj/x0 for j = 1, . . . ,m. Then, µ̂ = f(X∗), µ = f(µ∗), and the gradient of fj(x)
is

∇fj(x) = (−xj

x2
0
, 0, . . . , 0, 1

x0
, 0, . . . , 0), with 1

x0
at position j.

Hence, the Jacobian of f evaluated in µ∗, equals

D =
1

τ


−µ 1 0 · · · 0

−µ(2) 0 1
. . .

...
...

...
. . . . . . 0

−µ(m) 0 · · · 0 1

 .
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So the linear Taylor approximation µ̂ ≈ µ +D(X∗ − µ∗) together with the CLT
implies

√
T
(
µ̂− µ

)
d−→ N

(
0,Σ

)
with Σ = DΣ∗D⊤.

We can compute the entries (σij)i,j=1,...,m as

σij =
m∑

k,l=0

dikdjlσ
∗
kl = di0dj0σ

∗
00 + di0djjσ

∗
0j + diidj0σ

∗
i0 + diidjjσ

∗
ij

= 1
τ2

(
µ(i)µ(j)σ

∗
00 − µ(i)σ

∗
0j − µ(j)σ

∗
i0 + σ∗

ij

)
= 1

τ2

(
σ∗
ij − µ(i)µ(j)σ

∗
00

)
= 1

τ

(
µ(i,j)(0)− µ(i)µ(j)

)
+ 1

τ2

∞∑
h=1

τ(h)
(
µ(j,i)(h) + µ(i,j)(h)− 2µ(i)µ(j)

)
.

In the last step, we utilized that σ∗
0j = σ∗

00 · µ(j). To approximate the bias of µ̂,
we use the quadratic Taylor approximation µ̂j ≈ µj + D(j)(X∗ − µ∗) + 1

2(X
∗ −

µ∗)⊤H(j)(X∗ −µ∗), where D(j) denotes the jth row of D, and where H(j) is the
Hessian of fj evaluated in µ∗. For the non-zero second-order partial derivatives,
one gets

∂2

∂x20
fj =

2xj
x30

,
∂2

∂x0∂xj
fj = − 1

x20
,

∂2

∂x2j
fj = 0. (A.4)

Evaluating these derivatives in µ∗ yields the non-zero entries

h
(j)
00 =

2µ(j)

τ2
, h

(j)
0j = − 1

τ2
, (A.5)

of the Hessian H(j). This implies the approximation

T E[µ̂j − µj ] ≈ 1
2h

(j)
00 σ00 + h

(j)
0j σ0j =

1
τ2

(
µjσ00 − σ0j

)
= 0, (A.6)

where we used that σ0j = σ00 · µ(j). As a result, the bias is negligible for practice.

A.2 Considered models
We shall begin this section by presenting an essential lemma for factorial moments.
Then, in Sections 4–6, we shall derive crucial results essential to determine our
considered statistics.

Lemma A.1 For the mixed factorial moments of lag zero, it holds that

(i) µ(1) = µ (v) µ(1,3)(0) = µ(4) + 3µ(3),

(ii) µ(1,1)(0) = µ(2) + µ, (vi) µ(2,3)(0) = µ(5) + 6µ(4) + 6µ(3),
(iii) µ(1,2)(0) = µ(3) + 2µ(2), (vii) µ(3,3)(0) = µ(6) + 9µ(5) + 18µ(4) + 6µ(3).
(iv) µ(2,2)(0) = µ(4) + 4µ(3) + 2µ(2),
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Proof: Statement (i) is trivial.

(ii) µ(1,1)(0) = E[X2
t ] = E[Xt(Xt − 1 + 1)] = E[Xt(Xt − 1) +Xt]

= E[Xt(Xt − 1)] + E[Xt] = µ(2) + µ.

(iii) µ(1,2)(0) = E[(Xt)(Xt)(2)] = E[X2
t (Xt − 1)] = E[Xt(Xt − 1)(Xt − 2 + 2)]

= E[Xt(Xt − 1)(Xt − 2) + 2Xt(Xt − 1)]

= E[Xt(Xt − 1)(Xt − 2)] + 2E[Xt(Xt − 1)] = µ(3) + 2µ(2).

(iv) µ(2,2)(0) = E[(Xt)(2)(Xt)(2)] = E[X2
t (Xt − 1)2]

= E[Xt(Xt − 1)(Xt − 2 + 2)(Xt − 3 + 2)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3) + 2Xt(Xt − 1)(Xt − 2− 1)

+ 2Xt(Xt − 1)(Xt − 2) + 4Xt(Xt − 1)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3)] + 4E[Xt(Xt − 1)(Xt − 2)]

+ 2E[Xt(Xt − 1)]

= µ(4) + 4µ(3) + 2µ(2)

(v) µ(1,3)(0) = E[Xt(Xt)(3)] = E[Xt(Xt − 1)(Xt − 2)(Xt − 3 + 3)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3)] + 3E[Xt(Xt − 1)(Xt − 2)]

= µ(4) + 3µ(3).

(vi) µ(2,3)(0) = E[(Xt)(2)(Xt)(3)] = E[Xt(Xt − 1)(Xt − 2)(Xt − 3 + 3)(Xt − 4 + 3)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3)(Xt − 4)] + 6E[Xt(Xt − 1)(Xt − 2)]

+ 6E[Xt(Xt − 1)(Xt − 2)(Xt − 3)]

= µ(5) + 6µ(4) + 6µ(3).

(vii) µ(3,3)(0) = E[(Xt)(3)(Xt)(3)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3 + 3)(Xt − 4 + 3)(Xt − 5 + 3)]

= E[Xt(Xt − 1)(Xt − 2)(Xt − 3)(Xt − 4)(Xt − 5)]

+ 9E[Xt(Xt − 1)(Xt − 2)(Xt − 3)(Xt − 4)]

+ 18E[Xt(Xt − 1)(Xt − 2)(Xt − 3)] + 6E[Xt(Xt − 1)(Xt − 2)]

= µ(6) + 9µ(5) + 18µ(4) + 6µ(3).

■

A.2.1 Poi-INAR(1) model

The Poi-INAR(1) model shall be used for the Poisson index of dispersion as well
as for the skewness index, if one is concerned with unbounded counts. Thus, let us
consider the following lemmata.
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Lemma A.2 By Proposition 2.2, we have

(i) µ(1,1)(h) = µ2 + µρh, (iv) µ(1,3)(h) = µ4 + 3µ3ρh,

(ii) µ(1,2)(h) = µ3 + 2µ2ρh, (v) µ(2,3)(h) = µ5 + 6µ4ρh + 6µ3ρ2h,
(iii) µ(2,2)(h) = µ4 + 4µ3ρh + 2µ2ρ2h, (vi) µ(3,3)(h) = µ6 + 9µ5ρh + 18µ4ρ2h + 6µ3ρ3h.

Using Lemma A.1, Lemma A.2 and applying them to Corollary 3.2 (i), yields the
following.

Lemma A.3 Let us assume that the missing data follow a Markov model, i. e.,
τ(h) = τ2 + τ(1− τ)rh. Then, we have

(i) σ11 = µ

(
1
τ
1+rρ
1−rρ + 2(1−r)ρ

(1−rρ)(1−ρ)

)
,

(ii) σ12 = 2µ · σ11,
(iii) σ13 = 3µ2 · σ11,

(iv) σ22 = 4µ2 · σ11 + 2µ2

(
1
τ
1+rρ2

1−rρ2
+ 2(1−r)ρ2

(1−rρ2)(1−ρ2)

)
,

(v) σ23 = 3µ · σ22 − 6µ3 · σ11,

(vi) σ33 = 9µ2 · σ22 − 27µ4 · σ11 + 6µ3

(
1
τ
1+rρ3

1−rρ3
+ 2(1−r)ρ3

(1−rρ3)(1−ρ3)

)
.

Proof: Let us start by proving (i). According to Corollary 3.2 (i) we have

σ11 =
1
τ

[
µ(1,1)(0)− µ2 + 2

τ

∞∑
h=1

τ(h)
(
µ(1,1)(h)− µ2

)]
= 1

τµ
[
1 + 2

τ

∞∑
h=1

τ(h)ρh
]
.

In the last step, we used Lemma A.1 and Lemma A.2. Now, we assume that
the missing data follow the Markov model τ(h) = τ2 + τ(1− τ)rh. Then, we
get

σ11 = µ1
τ

[
1 + 2τ

∞∑
h=1

ρh + 2(1− τ)
∞∑
h=1

(rρ)h

]

= µ1
τ

(
1 + (2τ− 1)ρ

1− ρ
− 2r(τ− 1)ρ

1− rρ

)

= µ

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)
. (A.7)
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In the same manner, one can show (ii) and (iii). Next, let us determine σ22.
Analogously to (i), we get

σ22 =
1
τ

[
µ(2,2)(0)− µ4 + 2

τ

∞∑
h=1

τ(h)
(
µ(2,2)(h)− µ4

)]
= 4

τµ
3
(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+ 2

τµ
2
(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)
.

Using the Markov model τ(h) = τ2 + τ(1− τ)rh, and from (A.7), we get

σ22 = 4µ2 · σ11 + 2µ2 1
τ

[
1 + 2τ

∞∑
h=1

ρ2h + 2(1− τ)
∞∑
h=1

(rρ2)h

]

= 4µ2 · σ11 + 2µ2 1
τ

(
1 + (2τ− 1)ρ2

1− ρ2
− 2r(τ− 1)ρ2

1− rρ2

)

= 4µ2 · σ11 + 2µ2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)
.

For (v), we get for the Markov model τ(h) = τ2 + τ(1− τ)rh the following:

σ23 =
1
τ

[
µ(2,3)(0)− µ5 + 2

τ

∞∑
h=1

τ(h)
(
µ(2,3)(h)− µ5

)]
= 6

τµ
4
(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+ 6

τµ
3
(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)

= 3µ · σ22 − 6µ3 · σ11.

Finally, for (vi), we get

σ33 =
1
τ

[
µ(3,3)(0)− µ6 + 2

τ

∞∑
h=1

τ(h)
(
µ(3,3)(h)− µ6

)]
= 9

τµ
5
(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+ 18

τ µ
4
(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)
+ 6

τµ
3
(
1 + 2

τ

∞∑
h=1

τ(h)ρ3h
)
.

Again, the Markov model τ(h) = τ2 + τ(1− τ)rh yields

σ33 = 9µ2 · σ22 − 27µ4 · σ11 + 6µ3 1
τ

[
1 + 2τ

∞∑
h=1

ρ3h + 2(1− τ)

∞∑
h=1

(rρ3)h

]

= 9µ2 · σ22 − 27µ4 · σ11 + 6µ3 1
τ

(
1 + (2τ− 1)ρ3

1− ρ3
− 2r(τ− 1)ρ3

1− rρ3

)

= 9µ2 · σ22 − 27µ4 · σ11 + 6µ3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)
.
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■

A.2.2 BAR(1) model

The BAR(1) model shall be used for the binomial index of dispersion as well as for
the skewness index, if one is concerned with bounded counts. Thus, let us consider
the following lemmata.

Lemma A.4 By Proposition 2.3, we have

(i) µ(1,1)(h) = n2π2 + nπ(1− π)ρh,
(ii) µ(1,2)(h) = nn(2)π

3 + 2n(2)π
2(1− π)ρh,

(iii) µ(2,2)(h) =
(
n(2)

)2
π4 + 4(n− 1)n(2)(1− π)π3ρh + 2n(2)(1− π)2π2ρ2h,

(iv) µ(1,3)(h) = nn(3)π
4 + 3n(3)(1− π)π3ρh,

(v) µ(2,3)(h) = n(2)n(3)π
5 + 6n(3)(n− 1)(1− π)π4ρh + 6n(3)(1− π)2π3ρ2h,

(vi) µ(3,3)(h) = (n(3))
2π6 + 9(n− 1)(n− 2)n(3)(n− 1)(1− π)π5ρh

+18(n− 2)n(3)(1− π)2π4ρ2h + 6n(3)(1− π)3π3ρ3h.

Using Lemma A.1, Lemma A.4, and applying them to Corollary 3.2 (ii), yields the
following.

Lemma A.5 Let us assume again that the missing data follow a Markov model,
i. e., τ(h) = τ2 + τ(1− τ)rh. Then, we have

(i) σ11 = nπ(1− π)

(
1
τ
1+rρ
1−rρ + 2(1−r)ρ

(1−rρ)(1−ρ)

)
,

(ii) σ12 = 2(n− 1)π · σ11,
(iii) σ13 = 3(n− 1)(n− 2)π2 · σ11,

(iv) σ22 = 4(n− 1)2π2 · σ11 + 2n(2)(1− π)2π2

(
1
τ
1+rρ2

1−rρ2
+ 2(1−r)ρ2

(1−rρ2)(1−ρ2)

)
,

(v) σ23 = 3(n− 2)π · σ22 − 6(n− 1)2(n− 2)π3 · σ11,
(vi) σ33 = 9(n− 2)2π2 · σ22 − 27(n− 1)2(n− 2)2π4 · σ11

+6n(3)(1− π)3π3

(
1
τ
1+rρ3

1−rρ3
+ 2(1−r)ρ3

(1−rρ3)(1−ρ3)

)
.

Proof: Let us start by proving (i). According to Corollary 3.2 (ii), we have

σ11 =
1
τ

[
µ(1,1)(0)− n2π2 + 2

τ

∞∑
h=1

τ(h)
(
µ(1,1)(h)− n2π2

)]
= nπ(1−π)

τ

[
1 + 2

τ

∞∑
h=1

τ(h)ρh
]
.
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In the last step, we used Lemma A.1 and Lemma A.4. Now, we assume that
the Missing Data follows the Markov model τ(h) = τ2 + τ(1 − τ)rh. Then,
like in the Proof of Lemma A.3 (i), we get

σ11 = nπ(1− π)

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)
.

In a same manner, one can show (ii) and (iii). Next, let us determine σ22.
Analogously to (i), we get

σ22 =
1
τ

[
µ(2,2)(0)− (n(2))

2π4 + 2
τ

∞∑
h=1

τ(h)
(
µ(2,2)(h)− (n(2))

2π4
)]

=
n(2)π

2

τ

[
4(n− 1)(1− π)π

(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+ 2(1− π)2π2

(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)]

.

Using the Markov model τ(h) = τ2 + τ(1− τ)rh as well as the result for σ11,
we get

σ22 = 4(n− 1)2π2 · σ11 + 2n(2)(1− π)2 1τ

(
1 + (2τ− 1)ρ2

1− ρ2
− 2r(τ− 1)ρ2

1− rρ2

)

= 4(n− 1)2π2 · σ11 + 2n(2)(1− π)2π2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)
.

For (v), we get

σ23 =
1
τ

[
µ(2,3)(0)− n(2)n(3)π

5 + 2
τ

∞∑
h=1

τ(h)
(
µ(2,3)(h)− n(2)n(3)π

5
)]

=
6n(3)(1−π)π3

τ

[
(n− 1)π

(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+ (1− π)

(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)]

= 3(n− 2)π · σ22 − 6(n− 1)2(n− 2)π3 · σ11.

Finally, for (vi), we get

σ33 =
1
τ

[
µ(3,3)(0)− (n(3))

2π6 + 2
τ

∞∑
h=1

τ(h)
(
µ(3,3)(h)− (n(3))

2π6
)]

=
3n(3)(1−π)π3

τ

[
3(n− 1)(n− 2)π2

(
1 + 2

τ

∞∑
h=1

τ(h)ρh
)
+

+ 6(n− 2)(1− π)π
(
1 + 2

τ

∞∑
h=1

τ(h)ρ2h
)
+ 2(1− π)2

(
1 + 2

τ

∞∑
h=1

τ(h)ρ3h
)]

.
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Again, the Markov model τ(h) = τ2 + τ(1− τ)rh yields

σ33 = 9(n− 2)2π2 · σ22 − 27(n− 1)2(n− 2)2π4 · σ11

+ 6n(3)(1− π)3π3 1

τ

(
1 + (2τ− 1)ρ3

1− ρ3
− 2r(τ− 1)ρ3

1− rρ3

)
= 9(n− 2)2π2 · σ22 − 27(n− 1)2(n− 2)2π4 · σ11

+ 6n(3)(1− π)3π3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)
.

■

A.3 Poisson Index of Dispersion
In this section, we look at the derivations for the Poisson index of dispersion.
Moreover, we start with the general approach for the asymptotic variance and
bias, and then consider a specific Poi-INAR(1) model. Let us start with the general
approach.

A.3.1 Proof of Theorem 4.1

Asymptotic variance

First, let us draw our attention to the asymptotic variance. Let us start by applying
the covariances σij from Theorem 3.1 to (4.2), which leads to

σ2
ÎPoi =

1
Tτ

[(µ(2)

µ2 + 1
)2
(µ(1,1)(0)− µ2)− 2

µ

(µ(2)

µ2 + 1
)
(µ(1,2)(0)− µµ(2))

+ 1
µ2 (µ(2,2)(0)− µ2

(2)) +
2
τ

∞∑
h=1

τ(h)
((µ(2)

µ2 + 1
)2(

µ(1,1)(h)− µ2
)

+ 1
µ2

(
µ(2,2)(h)− µ2

(2)

)
− 1

µ

(µ(2)

µ2 + 1
)(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]

= 1
Tτµ2

[(µ(2)

µ + µ
)2
(µ(1,1)(0)− µ2)− 2

(µ(2)

µ + µ
)
(µ(1,2)(0)− µµ(2))

+ µ(2,2)(0)− µ2
(2) +

2
τ

∞∑
h=1

τ(h)
((µ(2)

µ + µ
)2(

µ(1,1)(h)− µ2
)

+ µ(2,2)(h)− µ2
(2) −

(µ(2)

µ + µ
)(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]
.
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Now, we can use Lemma A.1 to simplify σ2
ÎPoi . Thus, we obtain

σ2
ÎPoi =

1
Tτµ2

[(µ(2)

µ + µ
)2
(µ(2) + µ− µ2)− 2

(µ(2)

µ + µ
)
(µ(3) + 2µ(2) − µµ(2))

+ µ(4) + 4µ(3) + 2µ(2) − µ2
(2) +

2
τ

∞∑
h=1

τ(h)
((µ(2)

µ + µ
)2(

µ(1,1)(h)− µ2
)

−
(µ(2)

µ + µ
)(
µ(2,1)(h) + µ(1,2)(h)

)
+ µ(2,2)(h) + µ2

(2) + 2µ2µ(2)

)]

= 1
Tτµ2

[(µ(2)

µ + µ
)2
(µ(2) + µ)− 2

(µ(2)

µ + µ
)
(µ(3) + 2µ(2))

+ µ(4) + 4µ(3) + 2µ(2) − µ4 + 2
τ

∞∑
h=1

τ(h)
((µ(2)

µ + µ
)2
µ(1,1)(h)

−
(µ(2)

µ + µ
)(
µ(2,1)(h) + µ(1,2)(h)

)
+ µ(2,2)(h)− µ4

)]
.

Asymptotic bias

In a similar fashion to the asymptotic variance, the asymptotic bias becomes

BÎPoi =
1
T

(
1
2h11σ11 + h12σ12

)
= 1

T

[
µ(2)

µ3

(
1
τ(µ(1,1)(0)− µ2) + 2

τ2

∞∑
h=1

τ(h)
(
µ(1,1)(h)− µ2

))

− 1
µ2

(
1
τ(µ(1,2)(0)− µµ(2)) +

1
τ2

∞∑
h=1

τ(h)
(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]

= 1
Tτµ3

[
µ(2)

(
µ(1,1)(0)− µ2

)
− µ

(
µ(1,2)(0)− µµ(2)

)
+ 1

τ

∞∑
h=1

τ(h)
(
2µ(2)

(
µ(1,1)(h)− µ2

)
− µ

(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]
.

Finally, using Lemma A.1 leads to

BÎPoi =
1

Tτµ3

[
µ2
(2) − µ

(
µ(2) + µ(3)

)
+ 2

τ

∞∑
h=1

τ(h)
(
µ(2)µ(1,1)(h)− µ

2

(
µ(2,1)(h) + µ(1,2)(h)

))]
.

A.3.2 Proof of Corollary 4.2

For the proof, we shall utilize our results from Section A.2.1, where we assumed
that the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1− τ)rh.
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First, let us derive the asymptotic variance. As already mentioned, for a Poisson
distribution, one has µ(k) = µk. Thus, we obtain from (4.1) that D =

(
− 2, 1

µ

)
.

Now, using Lemma A.3 leads to

σ2
ÎPoi =

1
T

(
d21σ11 + d22σ22 + 2d1d2σ12

)
= 1

T

[
− 4 · σ11 + 1

µ2 · σ22
]
.

From Lemma A.3 (iv), we get

σ2
ÎPoi =

1
T

[
− 4 · σ11 + 1

µ2

(
4µ2 · σ11 + 2µ2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

))]

= 2
T

[
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

]
.

For the bias, we obtain from (4.1) that h11 =
2
µ , h12 = − 1

µ2 . Again, using Lemma
A.3 leads to

BÎPoi = − 1
T

[
1
µ · σ11

]
= − 1

T

[
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

]
.

A.4 Binomial Index of Dispersion
In this section, we proceed as in Section A.3, that is, we start by deriving a general
approach for asymptotic variance and bias of the binomial index of dispersion, and
then specify it for the BAR(1) model.

A.4.1 Proof of Theorem 5.1

Asymptotic variance

Let us start by applying the covariances σij from Theorem 3.1 to (5.3), which leads
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to

σ2
ÎBin = 1

T

[(
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)2(
1
τ(µ(1,1)(0)− µ2) + 2

τ2

∞∑
h=1

τ(h)
(
µ(1,1)(h)− µ2

))

+ 2

(
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)(
n

µ(n− µ)

)(
1
τ(µ(1,2)(0)− µµ(2))

+ 1
τ2

∞∑
h=1

τ(h)
(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))

+ n2

µ2(n−µ)2

(
1
τ(µ(2,2)(0)− µ2

(2)) +
2
τ2

∞∑
h=1

τ(h)
(
µ(2,2)(h)− µ2

(2)

))]

= 1
Tτ

[(
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)2(
µ(1,1)(0)− µ2

)
+ 2

(
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)(
n

µ(n−µ)

)(
µ(1,2)(0)− µµ(2)

)
+ n2

µ2(n−µ)2

(
µ(2,2)(0)− µ2

(2)

)
+ 2

τ

∞∑
h=1

τ(h)

((
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)2(
µ(1,1)(h)− µ2

)

+

(
n
(
µ2(1−n)−nµ(2)+2µµ(2)

)
µ2(n−µ)2

)(
n

µ(n−µ)

)(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

)
+ n2

µ2(n−µ)2

(
µ(2,2)(h)− µ2

(2)

))]
.
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Here, we can use Lemma A.1 to simplify σ2
ÎBin . Thus, we obtain

σ2
ÎBin = n2

Tτµ4(n−µ)4

[(
µ2(1− n)− nµ(2) + 2µµ(2)

)2(
µ(2) + µ− µ2

)
+ 2µ(n− µ)

(
µ2(1− n)− nµ(2) + 2µµ(2)

)(
µ(3) + 2µ(2) − µµ(2)

)
+ µ2(n− µ)2

(
µ(4) + 4µ(3) + 2µ(2) − µ2

(2)

)
+ 2

τ

∞∑
h=1

τ(h)

((
µ2(1− n)− nµ(2) + 2µµ(2)

)2(
µ(1,1)(h)− µ2

)
+ µ(n− µ)

(
µ2(1− n)− nµ(2) + 2µµ(2)

)(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

)
+ µ2(n− µ)2

(
µ(2,2)(h)− µ2

(2)

))]
.

Asymptotic bias

In a similar fashion, the asymptotic bias becomes

BÎBin = 1
T

(
1
2h11σ11 + h12σ12

)
= 1

T

[
n
(
µ3(1−n)+n2µ(2)+3µµ(2)(µ−n)

)
µ3(n−µ)3

(
1
τ(µ(1,1)(0)− µ2) + 2

τ2

∞∑
h=1

τ(h)
(
µ(1,1)(h)− µ2

))

+ n(2µ−n)
µ2(n−µ)2

(
1
τ(µ(1,2)(0)− µµ(2)) +

1
τ2

∞∑
h=1

τ(h)
(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]

= n
Tτµ3(n−µ)3

[(
µ3(1− n) + n2µ(2) + 3µµ(2)(µ− n)

)(
µ(2) + µ− µ2

)
+ µ(n− µ)(2µ− n)(µ(3) + 2µ(2) − µµ(2))

+ 1
τ2

∞∑
h=1

τ(h)

(
2
(
µ3(1− n) + n2µ(2) + 3µµ(2)(µ− n)

)(
µ(1,1)(h)− µ2

)

+ µ(n− µ)(2µ− n)
(
µ(2,1)(h) + µ(1,2)(h)− 2µµ(2)

))]
,

where in the last step, we used Lemma A.1 once again.

A.4.2 Proof of Corollary 5.2

For the proof, we shall utilize our results from Section A.2.2, where we assumed
that the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1− τ)rh.

41



First, let us derive the asymptotic variance. As already mentioned, for a binomial
distribution, one has µ(k) = n(k)π

k. Thus, we obtain from (5.1) that D =
(
−

2(n−1)
n(1−π) ,

1
nπ(1−π)

)
. Now, using Lemma A.5 leads to

σ2
ÎBin = 1

T

(
d21σ11 + d22σ22 + 2d1d2σ12

)
= 1

T

[
− 4(n−1)2

n2(1−π)2
· σ11 + 1

n2π2(1−π)2
· σ22

]
From Lemma A.5 (iv), we get

σ2
ÎBin = 1

T

[
− 4(n−1)2

n2(1−π)2
· σ11 + 1

n2π2(1−π)2

(
4(n− 1)2π2 · σ11

+ 2n(2)(1− π)2π2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

))]

= 2
T

(
1− 1

n

)[1
τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

]
.

For the bias, we obtain from (5.2) that h11 = 2(n−1)
n(1−π) , h12 = 2π−1

n2π2(1−π)2
. Again,

using Lemma A.5 leads to

BÎBin = − 1
T

[
(n−1)

n2π(1−π)
· σ11

]
= − 1

T

(
1− 1

n

)[1
τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

]
.

A.5 Skewness Index
Let us start by stating the sample counterpart to the skewness index, which is
given by ÎSkew = µ̂(3)/µ̂(2)µ̂. Then, we proceed from Theorem 3.1 and define a new
function g by

g(x1, x2, x3) =
x3

x1x2
.

Thus, g has the partial derivatives

∂

∂x1
g = − x3

x21x2
,

∂

∂x2
g = − x3

x1x22
,

∂

∂x3
g =

1

x1x2
,

∂2

∂x21
g =

2x3
x31x2

,
∂2

∂x22
g =

2x3
x1x32

,
∂2

∂x23
g = 0,

∂2

∂x1∂x2
g =

x3
x21x

2
2

,
∂2

∂x1∂x3
g = − 1

x21x2
,

∂2

∂x2∂x3
g = − 1

x1x22
.
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So, we get the Jacobian D and the Hessian H by evaluating the partial derivatives
in µ, which leads to

D =
1

µ(2)µ

(
−

µ(3)

µ
, −

µ(3)

µ(2)
, 1

)
,

H =
1

µ(2)µ


2µ(3)

µ2

µ(3)

µµ(2)
− 1

µ
µ(3)

µµ(2)

2µ(3)

µ2
(2)

− 1
µ(2)

− 1
µ − 1

µ(2)
0

 .

This, however, leads to the Taylor approximation ÎSkew ≈ ISkew + D(µ̂ − µ) +
1
2(µ̂− µ)⊤H(µ̂− µ), which can be used to conclude the asymptotic variance and
bias of ÎSkew, that is

σ2
ÎSkew

= 1
T

(
d21σ11 + d22σ22 + d23σ33 + 2d1d2σ12 + 2d1d3σ13 + 2d2d3σ23

)
, (A.8)

BÎSkew
= 1

T

(
1
2

(
h11σ11 + h22σ22 + h33σ33

)
+ h12σ12 + h13σ13 + h23σ23

)
. (A.9)

Lemma A.6 We have for Jacobian D and the Hessian H of the Poisson and the
binomial distribution:

(i) DPoi = 1
µ3

(
− µ2,−µ, 1

)
, HPoi =

1

µ3


2µ 1 − 1

µ

1 2
µ − 1

µ2

− 1
µ − 1

µ2 0

 ;

(ii) DBin = 1
nn(2)π

3

(
− (n− 1)(n− 2)π2,−(n− 2)π, 1

)
,

HBin =
1

nn(2)π3


2n(3)π

n2
n−2
n − 1

nπ
n−2
n

2(n−2)
n(2)π

− 1
n(2)π

2

− 1
nπ − 1

n(2)π
2 0

 .

A.5.1 Proof of Theorem 6.1

For the proof, we shall utilize our results from Section A.2.1, where we assumed
that the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1− τ)rh.

First, let us derive the asymptotic variance. We plug-in our results from Lemma

43



A.6 (i) as well as Lemma A.3 into (A.8). We get

σ2
ÎPoi
Skew

= 1
T

(
d21σ11 + d22σ22 + d23σ33 + 2d1d2σ12 + 2d1d3σ13 + 2d2d3σ23

)
= 1

T

[
1
µ2 · σ11 + 1

µ4 · σ22 − 2

(
2
µ2 · σ11 + 1

µ5

(
3µ · σ22 − 6µ3σ11

))

+ 1
µ6

(
9µ2 · σ22 − 27µ4 · σ11 + 6µ3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

))]

= 1
T

[
−16
µ2 · σ11 + 4

µ4 · σ22 + 6µ3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]
.

Now, using Lemma A.3 (iv) yields

σ2
ÎPoi
Skew

= 1
T

[
− 16

µ2 · σ11 + 4
µ4

(
4µ2 · σ11 + 2µ2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

))

+ 6µ3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]

= 1
Tµ3

[
8µ

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)
+ 6

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]
.

For the bias, we use Lemma A.6 (i). Again, using Lemma A.3 and plugging-in our
results into (A.9), leads to

BÎPoi
Skew

= 1
T

(
1
2

(
h11σ11 + h22σ22 + h33σ33

)
+ h12σ12 + h13σ13 + h23σ23

)
= 1

T

[
1
2

(
2
µ2 · σ11 + 2

µ4 · σ22
)
+ 1

µ3 · σ12 − 1
µ4 · σ13 − 1

µ5 · σ23
]

= 1
Tµ2

[
σ11 +

1
µ2 · σ22 + 1

µ · σ12 − 1
µ2 · σ13 − 1

µ3 · σ23
]

= 1
Tµ2

[
6 · σ11 − 2

µ2 · σ22
]
.

Now, using Lemma A.3 (i) and (iii) yields

BÎPoi
Skew

= 1
Tµ2

[
6 · σ11 − 2

µ2

(
4µ2 · σ11 + 2µ2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

))]

= − 2
Tµ2

[
σ11 + 2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)]

= − 2
Tµ2

[
µ

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)
+ 2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)]
.
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A.5.2 Proof of Theorem 6.2

For the proof, we utilize our results from Section A.2.2, where we assumed that
the missing data follow a Markov model, i. e., τ(h) = τ2 + τ(1− τ)rh.

First, let us start with the asymptotic variance. Let us plug-in our results from
Lemma A.6 (ii) as well as Lemma A.5 into (A.8), which leads to

σ2
ÎBin
Skew

= 1
T

(
d21σ11 + d22σ22 + d23σ33 + 2d1d2σ12 + 2d1d3σ13 + 2d2d3σ23

)
= 1

T

[
(n−2)2

n4π2 · σ11 + (n−2)2

n4(n(2))
2π2 · σ22 + 1

n2(n(2))
2π6

(
9(n− 2)2π2 · σ22

− 27(n− 1)2(n− 2)2π4 · σ11 + 6 (n−2)(1−π)3

n2n(2)π
3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

))

+ 4(n−1)(n−2)2

n3n(2)π
2 · σ11 − 6(n−1)(n−2)2

n3n(2)π
2 · σ11

− 2(n−2)
n3(n(2))

2π5

(
3(n− 2)π · σ22 − 6(n− 1)2(n− 2)π3 · σ11

)]

= 1
T

[
−16(n−2)2

n4π2 · σ11 + 4(n−2)2

n2(n(2))
2π4 · σ22 + 6 (n−2)(1−π)3

n2n(2)π
3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]
.

Now, using Lemma A.5 (iv) yields

σ2
ÎBin
Skew

= 1
T

[
8(n−2)2(1−π)2

n2n(2)π
2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)

+ 6 (n−2)(1−π)3

n2n(2)π
3

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]

= (n−2)(1−π)3

(n−1)Tn3π3

[
8 · (n− 2)π

1− π

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)

+ 6

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]

=
(
(n−2)(n−µ)3

(n−1)n3

)
1

Tµ3

[
n−2
n−µ · 8µ

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)

+ 6

(
1

τ

1 + rρ3

1− rρ3
+

2(1− r)ρ3

(1− rρ3)(1− ρ3)

)]
.

In the last step, we used that π = µ
n . For the bias, we use Lemma A.6 (ii). Once
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again, using Lemma A.5 and plugging-in our results into (A.9), leads to

BÎBin
Skew

= 1
T

(
1
2

(
h11σ11 + h22σ22 + h33σ33

)
+ h12σ12 + h13σ13 + h23σ23

)
= 1

T

[
1
2

(
2(n−2)
n3π2 · σ11 + 2(n−2)

n(n(2))
2π4 · σ22

)
+ 2(n−2)

n3π2 · σ11 − 3(n−2)
n3π2 · σ11

− 1
n(n(2))

2π5

(
3(n− 2)πσ22 − 6(n− 1)2(n− 2)2π4σ11

)]
= 1

T

[
6(n−2)
n3π2 · σ11 − 2(n−2)

n(n(2))
2π4 · σ22

]
.

Now, using Lemma A.5 (i) and (iv) yields

BÎBin
Skew

= − 2
T

[
(n−2)(1−π)

n2π

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)

+ 2(n−2)(1−π)2

n2n(2)π
2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)]

= −2(n−2)(1−π)2

(n−1)Tn2π2

[
(n− 1)π

1− π

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)

+ 2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)]

= −
(
(n−2)(n−µ)2

(n−1)n2

)
2

Tµ2

[
n−1
n−µ · µ

(
1

τ

1 + rρ

1− rρ
+

2(1− r)ρ

(1− rρ)(1− ρ)

)

+ 2

(
1

τ

1 + rρ2

1− rρ2
+

2(1− r)ρ2

(1− rρ2)(1− ρ2)

)]
.

A.6 Autocorrelation and Missing Data
In this section, we briefly describe our method for estimating the autocorrelation
function for cloud from data with missing values. We use the method provided
by Dunsmuir & Robinson (1981). Let us recall that the amplitude modulation of
(Xt) is (Ot ·Xt), implying that we estimate µ by

µ̂ =
OX

O
.

In Dunsmuir & Robinson (1981, p. 260f), they first consider a known mean of
zero. When the mean is unknown a mean correction is necessary, see Dunsmuir &
Robinson (1981, p. 277f). As a result, we can estimate the autocorrelation function
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as follows:

ρ̂DR(l) =
ĈDR(l)

ĈDR(0)
, 0 ≤ l < T, (A.10)

where ĈDR(l) =
1
T

∑T−l
t=1 OtOt+l(Xt− µ̂)(Xt+l− µ̂). If we now assume that we have

i.i.d. data, the asymptotic variance, according to (Dunsmuir & Robinson, 1981, p.
274), is

1

τ(l)
, for l = 0, . . . , T − l,

where τ(l) = 1
T

∑T−l
t=1 E[OtOt+l] = γO(l) + τ2. If using ρ̂DR(l) to test the null

hypothesis of serial independence at lag l on level α, then the critical value is
±z1−α

2
/
√
τ(l), and is therefore dependent on the lag l.

A.7 Tables
In this section, we present the full tables from our simulation study with 10,000
replications per scenario. For unbounded counts, the Poi-INAR(1) model is as-
sumed, which has the Poisson marginal distribution Poi(µ) with µ ∈ (0,∞). For
bounded counts, we assume the BAR(1) model, which has the binomial marginal
distribution Bin(n, π) with π ∈ (0, 1) and n ∈ N.
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Table 4: Asymptotic vs. simulated mean and standard deviation (SD) of ÎPoi

and ÎPoi
Skew data; time series of length T is generated by Poi-INAR(1) counts

with fixed µ = 3, ρ = 0.5.
mean of ÎPoi SD of ÎPoi mean of ÎPoi

Skew SD of ÎPoi
Skew

τ r T sim asym sim asym sim asym sim asym

1 0 100 0.971 0.970 0.177 0.183 0.974 0.973 0.124 0.133
0.8 0 100 0.967 0.968 0.189 0.196 0.971 0.970 0.132 0.143
0.6 0 100 0.965 0.963 0.210 0.216 0.966 0.965 0.146 0.158
0.4 0 100 0.955 0.955 0.238 0.252 0.956 0.956 0.164 0.185

1 0.3 100 0.972 0.970 0.177 0.183 0.974 0.973 0.123 0.133
0.8 0.3 100 0.967 0.967 0.190 0.198 0.971 0.969 0.133 0.144
0.6 0.3 100 0.962 0.961 0.213 0.221 0.965 0.963 0.148 0.162
0.4 0.3 100 0.951 0.950 0.249 0.261 0.954 0.951 0.172 0.192

1 0.6 100 0.971 0.970 0.177 0.183 0.974 0.973 0.124 0.133
0.8 0.6 100 0.968 0.965 0.191 0.200 0.971 0.968 0.132 0.146
0.6 0.6 100 0.956 0.958 0.219 0.227 0.961 0.960 0.151 0.166
0.4 0.6 100 0.942 0.942 0.257 0.272 0.947 0.945 0.175 0.199

1 0 250 0.988 0.988 0.114 0.115 0.989 0.989 0.081 0.084
0.8 0 250 0.987 0.987 0.124 0.124 0.989 0.988 0.089 0.090
0.6 0 250 0.987 0.985 0.134 0.137 0.987 0.986 0.096 0.100
0.4 0 250 0.980 0.982 0.157 0.159 0.981 0.982 0.112 0.117

1 0.3 250 0.990 0.988 0.114 0.115 0.990 0.989 0.082 0.084
0.8 0.3 250 0.988 0.987 0.122 0.125 0.988 0.988 0.087 0.091
0.6 0.3 250 0.984 0.984 0.139 0.140 0.985 0.985 0.098 0.102
0.4 0.3 250 0.981 0.980 0.162 0.165 0.982 0.981 0.115 0.121

1 0.6 250 0.989 0.988 0.113 0.115 0.989 0.989 0.081 0.084
0.8 0.6 250 0.987 0.986 0.126 0.127 0.987 0.987 0.089 0.092
0.6 0.6 250 0.984 0.983 0.140 0.143 0.985 0.984 0.100 0.105
0.4 0.6 250 0.975 0.977 0.169 0.172 0.978 0.978 0.118 0.126

1 0 500 0.995 0.994 0.081 0.082 0.995 0.995 0.059 0.059
0.8 0 500 0.994 0.994 0.088 0.088 0.995 0.994 0.063 0.064
0.6 0 500 0.992 0.993 0.096 0.097 0.992 0.993 0.069 0.071
0.4 0 500 0.988 0.991 0.109 0.113 0.989 0.991 0.080 0.083

1 0.3 500 0.995 0.994 0.081 0.082 0.995 0.995 0.059 0.059
0.8 0.3 500 0.993 0.993 0.088 0.088 0.993 0.994 0.064 0.065
0.6 0.3 500 0.991 0.992 0.097 0.099 0.991 0.993 0.071 0.072
0.4 0.3 500 0.988 0.990 0.116 0.117 0.989 0.990 0.084 0.086

1 0.6 500 0.995 0.994 0.081 0.082 0.994 0.995 0.058 0.059
0.8 0.6 500 0.994 0.993 0.088 0.090 0.993 0.994 0.063 0.065
0.6 0.6 500 0.991 0.992 0.100 0.101 0.991 0.992 0.072 0.074
0.4 0.6 500 0.987 0.988 0.121 0.122 0.988 0.989 0.087 0.089

1 0 1000 0.997 0.997 0.058 0.058 0.997 0.997 0.042 0.042
0.8 0 1000 0.997 0.997 0.061 0.062 0.997 0.997 0.045 0.045
0.6 0 1000 0.996 0.996 0.068 0.068 0.996 0.997 0.050 0.050
0.4 0 1000 0.995 0.996 0.080 0.080 0.996 0.996 0.059 0.059

1 0.3 1000 0.997 0.997 0.058 0.058 0.998 0.997 0.042 0.042
0.8 0.3 1000 0.998 0.997 0.063 0.063 0.998 0.997 0.045 0.046
0.6 0.3 1000 0.996 0.996 0.070 0.070 0.997 0.996 0.051 0.051
0.4 0.3 1000 0.993 0.995 0.083 0.083 0.994 0.995 0.060 0.061

1 0.6 1000 0.998 0.997 0.058 0.058 0.998 0.997 0.042 0.042
0.8 0.6 1000 0.997 0.997 0.064 0.063 0.997 0.997 0.046 0.046
0.6 0.6 1000 0.997 0.996 0.071 0.072 0.996 0.996 0.052 0.052
0.4 0.6 1000 0.994 0.994 0.086 0.086 0.994 0.995 0.062 0.063
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Table 5: Asymptotic vs. simulated mean and SD of ÎBin and ÎBin
Skew data; time

series of length T is generated by BAR(1) counts with fixed µ = 3, ρ = 0.5
and n = 10.

mean of ÎBin SD of ÎBin mean of ÎBin
Skew SD of ÎBin

Skew

τ r T sim asym sim asym sim asym sim asym

1 0 100 0.972 0.973 0.169 0.173 0.785 0.786 0.075 0.078
0.8 0 100 0.971 0.971 0.181 0.186 0.784 0.784 0.081 0.084
0.6 0 100 0.964 0.967 0.201 0.205 0.781 0.782 0.091 0.092
0.4 0 100 0.960 0.960 0.230 0.239 0.777 0.777 0.103 0.108

1 0.3 100 0.973 0.973 0.170 0.173 0.786 0.786 0.076 0.078
0.8 0.3 100 0.973 0.970 0.180 0.188 0.786 0.784 0.081 0.084
0.6 0.3 100 0.963 0.965 0.203 0.210 0.780 0.781 0.091 0.094
0.4 0.3 100 0.961 0.955 0.241 0.248 0.777 0.775 0.109 0.112

1 0.6 100 0.972 0.973 0.169 0.173 0.785 0.786 0.075 0.078
0.8 0.6 100 0.970 0.969 0.186 0.190 0.783 0.783 0.084 0.085
0.6 0.6 100 0.961 0.962 0.210 0.215 0.779 0.779 0.094 0.097
0.4 0.6 100 0.946 0.948 0.254 0.258 0.771 0.771 0.115 0.116

1 0 250 0.990 0.989 0.108 0.110 0.795 0.794 0.049 0.049
0.8 0 250 0.987 0.988 0.118 0.117 0.793 0.794 0.053 0.053
0.6 0 250 0.986 0.987 0.128 0.130 0.792 0.793 0.057 0.058
0.4 0 250 0.986 0.984 0.148 0.151 0.792 0.791 0.067 0.068

1 0.3 250 0.988 0.989 0.107 0.110 0.794 0.794 0.048 0.049
0.8 0.3 250 0.984 0.988 0.117 0.119 0.792 0.793 0.053 0.053
0.6 0.3 250 0.985 0.986 0.131 0.133 0.792 0.792 0.058 0.060
0.4 0.3 250 0.982 0.982 0.153 0.157 0.790 0.790 0.069 0.071

1 0.6 250 0.988 0.989 0.109 0.110 0.794 0.794 0.049 0.049
0.8 0.6 250 0.986 0.988 0.119 0.120 0.793 0.793 0.054 0.054
0.6 0.6 250 0.986 0.985 0.135 0.136 0.792 0.792 0.061 0.061
0.4 0.6 250 0.979 0.979 0.162 0.163 0.789 0.788 0.072 0.073

1 0 500 0.995 0.995 0.077 0.077 0.797 0.797 0.034 0.035
0.8 0 500 0.994 0.994 0.082 0.083 0.797 0.797 0.037 0.037
0.6 0 500 0.992 0.993 0.090 0.092 0.796 0.796 0.040 0.041
0.4 0 500 0.993 0.992 0.106 0.107 0.796 0.795 0.048 0.048

1 0.3 500 0.995 0.995 0.076 0.077 0.797 0.797 0.034 0.035
0.8 0.3 500 0.993 0.994 0.083 0.084 0.797 0.797 0.038 0.038
0.6 0.3 500 0.992 0.993 0.093 0.094 0.796 0.796 0.042 0.042
0.4 0.3 500 0.990 0.991 0.108 0.111 0.795 0.795 0.049 0.050

1 0.6 500 0.994 0.995 0.077 0.077 0.797 0.797 0.034 0.035
0.8 0.6 500 0.993 0.994 0.085 0.085 0.796 0.797 0.038 0.038
0.6 0.6 500 0.991 0.992 0.096 0.096 0.795 0.796 0.043 0.043
0.4 0.6 500 0.990 0.990 0.115 0.115 0.795 0.794 0.051 0.052

1 0 1000 0.997 0.997 0.055 0.055 0.799 0.799 0.025 0.025
0.8 0 1000 0.997 0.997 0.059 0.059 0.799 0.798 0.026 0.026
0.6 0 1000 0.997 0.997 0.065 0.065 0.798 0.798 0.029 0.029
0.4 0 1000 0.995 0.996 0.075 0.075 0.797 0.798 0.034 0.034

1 0.3 1000 0.997 0.997 0.054 0.055 0.798 0.799 0.024 0.025
0.8 0.3 1000 0.996 0.997 0.059 0.059 0.798 0.798 0.026 0.027
0.6 0.3 1000 0.996 0.996 0.066 0.066 0.798 0.798 0.030 0.030
0.4 0.3 1000 0.996 0.995 0.079 0.078 0.798 0.797 0.036 0.035

1 0.6 1000 0.997 0.997 0.054 0.055 0.798 0.799 0.024 0.025
0.8 0.6 1000 0.997 0.997 0.060 0.060 0.798 0.798 0.027 0.027
0.6 0.6 1000 0.997 0.996 0.068 0.068 0.798 0.798 0.031 0.031
0.4 0.6 1000 0.995 0.995 0.081 0.082 0.797 0.797 0.037 0.037
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Table 6: Asymptotic vs. simulated mean and SD of ÎBin and ÎBin
Skew data; time

series of length T is generated by BAR(1) counts with fixed µ = 3, ρ = 0.5
and n = 25.

mean of ÎBin SD of ÎBin mean of ÎBin
Skew SD of ÎBin

Skew

τ r T sim asym sim asym sim asym sim asym

1 0 100 0.975 0.971 0.173 0.179 0.901 0.898 0.103 0.109
0.8 0 100 0.968 0.969 0.185 0.192 0.896 0.896 0.110 0.118
0.6 0 100 0.968 0.965 0.206 0.212 0.895 0.893 0.123 0.130
0.4 0 100 0.955 0.957 0.238 0.247 0.885 0.885 0.142 0.153

1 0.3 100 0.975 0.971 0.174 0.179 0.902 0.898 0.104 0.109
0.8 0.3 100 0.971 0.968 0.190 0.194 0.897 0.896 0.113 0.119
0.6 0.3 100 0.963 0.963 0.209 0.217 0.891 0.891 0.124 0.133
0.4 0.3 100 0.952 0.952 0.252 0.256 0.883 0.882 0.147 0.158

1 0.6 100 0.972 0.971 0.173 0.179 0.900 0.898 0.103 0.109
0.8 0.6 100 0.968 0.967 0.190 0.196 0.896 0.895 0.112 0.120
0.6 0.6 100 0.965 0.959 0.214 0.222 0.892 0.889 0.127 0.136
0.4 0.6 100 0.943 0.944 0.259 0.266 0.877 0.877 0.152 0.164

1 0 250 0.988 0.988 0.112 0.113 0.911 0.911 0.068 0.069
0.8 0 250 0.987 0.988 0.119 0.121 0.910 0.910 0.072 0.074
0.6 0 250 0.986 0.986 0.132 0.134 0.909 0.909 0.080 0.082
0.4 0 250 0.982 0.983 0.153 0.156 0.905 0.906 0.093 0.096

1 0.3 250 0.989 0.988 0.112 0.113 0.912 0.911 0.068 0.069
0.8 0.3 250 0.986 0.987 0.121 0.123 0.909 0.910 0.072 0.075
0.6 0.3 250 0.984 0.985 0.135 0.137 0.908 0.908 0.082 0.084
0.4 0.3 250 0.982 0.981 0.160 0.162 0.905 0.905 0.096 0.100

1 0.6 250 0.988 0.988 0.110 0.113 0.911 0.911 0.067 0.069
0.8 0.6 250 0.987 0.987 0.123 0.124 0.909 0.910 0.074 0.076
0.6 0.6 250 0.982 0.984 0.137 0.140 0.906 0.907 0.083 0.086
0.4 0.6 250 0.979 0.978 0.167 0.168 0.904 0.903 0.100 0.104

1 0 500 0.995 0.994 0.079 0.080 0.916 0.916 0.048 0.049
0.8 0 500 0.995 0.994 0.085 0.086 0.916 0.915 0.052 0.053
0.6 0 500 0.991 0.993 0.093 0.095 0.914 0.915 0.057 0.058
0.4 0 500 0.991 0.991 0.109 0.110 0.913 0.913 0.067 0.068

1 0.3 500 0.994 0.994 0.080 0.080 0.916 0.916 0.048 0.049
0.8 0.3 500 0.991 0.994 0.087 0.087 0.914 0.915 0.053 0.053
0.6 0.3 500 0.993 0.993 0.096 0.097 0.914 0.914 0.059 0.060
0.4 0.3 500 0.990 0.990 0.114 0.114 0.912 0.912 0.069 0.071

1 0.6 500 0.993 0.994 0.080 0.080 0.915 0.916 0.049 0.049
0.8 0.6 500 0.995 0.993 0.089 0.088 0.916 0.915 0.054 0.054
0.6 0.6 500 0.992 0.992 0.099 0.099 0.913 0.914 0.060 0.061
0.4 0.6 500 0.988 0.989 0.117 0.119 0.911 0.911 0.072 0.073

1 0 1000 0.998 0.997 0.057 0.057 0.918 0.918 0.035 0.035
0.8 0 1000 0.997 0.997 0.061 0.061 0.917 0.918 0.037 0.037
0.6 0 1000 0.996 0.996 0.067 0.067 0.916 0.917 0.041 0.041
0.4 0 1000 0.995 0.996 0.078 0.078 0.916 0.917 0.048 0.048

1 0.3 1000 0.997 0.997 0.056 0.057 0.917 0.918 0.034 0.035
0.8 0.3 1000 0.997 0.997 0.061 0.061 0.917 0.918 0.037 0.038
0.6 0.3 1000 0.997 0.996 0.068 0.068 0.918 0.917 0.042 0.042
0.4 0.3 1000 0.995 0.995 0.080 0.081 0.916 0.916 0.049 0.050

1 0.6 1000 0.997 0.997 0.056 0.057 0.918 0.918 0.034 0.035
0.8 0.6 1000 0.998 0.997 0.062 0.062 0.918 0.917 0.038 0.038
0.6 0.6 1000 0.996 0.996 0.071 0.070 0.917 0.917 0.043 0.043
0.4 0.6 1000 0.995 0.994 0.084 0.084 0.916 0.916 0.051 0.052
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A.8 Raw moments
In this section, we present alternative results for the CLT and the Poisson index of
dispersion if we are concerned with raw moments. Therefore, let us consider the
vector (Y t) which is given by

Y t := (Yt,1, . . . , Yt,m)⊤ = (Xt, X
2
t , . . . , X

m
t )⊤. (A.11)

Furthermore, we define the amplitude modulation of (Y t) as (Ot · Y t). Let us
define OY := 1

n

∑n
t=1OtY t. Then, the mean of OY is given by

E[OY ] = 1
n

n∑
t=1

E[Ot]E[Y t] =
(

1
n

n∑
t=1

E[Ot]
)
ν, (A.12)

with ν := (µ, . . . , µm)⊤ = (E[Xt], . . . ,E[Xm
t ])⊤. This implies to estimate ν by

ν̂ :=
1
n

∑n
t=1OtY t

1
n

∑n
t=1Ot

=:
OY

O
. (A.13)

Definition A.7 Let us denote the mixed raw moment as

µk,l(h) := E[Xk
t ·X l

t−h], (A.14)

respectively with 0 ≤ k ≤ l, k, l ∈ N and h ∈ Z. In addition, we declare

(i) µ0,0(h) = 1, (iii) µ0,l(h) = µl,

(ii) µk,0(h) = µk, (iv) µk,l(h) = µl,k(−h).

Note that for h = 0, one can simplify µk,l(0) = µk+l.

A.8.1 Central Limit Theorem

The following proposition can be seen as the analogon to Theorem 3.1.

Proposition A.8 Let Y ∗ = (O,OY
⊤
)⊤, and define the function f : [0, 1] ×

[0,∞)m → [0,∞)m. Then, ν̂ = f(Y ∗), ν = f(ν∗). Thus, the Delta-Method
implies √

T
(
ν̂ − ν

)
d−→ N

(
0,Σ

)
with Σ = (σij)i,j=1,...,m, (A.15)

where

σij =
1
τ(µi+j − µiµj) +

1
τ2

∞∑
h=1

τ(h)
(
µj,i(h) + µi,j(h)− 2µiµj

)
. (A.16)

Here, the bias satisfies E[ν̂ − ν] = 0 + O(T−1).

51



Proof: For the raw moments, the CLT is derived analogously to the case of the
factorial moments. Hence, let us define the vector (Y ∗

t ) as

Y ∗
t := (Y ∗

t,0, . . . , Y
∗
t,m)⊤ = Ot(1, Xt, X

2
t ; . . . , X

m
t )⊤. (A.17)

For the mean of (Y ∗
t ), we obtain

ν∗ := E[Y ∗
t ] = τ(1,ν⊤)⊤. (A.18)

Now, we assume that appropriate mixing assumptions on (Xt) and (Ot) hold
according to (A), i. e., α-mixing with exponentially decreasing weights, which
then hand over to (Y ∗

t ). Then, we have the CLT

√
T
(
Y ∗ − ν∗

)
d−→ N

(
0,Σ∗

)
with Σ∗ = (σ∗

ij)i,j=0,...,m, (A.19)

where

σ∗
ij = CoV [Y ∗

0,i, Y
∗
0,j ] +

∞∑
h=1

(
CoV [Y ∗

0,i, Y
∗
h,j ] + CoV [Y ∗

h,i, Y
∗
0,j ]
)
. (A.20)

These covariances compute as

σ∗
ij =


τ(1− τ) + 2

∑∞
h=1 γO(h) if i = j = 0,

σ∗
00µj if i = 0, j > 0,

τ(µi+j − µiµj) + σ∗
00µiµj if i, j > 0.

+
∑∞

h=1 τ(h)
(
µj,i(h) + µi,j(h)− 2µiµj

)
(A.21)

Here, Y ∗ = (O,OY
⊤
)⊤ are the required components for the calculation

of ν̂. The derivations of the covariances follow the same steps as for the
factorial moments. Thus, we use the same function f as defined in Section
A.1. Then, ν̂ = f(Y ∗), ν = f(ν∗), and the Jacobian of f evaluated in ν∗

equals

D =
1

τ


−µ 1 0 · · · 0

−µ2 0 1
. . .

...
...

...
. . . . . . 0

−µm 0 · · · 0 1

 .

So the linear Taylor approximation ν̂ ≈ ν +D(Y ∗ − ν∗) together with the
CLT implies

√
T
(
ν̂ − ν

)
d−→ N

(
0,Σ

)
with Σ = DΣ∗D⊤.
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We can compute the entries (σij)i,j=1,...,m as

σij =
m∑

k,l=0

dikdjlσ
∗
kl = di0dj0σ

∗
00 + di0djjσ

∗
0j + diidj0σ

∗
i0 + diidjjσ

∗
ij

= 1
τ2

(
µiµjσ

∗
00 − µiσ

∗
0j − µjσ

∗
i0 + σ∗

ij

)
= 1

τ2

(
σ∗
ij − µiµjσ

∗
00

)
= 1

τ(µi+j − µiµj) +
1
τ2

∞∑
h=1

τ(h)
(
µj,i(h) + µi,j(h)− 2µiµj

)
,

where in the last step, we utilized that σ∗
0j = σ∗

00 · µj . Analogously to the
factorial moments, the bias for the raw moments is also negligible for prac-
tice. This is due to the quadratic Taylor approximation and follows the same
steps as for the factorial moments. ■

A.8.2 Poisson Index of Dispersion

Similarly to Section 4, we start from (A.15) and define a function g by

g(x1, x2) =
x2
x1

− x1.

Since the difference between g and the function chosen in Section 4 is only a
constant 1, the partial derivatives coincide. Therefore, we get the Jacobian D and
the Hessian H by evaluating the partial derivatives in ν, which leads to

D =
(
− µ2

µ2
− 1,

1

µ

)
, H =

1

µ3

(
2µ2 −µ

−µ 0

)
.

Hence, the asymptotic variance and bias of ÎPoi is

σ2
ÎPoi =

1
T

(
d21σ11 + d22σ22 + 2d1d2σ12

)
, (A.22)

BÎPoi =
1
T

(
1
2h11σ11 + h12σ12

)
. (A.23)

Proposition A.9 The asymptotic variance of ÎPoi for any Poisson model is given
by

σ2
ÎPoi =

1
Tτ

[(µ2

µ2 + 1
)2
(µ2 − µ2)− 2

µ

(µ2

µ2 + 1
)
(µ3 − µµ2) +

1
µ2 (µ4 − µ2

2)

+ 2
τ

∞∑
h=1

τ(h)
((µ2

µ2 + 1
)2(

µ1,1(h)− µ2
)
+ 1

µ2

(
µ2,2(h)− µ2

2

)

− 1
µ

(µ2

µ2 + 1
)(
µ2,1(h) + µ1,2(h)− 2µµ2

))]
.
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Proof: Let us start by applying (A.16) to (A.22). Then, we get

σ2
ÎPoi =

1
T

[(
− µ2

µ2 − 1
)2(1

τ(µ2 − µ2) + 2
τ2

∞∑
h=1

τ(h)
(
µ1,1(h)− µ2

))

+ 2
µ

(
− µ2

µ2 − 1
)(

1
τ(µ3 − µµ2) +

1
τ2

∞∑
h=1

τ(h)
(
µ2,1(h) + µ1,2(h)− 2µµ2

))

+ 1
µ2

(
1
τ(µ4 − µ2

2) +
2
τ2

∞∑
h=1

τ(h)
(
µ2,2(h)− µ2

2

))]

= 1
Tτ

[(µ2

µ2 + 1
)2
(µ2 − µ2)− 2

µ

(µ2

µ2 + 1
)
(µ3 − µµ2) +

1
µ2 (µ4 − µ2

2)

+ 2
τ

∞∑
h=1

τ(h)
((µ2

µ2 + 1
)2(

µ1,1(h)− µ2
)
+ 1

µ2

(
µ2,2(h)− µ2

2

)

− 1
µ

(µ2

µ2 + 1
)(
µ2,1(h) + µ1,2(h)− 2µµ2

))]
.

■

Proposition A.10 The asymptotic bias of ÎPoi for any Poisson model is given by

BÎPoi =
1

Tτµ3

[
µ2
2 − µ3µ+ 2

τ

∞∑
h=1

τ(h)
(
µ2µ1,1(h)− µ

2

(
µ2,1(h) + µ1,2(h)

))]
.

Proof: The asymptotic bias becomes

BÎPoi =
1
T

(
1
2h11σ11 + h12σ12

)
= 1

T

[
µ2

µ3

(
1
τ(µ2 − µ2) + 2

τ2

∞∑
h=1

τ(h)
(
µ1,1(h)− µ2

))

− 1
µ2

(
1
τ(µ3 − µµ2) +

1
τ2

∞∑
h=1

τ(h)
(
µ2,1(h) + µ1,2(h)− 2µµ2

))]

= 1
Tτµ2

[
µ2

µ (µ2 − µ2)− (µ3 − µµ2)

+ 1
τ

∞∑
h=1

τ(h)
(
2µ2

µ

(
µ1,1(h)− µ2

)
−
(
µ2,1(h) + µ1,2(h)− 2µµ2

))]
.
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Further simplification leads to

BÎPoi =
1

Tτµ3

[
µ2
2 − µ3µ+ 2

τ

∞∑
h=1

τ(h)
(
µ2 · µ1,1(h)− µ

2

(
µ2,1(h) + µ1,2(h)

))]
.

■
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