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The scaling of local quantum entropies is of utmost interest for characterizing quantum fields,
many-body systems, and gravity. Despite their importance, theoretically and experimentally accessing
quantum entropies is challenging as they are nonlinear functionals of the underlying quantum state.
Here, we show that suitably chosen classical entropies capture the very same features as their quantum
analogs for an experimentally relevant setting. We describe the post-quench dynamics of a multi-well
spin-1 Bose-Einstein condensate from an initial product state via measurement distributions of spin
observables and estimate the corresponding entropies using the asymptotically unbiased k-nearest
neighbor method. We observe the dynamical build-up of quantum correlations signaled by an
area law, as well as local thermalization revealed by a transition to a volume law, both in regimes
characterized by non-Gaussian distributions. We emphasize that all relevant features can be observed
at small sample numbers without assuming a specific functional form of the distributions, rendering
our method directly applicable to a large variety of models and experimental platforms.

Introduction — The quantum entropy of a spatial subre-
gion has proven to serve as a ubiquitous tool for studying
the spatio-temporal structure of entanglement [1] and
its role in various quantum phenomena, including local
thermalization [2–5], quantum phase transitions [6], infor-
mation scrambling [7–9] and black hole physics [10–13].
Arguably the most sought-after phenomenon in this con-
text is the area law, which is signaled by a logarithmic
growth of the local entropy for one-dimensional systems
[14–22]. It appears at short times after quenching the
couplings of a locally interacting system, that was ini-
tially prepared in a product state – a scenario that can
be readily realized experimentally [22]. At later times
the system typically thermalizes and the local entropy
instead obeys a volume law, allowing for a macroscopic
description using only a few thermodynamic quantities
like temperature.

The main drawback of quantum entropic descriptions
for many-body phenomena is their reliance on the knowl-
edge of the full density matrix, which grows exponentially
with the number of microscopic constituents. This has
so far restricted the experimental access of quantum en-
tropies to systems consisting of a few particles [23–25], as
full tomography of the quantum state is, with no further
assumptions, infeasible for larger systems approaching
mesoscopic scales. For continuous systems, area laws
have only been experimentally reported in a Gaussian
scenario [26], while generally applicable methods have
remained elusive.

Recently, the necessity of considering exclusively quan-
tum entropies to probe quantum phenomena has been
questioned. Suitably chosen classical entropies of (quasi-)
probability distributions also encode area and volume
laws [27]. This insight naturally overcomes the need for
reconstructing the full quantum state – both for theoreti-

cal and experimental investigations. Thus the observation
of entropic scaling behavior becomes accessible for exper-
imental platforms, which can directly sample from such
distributions, see for example [28–36].

Here we show that area and volume laws are observ-
able in state-of-the-art experiments with multi-well spin-1
Bose-Einstein condensates (BECs) [37, 38] by considering
entropies of measurement distributions over spin observ-
ables. Starting from an initial product state, we find
area laws being dynamically generated for intermediate
evolution times following a quench, thereby confirming
the growth of entanglement until the system thermal-
izes locally, where the same entropies exhibit volume law
behavior. Importantly, we do so without making assump-
tions about the functional form of the state and only rely
on observables that are directly obtainable in standard
experimental readouts [26, 31, 34–36], while reducing the
sample complexity to a feasible level. We comprehensively
discuss our method, including systematic checks for its
validity and generality, in [39].

Notation — We use natural units ℏ = kB = 1, write
bold (normal) letters for quantum operators O (classical
variables O) as well as their traces and equip vacuum
expressions with a overbar, e.g. ρ̄.

Multi-Well Spin-1 BEC — We consider a one-
dimensional lattice of spin-1 BECs that extends over 20
wells, described by bosonic mode operators [aj

mF
,aj′†

m′
F
] =

δjj
′
δmFm′

F
with j ∈ {1, ..., N} and mF ∈ {0,±1}. Start-

ing from an initial product state with all zero modes
(mF = 0) being occupied coherently with a mean number
of n = 103 atoms, we consider the evolution under the
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Figure 1. a) Illustration of relevant processes. The ±1 modes of a spin-1 BEC are coupled to the 0 mode by spin-changing
collisions with strength c1 < 0 (red) and detuned by the quadratic Zeeman-shift q > 0 (green). The atoms in the ±1 modes may
hop to neighboring wells with strength J > 0 (blue). b) The full system consists of 20 wells, from which we exclusively analyze
the five wells 8− 12. We partition this subsystem into a left part A (blue) and a right part B (red) and study the scalings of
information and correlation measures with A’s system size M . c) Samples of the Wigner W -distribution of the left-most well
in subsystem A at time t = 4. The entropy is estimated from samples using the kNN-estimator by analyzing the distribution
of distances to the k-th. neighbor for each sample, see magnified inset. Non-Gaussian features arise for higher-dimensional
multi-well distributions, as measured by the relative entropy, see [40].

Hamiltonian

H =

20∑

j=1

q
(
N j

1 +N j
−1

)
+ c0 N

j
(
N j − 1

)

+ c1

[ (
N j

0 − (1/2)1
)(

N j
1 +N j

−1

)

+ aj†
0 aj†

0 aj
1a

j
−1 + aj†

1 aj†
−1a

j
0a

j
0

]

− J
19∑

j=1

∑

mF=±1

(
aj†
mF

aj+1
mF

+ a(j+1)†
mF

aj
mF

)
,

(1)

featuring dynamics within single wells (first sum) as well
as correlation build-up among wells (second sum), see
Figure 1 a).

For early times, the zero mode is occupied macroscop-
ically and the evolution is dominated by second-order
fluctuations, such that (1) is well-approximated by an
analytically solvable Gaussian model, which follows from
treating the zero mode classically and dropping density-
density interactions (see [39] for details)

Hup,Gauss =
20∑

j=1

[
q̃N j +

c̃1
2

(
ajaj + aj†aj†)

]

− J
19∑

j=1

(
aj†aj+1 + a(j+1)†aj

)
.

(2)

Here, we introduced the relative mode operators aj =
(aj

1 + aj
−1)/

√
2 as well as the rescaled couplings c̃1 = c1n

and q̃ = c1
(
n− 1

2

)
+ q.

Beyond this regime, the high occupation justifies em-
ploying semi-classical approaches such as the truncated
Wigner approximation (TWA), in which the mode oper-
ators are demoted to c-numbers that obey an evolution

dictated by classical mean field equations [41, 42]. The
resulting model correctly captures the quantum fluctu-
ations of the initial state, while neglecting higher-order
corrections in ℏ for its evolution.

Measurement distributions — We analyze the informa-
tion content of a subsystem of five wells (see Figure 1
b)) in terms of measurement distributions using phase-
space methods. We focus on the two normalized spin-1
observables [37, 38]

ϕj ≡ Sj
x√
2n

=
1√
2

[
aj†
0

(
aj
1 + aj

−1

)
+ h.c.

]
/
√
2n,

πj ≡ −Qj
yz√
2n

=
−i√
2

[
aj†
0

(
aj
1 + aj

−1

)
− h.c.

]
/
√
2n,

(3)

which form a set of pairwise canonically conjugate opera-
tors [ϕj ,πj′ ] = iδjj

′
1 with corresponding bosonic mode

operators aj ,aj† in the early-time regime [39]. Their
Wigner W -distribution is defined via [43]

Wj ≡ Wj(ϕj , πj)

=

∫
dϕ̃j dπ̃j

2π
e−i(ϕj ,πj)Ω(ϕ̃j ,π̃j)T

× Tr
{
ρj ei(ϕ

j ,πj)Ω(ϕ̃j ,π̃j)T
}
,

(4)

with the symplectic form Ω = iσ2 and σ2 being the sec-
ond Pauli matrix. As Wj is only accessible through
costly Wigner tomography [44, 45], it is mainly of
theoretical interest. Let us therefore also introduce
more experimentally convenient distributions, namely
the Wigner marginals f j ≡ f j(ϕj) =

∫
dπjWj and

gj ≡ gj(πj) =
∫
dϕjWj , accessible through homodyne

measurements [28], as well as the Husimi Q-distribution,
which is obtained by projecting onto the coherent states
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|αj⟩ = exp (αjaj† − αj∗aj) |0j⟩ [31, 34–36, 46], with
αj = (ϕj + iπj)/

√
2, leading to [47, 48]

Qj ≡ Qj(ϕj , πj) = Tr
{
ρj |αj⟩ ⟨αj |

}
. (5)

Information and correlations from classical distribu-
tions — To analyze the local information content of the
subsystem, we consider differential entropies of the classi-
cal distributions OA with respect to its left part A (see
Figure 1 b))

S(OA) = −
∫

dνA OA lnOA, (6)

where the integral measure dνA depends on the distri-
bution under scrutiny [49]. We note that (6) is always
well-defined for the non-negative marginal and Husimi
Q-distributions, but is restricted to Wigner-positive states
when applied to WA, which is an assumption implicitly
made when working within TWA or Gaussian models.

Being measures of disorder, classical entropies over in-
compatible observables are bounded from below by their
vacuum values via entropic uncertainty relations [50–55]
(see [56, 57] for reviews). When considered for quantum
many-body systems, these bounds scale with the num-
ber of modes, i.e. S(ŌA) ∼ M , showing that classical
entropies are extensive to leading order as a result of
vacuum contributions [58, 59]. However, as shown in [27],
scalings induced by quantum phenomena, such as the
area law, manifest themselves in the next-to-leading order
terms. Thus, we define the so-called subtracted classical
entropies as [27]

∆S(OA) ≡ S(OA)− S(ŌA), (7)

with the extensive vacuum contribution S(ŌA) ∼ M
being subtracted [60].

Let us further consider the classical version of the
archetypical measure for correlations between the left
and right parts of the subsystem, that is, the classical
mutual information

I(OA : OB) = S(OA) + S(OB)− S(O). (8)

Being already defined via a relative entropic measure,
no vacuum contributions have to be subtracted to reveal
quantum features.

Connections to quantum information theory — In the
context of the Gaussian model (2), the connection be-
tween subtracted classical and quantum entropies be-
comes a simple equality: in this case, we can establish
∆S(WA) = S2(ρ

A), where S2(ρ
A) denotes the Rényi-

2 entropy of the density matrix associated to WA [61].
Beyond Gaussianity, such simple relations can only be
established for the subtracted Rényi-2 entropy of WA [62].
However, in the following, we provide strong evidence that
the scaling of the subtracted classical entropies (7) also
extends to the non-Gaussian interacting case.

Furthermore, a connection to the quantum mutual in-
formation in the case of Gaussian states is straightforward
and reads I(WA : WB) = I2(ρ

A : ρB) [61]. More gener-
ally, classical mutual informations constitute lower bounds
to their quantum analogs by the uncertainty principle, i.e.
[54, 63]

I(OA : OB) ≤ I(ρA : ρB), (9)

which are expected to be tighter than second-moment
bounds beyond Gaussian states [64]. An immediate con-
sequence of (9) is that the standard argument for the
appearance of the area law for local interactions and
thermal states presented in [65] applies also to any clas-
sical mutual information [27]. Hence, classical mutual
information, albeit typically not capturing all quantum
correlations, shows the finite-size area law whenever its
quantum analog does.

Methods — We generate 104 synthetic samples for the
three distributions of our interest using TWA to simulate
an experiment showcasing the feasibility of the proposed
approach. In contrast to the estimation of low-order
moments, extracting entropic quantities from a set of
samples is more involved, since they are functionals of
the underlying distributions. Given a set of samples, we
employ the established k-nearest neighbor (kNN) method
devised in [66–68] using information about the statistics
of the nearest neighbors of each sample (see Figure 1 c)),
to arrive at an estimate of its local density. These results
are validated against the analytically solvable model (2)
in the early-time regime. We give a more comprehensive
validation of the kNN-estimator for our setup in [39].
Further, we define an energy scale by setting nc1 = −1,
consider Lithium-7 with c0 = −2c1 and set the quench
parameters to q = 4, J = 2, for which non-Gaussian
features arise around t = 3.

While the total system undergoes a unitary evolution
dictated by the Hamiltonian in Eq. (1), the considered
subsystem does not, as its entanglement with the rest of
the system implies a mixed reduced density matrix [69].
In the following, we demonstrate the area law and local
thermalization for the theoretically interesting, but exper-
imentally difficult to access subtracted Wigner entropy,
as well as for the experimentally amenable subtracted
marginal entropy sum ∆S(fA) + ∆S(gA), and the so-
called Wehrl mutual information I(QA : QB) (additional
quantities are discussed in [40]).

Area law — We first study the early-time regime, that
is, t ≤ 4, in the upper row of Figure 2. At t = 0, the
subsystem is in a pure product state, and all entropic
measures evaluate to zero. Around t = 1, correlations
among the wells start to build up, causing subsystem A to
become entangled with its complement B. In this regime,
subtracted classical entropies obey the area law, i.e. a
logarithmic growth with system size M ,

∆S(OA) = κ1 ln (M + κ2) + κ3, (10)
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Figure 2. Analysis regarding the presence of area and volume laws at early times t = 0, 1, 2, 3, 4 (upper row) and late times
t = 4, 5, 6, 7, 8 (lower row), respectively. Open (closed) plot markers denote TWA (analytic) results and the corresponding solid
(dashed) curves are fits. In the early-time regime, we observe the subtracted classical entropies to fulfill a logarithmic growth
with subsystem size in the sense of (10) (see [40] for the standard Wigner entropy). Their sublinear scaling is highlighted for
t = 4 by straight lines (gray dotted), which are fitted to the first two data points. In accordance, we also find the finite-size area
law (11) for the Wehrl mutual information. These findings hold true for both the TWA and the analytical approach, which
agree in the Gaussian regime, i.e. up to t = 3 [40], thereby also validating the kNN estimator. For later times, the area law of
the subtracted classical entropies tends into a stationary volume law (12), thereby demonstrating local thermalization. After
the stationary point t = 7, the local temperature can be extracted via their inclines, which consistently yields T ≈ 5. The
appearance of local thermalization is further supported by the decreasing correlations between A and B towards zero as revealed
by the evolution of the Wehrl mutual information.

just as one would expect for the entanglement entropy [14–
22]. The fit parameters κi are constrained by κ2 = e−κ3/κ1

to ensure ∆S(OA) = 0 when M = 0. Around t = 3,
the distributions begin to exhibit non-Gaussian features,
which we quantify by the relative entropy with respect to
the closest Gaussian distribution, see [40].

Similarly, the Wehrl mutual information signals the
generation of correlations between A and B in terms of
the finite-size area law [14]

I(OA : OB) = κ1 ln

[
5

π
sin

(
πM

5

)
+ κ2

]
+ κ3, (11)

which incorporates the reflection symmetry around M =
2.5. Again, the behavior coincides with what is expected
for the quantum mutual information [65], with maximal
correlations occurring at t = 4.

Local thermalization — For later times, i.e. in the
regime t ≥ 4 (lower row of Figure 2), the subtracted
classical entropies transition from an intermediate stage
around t = 5 to an extensive growth with system size
at t = 7. The latter remains stationary beyond t = 7,
signaling that the system has thermalized locally in the
considered degrees of freedom, with the remaining system
serving as a heat bath. In this case, all entropies of our

interest obey the volume law [3]

∆S(OA) = βM, (12)

where β = 1/T denotes the inverse local temperature.
Indeed, both final entropic curves show an incline of
T ≈ 5, illustrating how the local temperature can be
extracted from classical entropies by simple means. We
have checked that this temperature depends only weakly
on the quench parameters, as the dominating energy scale
is set by the fourth-order term proportional to c0 in (1).

While the classical entropies become extensive, the
Wehrl mutual information still obeys the finite-size area
law (11) for later times, which also highlights its robust-
ness against thermal fluctuations. In contrast to the early-
time dynamics, the correlations between A and B now
decline monotonically towards local thermal equilibrium.

Discussion — We have demonstrated that quantum
many-body phenomena can be probed with classical en-
tropies by considering a concrete model system that can
be readily realized experimentally. Specifically, we have
shown that it is possible to observe the area law, that is,
the characteristic logarithmic growth of the entanglement
entropy, and the volume law, which indicates local ther-
malization, via subtracted classical entropies and mutual
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informations of experimentally accessible measurement
distributions. Crucially, we have not assumed the state
to obey a specific functional form and only relied on 104

samples which we deem experimentally feasible. Future
work will address what other parallels between classi-
cal entropies and quantum entropies exist, especially for
other degrees of freedom, and whether they also lend
themselves as easily to experimental implementations as
in the discussed work.
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Supplementary material

I. CLASSICAL WIGNER ENTROPY

We illustrate the extensive growth of standard classical
entropies by plotting the full classical Wigner entropy, i.e.
without subtracting the vacuum contribution, in Figure 1.
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Figure 1. Time evolution of the full Wigner entropy S(WA)
for which the leading-order volume law is apparent for all
times. The area law is barely visible on top of the extensive
growth in the early-time regime, i.e. for 0 < t ≤ 4. Note that
at t = 0 we have S(WA) = S(W̄A) = M(1 + lnπ) ≈ 2.144M .

II. NON-GAUSSIANITY

We consider a Gaussian model distribution

WA,Gauss =
1

ZA
e−

1
2 (χ

A)T (γA)−1χA

, (1)

where χA = (ϕA, πA)T is a vector in phase space,
(γA)jj

′
= Tr{ρA{χj−χj ,χj′−χj′}}/2 denotes the covari-

ance matrix and ZA = (2π)M
√

det γA is a normalization
constant. To assess the non-Gaussianity of a given dis-
tribution WA, we introduce the Wigner relative entropy
with respect to the nearest Gaussian, i.e. the distribution
with the same first- and second-order moments [1, 2]

S(WA∥WA,Gauss) =

∫
dνA WA ln

WA

WA,Gauss . (2)

Then, WA is (non-)Gaussian if and only if
S(WA∥WA,Gauss)(>) = 0. The non-negativity of
the Wigner relative entropy translates into a Gaussian
upper bound on the subtracted Wigner entropy, i.e.
∆S(WA) ≤ ∆S(WA,Gauss), showing that resolving
non-Gaussian features decreases the missing informa-
tion about the underlying distribution. In this sense,
S(WA∥WA,Gauss) measures the additional information
encoded in WA with respect to WA,Gauss.

To calculate the Wigner relative entropy (2) without
reconstructing any distribution, we use (1) and perform
a few straightforward simplifications, leading to

S(WA∥WA,Gauss) = ∆S(WA,Gauss)−∆S(WA). (3)

While ∆S(WA) is estimated using the kNN method, the
subtracted Wigner entropy of the nearest Gaussian distri-
bution is computed via

∆S(WA,Gauss) =
1

2
ln det

(
2γA

)
, (4)

such that only the covariance matrix has to be extracted
from the TWA samples. We show the resulting relative
entropy curves in Figure 2 for all times discussed in the
main text.
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Figure 2. Time evolution of the non-Gaussianity measure
S(WA∥WA,Gauss). Single-well distributions look rather Gaus-
sian, while non-Gaussian features become apparent for larger
subsystems. The non-Gaussianity is negligible for early times
and peaks around t ≈ 5, for which the relative information
difference is ∼ 8%. We checked negative values at M = 5 for
early times are caused by an insufficient number of samples,
see [3] for details.

III. MODE OCCUPATIONS FOR LATE TIMES

A priori, it is unclear whether TWA gives meaningful
results in the late-time limit where local thermalization
occurs. As a semi-classical approximation, TWA is ex-
pected to hold whenever the momentum modes are occu-
pied mesoscopically, that is, filled up to at least roughly
one order of magnitude above the quantum one-half [4–7].
In Figure 3, we confirm that this condition is fulfilled for
late times by plotting the momentum-mode occupations
nmF

(k) = ⟨ak†mF
akmF

⟩ for the zero mode (left panel), the
side modes (middle panel) and their sum (right panel).
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Figure 3. Dynamics of the momentum-mode occupations for the zero mode (left), the side modes (middle) and their sum (right).
The atom number n = 2× 104 and the quantum one-half (three-half) are depicted by dotted and dashed lines, respectively.
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Figure 4. Same analysis as in Fig. 2 in the main text for the subtracted Wehrl entropy (left column), the Wigner mutual
information (middle column) and the marginal mutual information sum (right column). All observed quantum features carry
over to these three quantities as well. The local temperature T ≈ 5 is also observed for the subtracted Wehrl entropy. Note here
that the latter is based on the differently normalized Husimi Q-distribution, which we accounted for by subtracting M ln 2.

IV. OTHER CLASSICAL
INFORMATION-THEORETIC MEASURES

In analogy to Figure 2 in the main text, we show
the dynamics of the subtracted Wehrl entropy ∆S(QA),

the Wigner mutual information I(WA : WB) and the
marginal mutual information sum I(fA : fB)+I(gA : gB)
in Figure 4. All quantities behave as expected.
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