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We investigate the information extractable from measurement distributions of two non-commuting
spin observables in a multi-well spin-1 Bose-Einstein condensate. We provide a variety of analytic
and numerical evidence that suitably chosen classical entropies and classical mutual informations
thereof contain the typical feature of quantum entropies known in quantum field theories, that is,
the area law, even in the non-Gaussian regime and for a non-zero temperature. Towards a feasible
experimental implementation, we estimate entropic quantities from a finite number of samples without
any additional assumptions on the underlying quantum state using k-nearest neighbor estimators.

I. INTRODUCTION

The scaling of entropic measures associated with the
quantum state of a spatial subregion is one of the central
characteristics describing how quantum information and
entanglement are encoded in spacetime. Originally dis-
covered by Bekenstein in the context of black hole physics
[1, 2] (see also [3–6]), the entropy of a subregion is, to
leading order, proportional to the area of its enclosing
surface – rather than the subregion’s volume – which is
conveniently referred to as the area law. Over the last
two decades, much theoretical evidence has been gathered
for its appearance in various contexts, including, for in-
stance, quantum field theory [7–12], quantum many-body
systems [13–15], tensor networks [16] and thermalization
[17]. Also, it has been shown to occur for measures of
correlations between the subregion of interest and its
complement, e.g. the quantum mutual information [18].

Considerably less evidence is available on the experi-
mental side, which can be traced back to the notoriously
difficult task of extracting the local quantum state, i.e.
performing full quantum state tomography. So far, the
area law has been observed only for a handful of degrees
of freedom for which entropic measures can be reduced to
direct observables. This includes, for example, a study of
a few-site Bose-Hubbard system where the Rényi-2 quan-
tum entropy is read out via two-copy interference [19, 20]
and a trapped ion quantum simulator of ten qubits [21],
in which the same quantity was extracted using random
measurements [22].

The task of accessing the quantum state is even more
challenging for continuous quantum many-body systems,
which are in principle described by quantum fields over
continuous positions as well as infinite-dimensional local
Hilbert spaces. A recent ultracold atom experiment re-
ported an area law for the quantum mutual information
under the assumption that the underlying quantum state
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is of Gaussian form, in which case measurements of two-
point correlation functions suffice to calculate entropic
quantities [23]. Nevertheless, studies beyond the Gaussian
case have remained elusive so far.

What all aforementioned approaches, theoretical as well
as experimental, have in common, is their reliance on a
quantum entropy as an indicator for the area law-like
behavior of quantum correlations. However, it has been
shown recently that the appearance of the area law is by
no means restricted to such quantum entropies: when
considering phase-space representations and measurement
distributions of the quantum state instead, their corre-
sponding classical entropies reveal the area law in the
next-to-leading order terms, i.e. when classical contribu-
tions are subtracted properly [24].

Prominent examples of such distributions are the
Wigner W -distribution [25], its marginals and the Husimi
Q-distribution [26, 27] (see [28–30] for reviews on phase-
space methods). Especially the latter is of particular
interest as it is a non-negative and normalized function
in phase space, which allows for well-defined entropic de-
scriptions [31–36]. Further, its usefulness for witnessing
entanglement has already been demonstrated theoreti-
cally in terms of entropic measures [37–39] as well as
experimentally [40, 41].

Although all phase-space distributions contain the very
same information as the density operator, estimating their
associated classical differential entropies is a significantly
simpler task than reconstructing the full many-body quan-
tum state and computing its quantum entropy. The out-
come of an experiment can be thought of as a sample
drawn from a given distribution (usually the marginals
of the Wigner W - or the full Husimi Q-distribution are
considered), see e.g. [40–48]. In principle, one could then
attempt to infer the corresponding distribution from these
samples, which is equivalent to state tomography when
considering a full phase-space distribution, and calculate
its entropy thereafter. However, the need for reconstruct-
ing the underlying distribution can be bypassed by em-
ploying sophisticated methods to estimate the entropy
from the sampled data directly. In this context, a widely-
used approach is the k-nearest neighbor (kNN) method,
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which produces an asymptotically unbiased estimate for
the entropy without any assumptions on the underlying
distribution [49–63].

In this work, we consider an experimentally friendly
scenario in which the build-up of an area law over time
is expected: the post-quench dynamics of a multi-well
spin-1 Bose-Einstein condensate (BEC). In what follows,
we simulate the dynamics using the truncated Wigner
approximation (TWA) and employ the kNN method to
estimate subtracted classical entropies as well as classical
mutual informations of phase-space distributions from
sampled data. We provide detailed numerical evidence for
the appearance of the area law for classical entropies in a
variety of scenarios, including, for instance, non-Gaussian
states and varying system sizes, and under typical experi-
mental constraints, e.g., thermal fluctuations and finite
sample size. Our simulation results are supported by
an analytical model covering the early-time dynamics,
which allows for a straightforward evaluation of all en-
tropic quantities. With our findings, we pave the ground
for an experimental observation of the area law in a con-
tinuous quantum many-body system without any prior
assumptions on the underlying quantum state.

The present work describes a detailed description of
how the area law can be accessed from classical entropies,
both from a theoretical and a practical perspective. In
the accompanying manuscript [64], we provide a concise
summary of our findings and additionally discuss the
process of local thermalization in terms of such entropies.

The remainder of this paper is organized as follows. In
section II, we introduce the model system of our interest –
a spin-1 Bose-Einstein condensate in the multi-well setup
– with a special focus on the Hamiltonian and the spin
observables. We proceed with mapping this system to a
continuous-variable quantum system described by canoni-
cal commutation relations using the so-called undepleted
pump approximation in section III. Therein, we also put
forward phase-space representations of quantum states
and show how these are related to the measurement dis-
tributions of the spin observables. The two approaches
for simulating the dynamics, i.e. the truncated Wigner
approximation for the full Hamiltonian and an approxi-
mate, analytically solvable model valid for early times are
discussed in section IV. For the latter, we employ meth-
ods from Gaussian quantum information theory, which we
describe in detail. Thereupon, in section V, we introduce
the necessary background on the area law of quantum
and classical entropies in phase space. Then, we describe
the kNN machinery for estimating entropies from sam-
pled data and benchmark the method for several cases
relevant for its application to the system of our interest
in section VI. Finally, we provide our main results in
section VII. After a comparison of the analytical model
with the TWA approach (section VIIA) we show plenty
of evidence for the emergence of the area law over time
for a variety of classical entropies (section VII B), which
is followed by systematic studies of its robustness. More
precisely, we consider strongly non-Gaussian distributions

(section VIIC), a thermal initial state (section VIID),
boundary effects (section VII E), varying system size (sec-
tion VII F), varying sample size (section VIIG) and dif-
ferent types of boundary conditions (section VIIH). A
comprehensive discussion of our results and some future
prospects are given in section VIII.

Notation. We employ natural units ℏ = kB = 1, denote
quantum operators by bold letters, e.g. ϕ, and classical
variables by normal letters, e.g. ϕ, (similarly for opera-
tions on operators / matrices, e.g. Tr{ρ} / det{γ}) and
equip vacuum expressions with a bar, e.g. Q̄. Further,
we use upper indices to refer to a specific well, e.g. Qj

for the j-th well, or to a subsystem of a bipartition AB,
e.g. QA, and put lower indices for the hyperfine levels,
e.g. a0, or relative modes, e.g. a±.

II. MULTI-WELL SPIN-1 BEC

We begin with a discussion of the multi-well setup
of coupled spin-1 Bose-Einstein condensates. Then, we
introduce the Hamiltonian governing the corresponding
dynamics and the typical observables in such systems.

A. Setup

We consider an experimental setup consisting of a spin-1
BEC with ferromagnetic spin coupling, based on Lithium-
7 [65, 66]. We assume the condensate’s geometry to be
quasi one-dimensional, realizable via tight confinement
along the radial direction, which can be implemented
experimentally by ensuring that the radial trapping fre-
quency is much larger than the longitudinal one, i.e.
ωr ≫ ωl. In the longitudinal direction, the BEC is further
subjected to an optical lattice potential, which divides
the overall BEC into N smaller-size BECs, which we refer
to as wells. The depth of the optical lattice controls the
potential barrier between neighboring wells. When tuned
to sufficiently small energies, atoms can tunnel between
neighboring wells, which establishes a nearest-neighbor in-
teraction between the local degrees of freedom. This setup
constitutes a discretized approximation to a continuous
quantum field, see section IVB 4.

The internal degrees of freedom encoding the spin-
1 system are the three Zeeman levels mF = 0,±1 of
the F = 1 hyperfine manifold of the electronic ground
state. Initially, we consider all atoms to be prepared in
the mF = 0 mode. Thereafter, spin-changing collisions
triggered by off-resonant microwave dressing lead to the
side modes being dynamically populated [65, 67, 68]. As
this process is symmetric with respect to the side modes,
the linear Zeeman shift cancels for all populated states
and hence only the quadratic Zeeman shift is relevant for
the dynamics.

We consider tunneling to only take place in the side
modes and not in the initially macroscopically populated
zero mode, such that information exchange between wells
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through tunneling only takes place after the generation
of side-mode population. Experimentally, this can be
achieved, for example, by working in a state-dependent
lattice, such that the side modes are trapped more weakly
than the zero mode. Another possibility is to tune the
spin-changing collisions into resonance with excited states
of the side modes and work in a deep optical lattice, such
that atoms transferred to the side modes acquire enough
kinetic energy to tunnel to neighboring sites of the deep
optical lattice, whereas the kinetic energy of atoms in the
zero mode remains insufficient for tunneling.

B. Modes and Hilbert space

We are interested in the dynamics of the internal degrees
of freedom characterized by the three hyperfine levels
mF ∈ {−1, 0, 1}. To each hyperfine level mF and well j
we associate a set of bosonic creation and annihilation
operators [

aj
mF

,aj′†
m′

F

]
= δjj

′
δmFm′

F
, (1)

where the upper index labels the N ∈ N <∞ wells such
that j ∈ {1, ..., N}. For a single well j the underlying
Hilbert space Hj is a Fock space constructed from multi-
particle states

|nj1, n
j
0, n

j
−1⟩ ≡

(aj†
1 )n

j
1(aj†

0 )n
j
0(aj†

−1)
nj
−1√

nj1!n
j
0!n

j
−1!

|0, 0, 0⟩ , (2)

with the tensor product notation |., ., .⟩ = |.⟩ ⊗ |.⟩ ⊗ |.⟩
understood and the number of particles njmF

in mode
j and level mF being defined as the eigenvalue of the
corresponding particle number operator

N j
mF

= aj†
mF

aj
mF

. (3)

Accordingly, the total number of particles in well j is
measured by the operator

N j =

1∑
mF=−1

N j
mF

, (4)

which has the eigenvalue nj =
∑1

mF=−1 n
j
mF

. Then, the
full Hilbert space is obtained by taking the tensor product
with respect to all wells, i.e. H = ⊗N

j=1Hj , such that a
generic element of the full Fock basis reads

|n11, n10, n1−1; ...;n
N
1 , n

N
0 , n

N
−1⟩ ≡

N⊗
j=1

|nj1, n
j
0, n

j
−1⟩ . (5)

C. Hamiltonian

The full Hamiltonian is composed of two main terms:
a single-well Hamiltonian Hj

sw describing the on-site dy-
namics of well j as well as a tunneling Hamiltonian Hj

t

encoding the coupling between neighboring wells j and
j + 1, such that in total we have

H =

N∑
j=1

Hj
sw +

N or N−1∑
j=1

Hj
t . (6)

For the sake of generality, we keep the type of boundary
conditions open at this point. More precisely, we allow
for periodic or open boundary conditions, which are im-
plemented by the second sum in (6) running up to N or
N − 1, i.e. coupling the first and the last well or not,
respectively.

The single-well Hamiltonian for well j is given by

Hj
sw = c0 N

j
(
N j − 1

)
+ c1

[ (
N j

0 − (1/2)1
)(

N j
1 +N j

−1

)
+ aj†

0 aj†
0 aj

1a
j
−1 + aj†

1 aj†
−1a

j
0a

j
0

]
+ q

(
N j

1 +N j
−1

)
,

(7)

and has been investigated in great detail, see e.g.
[40, 41, 65, 67, 69, 70]. It contains three contributions:
First, the on-site density-density interaction c0 > 0 de-
scribing the repulsive interaction of atoms regardless of
their hyperfine levels (petrol ellipse in Figure 1). Second,
the spin-changing collision interaction c1 < 0 encoding the
generation of spin pairs in the mF = ±1 hyperfine levels
from the mF = 0 level (red arrows), or the reverse process.
For clarity, we omitted the mean-field shifts in the second
line of Eq. (7). Third, we included the quadratic q > 0
Zeemann shift (green arrows).

The tunneling between equal hyperfine levels mF = ±1
of neighboring wells j and j + 1 is described by

Hj
t = −J

∑
mF=±1

(
aj†
mF

aj+1
mF

+ a(j+1)†
mF

aj
mF

)
, (8)

with a non-negative tunnel rate J ≥ 0 (blue arrows).
Note again that the mF = 0 mode does not couple to
neighboring wells and also that in the limit J → 0 the
wells evolve independently.

D. Observables: Spin operators

Among the local observables in every well are the eight
spin operators that form a representation of the Lie al-
gebra su(3) [65, 67]. They are constructed following the
Jordan-Schwinger map [71, 72]: starting from an irre-
ducible representation of the eight three-dimensional ma-
trices Gα of su(3) defined via

[Gα, Gβ ] = fαβγGγ , (9)

where fαβγ are the so-called structure constants (we omit
their explicit form here) and α ∈ {1, ..., 8} labels the
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1 2 3 4 5 ...

-1

0

+1

j

mF

c0

J J

J J
c1

c1q

Figure 1. Illustration of the dynamics generated by the five
contributions to the full Hamiltonian (6) for the j = 3 well.
First-order (tunneling) and second-order (collisions) processes
are indicated by dashed and solid arrows, respectively, while
the energy shift due to the Zeemann effect is depicted by a
dotted arrow.

matrices, the local quantum operators Gj
α obeying the

very same algebra are constructed following

Gj
α =

1∑
mF ,mF ′=−1

aj†
mF

(Gα)mFmF ′ a
j
mF ′ , (10)

with (Gα)mFmF ′ denoting the (mF ,mF ′)-th. entry of the
spin matrix Gα.

A common choice for the su(3) matrices Gα is made by
first constructing a su(2) subspace (see [67] for explicit
expressions for the corresponding matrices) via

[Sj
α, S

j
β ] = iϵαβγS

j
γ , (11)

where α, β, γ ∈ {x, y, z}, and thereupon deriving the three
corresponding spin operators from (10), leading to

Sj
x =

1√
2

[
aj†
0

(
aj
1 + aj

−1

)
+
(
aj†
1 + aj†

−1

)
aj
0

]
,

Sj
y =

i√
2

[
aj†
0

(
aj
1 − aj

−1

)
−
(
aj†
1 − aj†

−1

)
aj
0

]
,

Sj
z = aj†

1 aj
1 − aj†

−1a
j
−1.

(12)

The remaining five operators are the so-called quadrupole
operators defined as

Qj
αβ = {Sj

α,S
j
β} −

4

3
δαβ1, (13)

with {., .} denoting the anticommutator. Here Qj
yz and

Qj
xz are of special interest, which read

Qj
yz =

i√
2

[
aj†
0

(
aj
1 + aj

−1

)
−
(
aj†
1 + aj†

−1

)
aj
0

]
,

Qj
xz =

1√
2

[
aj†
0

(
aj
1 − aj

−1

)
+
(
aj†
1 − aj†

−1

)
aj
0

]
.

(14)

E. Readout schemes

We will analyze the system by gathering information
about the measurement distributions of the variable pairs
(Sj

x,Q
j
yz) over multiple wells. We discuss methods for

reading out two types of such distributions in the follow-
ing.

1. Separate detection

In BEC experiments the population of each mode,
njmF

= ⟨N j
mF
⟩ is detected through absorption imaging

after Stern-Gerlach separation of the different mF compo-
nents. From this the z-component of the local spin can be
extracted as Sj

z = nj1 − n
j
−1. Other spin components can

be measured by applying a radio-frequency (rf) magnetic
field prior to the absorption imaging. For a frequency
matching the linear Zeeman shift, resonant Rabi oscilla-
tions are driven, described by the Hamiltonian (in the
rotating wave approximation) [69, 70]

Hrf =

N∑
j=1

Ωrf

[
cos(ϕrf)S

j
y − sin(ϕrf)S

j
x

]
(15)

Here, Ωrf is the Rabi frequency of the drive and ϕrf is a
tunable phase. Applying the drive for a time t = π/(2Ωrf)
thus allows one to map the spin along an arbitrary direc-
tion of the equatorial plane of the spin sphere onto Sj

z . In
the case where the mF = 0 mode is a coherent state with
population far larger than the side modes, this scheme
is analogous to homodyne detection in optics, where the
signal mode(s) are mixed with a local oscillator mode on
a beam splitter to extract the field quadratures [73].

To toggle between measurements of spin operators and
quadrupole operators one can add a time delay before the
application of the rf-rotation. By tuning the quadratic
Zeeman shift and the microwave dressing field in the single-
well Hamiltonian Eq. (7) the mF = 0 mode acquires a
relative phase. For instance, measuring Qj

yz instead of
Sj
x requires an additional phase of π/2.

2. Simultaneous detection

Sophisticated methods to extract joint distributions
over (Sj

x,Q
j
yz), or equivalently (Sj

y,Q
j
xz), in close anal-

ogy to the heterodyne detection protocol in quantum
optics [29, 30, 74, 75] have been experimentally realized
rather recently [40, 41, 70]. For this, one exploits the avail-
ability of additional, initially unoccupied, internal levels,
in our example the F = 2 hyperfine manifold with five ad-
ditional Zeeman levels. Using microwave fields resonantly
coupling the levels of the F = 1 manifold with those of
the F = 2 manifold, one can realize analogs of beam
splitter operations between them. Splitting each mode
equally and subsequently applying different rf-rotations
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in the two manifolds realizes the simultaneous detection
of, for example, Sj

x and Qj
yz (see Ref. [40] for details).

In the case of the mF = 0 mode being macroscopically
occupied, this corresponds to sampling from the Husimi
Q-distribution in the phase space spanned by Sj

x and Qj
yz

(see section III for details).

III. FROM A SPIN-1 BEC TO A
CONTINUOUS-VARIABLE QUANTUM SYSTEM

We point out the connection between the system of
our interest, a multi-well spin-1 BEC, and a continuous-
variable quantum system describing coupled bosonic os-
cillator modes. Thereupon, we introduce several kinds of
phase-space descriptions.

A. Undepleted pump approximation

The undepleted pump regime captures the early-time
dynamics under the Hamiltonian (6) when initially prepar-
ing the polar ground state of the spin-1 BEC in every
well, i.e.

|ψ(0)⟩ = |0, α, 0⟩⊗N (16)

where |α⟩ is the local coherent state of the zero mode with
mean particle number n = |α|2. For large values of n the
mF = 0 mode is macroscopically populated compared to
the side modes mF = ±1 in every well, i.e.

⟨N j
0 ⟩ ≫ ⟨N

j
±1⟩ , (17)

for all j, which is equivalent to

nj = ⟨N j⟩ ≊ ⟨N j
0 ⟩ . (18)

Under the above assumptions, we can approximate the
mF = 0 mode operators by their norms

aj
0 = aj†

0 ≊
√
nj , (19)

such that N j
0 ≊ nj . Then, the full Hamiltonian (6)

simplifies to

Hup =

N∑
j=1

[
c0

(
aj†
1 aj†

1 aj
1a

j
1 + aj†

−1a
j†
−1a

j
−1a

j
−1 + 2N j

1N
j
−1

)
+ c̃j1

(
aj
1a

j
−1 + aj†

1 aj†
−1

)
+
(
q̃j + c0n

j
) (

N j
1 +N j

−1

)]

− J
N or N−1∑

j=1

(
aj†
−1a

j+1
−1 + a

(j+1)†
−1 aj

−1

+ aj†
1 aj+1

1 + a
(j+1)†
1 aj

1

)
+Hoffset.

(20)

Here, we defined the rescaled couplings

c̃j1 = c1n
j , q̃j = c1

(
nj − 1

2

)
+ q, (21)

as well as a constant offset term

Hoffset = c0

N∑
j=1

(nj)2, (22)

which we will drop in the following.

B. Relative modes and canonically conjugate
variables

In the undepleted pump regime, the relevant degrees
of freedom and their Hamiltonian (20) can be mapped to
a continuous-variable quantum system. To that end, we
introduce the relative mode operators between the side
modes

aj
± =

1√
2

(
aj
1 ± aj

−1

)
, (23)

which also represent independent bosonic modes, since
(1) implies

[aj
±,a

j′†
± ] = δjj′ , [aj

±,a
j′†
∓ ] = 0. (24)

Their associated canonical operators are defined as

ϕj
± =

1√
2

(
aj†
± + aj

±

)
, πj

± =
i√
2

(
aj†
± − aj

±

)
, (25)

which fulfill the canonical commutation relations[
ϕj

±,π
j′

±

]
= iδjj

′
,
[
ϕj

±,π
j′

∓

]
= 0. (26)

Interestingly, in the undepleted pump regime, the two
pairs of canonical operators are equivalent to pairs of spin
operators up to normalization, to wit

Sj
x =
√
2njϕj

+, Qj
yz = −

√
2njπj

+,

Sj
y =
√
2njϕj

−, Qj
xz = −

√
2njπj

−,
(27)

which follows from using (19) in (12) and (14). This shows
that, for short times, the relevant degrees of freedom
mimic two pairs of canonical variables and hence the local
Hilbert spaces Hj decompose as Hj = Hj

+ ⊗H
j
−

Next, we express the Hamiltonian (20) in terms of the
newly defined operators (see Appendix A for details). We
find the general decomposition

Hup = H+
up +H−

up +Hmix
up , (28)

where the form-equivalent H+
up and H−

up contain all terms
with only + or −modes, respectively, while Hmix

up contains
all terms mixing the two relative modes ±. In terms of
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1 2 3 4 5 ...

-

+

j

±

J J

J J
c0

c0

c0-c̃1

+c̃1

q̃

q̃

Figure 2. Sketch of the dynamics in the undepleted pump
regime generated by (28) (in analogy to Figure 1).

relative mode operators, these two types of Hamiltonians
read

H±
up =

N∑
j=1

[
c0 a

j†
±aj

±a
j†
±aj

±

+
[
q̃j + c0

(
nj − 1

)]
N j

±

± c̃j1
2

(
aj†
±aj†

± + aj
±a

j
±

)]

− J
N or N−1∑

j=1

(
aj†
±aj+1

± + a
(j+1)†
± aj

±

)
,

Hmix
up = 2c0

N∑
j=1

N j
+N

j
−,

(29)

whose dynamics are sketched in Figure 2. From the latter
formulas, it becomes apparent that in the undepleted
pump regime the relative mode operators, or equivalently
the two pairs of canonical operators, constitute a com-
plete set of observables for characterizing the early-time
dynamics. Further, the dynamics within the ± phase
spaces differ only by a sign in the ±c̃1 term.

C. Canonical phase-space

As the observables of our interest now correspond to con-
tinuous variables, we can faithfully apply the powerful con-
cepts of phase-space descriptions. The two sets of canon-
ical operators (ϕj

±,π
j
±) span the two two-dimensional

canonical phase spaces for well j, which are known to
be isomorphic to the Euclidean plane R2 with measure
[76, 77] ∫

dϕj± dπj
±. (30)

The field operators are conveniently combined into a
single vector χj

± by defining χj
± = ϕj

± for j ∈ [1, N ] and
χj

± = πj−N
± for j ∈ [N + 1, 2N ], which we formally write

as [74, 75]

χ± = (ϕ±,π±)
T = (ϕ1

±, . . . ,ϕ
N
± ,π

1
±, . . . ,π

N
± )T . (31)

The canonical commutation relations (26) become

[χj
±,χ

j′

±] = iΩjj′1, (32)

where

Ω = (iσ2)⊗ 1N (33)

denotes the symplectic metric revealing the symplectic
structure of the canonical phase space and σ2 is the second
Pauli matrix.

For every well j we define the set of canonical coherent
states associated with the relative modes ± as displaced
vacuum states [29, 30, 74, 75], i.e.

|αj
±⟩ = D(αj

±) |0
j
±⟩ , (34)

where D(αj
±) is the unitary displacement operator

D(αj
±) = eα

j
±aj†

± −α∗j
± aj

± , (35)

with the complex-valued phase fields being parameterized
in terms of cartesian coordinates as

αj
± =

1√
2

(
ϕj± + iπj

±

)
. (36)

Importantly, the set of coherent states constitutes an
overcomplete basis, i.e. the coherent states defined in (34)
resolve the identity in the ± subspaces

1 =

∫
dϕj±π

j
±

2π
|αj

±⟩ ⟨α
j
±| , (37)

but are not orthogonal to each other.

D. Phase space distributions

The phase-space picture enables the description of the
system’s state ρj in terms of classical phase-space distribu-
tions. In the following, we will consider the distributions
associated with either the + or the − mode, whose corre-
sponding density operators are obtained via the partial
trace ρj

± = Tr∓{ρj}.

1. Wigner W -distribution

The arguably most prominent phase-space representa-
tion is the Wigner W -distribution [25], which is defined
as the Fourier transform of the characteristic function,
namely [74]

Wj
± ≡ W

j
±(ϕ

j
±, π

j
±)

=

∫
dϕ̃j± dπ̃j

±
2π

e−i(ϕj
±,πj

±)Ω(ϕ̃j
±,π̃j

±)T

×Tr
{
ρj
± e

i(ϕj
±,πj

±)Ω(ϕ̃j
±,π̃j

±)T
}
.

(38)
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Here, we have chosen the normalization such that Wj
±

is normalized to unity with respect to the phase-space
integral measure (30), i.e.

1 = Tr
{
ρj
±

}
=

∫
dϕj± dπj

±W
j
±. (39)

It is well-known that the Wigner W -distribution can be-
come negative when the underlying state is non-classical
[78]. However, we note that both our simulation ap-
proaches are naturally based on positive Wigner W -
distributions (see section IV).

2. Marginal distributions

Next, we introduce the measurement distributions over
the canonical operators

f j± ≡ f
j
±(ϕ

j
±) = Tr

{
ρj
± |ϕ

j
±⟩ ⟨ϕ

j
±|
}
,

gj± ≡ g
j
±(π

j
±) = Tr

{
ρj
± |π

j
±⟩ ⟨π

j
±|
}
,

(40)

with the eigenvalue equations

ϕj
± |ϕ

j
±⟩ = ϕj± |ϕ

j
±⟩ , πj

± |π
j
±⟩ = πj

± |π
j
±⟩ , (41)

understood. The distributions (40) are true probability
density functions with normalizations

1 = Tr
{
ρj
±

}
=

∫
dϕj± f

j
± =

∫
dπj

± g
j
±, (42)

and can be identified with the marginals of the Wigner
W -distributions

f j± =

∫
dπj

±W
j
±, gj± =

∫
dϕj±W

j
±. (43)

As such, they encode the full information of ϕj± and πj
±,

but no information about their correlations. Hence, in
the special case when ϕj± and πj

± are uncorrelated, the
corresponding Wigner W -distribution decomposes into a
product W j

± = f j± g
j
±.

The separate detection scheme, or homodyne detec-
tion [79], described in section II E 1, approximately cor-
responds to sampling from the marginal distributions.
Fundamentally, of course, this cannot generally be an
exact correspondence for any finite atom number, as the
detected quantities nj

mF
have a discrete spectrum (de-

tected atom numbers), while the desired Wigner marginals
are continuous. However, in the undepleted pump ap-
proximation, the Wigner marginals are generally well-
approximated by the homodyne statistics [69, 70].

3. Husimi Q-distribution

Since the coherent state projectors |αj
±⟩ ⟨α

j
±| are non-

negative and resolve the identity, they constitute a posi-

tive operator-valued measure (POVM). The correspond-
ing measurement distribution is the so-called Husimi Q-
distribution [26]

Qj
± ≡ Q

j
±(ϕ

j
±, π

j
±) = Tr

{
ρj
± |α

j
±⟩ ⟨α

j
±|
}
. (44)

While the Wigner W -distribution can be negative, the
Husimi Q-distribution is always non-negative [27], since
it stems from a POVM. More specifically, it is bounded
by 0 ≤ Qj

± ≤ 1 [29, 30]. The normalization is induced by
(37), leading to

1 = Tr
{
ρj
±

}
=

∫
dϕj± dπj

±
2π

Qj
±. (45)

When operating in the regime nj0 ≫ nj±1 the simulta-
neous detection scheme described in section II E 2 can be
identified with the so-called eight-port-homodyne detec-
tion in quantum optics (also referred to as heterodyne
detection). In this scheme, each measurement corresponds
to drawing a sample from the Husimi-Q-distribution of
the signal field [80].

IV. SIMULATING THE DYNAMICS

We simulate the dynamics of the spin-1 BEC in two
different approximations. To capture most of the full
Hamiltonian and to check the validity of the undepleted
pump approximation, we perform a truncated Wigner
simulation, see section IVA. Additionally, we derive an
analytically solvable model based on (28) in section IV B.

A. Truncated Wigner Approximation

In the regime of high occupations, it is usually infeasible
to exactly solve the exponentially complex dynamics in
the full Hilbert space H. Instead, as the populations
are increased, the role of quantum fluctuations compared
to the mean-field dynamics grows smaller and hence the
predictions made by semiclassical approximation methods
become more and more accurate. One such semiclassical
technique is the truncated Wigner approximation (TWA).
At its core, all mode operators (we drop all indices in this
subsection for brevity) are replaced by complex numbers
[81]

a(†) → α(∗), (46)

which amounts to a lowest-order expansion of the Wigner-
Weyl correspondence rules. Consequently, the Hamilto-
nian operator H(a,a†) reduces to a classical Hamiltonian
function H(α, α∗) of the complex-valued phase-space co-
ordinates (α, α∗).

In general, the von Neumann equation

i∂tO(t) = [O(t),H], (47)
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for some time-dependent operator O, can be translated
into an equation of motion for the operator’s Weyl symbol
O in phase space via the Moyal bracket

{A,B}MB =
A

2
sin
[
2
(←−
∂ α
−→
∂ α∗ −

←−
∂ α∗
−→
∂ α

)]
B, (48)

which results in [81]

i∂tO(t) = {O(t), H}MB. (49)

In TWA, one is interested in the evolution of the ele-
mentary c-numbers α representing the mode operators to
leading order, for which Eq. (49) simplifies to the classical
Poisson bracket

i∂tα(t) = ∂α∗(t)H, (50)

since all higher-order derivatives vanish.
In the case when multiple modes are coupled as for

the Hamiltonian of interest in Eq. (6), Eq. (50) defines
a system of coupled differential equations that may be
solved numerically using a suited integrator. Before being
propagated in time, the initial set of coordinates α(0)
of a given well j and mode mF is obtained as Monte
Carlo samples from the initial Wigner W -distribution,
for which two cases are relevant. When considering the
vacuum |0⟩, the Wigner W -distribution takes the form of
a Gaussian, which is centered at the origin and contains
no correlations, i.e.

|ψ⟩ = |0⟩ ⇐⇒ α ∼ N
[
0,

1

2

]
+ iN

[
0,

1

2

]
. (51)

The samples of coherent states |γ⟩ have the same variance
but are displaced by the square root of their mean particle
number ⟨N⟩ = |γ|2 from the origin

|ψ⟩ = |γ⟩ ⇐⇒ α ∼ N
[
Re(γ),

1

2

]
+ iN

[
Im(γ),

1

2

]
,

(52)
since |γ⟩ itself is obtained by acting with the displacement
operator D(γ) on the vacuum, see (34).

In the presence of thermal fluctuations, the pure
vacuum state |0⟩ is replaced by the thermal ensemble
ρ ∝ exp

(
−βa†a

)
with the inverse temperature β = 1/T .

Accordingly, the standard deviations of the Wigner W -
distribution are rescaled as

1

2
→
√
1 + 2nBE(β)

1

2
, (53)

which is equivalent to adding nBE(β) to both variances,
where

nBE(β) =
1

eβ − 1
(54)

denotes the Bose-Einstein distribution.
Then, the expectation value of some observable O is

obtained as the stochastic average over all generated
samples

⟨O⟩TWA =
1

|S|
∑
α∈S

O (α, α∗) , (55)

where S denotes the set of all samples. Note here that
we again rely on the correspondence between O and O
given in Eq. (46).

Having introduced all necessary tools in TWA, we want
to briefly comment on its regimes of applicability. In the
limit of high occupations n ≫ 1 and initial states with
minimal fluctuations, i.e. coherent states, the operator to
c-number correspondence Eq. (46) is a justified simplifi-
cation, since the relative fluctuations scale as 1/

√
n. The

fluctuations of the initial state are herein represented accu-
rately, as they correspond to exact samples of the Wigner
W -distribution of the initial state |ψ⟩, while only those
fluctuations that build up during the evolution due to the
unitary evolution under H are not captured exactly. In
the limit ℏ→ 0, the dynamics generated by TWA become
exact. For a more thorough picture of this matter, see
Ref. [82], in which the impossibility of quantum phase-
space trajectories for generic (i.e. anharmonic) quantum
systems is discussed. For further reading regarding TWA
and other semiclassical techniques we refer the reader to
[81] and [83].

B. Gaussian Model

Interestingly, the short-time dynamics can be described
by a simple Gaussian model to a reasonable extent, which
we discuss next.

1. Gaussian Hamiltonian

Starting from the undepleted pump Hamiltonian (28),
we make two simplifying assumptions to arrive at a
quadratic model: First, we neglect the atomic collisions
between the atoms, i.e. set c0 ≊ 0, which amounts to
dropping all fourth- and one second-order contribution
in (29). This results in a vanishing mixing Hamiltonian
Hmix

up ≊ 0, which disentangles the ± phase spaces and
hence allows us to study their dynamics independently.
Second, despite no explicit translational invariance, an
approximate invariance exists in the center of the lattice.
Since boundary effects are negligible for the subsystem of
our interest (see section V A), we can assume all parame-
ters to be equal across all wells, i.e. q̃j ≊ q̃, c̃j1 ≊ c̃1 and
nj ≊ n.

The resulting Hamiltonian is Gaussian, i.e. of second
order in the relative mode operators, and reads for the +
mode (the − mode can be treated on equal footing)

H+
up,Gauss =

N∑
j=1

[
q̃N j

+ +
c̃1
2

(
aj
+a

j
+ + aj†

+aj†
+

)]

+ J

N or N−1∑
j=1

(
aj†
+aj+1

+ + a
(j+1)†
+ aj

+

)
.

(56)

The dynamics generated by the latter Hamiltonian is
illustrated in Figure 3. As a result of its simple form,
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-c̃1

+c̃1

Figure 3. Sketch of the dynamics in the Gaussian regime
generated by (56) (in analogy to Figure 1).

we can provide a more detailed description of how the
different terms in (56) contribute to the overall dynamics
(see Figure 4): The first term proportional to q̃ causes
a local rotation (green dashed circle in d)), while the
second term proportional to c̃1 generates local squeezing
(red dashed arrows in d)). Both act locally on the j-th. +
phase space. The coupling term proportional to J builds
up correlations between the wells (blue solid arrow in
i)) by stretching the local distributions proportionally to
each other (see g) versus h)).

One may also express (56) through the canonical field
operators (see Appendix A for details), leading to

H+
up,Gauss =

1

2

N∑
j=1

[
λ+
(
ϕj

+

)2
+ λ−

(
πj
+

)2 ]

− J
N or N−1∑

j=1

(
ϕj

+ϕ
j+1
+ + πj

+π
j+1
+

)

≡ 1

2

2N∑
j,j′=1

χjT
+ Λjj′ χj′

+,

(57)

where we introduced the two new couplings

λ± = q̃ ± c̃1 (58)

for brevity1 and the so-called Hamiltonian matrix Λ. The
latter is a 2N × 2N , real and symmetric matrix of block-
diagonal form

Λ =

(
Λ+ 0
0 Λ−

)
, (59)

where Λ+ and Λ− describe the dynamics of the fields ϕj
+

and the momentum fields πj
+, respectively. Both have the

same form with non-vanishing entries only on the three

1 Note here that λ± does not refer to the ± phase spaces.

leading diagonals for open boundary conditions, i.e.

Λ± =


λ± −J 0 0
−J λ± −J 0

0 −J λ±
. . .

0 0
. . . . . .

 , (60)

and additionally a contribution −J in the first and last
anti-diagonal entries for periodic boundary conditions.
Hence, the diagonal entries in (60) describe single wells,
while the next-to-leading diagonals (and possibly the outer
two entries of the anti-diagonal) contain the coupling be-
tween neighboring wells. We also note that the Hamilto-
nian (57) is bounded from below by a positive number,
i.e. has a positive-energy ground state, when λ± ≥ 0,
which is fulfilled if q ≥ c1/2 and hence in particular for
non-negative q ≥ 0.

2. Mean and covariance matrix

It is well known that quadratic Hamiltonians map Gaus-
sian states to Gaussian states [74, 75]. Since the initial
state |0, α, 0⟩⊗N from Eq. (16) corresponds to an uncorre-
lated set of local vacua in the + phase spaces, the initial
state in the undepleted pump approximation is indeed
Gaussian. Hence, the dynamics generated by (57) is fully
encoded in the two lowest-order moments of the quantum
state ρ+, i.e. its field expectation values

χj
+ = Tr{ρ+ χj

+} (61)

and its covariance matrix [74, 75]

γjj
′

+ =
1

2
Tr{ρ+{χj

+ − χ
j
+,χ

j′

+ − χ
j′

+}}. (62)

The latter is a real, symmetric, and non-negative 2N -
dimensional matrix of block form

γ+ =

(
M+ T+
T T
+ N+

)
, (63)

and contains the two fundamental two-point correlation
functions

Mjj′

+ = Tr
{
ρ+ ϕj

+ϕ
j′

+

}
− ϕj+ϕ

j′

+,

N jj′

+ = Tr
{
ρ+ πj

+π
j′

+

}
− πj

+π
j′

+ ,
(64)

as well as the mixed correlator

T jj′

+ = Tr
{
ρ+ ϕj

+π
j′

+

}
− i

2
δjj′ − ϕj+π

j′

+ . (65)

Importantly, the covariance matrix is constrained by the
Robertson-Schrödinger uncertainty relation in the form
of a lower bound to its determinant [84–86]

det γ+ ≥
1

22N
, (66)
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Figure 4. Illustrations of the effects of the three terms in the Gaussian Hamiltonian (56) on the + phase-space distributions for
N = 9 wells and open boundary conditions. The rows show the initial state, an evolved state for uncoupled wells, i.e. J = 0,
and an evolved state for coupled wells, i.e. J > 0, respectively, while the columns depict the phase-space distributions of the
first well, the fifth well in the center as well as the correlations in the fields between these two wells, respectively. For t = 0, see
a)-c), all wells are in the same state, and the wells are uncorrelated. When the uncoupled system has evolved, see d)-f), all
local distributions are equally squeezed (red dashed arrows) and rotated (green dashed arrow) by c̃1 and q̃, respectively, and
remain uncorrelated. For a non-zero tunnel rate J > 0, see g)-i), the local distributions are stretched proportionally (note that
the stretching is equal across the wells for periodic boundary conditions), see g) and h), such that correlations between the
wells build up, see i) (blue solid arrow).

with equality if and only if ρ+ corresponds to a pure
Gaussian state [74, 75]. Thus, for our analytical model,
det γ+ > 1/22N encodes mixedness of ρ+ (see also sec-
tion V B 2).

Importantly, χ+ and γ+ correspond to the first- and
second-order moments of the Wigner W -distribution W+,
and the diagonal entries of γ+ are encoded in f+ and g+.
While χ+ is also the mean of the Husimi Q-distribution
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Q+, its covariance matrix V+ acquires an additional contri-
bution, which is a consequence of Q+ being a convolution
of W+, resulting in

V+ = γ+ +
1

2
1. (67)

3. Symplectic time evolution

The effect of the evolution under the Hamiltonian (57)
on the two lowest-order moments can be described by
symplectic transformations in phase space [74, 75]. To
that end, we recall a few basics of Gaussian quantum
information theory. The Hamiltonian H+

up,Gauss generates
the time evolution of the initial state ρ+(0) at t = 0 via
the unitary time evolution operator

U+
up,Gauss(t) = e−itH+

up,Gauss , (68)

in the sense that

ρ+(t) = U+
up,Gauss(t)ρ+(0)U

+†
up,Gauss(t). (69)

In phase space, the unitary transformation U+
up,Gauss(t)

corresponds to a symplectic transformation S+up,Gauss(t),
that is, a transformation which preserves the commutator
in phase space (see Eq. (32)), i.e. leaves the symplectic
form Ω invariant

S+up,Gauss(t) ΩS
+,T
up,Gauss(t) = Ω. (70)

When the Hamiltonian is written as a bilinear form as
in the second line in (57), the symplectic time evolution
matrix can be expressed through the Hamiltonian matrix
Λ via [74, 75]

S+up,Gauss(t) = etΩΛ. (71)

This matrix can directly be applied to the two lowest-
order moments of ρ+, yielding the simple time evolution
equations [74, 75]

χ+(t) = S+up,Gauss(t)χ+(0),

γ+(t) = S+up,Gauss(t) γ+(0)S
+T
up,Gauss(t).

(72)

Since the initial state is the uncoupled vacuum state, we
have χ+(0) = 0, and hence all phase-space distributions
remain centered around the origin, i.e.

χ+(t) = χ+(0) = 0. (73)

Instead, the initial covariance matrix

γ+(0) =
1

2
1, (74)

evolves non-trivially following the second line of (72),
which can be computed analytically for a given set of
parameters.

Note that for a non-zero initial temperature, the initial
covariance matrix is also proportional to the identity, but
the variances increase due to thermal fluctuations, which
results in

γ+(0) =

[
1

2
+ nBE(β)

]
1. (75)

Note also that adding half the identity to γ+(t) gives
the time-evolved covariance matrix V+(t) of the Husimi
Q-distribution. Since SST = 1 for all symplectic matrices
S one may equally apply the symplectic transformation
directly to the defining equation of V+, i.e. (67).

4. Comment on field theory correspondence

At last, we comment on the field theory the Gaussian
Hamiltonian (57) reproduces when taking the continuum
limit. To that end, we introduce a lattice spacing ϵ and
define the field operators

ϕ+(x) ≡
1√
ϵ
ϕj

+, π+(x) ≡
1√
ϵ
πj
+, (76)

which fulfill the distribution-valued commutation relations

[ϕ+(x),π+(x
′)] = iδ(x− x′), (77)

in the continuum limit ϵ → 0. Then, using (76) in (57)
together with

ϕ+(x+ ϵ) = ϕ+(x) + ϵ ∂xϕ+(x) +O(ϵ2), (78)

analogously for π+(x+ ϵ), results in

H+
up,Gauss =

1

2

∫
dx
[
κ+(x)ϕ2

+(x) + κ−(x)π2
+(x)

]
,

(79)
with the differential operators

κ±(x) = λ± + 1 + Jϵ ∂x, (80)

to leading order in ϵ. Hence, a reasonable continuum
limit requires the limit of infinite coupling J →∞ with
the product Jϵ kept fixed, which effectively implements
ϵ = 1/J → 0.

V. AREA LAW IN PHASE SPACE

We now discuss the scaling behaviors of quantum en-
tropies associated with a subsystem. Then, we define
classical entropies of the phase space distributions intro-
duced in section IIID and provide mathematical as well
as heuristic arguments for why these entropies encode the
area law.



12

A. Quantum entropies

We consider a subsystem of five wells from the N total
wells, which can exchange energy and particles with its
complement and therefore should be considered an open
quantum system. We partition this subsystem into a
subregion A consisting of the first 0 ≤M ≤ 5 wells and its
complement B composed out of the remaining 5−M wells
(see Figure 5). The multi-well setup offers the possibility
to study the discretized version of a continuous quantum
field theory with the wells corresponding to lattice points.
The local states associated with the subregions are, as
usual, defined via the partial trace

ρA
+ = TrB{ρ+} (81)

and analogous for ρB
+. The local mixedness of A is con-

veniently measured by the von Neumann entanglement
entropy [87]

S(ρA
+) = −Tr{ρA

+ lnρA
+}, (82)

which serves as an entanglement measure if and only if
the bipartite state ρ+ is pure, in which case S(ρA

+) > 0 if
and only if A and B are entangled and S(ρA

+) = 0 if not.
However, when the bipartite state is mixed, for example,
due to the presence of thermal fluctuations or coupling to
the environment as considered here, one typically studies
the quantum mutual information instead. It is defined as
[88, 89]

I(ρA
+ : ρB

+) = Tr
{
ρ+

(
lnρ+ − lnρA

+ ⊗ ρB
+

)}
, (83)

or equivalently as

I(ρA
+ : ρB

+) = S(ρA
+) + S(ρB

+)− S(ρ+), (84)

if all three terms on the right are finite, and serves as
the measure for the total correlations between A and B
being zero if and only if ρ+ = ρA

+ ⊗ ρB
+. Note that when

the initial state is pure, the entanglement entropy and
the quantum mutual information are proportional to each
other, i.e. I(ρA

+ : ρB
+) = 2S(ρA

+).
Both quantities have been studied extensively for a large

variety of quantum field theories and quantum many-body
systems and it is well-known that for typical states of
Hamiltonians with local interactions, they scale with the
area of the entangling surface separating A and B, see
e.g. [7, 8, 10, 11, 15] for reviews. In this context, states
are called typical for example when they lie sufficiently
close to the ground state of the Hamiltonian or when they
are generated from an initial product state on short time
scales after a quench [15]. In the following, we shall be
concerned with the latter scenario.

For our setup, three competing length scales are relevant
for the precise scaling with subsystem size M of the
aforementioned quantum entropies: the system sizeN , the
(initial) inverse temperature β = 1/T , and the subsystem
size M itself. When the dominating scale is M , i.e. when

0 L

1 N1 M 5… …

A B

Figure 5. The open subsystem of interest (colored) is parti-
tioned into A (blue) and B (red).

we consider the subinterval size being small compared to
the system size and the inverse temperature M ≪ N, β,
then the entanglement entropy scales logarithmically (blue
solid curve in Figure 6) [7, 8, 10, 11]

S(ρA
+) ∼ κ1 ln (M + κ2) + κ3, (85)

with κi being real constants. We normalize all entropic
quantities such that they vanish at M = 0, resulting in
the constraint

κ2 = e−κ3/κ1 , (86)

and hence only κ1 and κ3 are independent. Typically, κ1
is universal, i.e. regularization independent, especially
in conformal field theories where it corresponds to the
central charge, while κ3 is usually not [7, 8, 10].

When instead N is dominant, i.e. when the subinterval
size is of the order of the system size M ∼ N and the
temperature is still small N ≪ β, the so-called finite-size
area law holds (petrol dashed curve) [7, 8]

S(ρA
+) ∼ κ1 ln

[
N

π
sin

(
πM

N

)
+ κ2

]
+ κ3, (87)

again subject to the constraint (86). Since the quantum
state of the whole system is close to being pure in this
case, we have S(ρA

+)→ 0 when M → N . Further, in the
limit of small M ≪ N , the latter equation reduces to (85)
since (N/π) sin(πM/N) =M to first order in M .

If finite-temperature effects become relevant, i.e. for
β ∼ N , we instead expect a scaling of the form (red
dotted curve) [7, 8]

S(ρA
+) ∼ κ1 ln

[
β

π
sinh

(
πM

β

)
+ κ2

]
+ κ3, (88)

again constrained by (86). In this case, the entropy re-
mains finite if computed for the whole system due to
additional (classical) mixedness. While for small temper-
atures β ≫ N we obtain back (85), large temperatures
β ≪ N lead to an extensive entropy obeying a volume
law (green dot-dashed curve)

S(ρA
+) ∼ κ1M, (89)

in which case classical correlations dominate over the
quantum ones.

Remarkably, the quantum mutual information follows
the finite-size area law (87) in all of the four considered
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Figure 6. Scaling of the entanglement entropy S(ρA
+) with

subsystem size M for the four archetypal scenarios: large
system size at zero temperature (blue curve), finite system size
at zero temperature (petrol curve), finite temperature (red
curve) and high temperature (green curve). For small M , the
first three curves converge.

cases [18]. In particular, even if thermal fluctuations
prevent the appearance of the area law in the entropies,
the extensive contributions drop out when considering
the quantum mutual information, which demonstrates its
utility for observing an area law in actual experiments.

B. Classical entropies

We now introduce various entropic measures in the
phase space associated with subsystem A (subsystem B
and the full subsystem AB can be treated on equal foot-
ing). To that end, we shall group the set of corresponding
local field variables according to

χA
+ = (ϕA+, π

A
+)

T = (ϕ1+, ..., ϕ
M
+ , π

1
+, ..., π

M
+ )T . (90)

Then, the distributions corresponding to A are obtained
by integrating out all degrees of freedom belonging to
subsystem B, for instance

WA
+ =

∫
dϕB+ dπB

+W+, (91)

and similarly for the other two types of phase space dis-
tributions.

1. Standard entropies

Let us start with the Wigner entropy, which is defined
as the differential entropy of the Wigner W -distribution,
namely

S(WA
+ ) = −

∫
dϕA+ dπA

+WA
+ lnWA

+ . (92)

It is well-defined, i.e. real, provided that WA
+ ≥ 0, other-

wise it becomes complex-valued. A lower bound encoding
the uncertainty principle has been conjectured in [90–92]
and reads

S(WA
+ ) ≥ S(W̄A

+ ) =M(1 + lnπ), (93)

with equality if and only if WA
+ corresponds to a product

of pure Gaussian states.
The marginal entropy of fA+ is defined as

S(fA+ ) = −
∫

dϕA+ f
A
+ ln fA+ , (94)

and analogously for gA+. Since fA+ and gA+ are true proba-
bility density functions, their entropies are always well-
defined. The corresponding entropic uncertainty relation
has been put forward by Białynicki-Birula and Mycielski
[93–96] (see also [97, 98] for reviews)

S(fA+ ) + S(gA+) ≥ S(f̄A+ ) + S(ḡA+) =M(1 + lnπ), (95)

which contains the same bound as the Wigner entropy
conjecture (93). In fact, (95) would be a simple conse-
quence of (93) when using the subadditivity of entropy,
namely

S(WA
+ ) ≤ S(fA+ ) + S(gA+), (96)

with equality if and only if WA
+ = fA+ gA+. However, the

bound in (95) is less tight since it is attained only for
products of squeezed vacuum states.

At last, we introduce the Wehrl entropy [31, 32]

S(QA
+) = −

∫
dϕA+ dπA

+

(2π)M
QA

+ lnQA
+, (97)

which is also always well-defined since QA
+ ≥ 0. It is

bounded from below by the Wehrl-Lieb inequality [31–34]

S(QA
+) ≥ S(Q̄A

+) =M, (98)

which is tight if and only if the state is a product of pure
coherent states. It is also bounded by the Wigner and
quantum entropies [37]

S(QA
+) ≥ S(WA

+ )−M lnπ, S(QA
+) ≥ S(ρA

+). (99)

Note here that the additional constant −M lnπ is a result
of the different normalizations of the Wigner W - and
Husimi Q-distributions. Therefore, (98) would also be a
direct consequence of (93).

The three aforementioned types of entropies have in
common that their lower bounds (93), (95) and (98) are
attained for a product of pure vacuum states and scale
with the volume of the subsystem A. In this sense, all
these entropies are classical to leading order for arbitrary
states with the main contribution coming from the vac-
uum, in contrast to the quantum entropies introduced
in section VA which vanish for all pure states. In what
follows, we will argue that quantum features such as the
area law are still present in classical entropies, but hidden
in the next-to-leading order terms.
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2. Subtracted entropies

Recently, it has been argued that quantum features
such as the area law of the entanglement entropy are also
present in classical entropies when the leading order exten-
sive contributions are subtracted [24]. Based on this idea,
we define subtracted classical entropies by subtracting the
extensive vacuum contributions appearing in the bounds
of the corresponding entropic uncertainty relations, to wit

∆S(WA
+ ) ≡ S(WA

+ )− S(W̄A
+ ),

∆S(fA+ , g
A
+) ≡ S(fA+ ) + S(gA+)− S(f̄A+ )− S(ḡA+),

∆S(QA
+) ≡ S(QA

+)− S(Q̄A
+).

(100)

Let us provide some simple arguments for why these
entropies encode the very same features as their quantum
analogs in the following.

First, we consider Gaussian quantum states, which
provide a reasonable first-order approximation to the
states generated by the Hamiltonian (6), see section IV B.
A general Gaussian Wigner W -distribution is of the form

WA
+ =

1

ZA
+

e−
1
2 (χ

A
+)T (γA

+ )−1χA
+ , (101)

with ZA
+ = (2π)M

√
det γA+ being a normalization con-

stant. Computing the subtracted Wigner entropy for
such a state gives [75, 99]

∆S(WA
+ ) =

1

2
ln
(
22M det γA+

)
= S2(ρ

A
+), (102)

where

S2(ρ
A
+) = − lnTr{(ρA

+)
2} (103)

denotes the quantum Rényi-2 entropy of the state ρA
+

that corresponds to WA
+ . Hence, the subtracted Wigner

entropy coincides with a quantum entropy for Gaussian
states. For completeness, let us also give the Gaussian
expressions for the Husimi-based quantities, which read

QA
+ =

1

ZA
+

e−
1
2 (χ

A
+)T (V A

+ )−1χA
+ , (104)

with ZA
+ =

√
detV A

+ and

∆S(QA
+) =

1

2
ln detV A

+ . (105)

Note, however, that these entropies can not be related
with quantum entropies in general.

For arbitrary states, including Wigner-negative states, a
general relation between subtracted classical and quantum
entropies can only be established for the subtracted Rényi-
2 Wigner entropy [100, 101]

∆S2(WA
+ ) = S2(ρ

A
+). (106)

Note here that the entropic order alters the lower bound
in the corresponding entropic uncertainty relation and
hence a different term compared to ∆S(WA

+ ) has to sub-
tracted. Although the relation (106) can not be general-
ized to other subtracted Rényi-Wigner entropies, it has
been shown in [24] that the crucial feature of quantum en-
tropies, i.e. the area law, is present for the entire family of
subtracted Rényi-Wigner entropies beyond the Gaussian
case, indicating that the area law may also appear for the
classical entropies defined in (100), which we investigate
in detail in section VII.

C. Classical mutual informations

Let us also introduce classical mutual informations as
measures for correlations in phase space. For Wigner-
positive states, we define the Wigner mutual information

I(WA
+ :WB

+ ) = S(WA
+ ) + S(WB

+ )− S(W+), (107)

while for general states we define the marginal mutual
informations

I(fA+ : fB+ ) = S(fA+ ) + S(fB+ )− S(f+), (108)

(similarly for g+) and the Wehrl mutual information [37]

I(QA
+ : QB

+) = S(QA
+) + S(QB

+)− S(Q+). (109)

All of them are non-negative functionals being zero if
and only if the two local distributions on A and B are
uncorrelated.

It has been shown that every classical mutual informa-
tion is a lower bound to the quantum mutual information
[37, 102]. In particular, we have

I(WA
+ :WB

+ ), I(QA
+ : QB

+) ≤ I(ρA
+ : ρB

+), (110)

indicating that classical mutual informations do not cap-
ture all correlations in general. However, the bound (110)
is expected to be tighter than the standard second-order
lower bounds on the quantum mutual information in terms
of two-point correlation functions (which only faithfully
describe Gaussian correlations).

In contrast to classical entropies, extensive contribu-
tions naturally cancel when considering classical mutual
informations. For example, decomposing (107) in the
sense of (84) shows that

I(WA
+ :WB

+ ) = ∆S(WA
+ ) +∆S(WB

+ )−∆S(W+), (111)

since the vacuum is uncorrelated, i.e. S(W̄+) = S(W̄A
+ ) +

S(W̄B
+ ). For Gaussian states, we can find a relation

analogous to (102), which reads [99]

I(WA
+ :WB

+ ) =
1

2
ln

det γA+ det γB+
det γ+

= I2(ρ
A
+ : ρB

+),

(112)
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with the Rényi-2 mutual information being defined as

I2(ρ
A
+ : ρB

+) = S2(ρ
A
+) + S2(ρ

B
+)− S2(ρ+). (113)

Fortunately, the partly heuristic arguments for the appear-
ance of the area law for classical entropies in section V B 2
can be made rigorous when considering classical mutual
informations by adapting the argument in [18]. To that
end, we first note that all three Hamiltonians (6), (28)
and (56) can be decomposed according to

H = HA +HB +H∂ , (114)

where HA and HB denote the Hamiltonians of subsys-
tems A and B, respectively, while H∂ contains the local
interactions coupling A to B. Further, we consider the
rather general class of thermal states for a given Hamilto-
nian H, i.e.

ρ+ =
1

Z
e−βH , (115)

which are typically of non-Gaussian form. Then, every
distribution O+ over measurement outcomes o+ corre-
sponding to some POVM O+ can be written as

O+ =
1

Z
e−βH , (116)

with the classical Hamiltonian H being defined implicitly
via

Tr{e−H O+} = e−H . (117)

For such a distribution, the classical entropy evaluates to

S(O+) = lnZ + β ⟨H⟩O+
, (118)

where

⟨H⟩O+
=

∫
do+O+(o+)H (119)

is the classical energy expectation value with respect to
the distribution O+(o+). Using (118), we find that the
(classical) free energy is nothing but

F (O+) ≡ −
lnZ

β
= ⟨H⟩O+

− S(O+)

β
. (120)

The latter is minimized by the thermal distribution O+,
a fact which can be derived, for instance, using the non-
negativity of the classical relative entropy of any given
distribution with respect to the thermal distribution O+.
As a special case, we can conclude that the thermal free
energy is bounded from above by the free energy of the
corresponding product distribution, i.e.

F (O+) ≤ F (OA
+OB

+). (121)

Expanding the latter inequality in the sense of (120) and
using the additivity of classical entropies for product
distributions yields

S(OA
+) + S(OB

+)− S(O+)

≤ β
(
⟨H⟩OA

+ OB
+
− ⟨H⟩O+

)
.

(122)

The decomposition (114) implies

⟨H⟩OA
+ OB

+
− ⟨H⟩O+

= ⟨H∂⟩OA
+ OB

+
− ⟨H∂⟩O+

, (123)

which, together with the definition of the classical mutual
information, finally leads to

I(OA
+ : OB

+) ≤ β
(
⟨H∂⟩OA

+ OB
+
− ⟨H∂⟩O+

)
. (124)

The derived upper bound on the classical mutual informa-
tion is a function of the classical boundary Hamiltonian
H∂ only, which proves the area law for all variants of
classical mutual information, including the three of our
interest, for local interactions and thermal states.

VI. ENTROPY ESTIMATION

We now turn to the challenging task of estimating clas-
sical entropies from finitely many samples. Albeit being a
general problem, it arises especially for the system of our
interest, since experimental runs are particularly costly.
To that end, we rely on suitable k-nearest-neighbor esti-
mators and benchmark their validity for various scenarios.
For our implementation, we utilize the ‘Non-parametric
Entropy Estimation Toolbox’ for Python publicly avail-
able at [103].

A. k-nearest-neighbor estimator

The integrals that give the Wigner or Wehrl entropy,
Eqs. (92) and (97), respectively, are in general hard to
estimate from samples. Unless the distribution is of a
specific form, such as a Gaussian, that allows reexpressing
the entropy through low-order correlators, one must use
the available samples to approximate local densities of
the distribution. A straightforward approach is to bin the
samples onto a grid and use the relative frequencies in
the histogram as approximations for the local densities.
While this procedure presents an asymptotically unbiased
estimator in the limit of infinite samples and small bins,
it is problematic in practice, since the binning procedure
presents an information bottleneck as it coarse grains the
information about the precise sample position.

A more elaborate approach is to use the k-nearest-
neighbor (kNN) statistics of the sample set to approximate
local densities [49–63]. The intuition behind the nearest-
neighbor statistics is that samples with short distances to
their neighbors are located in regions of high probability
density, while samples which are located in regions of low
probability density have nearest neighbors that are far
away. A formalization of this intuition allows to construct
an asymptotically unbiased discretization-free estimator
Ŝ for differential entropies [49, 56]

Ŝ(k,Ns) = g(k,Ns, d) +
d

Ns

Ns∑
i=1

ln ϵi(k) (125)
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Figure 7. Benchmark of the entropy estimator Ŝ for distributions that allow for an analytic comparison to S. In a), we visualize
the algorithm for a few Gaussian samples in d = 2 dimensions, with two random samples selected and two choices for the
hyperparameter k, namely k = 2 and k = 4. The only assumption of the estimator is constant density in the light green and cyan
circles respectively, an assumption less justified the larger k. Both k-th neighbors are shown in black. In b) we benchmark the
entropy estimator on a squeezed covariance matrix in d = 2 dimensions with squeezing parameter γ, where large γ correspond to
strong squeezing. The covariance matrix is given by Σ = (1+ γJ)/det(1+ γJ)1/d where J is the matrix of all ones. All error
bars are obtained from ten independent estimates and we use offsets on the x axis to aid in differentiating the different data
points. In c) we let γ = 0 and vary the dimension d, observing decreasing performance with increasing dimension, as is expected.
In d) we tune away from the Gaussian regime in d = 4 dimensions, using a generalized normal distribution [104] parameterized
by β with scale α chosen such that the entropy S takes the value of a standard normal distribution in d = 4 dimensions. As can
be seen from the density function in Eq. (127), small values of β correspond to heavy tails, β = 2 corresponds to a Gaussian
shape, and the support of the distribution shrinks to the interval [−1, 1] for β → ∞. We denote the sample set size with Ns and
choose the nearest neighbor parameter k to be three in all experiments.

where d is the dimension of the distribution, Ns is the
number of samples and ϵi(k) is the distance of the i-th
sample to its k-th neighbor. The term g(k,Ns, d) is a
constant that is independent of the samples and is given
by [49, 56]

g(k,Ns, d) = −ψ(k) + ψ(Ns) + ln(cd), (126)

where ψ is the digamma function and cd is the volume of
the d-dimensional unit ball.

The asymptotical unbiasedness of the estimator means
that one is guaranteed to obtain the true entropy in the
limit of infinitely many samples, which directly stems from
the observation that the sample distances must shrink to
zero in this limit. This is in contrast to approaches that
fit a probability density function of a specific form to the
data, which may result in more accurate estimates in the
regime of few samples, but will generally not converge to
the true value when the amount of samples is increased.

We aim to give an intuitive picture of the kNN method
in Figure 7 a), where the spheres, for which constant
density is assumed, are drawn for k = 2 and k = 4 for two
different samples. This example reveals the only trade-off
in the kNN algorithm, which is the so-called hyperparam-

eter choice k. For small k, the assumption of constant
density has stronger justification as the spheres are neces-
sarily smaller compared to larger k. This, however, comes
at the expense of stronger fluctuations, meaning larger
statistical uncertainties. These can be systematically re-
duced by choosing larger k, as the volume of the spheres
shows a power law in the dimension of the distribution.
Typically, k is set to k = 3 or similar, depending on the
situation at hand [103].

Since the estimation of differential entropies from sam-
ples is a task of fundamental interest [105] with applica-
tions ranging from statistics [106–108] to signal processing
[109, 110] to machine learning and pattern recognition
[111–114], various other paths beside the aforementioned
one have been explored [115]. There exists a rich lit-
erature for non-parametric entropy estimators, that do
not assume a specific form of the underlying probability
density [49–55, 57–63]. These are either based on near-
est neighbor statistics or arrive at an estimate for the
local density by using kernel density estimates. Recently,
machine learning-inspired techniques have been explored.
Giving up on the non-parametric property of the estima-
tor results in the loss of the asymptotically unbiasedness
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at possibly increased performance. Numerous works have
been put forward in this regard, with applications of
estimating entropies [116] and mutual informations [117].

B. Benchmarks in low dimensions

We showcase the performance of the estimator for Gaus-
sian distributions in Figure 7 b). The data points are
obtained from 10 independent runs, meaning that a to-
tal of 10Ns data points were generated, from which we
extracted means and standard deviations on the relative
deviations (Ŝ − S)/S. We study the performance of the
algorithm in d = 2 dimensions as a function of the squeez-
ing parameter γ, where γ = 0 corresponds to a normal
distribution and large γ implies higher squeezing. Here,
S = 2.83 for all values of γ. A central assumption in the
derivation of the expression in Eq. (125) is uniform density
inside the d-dimensional ball with radius ϵi(k) between
sample i and its k-th neighbor. For larger squeezing, this
assumption is violated more strongly, since the squeezing
introduces a preferred direction at odds with the assumed
isotropy, resulting in worse performance for larger γ.

C. Scaling with dimension

In Figure 7 c), we benchmark the estimator on a stan-
dard normal distribution for increasing dimension. The
higher dimension implies that the assumption of constant
density inside the d-dimensional spheres of radius ϵi(k)
must hold for larger volumes if the number of samples is
held constant. This will generally result in worse perfor-
mance, as demonstrated.

D. Tuning away from the Gaussian regime

To test the estimator’s performance away from the
Gaussian regime, we benchmark it on a generalized normal
distribution [104]. The latter has a probability density of
the form

fGND(x;µ, α, β) =
β

2αΓ(1/β)
exp

(
−
∣∣∣∣x− µα

∣∣∣∣β
)
, (127)

with mean µ, scale α > 0, shape β > 0 and Γ denoting
the gamma function. In Figure 7 d), we vary α and β in
such a way that the true entropy S is kept constant at the
value corresponding to the standard normal distribution
in d = 4 dimensions, for which α = 1/2, β = 2, i.e.
S = 5.67. We observe the worst performance for small
values of β, i.e. in the regime of heavy tails, which is
expected as the central assumption of constant density of
the employed estimator needs to hold for larger regions in
space. For large values of β and sufficiently many samples,
the results improve (for Ns = 5000 (50000) the relative
deviations for β = 1, β = 3 and β = 9 are -0.008, -0.007

and 0.003 (-0.004, -0.003 and -0.001)), in line with the
intuition that the entropy of a uniform distribution should
be easy to estimate. However, for Ns = 50 and Ns = 500
samples, this intuition seems to be misleading as the best
performance is observed for β = 1 and β = 3, respectively,
which resemble Gaussian-like distributions.

VII. RESULTS

We are now ready to present our main results: analyti-
cal and numerical observations of the area law for classical
entropies. After a general comparison of the analytical
model and TWA in terms of two-point correlators and
entropic quantities, we systematically study typical ef-
fects, including non-Gaussian features, a thermal initial
state, the influence of the subsystem’s position within the
total system, the total system size, the dependence of the
estimated entropies on the number of samples and finally
two types of boundary conditions.

Unless specified differently, we use the values c1 =
−1/n, n = 1000, such that our energy scale is given
by |nc1| = 1 (note that this renders all parameters and
other quantities of our interest dimensionless). Further,
we consider Lithium-7 for which c0 = −2c1, set q = 2J
with J = 2 and test N = 20 wells with open boundary
conditions at the three different times t = 0.5, 0.75, 1.
From the 20 wells, we study five wells located in the center
of the lattice, i.e. wells 8, 9, 10, 11, 12, and neglect the
remaining 15 wells from our examination, leaving us with
the subsystem depicted in Figure 5. We assume the initial
temperature to be zero, i.e. T = 0, and base the entropy
estimation on 104 samples. We systematically vary these
parameters one by one and investigate their influences
from section VIIC to section VIIH. The plotted curves
are either dashed or solid, corresponding to interpolations
or fits of the (finite-size) area or the volume law.

A. Correlation matrices

As a first qualitative comparison between the analytical
model and the truncated Wigner approximation that takes
into account all interactions contained in Eq. (6), we show
the correlation matrices between the phase-space variables
ϕ+ and π+ in Figure 8 for the five wells under scrutiny at
the three different times. The correlation matrix is given
by the normalized covariances

Cjj′

+ =
γjj

′

+√
γjj+ γj

′j′

+

, (128)

thereby rendering all entries to lie between -1 and 1. We
want to emphasize that the analytical model is fully char-
acterized by the observables in Eq. (128), reducing the
complexity of extracting entropies to an extraction of
its second moments. In contrast to that, the full Hamil-
tonian Eq. (6) contains more complex, i.e. higher-order
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Figure 8. Time evolution of the correlation matrices (128) generated by the analytic Hamiltonian (57) (left column) and the
TWA simulation (middle column) together with their difference (right column).

terms, meaning that observables that contain higher-order
fluctuations are required to fully characterize entropies.

Since the initial polar state (t = 0) in (16) is uncorre-
lated, its correlation matrix is the identity matrix. Dur-
ing the evolution, correlations between different wells are
building up through the transport of atoms permitted by
the tunnel Hamiltonian given in Eq. (8). Simultaneously,
correlations between ϕj+ and πj

+ within one well are gener-
ated through the internal dynamics in Eq. (7), leading to
the complex structures visible in Figure 8. Remarkably,

the analytical model captures most of the features visible
in the normalized second-order correlators for the three
times considered, with the absolute value of deviations
not exceeding 1% (see right column).

Note, however, that this analysis does not permit any
statements about the agreement of higher-order moments.
These can in principle deviate from a Gaussian prediction,
due to the presence of fourth-order terms in Eq. (6).
Crucially, we therefore do not assume the distribution to
obey a specific functional form in our subsequent analysis
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of sample data generated by the means of TWA with
regards to entropic quantities.

The good agreement between the two models leads us
to conclude that the analytical model is a justified ap-
proximation in regimes where the contribution of fourth-
order terms to the full Hamiltonian Eq. (6) is negligible.
These regimes are characterized by small values of c0,
i.e. Lithium-7, and large values of q, such that the unde-
pleted pump approximation (see section III A) is justified.
Furthermore, we expect the approximations made by the
analytical model to be valid, especially for early times,
which is why we restrict ourselves to times up to t = 1.
An extended discussion for later times can be found in
section VII C and in [64].

B. Observation of the area law

Having gained a qualitative understanding of the dy-
namics generated by the Hamiltonian (6), we now turn our
attention to the dynamics of entropic quantities associated
with the quantum state’s phase space and measurement
distributions. In this context, we want to discuss our main
result Figure 9, which demonstrates the numerical obser-
vation of the area law from experimentally extractable
quantities without assuming a specific functional form
of the quantum state. Crucially, we only require 104

samples to estimate entropies of up to ten-dimensional
distributions, which we deem experimentally feasible.

In the following, we consider the three distributions of
interest, namely

• the Wigner W -distribution, introduced in Eq. (38)
which has mainly theoretical interest due to its
connection to quantum entropies in the early-time
regime and its restricted accessibility,

• its marginal distributions, introduced in Eq. (40),
motivated by the fact that they allow for direct ex-
perimental extraction as described in section II E 1,

• and finally the Husimi Q-distribution, introduced
in Eq. (44) and directly measurable in experiments
using the readout techniques explored in [40, 41]
and described in section II E 2,

for subsystem A of varying size M , such that B con-
tains 5−M wells (see Figure 5). For the aforementioned
distributions, we compute the absolute and subtracted
entropies as well as the mutual information for the evolu-
tion times t = 0.5, t = 0.75, and t = 1. We compare the
numerical TWA data (open markers) to the analytical
data (solid markers) and fit (finite-size) area laws (solid
lines).

We first discuss the absolute entropies shown in the first
row of Figure 9, i.e. a), b), c). All entropies show similar
linear behavior and the area law is masked behind the
leading order terms. These leading order contributions
are subtracted in Figure 9 d), e) and f), as discussed in
section V B 2, unveiling the area law in form of the typical

logarithmic growth in all three types of distributions.
Finally, the finite-size area law becomes apparent in all
three classical mutual informations, see Figure 9 g) - i).

At this point, let us emphasize the challenges associated
with the task of estimating the subtracted entropies: We
are interested in the estimation of entropies of up to ten-
dimensional distributions at an accuracy that is between
one and two orders of magnitude higher than the signal
itself (consider e.g. ∆S(WA

+ )/S(WA
+ ) ≈ 0.03 for M = 5

wells at t = 0.5). From this perspective, we consider
the agreement between analytical and TWA results as
remarkable.

This concludes the presentation of our main results. In
the following, we carry out ablative studies to demon-
strate the genericness of our experimental proposal. In
particular, we explore later times (section VIIC), where
the distributions show stronger non-Gaussian features,
consider imperfectly prepared, thermal initial states (sec-
tion VIID) and investigate the influence of boundary
effects by shifting the position of the five wells within
the total system of N = 20 wells (section VIIE). We
also reduce the total system to N = 5 wells to hunt
the finite-size area law for the subtracted entropies (sec-
tion VII F). Finally, we aim to shed light on the sample
complexity associated with these tasks when utilizing
the kNN-estimator (section VII G) before considering the
effect of periodic boundary conditions (section VII H).

C. Distributions: Gaussian versus non-Gaussian

To test the influence of non-Gaussian features of the
distribution we consider the parameters q = 2 and J = 0.5
at later times, namely t = 2, t = 3, and t = 4. We expect
stronger non-Gaussian features to emerge for smaller val-
ues of q, as we cross the polar to easy-plane ferromagnet
phase transition [68], due to the (less detuned) squeezing
generated by c1. Similar to Figure 8, we plot the discrep-
ancies between the correlation matrices obtained with the
analytical model and TWA for the three different times.
Figure 10 shows the differences now become more pro-
nounced, growing as large as 0.1, more than an order of
magnitude larger compared to Figure 8. We particularly
expect the analytical model to mainly give reliable results
for the early time dynamics, so a disparity between the
two is expected.

To gain more intuition about the characteristics of the
distribution at those times, we show samples (ϕ1+, π

1
+)

of the Wigner W -distribution of the first well in the
second row of Figure 10, with all other degrees of freedom
integrated out. While the local distribution at t = 2 still
seems relatively Gaussian, an analysis of its 4th-moments
reveals that Gaussianity is already strongly violated, with
Isserlis’ theorem [118] showing relative deviations as large
as 4%. For t = 3 (t = 4) these deviations grow as
large as 17% (60%). Hence, also the entropic quantities
show stronger deviations. In the case of the Wigner W -
distribution in Figure 10 g) substantial differences occur
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Figure 9. The upper, middle, and lower rows correspond to absolute entropies, subtracted entropies, and mutual information,
respectively, while the left, middle, and right columns show Wigner, marginal, and Wehrl quantities. Solid (open) markers
correspond to analytical (TWA) data, while solid lines depict fitted curves. The fit function for d) - f) is the area law (85), with
an additional extensive term for a) - c). For g) - i), we fit the finite-size area law (87).

for more wells and late times, as the high dimensionality as
well as the strong non-Gaussian features make it difficult
for the estimator to reliably estimate the entropies using
the 104 available samples. The mutual information shown
in Figure 10 h) and i), show strong deviations between
TWA and the analytical model, although a quantitative
comparison does not seem meaningful given the strong
non-Gaussian features shown in Figure 10 d) - f). A
more informative observation is that the estimates of
the mutual informations still change significantly upon
increasing the sample size by one order of magnitude,
albeit not changing their functional form. In the case
of the Wigner mutual information, this underestimation
is around 15% with respect to the currently given data,
while it is around 7% for the Wehrl mutual information.
We attribute this difference to the increased smoothness
of the Husimi Q-distribution compared to the Wigner
W -distribution.

D. Initial state: vacuum versus thermal

Up to now, our discussion has not been concerned with
experimental imperfections such as thermal noise. We
here want to address this issue by considering thermal
initial states that undergo the unitary evolution. These
initial states are characterized by a temperature scale β
that we choose to be on the order of a tenth of the system
size, such that β = 2. The thermal fluctuations alter the
computations of the dynamics by adding thermal noise
to the quantum one-half, see Eqs. (53) and (75).

As expected, the subtracted Wigner entropy ∆S(WA
+ )

rather features an extensive volume law than an area law,
as can be seen in Figure 11 a). When computing both
the Wigner and Wehrl mutual information in Figure 11
b) and c), we observe the finite-size area law in both
instances, just as in Figure 9. The Wigner mutual infor-
mation shows the same quantitative behavior observed
in Figure 9 g), since the contributions due to the initial
thermal noise cancel out. In contrast, the Wehrl mutual
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Figure 10. The differences between the analytical model and TWA in the correlation matrices are shown in a), b) and c) for
the three times t = 1, t = 2 and t = 3, respectively, and q = 2, J = 0.5. The discrepancies grow as large as 0.1, such that we can
no longer meaningfully speak about agreement between the methods. The non-Gaussian form of the underlying phase-space
distributions is illustrated in d) - f) in terms of sample points (ϕ1

+, π
1
+) of the first well. The corresponding subtracted Wigner

entropy, Wigner mutual information, and Wehrl mutual information are shown in g) - i), for the analytical model (solid markers,
only up to t = 2) as well as TWA (open markers). We observe the area law for the former and the finite-size area law for the
two latter quantities, also in the non-Gaussian regime.

information, is increased compared to Figure 9 i). We
attribute this to the inequality (110) becoming tight in
the infinite temperature limit [102] (this is also evident
from (67): the additional term (1/2)1 becomes irrelevant
in this case). Importantly, the finite-size area law (87)
describes the measurable and noisy data well, rendering
the proposal robust against thermal noise. Hence, the
considered measurement distributions indeed describe a

suited setup to observe the area law experimentally.

E. Subsystem position: center vs. outward

In this subsection, we will choose the position of the
subsystem within the bigger system to be wells M = 1−5
and M = 3− 7, to investigate how the boundary affects
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Figure 11. Entropic curves for a thermal initial state with T = 1/2. The fits correspond to the area law in a) and the finite-size
area law in b) and c), respectively.
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Figure 12. Entropic curves for the wells M = 1− 5 (upper row) and M = 3− 7 (lower row), i.e. when picking five wells out
of N = 20 and partitioning these five wells into two subsystems as shown in Figure 5. Near the boundary, the area laws are
strongly distorted by boundary effects, illustrated by the interpolated curves in a) - c). Further away from the boundary,
boundary effects become only relevant when the boundary information had enough time to affect local quantities (note that all
curves at t = 1 are interpolations), see e.g. the asymmetry of the mutual informations in e) and f).

the area law.

After computing the subtracted Wigner entropy as well
as the Wigner and Wehrl mutual informations for the two
subsystem positions, we find the data to be well described
by the area law for those instances where boundary effects
are irrelevant. The upper row in Figure 12 shows that the
subsystem 1-5 is strongly affected by the boundary on the
left, and no area law can be observed. In contrast, the data
shown in the lower for the subsystem 3-7 is captured well
by the fitted curves, albeit the mutual informations are
showing some slight asymmetry for t = 1.0, i.e. when the
boundary information has had sufficient time to propagate
to the considered subsystem.

F. System size: large vs. small

In contrast to the previous discussion, we now restrict
the total system to N = 5 wells such that the evolution
within the considered region is unitary. The small system
size implies that the dynamics is dominated by boundary
effects and the regular logarithmic area law is replaced by
the finite-size area law also in the case of the subtracted
classical entropies. More precisely, since the density ma-
trix of the five-well system remains pure throughout the
evolution, the subtracted Wigner entropy returns to the
value zero once the entire system is considered, as shown
in Figure 13 a). The reason why this is not captured with
the TWA data is due to an insufficient amount of sam-
ples. This is in contrast with local distributions, which
are likely to be smooth (since local states are likely to
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Figure 13. When the total system size equals the subsystem size, i.e. when N = 5, the area law for the subtracted classical
entropies translates into a finite-size area law reflecting the purity of the global state. We remark the underperformance of the
entropy estimator for the subtracted Wigner entropies in a) and that the build-up of the finite-size area law only occurs after a
transient phase around t = 0.5. In both cases, the dashed curves correspond to interpolations, which we show for illustrative
purposes.
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Figure 14. The feasibility of the entropy estimator is checked by varying sample size, where dashed, solid, and dotted lines
correspond to 103, 104, and 105 samples. All curves are fits, the only exception being the 103 curve at t = 0.5 in c). The
convergence between 104 and 105 samples becomes visible especially for the subtracted Wigner entropy in a) and the Wehrl
mutual information in c).

be mixed), and hence require fewer samples to be recon-
structed adequately. Upon increasing the sample number
to 105, the subtracted Wigner entropy is much closer to
zero for M = 5 wells (0.00, 0.06, and 0.18 instead of 0.06,
0.20, and 0.34 for t = 0.50, t = 0.75 and t = 1.00). The
Wigner and Wehrl mutual information both feature the
area law, but only starting at later times t ≥ 0.75.

G. Sample size: small versus large

Thus far, we estimated entropies of the distributions
generated through TWA using 104 samples, without ques-
tioning whether the kNN estimator had converged for
the given sample set. Similar to the benchmarks pre-
sented in section VI A, we want to better understand the
sample complexity of the entropy estimation using the
kNN-estimator. To this end, we carry out the estimations
of the subtracted Wigner entropy, the Wigner mutual
information and the Wehrl mutual information in Fig-
ure 14 a), b) and c), respectively, for 103, 104 and 105

samples, indicated through dashed, solid and dotted lines
respectively.

The subtracted Wigner entropy seems to be converged

for all times when using 104 samples, as no significant
differences exist to the data points that were obtained
using 105 samples. The biggest visual differences exist
for the Wigner mutual information for late times, which
however mainly stem from the different scale between
Figure 14 a) and b). For the experimentally relevant
Wehrl mutual information, we observe convergence for 104
samples for almost all times, with an even further reduced
scale compared to b), rendering a potential experimental
implementation feasible.

H. Boundary conditions: open versus periodic

While experimental setups will typically use open
boundary conditions, a question of theoretical interest
is whether the presented framework is sensitive to the
type of boundaries that are employed. Therefore, we
modify the tunnel Hamiltonian (8) to also allow atoms
to jump from the last to the first well and show the same
quantities as previously in Figure 15. Also in this setting,
we find that the area law persists. More precisely, the
curves resemble those obtained for open boundary con-
ditions (Figure 9), since the the considered subsystem is
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Figure 15. Entropic curves for periodic boundary conditions. As boundary effects are negligible for the subsystem under
consideration, all curves agree with those in Figure 9 to a good extent.

sufficiently far away from the total system’s boundaries.

VIII. DISCUSSION

We have demonstrated the experimental feasibility of
observing the area law in the subtracted classical entropies
and mutual informations of measurable distributions in a
multi-well spin-1 Bose-Einstein condensate using numeri-
cal techniques. As a testbed, we chose a system consisting
of 20 wells that feature internal dynamics as well as tunnel-
ing among wells and read out two observables that obey a
canonical commutation relation for early times. Focusing
on a subregion of five wells, we find (finite-size) area laws
in the Wigner distribution, its marginals as well as the
Husimi-Q distribution, where the latter two lend them-
selves to experimental investigation using independent
subsequent measurements [119] and a readout technique
proposed in [40, 41], respectively. We have shown that
all types of subtracted entropies as well as mutual infor-
mations are quantities worth studying in order to observe
the area law and substantiated its robustness with re-
spect to changing various parameters of the experimental
setup from section VII C to section VII H. The discussed
area laws are observed dynamically, meaning that the
underlying distributions are generated through quenches
rather than ground-state preparations, simplifying the ex-
perimental requirements. The proposed procedure makes
no assumptions regarding the functional form of the dis-
tribution under scrutiny, by estimating its differential
entropy using a suited k-nearest-neighbor estimator to
locally estimate the density at each sample point. In
section VII G we demonstrated that for the estimator to
converge we require on the order of 104 samples, which
we deem experimentally feasible.

We simulated the system’s dynamics using an analytical
model derived from the full Hamiltonian and TWA. While
the analytical model only features quadratic terms corre-
sponding to an integrable system, the dynamics predicted
by the TWA are more intricate and lead to late-time
equilibration due to finite particle number and the non-
integrable nature of the mean-field equations of motion.
We accordingly found agreement between the two meth-

ods at early times and found pronounced differences at
times t ≥ 2. Particularly for parameter choices that fea-
ture stronger non-Gaussian features, such as a lower value
of q violating the undepleted pump approximation more
strongly, we observed greater disparities between TWA
and the analytical model.

In the non-Gaussian regime, we found the kNN-
estimator to require more samples to reach convergence,
hinting at the difficulty of estimating entropies of ten-
dimensional distributions while being agnostic to their
functional form. As the kNN estimator is asymptotically
unbiased, it is always possible to increase or decrease the
sample size, to check whether the estimator has converged.
We wish to state that while the kNN-estimator has a great
appeal due to the guarantee of converging to the true
entropy using sufficiently many samples, the estimation
of differential entropies is a long-standing challenge and
various ideas have been put forward to tackle the task
more efficiently [49–63, 103, 105–117]. Of particular inter-
est is the variational approach, which consists of adapting
the parameters of a defined function by maximizing the
likelihood of the observed samples. While this approach
can work well, it is i) generally difficult to build a class of
functions that includes the observed density distribution
and ii) challenging to converge to the global minimum,
rendering the approach uncontrolled. However, future
research may aim to build functional forms that are di-
rected at estimating the densities generated by specific
classes of Hamiltonians, for which one may hope to arrive
at more efficient estimators. Nevertheless, this would
come at the expense of losing generality, which may be
a significant drawback when applying the methodology
to an experiment that suffers from undesired noise effects
that one cannot account for analytically.

Having established the presence of quantum features
in entropies of classical distributions, one can envision
various ways forward. It will be interesting to further
investigate which other platforms lend themselves to the
herein-discussed approach and obey the area law. Par-
ticularly systems that are fully described by the set of
observables being read out and systems with other types
of degrees of freedom that are constrained by algebras
different from canonical commutation relations are of
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interest. For instance, one may consider the hitherto dis-
cussed spin-1 BEC in the pseudo-spin 1/2 configuration,
in which case three spin operators forming an su(2) alge-
bra constitute a complete representation of the system’s
state with the phase space distribution being represented
on a sphere [76, 119]. But also non-atomic setups, such
as integrated photonic waveguides may present promising
candidate systems. We emphasize that the herein pre-
sented approach and analyses are applicable to any setup
capable of preparing or dynamically generating an area
law.

It will be equally interesting to see which other quan-
tum phenomena can be accessed using classical entropies
of measurement distributions. In this context, let us also
highlight the two accompanying publications that study
thermalization and the long time limit of the herein dis-
cussed system through the lens of classical entropies [64]
and a work that is concerned with showing the generality
of the area law for classical entropies [24].
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Appendix A: Operator identities for the undepleted
pump regime

We list a few identities to reexpress the Hamiltonian
(20) in terms of the relative modes as well as the canonical
variables. For the step from the local modes to the relative
modes we invert (23), which yields

aj
1 =

1√
2

(
aj
+ + aj

−

)
, aj

−1 =
1√
2

(
aj
+ − aj

−

)
, (A1)

leading to the identities
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(A2)

For the step from relative modes operators to canonical
operators we invert (25), which gives

aj
± =

1√
2

(
ϕj

± + iπj
±

)
, (A3)

implying the identities

N j
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2
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