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Abstract: We consider the massless Sine–Gordon model in de Sitter spacetime, in the
regime β2 < 4π and using the framework of perturbative algebraic quantum field theory. We
show that a Fock space representation exists for the free massless field, but that the natural
one-parameter family of vacuum-like states breaks the de Sitter boost symmetries. We prove
convergence of the perturbative series for the S matrix in this representation, and construct
the interacting Haag–Kastler net of local algebras from the relative S matrices. We show
that the net fulfills isotony, locality and de Sitter covariance (in the algebraic adiabatic
limit), even though the states that we consider are not invariant. We furthermore prove
convergence of the perturbative series for the interacting field and the vertex operators,
and verify that the interacting equation of motion holds.
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1 Introduction

The massless Sine–Gordon model is a two-dimensional interacting quantum field theory.
Its classical action (in a curved spacetime) is given by

S =
∫ [

−1
2∇µϕ∇µϕ + 2g cos(βϕ)

]√
−g d2x , (1.1)

where β > 0 is the coupling constant and g is the interaction cutoff. The quantization of
this model has been treated in various approaches, including the framework of Euclidean
Constructive Quantum Field Theory, where convergence of Euclidean correlation functions
of certain interacting fields has been shown for various ranges of the coupling constant both
in finite and infinite volume, see references in [1]. Since the classical equation of motion

∇2ϕ − 2βg sin(βϕ) = 0 (1.2)
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admits an infinite number of conserved charges in flat spacetime [2], the classical model
is integrable and one expects that integrability also holds in the quantum theory, namely
that there exists an infinite number of conserved currents [3–5]. The corresponding S ma-
trix has been conjectured in the form factor programme [6–8]. In this approach, Wightman
n-point functions of interacting pointlike local fields are computed given the input of the
two-particle S matrix, which for an integrable model characterizes the particle interac-
tion completely. On the other hand, in the Algebraic Quantum Field Theory (AQFT)
framework, where a model is characterized in terms of the C⋆-algebras of local observables
obeying the Haag–Kastler axioms, first steps towards the construction of the massless Sine-
Gordon model were obtained by using observables localized in infinite extended regions
called wedges [9]. In this approach the passage to strictly local observables is obtained by
abstract arguments of Tomita–Takesaki modular theory, though this step is not yet under
control for the Sine–Gordon model. The conjectured S matrix of the massless Sine–Gordon
model has a very rich particle spectrum, including solitons, anti-solitons, and their finitely
many bound states called breathers. However, in the rigorous AQFT constructions there
is no proof of the factorization of the S matrix into products of two-particle S matrices,
compare Ref. [10] where one finds a proof of the convergence of the perturbative S matrix
with IR cutoff, but its factorization has not been proven. The Sine–Gordon model is also
conjectured to be equivalent to the massive Thirring model (Coleman’s equivalence [11]),
where the solitons and anti-solitons in the massless Sine-Gordon model seem to be related
to certain fermionic solutions in the massive Thirring model. This equivalence has been
proven in the massive and massless cases for β2 < 4π and in finite volume [12, 13], and
for β2 = 4π in finite [14] and infinite volume [15]. The massless Sine-Gordon model has
also been treated in the context of stochastic quantisation and its relation to the Euclidean
correlation functions in the quantum theory has been investigated [16–19].

Here, we focus on the perturbative AQFT framework, which is reviewed for example in
Ref. [20]. In particular, we use the Bogoliubov formula to define interacting field operators.
This approach combines methods from perturbation theory and the framework of AQFT,
which means in particular that the construction of the ∗-algebra of local observables is
achieved using perturbative methods. The main challenges of this approach are to show
convergence of the formal perturbation series of the local observables, and to choose a
state to represent the observable algebra on a Hilbert space via the analogue of the GNS
construction for ∗-algebras, see for example [21, Thm. 1]. In the case of the massless Sine–
Gordon model results have been achieved in both these directions. Indeed, in Ref. [10] the
convergence of the perturbation series of the S-matrix with fixed interaction cutoff, which is
given as a formal power series in g (or ℏ), has been shown in the regime β2 < 4π. The same
proof of convergence has been achieved for the derivative of the interacting field ∂µϕ and
of the vertex operators V±β = e±iβϕ. Since the vacuum state of the free scalar field in two
dimensions is affected by infrared (IR) problems as the field becomes massless, these results
were obtained with a fixed IR cutoff, where the positivity of the state is only guaranteed
when smearing with test functions with vanishing mean. In later work [22], a new state (the
Dereziński–Meissner state) has been introduced, which is a proper positive Hadamard state
without IR cutoff for the free massless scalar field, and its equivalence with the Schubert
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construction has been shown. In this representation of the observable algebra, the authors
could then show that the S matrix is unitary and satisfies Bogoliubov’s causal factorization
condition. Using this result, they constructed a family of unitary operators, namely the
relative S-matrices, which generate the local algebras of observables of the model. Lastly,
the equivalence of the Sine–Gordon theory with the massive Thirring model (Coleman’s
equivalence) was discussed in the pAQFT framework.

In more recent work [1, 23], we showed in the pAQFT framework the convergence of
the renormalized expectation values of ∂µϕ∂νϕ and of the stress-energy tensor Tµν , in a
large class of quasi-free Hadamard states regularized with IR and UV cutoffs. We showed
that convergence holds after removal of the IR and UV cutoffs but without removal of the
adiabatic interaction cutoff g, and also in the regime β2 < 4π.

The goal of the present work is to extend the proof of convergence of the S matrix,
of the vertex operators and of the interacting field, as well as the contruction of the local
algebras, to a curved spacetime, namely the two-dimensional de Sitter spacetime. To the
best of our knowledge, our result represents one of the few interacting quantum field theories
established on a curved spacetime after the P (ϕ)2-model on de Sitter spacetime constructed
by Figari, Höegh-Krohn and Nappi [24], which was later supplemented with new non-
perturbative results and mathematical insights by Barata, Jäkel and Mund [25]. (Four-
dimensional) de Sitter spacetime is important as a model for both the primordial and the
present accelerated expansion of our universe. Moreover, it possesses the maximum number
of symmetries (three in two dimensions), and is thus one of the simplest curved spacetimes.
For this reason, Ref. [26] recently studied the leading perturbative correction coming from
the Sine–Gordon interaction in de Sitter spacetime, but our work represents the first full
construction of this model.

Using the pAQFT framework, we construct the Sine-Gordon model as a perturbation of
the free massless scalar field. As compared to the construction in Minkowski spacetime, the
construction in de Sitter spacetime has the following differences: Since on de Sitter spatial
sections are compact, there is no infrared divergence in the vacuum two-point function of the
massless scalar field, and one can work with the field itself rather than its derivative. This
also allows us to use the ordinary Fock space representation of the massless field in terms of
creation and annihilation operators, rather than the Dereziński–Meissner representation or
an analogue of it. However, even though we consider a one-parameter family of vacuum-like
states (in the sense that they are annihilated by all the annihilation operators in the mode
expansion of the massless field), it turns out that all these states break de Sitter invariance.

The remainder of this work is organized as follows: we introduce the mode expansion
of the massless field and the family of states that we consider in Sec. 2. In Sec. 3 we show
convergence of the Bogoliubov S matrix strongly on a dense domain of vectors generated
from the above family, without removal of the interaction cutoff, and show that it is uni-
tary on this domain. Starting from this, we construct the relative S matrix fulfilling the
property of causal factorization, and we use this to generate an Haag-Kastler net satisfying
the properties of isotony, locality and covariance. This is possible in spite of the interaction
cutoff by taking the so called algebraic adiabatic limit, namely by considering the equiva-
lence classes of relative S-matrices where the interaction cutoff (i.e., the smearing function)

– 3 –



is constant in the localization region. In other words, though the family of states are not
invariant under the de Sitter symmetries, the net still retains the covariance property. Fi-
nally, we show convergence of the perturbative series of the interacting field given by the
Bogoliubov formula on the same dense domain as above.

2 Free massless scalar field on de Sitter

2.1 The de Sitter spacetime

The n-dimensional de Sitter spacetime can be embedded in an (n + 1)-dimensional Min-
kowski spacetime with Cartesian coordinates XA as the hyperboloid

ηABXAXB = H−2 , (2.1)

where H is the Hubble rate or inverse de Sitter radius. In this form, it is easy to see
that the Lorentz symmetries of the embedding Minkowski become symmetries of de Sitter
when restricted to the hyperboloid. Namely, the generators MAB = XA∂XB

− XB∂XA
are

tangent to the hyperboloid, since they leave the condition (2.1) invariant. It thus follows
that de Sitter is a maximally symmetric spacetime with n(n + 1)/2 Killing vectors, which
are the restrictions of MAB to the hyperboloid.

There exist various intrinsic coordinate systems which cover all or part of the full
de Sitter spacetime. For our purposes, it is useful to work in coordinates that cover the whole
manifold, and which make manifest the fact that de Sitter is conformally flat. Restricting
to n = 2 dimensions, these are obtained by taking

X0 = −cot(τ)
H

, X1 = cos(θ)
H sin(τ) , X2 = sin(θ)

H sin(τ) (2.2)

with θ ∈ [0, 2π) and τ ∈ (0, π). Clearly they fulfill the condition (2.1), and the induced
de Sitter metric gµν is obtained from

ds2 = ηAB dXA dXB = − dτ2 + dθ2

H2 sin2(τ)
= gµν dxµ dxν , (2.3)

where xµ = (τ, θ) are the intrinsic coordinates of de Sitter spacetime.
The rotational symmetry θ → θ + a is generated by the Killing vector

ξrot ≡ ξµ
rot∂µ = ∂θ , (2.4)

which is the restriction of M12 to the hyperboloid. To compute the restriction, we invert
the embedding (2.2) to obtain

τ = arccot(−HX0) , θ = arctan
(

X2

X1

)
, (2.5)

and then use the chain rule. While the inversion (2.5) itself is not unique, evaluating the
result on the hyperboloid gives a unique and well-defined tangent vector in de Sitter. The
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other two (boost) symmetries are generated by M01 and M02, whose restriction gives the
Killing vectors

ξboost,1 ≡ ξµ
boost,1∂µ = sin(τ) cos(θ)∂τ + cos(τ) sin(θ)∂θ , (2.6a)

ξboost,2 ≡ ξµ
boost,2∂µ = sin(τ) sin(θ)∂τ − cos(τ) cos(θ)∂θ . (2.6b)

Unlike for rotations, the finite transformations for boosts have a complicated expression,
which we derive in appendix A. We obtain

eaξrot+bξboost,1+cξboost,2f(τ, θ) = f(τabc, θabc) (2.7)

with τabc and θabc given by (A.5).
Finally, a straightforward calculation shows that the Killing vectors they form a rep-

resentation of the de Sitter symmetry algebra so(2, 1):

[ξrot, ξboost,1] = −ξboost,2 , [ξrot, ξboost,2] = ξboost,1 , [ξboost,1, ξboost,2] = ξrot . (2.8)

2.2 Free massless scalar field

On the de Sitter spacetime, we now consider a free massless, minimally coupled scalar field
ϕ with action

S = −1
2

∫
∇µϕ∇µϕ

√
−g d2x = 1

2

∫ [
(∂τ ϕ)2 − (∂θϕ)2

]
dτ dθ . (2.9)

We see that the action is the same as for a massless scalar field in flat space, i.e., ϕ does
not see the curvature of the de Sitter spacetime. This arises from the fact that in two
dimensions minimal coupling to the Ricci scalar is equivalent to conformal coupling, and
hence the action is (classically) conformally invariant.

The equation of motion that follows from the action (2.9) reads

∂2ϕ ≡
(
−∂2

τ + ∂2
θ

)
ϕ = 0 , (2.10)

and one verifies its invariance under the de Sitter symmetries: we have [ξrot, ∂2] = 0,
[ξboost,1, ∂2] = −2 cos(τ) cos(θ)∂2 and [ξboost,2, ∂2] = −2 cos(τ) sin(θ)∂2, such that solutions
are mapped into solutions by the action of the Killing vectors. We can thus decompose
the solution into eigenmodes of the various Killing vectors. However, since they do not
commute (2.8), these decompositions are not orthogonal, and we have to choose a maximal
commuting set to obtain an orthogonal decomposition. The simplest such set is given by
the single Killing vector ξrot, whose eigenmodes and eigenvalues depend on the boundary
conditions that one imposes on the field ϕ. Since two-dimensional de Sitter spacetime is not
simply connected, it is possible to impose non-trivial boundary conditions which lead to
interesting effects [27, 28]. Here we focus on the simplest case, namely periodic boundary
conditions ϕ(τ, θ + 2π) = ϕ(τ, θ), such that the eigenmodes of ξrot are proportional to einθ

with n ∈ Z.
The solutions of the equation of motion (2.10) corresponding to the eigenvalue in of

ξrot are then given by

ϕn(τ, θ) =
[
c1(n)einτ + c2(n)e−inτ

]
einθ (2.11)
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for n ̸= 0, where the ci are constants. However, for n = 0 we have the solution

ϕ0(τ, θ) = c3 + c4τ , (2.12)

the so-called zero mode. In contrast to the flat Minkowski spacetime, where the massless
scalar field has an infrared divergence and only derivatives of the field exist, no divergence
exists for global de Sitter spacetime (which has compact spatial sections), and the field
itself is well-defined. However, we will see later that the zero mode (2.12) is responsible for
the breaking of de Sitter invariance in the two-point function.

An inner product on a hypersurface of constant τ is given by

⟨f, g⟩ ≡ i
∫ [

f∗(τ, θ)∂τ g(τ, θ) − ∂τ f∗(τ, θ)g(τ, θ)
]

dθ = −⟨f∗, g∗⟩ , (2.13)

and is independent of τ if f and g are solutions of the equation of motion (2.10). We easily
compute that modes for different n are orthogonal:

⟨ϕm, ϕn⟩ = 4πn δm,n

[
|c2(n)|2 − |c1(n)|2

]
, (2.14a)

⟨ϕ0, ϕn⟩ = 0 , (2.14b)
⟨ϕ0, ϕ0⟩ = 2πi(c∗

3c4 − c3c∗
4) , (2.14c)

where we used that
∫

eikθ dθ = 2πδk,0.

2.3 A one-parameter family of states

Given the solutions (2.11) and (2.12) for the mode functions and their inner products (2.14),
we can now proceed to quantize the scalar field. The quantized field ϕ̂ is expanded in terms
of creation and annihilation operators â†

n and ân according to

ϕ̂(τ, θ) =
∑

n

[
ânϕn(τ, θ) + â†

nϕ∗
n(τ, θ)

]
, (2.15)

and the “vacuum” state |0⟩ corresponding to a specific choice of the mode functions is the
one satisfying ân|0⟩ = 0 for all n. The usual positive-frequency mode functions are obtained
by choosing c1(n) = Θ(−n)/

√
4π|n| and c2(n) = Θ(n)/

√
4π|n|; with this choice, the inner

product (2.14a) is positive and normalized to 1.
For the zero mode, however, there is no canonical choice. Zero modes appear also for

massless, minimally coupled scalar fields in higher-dimensional de Sitter spacetime [29, 30],
and there exists a family of solutions depending on a parameter α > 0 that preserves
covariance under time reversals. This family is given by the choice c3 = α/2 + i/(4α),
c4 = −i/(2πα), and then also the inner product (2.14c) is positive and normalized to 1.
Let us denote the corresponding state by |0α⟩.

Since the set of mode functions is complete and orthonormal with these choices, the
usual commutation relations

[ân, â†
m] = δm,n , [ân, âm] = 0 = [â†

n, â†
m] (2.16)
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give the canonical equal-time ones

[ϕ̂(τ, θ), π̂(τ, θ′)] = iδ(θ − θ′) (2.17)

for the (quantized) field and its conjugate momentum π ≡ ∂τ ϕ. For the two-point function,
we compute

iG+
α (τ, θ, τ ′, θ′) ≡ ⟨0α|ϕ̂(τ, θ)ϕ̂(τ ′, θ′)|0α⟩ =

∑
n

ϕn(τ, θ)ϕ∗
n(τ ′, θ′)

= 1
4π2α2

[
πα2 − i

(
τ − π

2

)][
πα2 + i

(
τ ′ − π

2

)]
+ lim

ϵ→0+

∞∑
n=1

e−in(τ−τ ′)−nϵ

2πn
cos[n(θ − θ′)]

= α2

4 − i
4π

(
τ − τ ′)+ 1

4π2α2

(
τ − π

2

)(
τ ′ − π

2

)
− 1

4π
lim

ϵ→0+

[
ln
(
1 − e−i(τ−τ ′+θ−θ′−iϵ)

)
+ ln

(
1 − e−i(τ−τ ′−θ+θ′−iϵ)

)]
.

(2.18)

where we inserted a convergence factor e−nϵ in the sum over n. We can now verify covari-
ance under time reversals, which are the transformations τ → π − τ [29, 30]. Since time
reversal is implemented by an anti-unitary operator, we require iG+

α (π − τ, θ, π − τ ′, θ′) =[
iG+

α (τ, θ, τ ′, θ′)
]∗, which is seen to hold. Moreover, we compute

lim
ϵ→0+

[
ln
(
1 − e−i(τ−τ ′+θ−θ′−iϵ)

)
+ ln

(
1 − e−i(τ−τ ′−θ+θ′−iϵ)

)]
+ i
(
τ − τ ′)

= lim
ϵ→0+

ln
[
2 cos(τ − τ ′ − iϵ) − 2 cos(θ − θ′)

]
= ln

∣∣2 cos(τ − τ ′) − 2 cos(θ − θ′)
∣∣+ iπΘ

[
cos(θ − θ′) − cos(τ − τ ′)

]
sgn sin(τ − τ ′) ,

(2.19)

where we used the distributional identity (valid for z ∈ R)

lim
ϵ→0+

ln(z + iaϵ) = ln |z| + iπ sgn(a)Θ(−z) . (2.20)

While the state |0α⟩ is invariant under rotations (essentially by construction), such
that [ξrot(τ, θ) + ξrot(τ ′, θ′)]G+

α (τ, θ, τ ′, θ′) = 0, it is not invariant under boosts. We compute
explicitly[

ξboost,1(τ, θ) + ξboost,1(τ ′, θ′)
]
G+

α (τ, θ, τ ′, θ′) = i2πα2 cos(τ) + (π − 2τ ′) sin(τ)
8π2α2 cos(θ)

+ i2πα2 cos(τ ′) + (π − 2τ) sin(τ ′)
8π2α2 cos(θ′) ,

(2.21)

and a similar expression for ξboost,2. Even though the result simplifies in the limit α → ∞,
it does not vanish. On the other hand, expectation values of derivatives of the field are
covariant in the limit α → ∞, and we have explicitly[

Lξboost,1(τ,θ) + Lξboost,1(τ ′,θ′)
]
∂µ∂′

νG+
α (τ, θ, τ ′, θ′)

= i
4π2α2

(
−2 cos(τ) cos(θ) sin(τ ′) sin(θ′)

sin(τ) sin(θ) 0

)
µν

→ 0 (α → ∞) ,
(2.22)
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where Lξ denotes the Lie derivative with respect to the vector field ξ, and a similar ex-
pression for ξboost,2.

The time-ordered two-point function or Feynman propagator GF
α is obtained from the

two-point function (2.18) according to

iGF
α(τ, θ, τ ′, θ′) ≡ Θ(τ − τ ′)iG+

α (τ, θ, τ ′, θ′) + Θ(τ ′ − τ)iG+
α (τ ′, θ′, τ, θ)

= α2

4 − i
4π

∣∣τ − τ ′∣∣+ 1
4π2α2

(
τ − π

2

)(
τ ′ − π

2

)
− 1

4π
lim

ϵ→0+

[
ln
(
1 − e−i(|τ−τ ′|+θ−θ′−iϵ)

)
+ ln

(
1 − e−i(|τ−τ ′|−θ+θ′−iϵ)

)]
.

(2.23)

and we see that time-ordering amounts to replacing τ − τ ′ → |τ − τ ′|. Analogously, the
anti-time-ordered two-point function or Dyson propagator GD

α is obtained by replacing
τ − τ ′ → −|τ − τ ′|.

2.4 Minkowski limit

For this limit, we have to pass to new coordinates t and x according to [31, 32]

τ = π + arctan
(
Hx − e−Ht

)
− arctan

(
Hx + e−Ht

)
, (2.24a)

θ = π − arctan
(
Hx − e−Ht

)
− arctan

(
Hx + e−Ht

)
, (2.24b)

in which the de Sitter metric gµν reads

ds2 = gµν dxµ dxν = − dt2 + e2Ht dx2 . (2.25)

With t, x ∈ R, these coordinates cover half of the hyperboloid, namely the so-called ex-
panding Poincaré patch. There, the Minkowski limit can be easily taken by sending H → 0.
Transforming the two-point function (2.18) into this coordinate system, we obtain

iG+
α (t, x, t′, x′) = α2

4 − 1
4π

ln
[
iH(t − t′ + x − x′ − iϵ)

]
− 1

4π
ln
[
iH(t − t′ − x + x′ − iϵ)

]
+ O(H) ,

(2.26)

which for a suitable choice of α agrees with the flat-space two-point function in the massless
limit [1, Eq. (113)]. Namely, we need to take

α =
√

2
π

ln
(

meγ

2H

)
, (2.27)

and then the flat-space limit H → 0 yields α → ∞.

2.5 Vertex operators

The vertex operators Vγ in the free theory are obtained as normal-ordered exponentials of
the scalar field. To compute the normal-ordering, we use the BCH formula [33] to write
the exponential in the form

eiγϕ̂(τ,θ) = eiγ
∑

n
â†

nϕ∗
n(τ,θ)eiγ

∑
n

ânϕn(τ,θ)e− γ2
2
∑

n
|ϕn(τ,θ)|2

= eiγ
∑

n
â†

nϕ∗
n(τ,θ)eiγ

∑
n

ânϕn(τ,θ)e− γ2
2 iG+

α (τ,θ,τ,θ) ,

(2.28)
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where all annihilation operators are ordered to the right. For the last term, we compute
explicitly that

e− γ2
2 iG+

α (τ,θ,τ,θ) = exp
[
−γ2

2

[
α2

4 + 1
4π2α2

(
τ − π

2

)2
− 1

2π
ln
(
1 − e−ϵ)]]

≈ ϵ
γ2
4π exp

[
−γ2

2

[
α2

4 + 1
4π2α2

(
τ − π

2

)2
]]

,

(2.29)

where the last line gives the leading result for small ϵ. We thus can define the vertex
operators as

Vγ(τ, θ) ≡ :eiγϕ̂(τ,θ): = lim
ϵ→0+

ϵ− γ2
4π eiγϕ̂(τ,θ)

= eiγ
∑

n
â†

nϕ∗
n(τ,θ)eiγ

∑
n

ânϕn(τ,θ) exp
[
−γ2

2

[
α2

4 + 1
4π2α2

(
τ − π

2

)2
]]

.

(2.30)

Note that in contrast to Minkowski spacetime, the last factor is explicitly time-dependent.
Analogously, for the exponential of the smeared quantum field ϕ̂(f) ≡

∫
f(x)ϕ̂(x)

√
−g d2x

with f a real test function (known as Weyl operators), we obtain the decomposition

eiϕ̂(f) = ei
∑

n
â†

nϕ∗
n(f)ei

∑
n

ânϕn(f)e− i
2 G+

α (f,f) (2.31)

with the smeared mode functions

ϕn(f) ≡
∫

ϕn(τ, θ) f(τ, θ)
H2 sin2(τ)

dτ dθ . (2.32)

and the smeared two-point function

G+
α (f, g) ≡

∫∫
G+

α (τ, θ, τ ′, θ′) f(τ, θ)g(τ ′, θ′)
H4 sin2(τ) sin2(τ ′)

dτ dθ dτ ′ dθ′ . (2.33)

Correlation functions involving multiple vertex operators can then easily be computed,
using again the BCH formula in the form

eiγ
∑

n
ânϕn(τ,θ)eiγ′

∑
n

â†
nϕ∗

n(τ ′,θ′) = eiγ′
∑

n
â†

nϕ∗
n(τ ′,θ′)eiγ

∑
n

ânϕn(τ,θ)e−γγ′iG+
α (τ,θ,τ ′,θ′) . (2.34)

We obtain the mildly complicated expression

⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)|0α⟩

= e−
∑

1≤j<k≤n
γjγkiG+

α (τj ,θj ,τk,θk)
n∏

j=1
exp

[
−

γ2
j

2

[
α2

4 + 1
4π2α2

(
τj − π

2

)2
]]

= lim
ϵ→0+

exp

 ∑
1≤j<k≤n

γjγk

4π
ln
[(

1 − e−i(τj−τk+θj−θk−iϵ)
)(

1 − e−i(τj−τk−θj+θk−iϵ)
)]

× exp

−α2

8

(
n∑

j=1
γj

)2

− 1
8π2α2

[
n∑

j=1
γj

(
τj − π

2

)]2

+ i
4π

∑
1≤j<k≤n

γjγk(τj − τk)

 .

(2.35)
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In the limit α → ∞, in which de Sitter covariance is restored for derivatives of the scalar
field, we see that the correlation function (2.35) vanishes unless

∑n
j=1 γj = 0. This limit

thus also enforces the neutrality condition, which is well-known from Minkowski spacetime,
see for example Refs. [1, 34]. Combining terms and using (2.19), for a neutral correlation
function it follows that

⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)|0α⟩
∣∣∣∑n

j=1 γj = 0

= exp

− 1
8π2α2

(
n∑

j=1
γjτj

)2 lim
ϵ→0+

∏
1≤j<k≤n

[2 cos(τj − τk − iϵ) − 2 cos(θj − θk)]
γj γk

4π ,

(2.36)

and the first term reduces to 1 in the limit α → ∞.
To obtain correlation functions involving ϕ̂, we use that ϕ̂(τ, θ) = −i∂γVγ(τ, θ)

∣∣
γ=0,

such that

⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)ϕ̂(τ ′, θ′)|0α⟩
= −i∂γn+1⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)Vγ(τ ′, θ′)|0α⟩

∣∣
γn+1=0 ,

(2.37)

and then employ the result (2.35) for the correlation function on the right-hand side.
Performing the derivative, we can write the result in the form

⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)ϕ̂(τ ′, θ′)|0α⟩

= ⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)|0α⟩
[
iα

2

4

n∑
j=1

γj + i
4π2α2

(
τ ′ − π

2

) n∑
j=1

γj

(
τj − π

2

)

− i
4π

n∑
j=1

γj ln
[
2 cos(τj − τ ′ − iϵ) − 2 cos(θj − θ′)

]]
, (2.38)

where we expressed the remaining exponentials again using the correlator of vertex opera-
tors. The result (2.38) simplifies in the limit α → ∞ if the correlator is neutral,

∑n
j=1 γj = 0.

Otherwise it vanishes if at least one vertex operator is present (n > 0). For two scalar fields,
we obtain analogously (assuming already the neutrality condition)

⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)ϕ̂(τ ′, θ′)ϕ̂(τ ′′, θ′′)|0α⟩
∣∣∣∑n

j=1 γj = 0

→ ⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)|0α⟩
[

α2

4 − 1
4π

ln
[
2 cos(τ ′ − τ ′′ − iϵ) − 2 cos(θ′ − θ′′)

]
− 1

(4π)2

n∑
j=1

γj ln
[
2 cos(τj − τ ′ − iϵ) − 2 cos(θj − θ′)

]
×

n∑
k=1

γk ln
[
2 cos(τk − τ ′′ − iϵ) − 2 cos(θk − θ′′)

]]
(α → ∞) , (2.39)

which now contains a divergent term. This is of course expected, since in the case of zero
vertex operators (n = 0) it must reduce to the two-point function (2.18) which shows this
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divergence. Nevertheless, taking a derivative this term disappears, and the limit α → ∞ is
well-defined and finite.

However, unlike for the two-point function of derivatives of the scalar field (2.22), the
correlation function of vertex operators (2.35) is not covariant under the boost symme-
tries, even if the neutrality condition holds and in the limit α → ∞ where the correlator
simplifies (2.36).

By a similar computation we obtain correlation functions including Weyl operators
eiϕ̂(f) (2.31). The ones that will be needed later on are

⟨0α|e−iϕ̂(f)Vγ1(τ1, θ1) · · · Vγn(τn, θn) eiϕ̂(f)|0α⟩

= ⟨0α|Vγ1(τ1, θ1) · · · Vγn(τn, θn)|0α⟩ ei
∑n

i=1 γi[G+
α (f,τi,θi)−G+

α (τi,θi,f)] (2.40)

and (assuming already the neutrality condition)

⟨0α|e−iϕ̂(f)ϕ̂(τ ′, θ′)Vγ1(τ1, θ1) · · · Vγn(τn, θn)ϕ̂(τ ′′, θ′′) eiϕ̂(f)|0α⟩
∣∣∣∑n

j=1 γj = 0

= ⟨0α|e−iϕ̂(f)Vγ1(τ1, θ1) · · · Vγn(τn, θn) eiϕ̂(f)|0α⟩
∣∣∣∑n

j=1 γj = 0

[
α2

4

− 1
4π

ln
[
2 cos(τ ′ − τ ′′ − iϵ) − 2 cos(θ′ − θ′′)

]
+ 1

4π2α2

(
τ ′ − π

2

)(
τ ′′ − π

2

)

+
[
G+

α (f, τ ′, θ′) − G+
α (τ ′, θ′, f) + i

4π2α2

(
τ ′ − π

2

)
n∑

k=1
γkτk

− i
4π

n∑
k=1

γk ln
[
2 cos(τ ′ − τk − iϵ) − 2 cos(θ′ − θk)

]]

×
[
G+

α (f, τ ′′, θ′′) − G+
α (τ ′′, θ′′, f) + i

4π2α2

(
τ ′′ − π

2

)
n∑

k=1
γkτk

− i
4π

n∑
k=1

γk ln
[
2 cos(τk − τ ′′ − iϵ) − 2 cos(θk − θ′′)

]]]
.

(2.41)

Analogously to the case of the two-point function (2.23), time-ordered correlation func-
tions of vertex operators are obtained from these results by replacing τj −τk → |τj − τk|, at
least if −γjγk < 4π. This condition arises in the following way: we see from (2.36) that the
time-ordered correlation function is always a well-defined distribution outside of any partial
diagonal, that is if (τj , θj) ̸= (τk, θk) for all j and k. If −γjγk < 4π, the singularity at the
coincidence point (τj , θj) = (τk, θk) is integrable, and we can thus extend the time-ordered
correlation function by continuity to this partial diagonal. On the other hand, if −γjγk ≥ 4π

one needs to perform a proper extension [35, 36], which in physics language corresponds to
adding local counterterms depending on the UV cutoff ϵ and supported at the coincidence
point (τj , θj) = (τk, θk). In the following, we will only consider the case −γjγk < 4π, and
can thus perform time ordering by the simple replacement τj −τk → |τj − τk|, and anti-time
ordering by the replacement τj − τk → −|τj − τk|.
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2.6 Implementing symmetries

The de Sitter symmetries (rotations and boosts), which are generated by the Killing vec-
tors (2.4) and (2.6), are implemented in the quantum theory by unitary conjugation. The
generators of this three-parameter family of unitaries can be obtained via the Noether
method, contracting the stress tensor with the corresponding Killing vector and the nor-
mal vector to a Cauchy surface τ = const, and integrating over this surface.

The classical stress tensor for the free massless, minimally coupled scalar field ϕ with
action (2.9) is given by

Tµν [ϕ] = ∂µϕ∂νϕ − 1
2gµνgρσ∂ρϕ∂σϕ , (2.42)

and contracting with the rotation and boost Killing vectors (2.4) and (2.6) as well as the
normal vector nµ∂µ = −∂τ and restricting to τ = 0, we obtain

Tµν [ϕ]nµξν
rot
∣∣
τ=0 = −∂τ ϕ∂θϕ

∣∣
τ=0 , (2.43a)

Tµν [ϕ]nµξν
boost,1

∣∣
τ=0 = − sin(θ)∂τ ϕ∂θϕ

∣∣
τ=0 , (2.43b)

Tµν [ϕ]nµξν
boost,2

∣∣
τ=0 = cos(θ)∂τ ϕ∂θϕ

∣∣
τ=0 . (2.43c)

Replacing now the classical scalar field ϕ by the quantized one ϕ̂, inserting its mode ex-
pansion (2.15) with the modes (2.11), normal ordering and integrating over the Cauchy
surface τ = 0, we obtain the Noether charges

Q̂rot ≡
∫

:Tµν [ϕ̂]:nµξν
rot
∣∣
τ=0 dθ =

∞∑
n=1

n
(
â†

nân − â†
−nâ−n

)
, (2.44a)

Q̂boost,1 ≡
∫

:Tµν [ϕ̂]:nµξν
boost,1

∣∣
τ=0 dθ

= − i
2α

√
4π

(
â1 + â†

1 + â−1 + â†
−1

)
â0 + i

2α
√

4π
â†

0

(
â1 + â†

1 + â−1 + â†
−1

)
+ i

2

∞∑
n=1

√
n(n + 1)

(
â†

nân+1 − â†
n+1ân − â†

−n−1â−n + â†
−nâ−n−1

)
,

(2.44b)

Q̂boost,2 ≡
∫

:Tµν [ϕ̂]:nµξν
boost,2

∣∣
τ=0 dθ

= 1
2α

√
4π

(
â1 − â†

1 − â−1 + â†
−1

)
â0 − 1

2α
√

4π
â†

0

(
â1 − â†

1 − â−1 + â†
−1

)
− 1

2

∞∑
n=1

√
n(n + 1)

(
â†

nân+1 + â†
n+1ân − â†

−nâ−n−1 − â†
−n−1â−n

)
.

(2.44c)

Since the Cauchy surfaces of the global de Sitter spacetime are compact, it is not necessary
to introduce a spatial cutoff which is required in Minkowski spacetime [35, 37].

With the explicit expressions (2.44), it is now also clear that the one-parameter family
of states |0α⟩ is not invariant under boosts for any finite α. We obtain explicitly

Q̂boost,1|0α⟩ = i
2α

√
4π

â†
0

(
â†

1 + â†
−1

)
|0α⟩ , (2.45a)
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Q̂boost,2|0α⟩ = 1
2α

√
4π

â†
0

(
â†

1 − â†
−1

)
|0α⟩ , (2.45b)

which only vanishes in the limit α → ∞. However, this limit is only well-defined for
derivatives of the field ϕ̂, not for the field itself, which is in accordance with the result
for the transformation of the two-point function G+

α (2.21) and its derivative (2.22) under
boosts.

The Noether charges (2.44) are symmetric operators, and are well-defined on all states
of finite particle number. Using the expansion (2.15) of the scalar field, the commutation
relations (2.16) and the explicit form of the modes (2.11) and (2.12), we verify that[

Q̂rot, ϕ̂(τ, θ)
]

=
∞∑

m=1
m
[
â†

mϕ∗
m(τ, θ) − âmϕm(τ, θ) + â−mϕ−m(τ, θ) − â†

−mϕ∗
−m(τ, θ)

]
= i∂θϕ̂(τ, θ) = iξrotϕ̂(τ, θ) (2.46)

and for k = 1, 2 also [
Q̂boost,k, ϕ̂(τ, θ)

]
= iξboost,kϕ̂(τ, θ) . (2.47)

Exponentiating, we obtain the three-parameter family of unitaries

Uabc ≡ exp
[
i
(
aQ̂rot + bQ̂boost,1 + cQ̂boost,2

)]
, (2.48)

whose action on the field reads

Uabc ϕ̂(τ, θ)U †
abc = e−aξrot−bξboost,1−cξboost,2 ϕ̂(τ, θ) = ϕ̂(τ−a,−b,−c, θ−a,−b,−c) (2.49)

with the transformed coordinates (A.5), where we used the result (2.7). For the smeared
field ϕ̂(f), using the transformation (A.9) of the integration measure and the inverse trans-
formation (A.8), this reads

Uabc ϕ̂(f)U †
abc =

∫
f(x)ϕ̂(x−a,−b,−c)

√
−g d2x

=
∫

f(x)ϕ̂(x−a,−b,−c)
√

−g(x−a,−b,−c) d2x−a,−b,−c

=
∫

f(xabc)ϕ̂(x)
√

−g(x) d2x = ϕ̂(fabc)

(2.50)

with the transformed smearing function fabc(x) = f(xabc).
Since the span of states with finite particle number is dense in the Fock space [38,

Thm. X.41], the unitaries (2.48) can then be extended to the full Fock space, and their
generators define a self-adjoint operator. Moreover, their action is also well-defined on the
vertex operators Vγ (2.30), and analogously to (2.49) we obtain

UabcVγ(τ, θ)U †
abc = Vγ(τ−a,−b,−c, θ−a,−b,−c) . (2.51)

3 The Sine–Gordon model and the S matrix

The classical action for the Sine–Gordon model is given by (1.1)

S =
∫ [

−1
2∇µϕ∇µϕ + 2g cos(βϕ)

]√
−g d2x , (3.1)
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where β > 0 is the coupling constant and g the interaction cutoff. A priori, one takes g

to be a function of compact support, avoiding infrared issues in the construction of the
perturbative series. At the end, one is interested in the adiabatic limit g → const, which
we will do in the construction of the net of algebras.

3.1 Convergent perturbative series for the S matrix

The S matrix is defined by the Bogoliubov formula

Ŝ(g) ≡ T
[
eiSint

⊗

]
, (3.2)

where Sint is the interaction part of the classical action (3.1) and T denotes a time-ordered
product, which is a multilinear map from classical fields to the algebra of quantum fields. In
general, the definition (3.2) needs to be understood as a formal power series in g. However,
as in Minkowski spacetime [1, 10, 22, 39] we will show that the series is actually convergent
for all β2 < 4π.

Writing the interaction as 2g cos(βϕ) = g
[
eiβϕ + e−iβϕ

]
, the S matrix (3.2) is the series

Ŝ(g) =
∑∞

k=0 Ŝk(g) with

Ŝk(g) ≡ ik

k!
∑

σ1,...,σk=±1

∫
· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi . (3.3)

The time-ordered products can be constructed inductively, starting with a single entry
where the time-ordered product just results in the normal-ordered quantum field:

T [ϕ] = ϕ̂ , T
[
eiβϕ

]
= Vβ . (3.4)

Time-ordered products with multiple entries are already well-defined outside of the diagonal
by imposing the causal factorization condition:

T [O1(x1) ⊗ · · · ⊗ On(xn)] = T [O1(x1) ⊗ · · · ⊗ Ok(xk)]T [Ok+1(xk+1) ⊗ · · · ⊗ On(xn)]
(3.5)

if all xi with i ∈ {1, . . . , k} do not lie in the future of any of the xi with i ∈ {k+1, . . . , n}, i.e.,
they are in the past of or spacelike separated from them. The extension to the diagonal then
corresponds to renormalization and defines the time-ordered products on all of spacetime.
In our case, taking β2 < 4π, the extension can be done by continuity and no renormalization
is needed. In the same way, one recursively constructs anti-time-ordered products T , which
instead of the causal factorization condition (3.5) fulfill anti-causal factorization

T [O1(x1) ⊗ · · · ⊗ On(xn)] = T [O1(x1) ⊗ · · · ⊗ Ok(xk)]T [Ok+1(xk+1) ⊗ · · · ⊗ On(xn)]
(3.6)

if all xi with i ∈ {1, . . . , k} do not lie in the past of any of the xi with i ∈ {k + 1, . . . , n},
i.e., they are in the future of or spacelike separated from them.

We will show that the series
∑∞

k=0 Ŝk(g) converges strongly on a dense domain D in
Fock space, namely on the span of the vectors eiϕ̂(f)|0α⟩ [40, Prop. 5.2.4], where ϕ̂(f) ≡∫

f(x)ϕ̂(x)
√

−g d2x is the quantum field smeared with a real test function f . We will

– 14 –



moreover show that the sum is unitary and defines a bounded operator on this dense
domain. It follows that Ŝ(g) has a unique extension to the full Fock space, and defines a
bounded operator there.

We thus have to bound the norm∥∥∥Ŝk(g)eiϕ̂(f)|0α⟩
∥∥∥ ≤ 1

k!
∑

σ1,...,σk=±1∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥ .

(3.7)

Using the correlation functions (2.40), we obtain an expression for∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

=
∫

· · ·
∫ 〈

0α

∣∣∣e−iϕ̂(f)T
[

k⊗
i=1

e−iσiβϕ(τi,θi)
]
T
[ 2k⊗

i=k+1
eiσi−kβϕ(τi,θi)

]
eiϕ̂(f)

∣∣∣0α

〉

×
2k∏

i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi ,

(3.8)

where we used that the adjoint of a time-ordered product is an anti-time-ordered product,
and where we replace all differences τj − τk by |τj − τk| for operators appearing in the
time-ordered product T and by −|τj − τk| for operators appearing in the anti-time-ordered
product T to implement the (anti-)time-ordering. Since the correlation function (3.8) fulfills
the neutrality condition (because every vertex operator appears twice, once with σiβ and
once with −σiβ), we can then use the result (2.36) and obtain〈

0α

∣∣∣e−iϕ̂(f)T
[

k⊗
i=1

e−iσiβϕ(τi,θi)
]
T
[ 2k⊗

i=k+1
eiσiβϕ(τi,θi)

]
eiϕ̂(f)

∣∣∣0α

〉

= lim
ϵ→0+

∏
1≤i<j≤k

[2 cos(−|τi − τj | − iϵ) − 2 cos(θi − θj)]
σiσj β2

4π

×
k∏

i=1

2k∏
j=k+1

[2 cos(τi − τj − iϵ) − 2 cos(θi − θj)]
σiσj−kβ2

4π

×
∏

k+1≤i<j≤2k

[2 cos(|τi − τj | − iϵ) − 2 cos(θi − θj)]
σi−kσj−kβ2

4π

× e
− β2

8π2α2

[∑k

j=1 σj(τj−τj+k)
]2

× ei
∑k

i=1 σiβ[−G+
α (f,τi,θi)+G+

α (τi,θi,f)+G+
α (f,τi+k,θi+k)−G+

α (τi+k,θi+k,f)]

(3.9)

To bound this expression, we first consider the last terms. Using the explicit expres-
sion (2.18) of the two-point function together with (2.19), we compute

G+
α (f, τ, θ) − G+

α (τ, θ, f) =
∫ [

G+
α (τ ′, θ′, τ, θ) − G+

α (τ, θ, τ ′, θ′)
] f(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′

= −
∫

sgn[sin(τ − τ ′)]Θ
[
cos(θ − θ′) − cos(τ − τ ′)

] f(τ ′, θ′)
2H2 sin2(τ ′)

dτ ′ dθ′ ,

(3.10)
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and since this is real, the last term in (3.9) is just a phase factor and bounded by 1. The
second-to-last term is clearly also bounded by 1, and in fact equal to 1 in the limit α → ∞.

For the remaining terms in (3.9), we first note that for β < 4π the singularities at the
partial diagonals are integrable, and we can thus take the limit ϵ → 0+ in each term. They
then have all the same structure, and we can simplify the resulting expression by renaming
integration variables. Namely, replacing (τi, θi) → (τ̃i, θ̃i) for all i with σi = −1, we obtain∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

≤
∫

· · ·
∫ ∣∣∣∣∣∣∣

∏
1≤i<j≤k

[
2 cos(τi − τj) − 2 cos(θi − θj)

][
2 cos(τ̃i − τ̃j) − 2 cos(θ̃i − θ̃j)

]
∏k

i,j=1

[
2 cos(τi − τ̃j) − 2 cos(θi − θ̃j)

]
∣∣∣∣∣∣∣

β2
4π

×
k∏

i=1

∣∣∣g(τi, θi)g(τ̃i, θ̃i)
∣∣∣

H4 sin2(τi) sin2(τ̃i)
dτi dθi dτ̃i dθ̃i . (3.11)

This expression is very similar to the flat-space one (see, e.g., [1, Eq. (159)]), with differences
between time and space coordinates replaced by the differences between the cosines. We
therefore can also estimate it using similar methods, and compute first that

|2 cos(τi − τj) − 2 cos(θi − θj)|2 = [2 − 2 cos(ui − uj)][2 − 2 cos(vi − vj)] , (3.12a)

2 − 2 cos(x − y) =
∣∣∣eix − eiy

∣∣∣2 (3.12b)

with
ui ≡ τi − θi ∈ (−2π, π) , vi ≡ τi + θi ∈ [0, 3π) . (3.13)

Changing integration variables to ui and vi using that dτi dθi = 1
2 dui dvi, it follows that

∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

≤
∫

· · ·
∫ [∏

1≤i<j≤k

∣∣eiui − eiuj
∣∣∣∣eiũi − eiũj

∣∣∏k
i,j=1 |eiui − eiũj |

]β2
4π
[∏

1≤i<j≤k

∣∣eivi − eivj
∣∣∣∣eiṽi − eiṽj

∣∣∏k
i,j=1 |eivi − eiṽj |

]β2
4π

×
k∏

i=1

|g(ui, vi)g(ũi, ṽi)|
4H4 sin2

(
ui+vi

2

)
sin2

(
ũi+ṽi

2

) k∏
i=1

dui dũi dvi dṽi . (3.14)

We see that the integrand factorizes into terms depending on u, terms depending on v, and
terms depending on the adiabatic cutoff g. We now use the Hölder inequality

∥fg∥1 ≤ ∥f∥ 1
p
∥g∥ 1

1−p
, p ∈ (0, 1) (3.15)
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and choose p = (4π + β2)/(8π) < 1 to obtain∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

≤

∫ · · ·
∫ [∏

1≤i<j≤k

∣∣eiui − eiuj
∣∣∣∣eiũi − eiũj

∣∣∏k
i,j=1 |eiui − eiũj |

] 2β2

4π+β2 k∏
i=1

dui dũi


4π+β2

8π

×

∫ · · ·
∫ [∏

1≤i<j≤k

∣∣eivi − eivj
∣∣∣∣eiṽi − eiṽj

∣∣∏k
i,j=1 |eivi − eiṽj |

] 2β2

4π+β2 k∏
i=1

dvi dṽi


4π+β2

8π

×
∥∥∥∥ g(τ, θ)

2H2 sin2(τ)

∥∥∥∥2k

8π
4π−β2

,

(3.16)

where the norm is defined by (changing integration variables back to τ and θ)

∥∥∥∥ g(τ, θ)
2H2 sin2(τ)

∥∥∥∥
p

≡
[
2
∫∫ ∣∣∣∣ g(τ, θ)

2H2 sin2(τ)

∣∣∣∣p dτ dθ

] 1
p

. (3.17)

We note that the singularity in the remaining integrals in (3.16) is still integrable since
2β2

4π+β2 < 1 for β2 < 4π. Moreover, the integrands in u and v are identical, and we thus only
need to bound one of them explicitly. For this, we use the Cauchy determinant formula [41]

det
(

1
xi − yj

)k

i,j=1
=
∏

1≤i<j≤k(xi − xj)(yi − yj)∏k
i,j=1(xi − yj)

(3.18)

to bound [∏
1≤i<j≤k

∣∣eivi − eivj
∣∣∣∣eiṽi − eiṽj

∣∣∏k
i,j=1 |eivi − eiṽj |

]p

=
∣∣∣∣∣det

( 1
eivi − eiṽj

)k

i,j=1

∣∣∣∣∣
p

≤

∣∣∣∣∣∣
∑

π

k∏
i=1

1∣∣∣eivi − eiṽπ(i)
∣∣∣
∣∣∣∣∣∣
p

≤
∑

π

k∏
i=1

∣∣∣eivi − eiṽπ(i)
∣∣∣−p

,

(3.19)

where the sum runs over all permutations π of {1, . . . , k}, and we have used the inequality k∑
j=1

|ak|

p

≤
k∑

j=1
|ak|p , 0 < p < 1 (3.20)

with p = 2β2/(4π + β2) < 1 to take the sum out of the absolute value.
Inserting the bound (3.19) into the estimate (3.16), replacing the sum over permuta-

tions by a factor k! (since all permutations contribute the same amount), and simplifying
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terms, it follows that∥∥∥∥∥
∫

· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

≤
∥∥∥∥ g(τ, θ)

2H2 sin2(τ)

∥∥∥∥2k

8π
4π−β2

(k!)
4π+β2

4π

×
[∫∫ ∣∣∣eiu − eiũ

∣∣∣− 2β2

4π+β2 du dũ

]k 4π+β2
8π

[∫∫ ∣∣∣eiv − eiṽ
∣∣∣− 2β2

4π+β2 dv dṽ

]k 4π+β2
8π

.

(3.21)

To finally bound the integrals, we use again the identity (3.12b), and then the bound (B.1)

1
2 − 2 cos(x) ≤


π2

8x2 x ∈
[
−π

2 , π
2
]

1
2 x ∈

[
π
2 , 3π

2

]
.

(3.22)

Taking into account that u, ũ ∈ (−2π, π), it follows that∫∫ ∣∣∣eiu − eiũ
∣∣∣− 2β2

4π+β2 du dũ ≤ 3π

∫ 2π

−4π
[2 − 2 cos(u)]−

β2

4π+β2 du

≤ 9π

∫ π
2

0

(
π2

8u2

) β2

4π+β2

du +
∫ 3π

2

π
2

2− β2

4π+β2 du +
∫ 2π

3π
2

(
π2

8(u − 2π)2

) β2

4π+β2

du


= 36 · 2

4π
4π+β2 π3

4π − β2 ≤ 72π3

4π − β2 ,

(3.23)

where we used the 2π-periodicity of the cosine to reduce the integration to the interval
[0, 2π]. The same bound is obtained for the integral over v and ṽ. Taking all together and
using some straightforward further estimates, we obtain∥∥∥∥∥

∫
· · ·
∫

T
[

k⊗
i=1

eiσiβϕ(τi,θi)
]

k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)
∣∣∣0α

〉∥∥∥∥∥
2

≤ (k!)1+ β2
4π C(g)2k (3.24)

with the constant
C(g) ≡ 36

√
2 π3

(4π − β2)
4π+β2

8π

∥∥∥∥ g(τ, θ)
2H2 sin2(τ)

∥∥∥∥
8π

4π−β2

. (3.25)

For the norm (3.7), we thus obtain the bound∥∥∥Ŝk(g)eiϕ̂(f)|0α⟩
∥∥∥ ≤ (k!)− 4π−β2

8π [2C(g)]k , (3.26)

where the factor 2k comes from the sum over the σi = ±1. For β2 < 4π, this is summable
in k for any adiabatic cutoff g such that C(g) < ∞, which holds whenever the support of
g does not include τ = 0 nor τ = π. It follows that the sum

∑∞
k=0 Ŝk(g) converges strongly

on the vectors eiϕ̂(f)|0α⟩, and by extension on any finite linear combination. That is, it
converges strongly on the dense domain D in Fock space, such that the S matrix Ŝ(g) is a
well-defined operator on this domain.
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Following [22], we also show that the S matrix Ŝ(g) is a unitary operator. It is formally
unitary, i.e., we have

n∑
k=0

Ŝk(g)Ŝ†
n−k(g) =

n∑
k=0

Ŝ†
k(g)Ŝn−k(g) = δn,0 , (3.27)

which follows from the definition (3.3) and the properties of time-ordered products. Since
the series defining Ŝ(g) converges strongly on D, the Cauchy product series of the series of
Ŝ†(g) and Ŝ(g) converges to the product Ŝ†(g)Ŝ(g), and we have

∥∥∥Ŝ(g)|Ψ⟩
∥∥∥2

=
∞∑

n=0

n∑
k=0

⟨Ψ|Ŝ†
k(g)Ŝn−k(g)|Ψ⟩ = ∥|Ψ⟩∥2 (3.28)

for any |Ψ⟩ ∈ D. Therefore, Ŝ(g) is an isometry on the domain D, and by continuity has
a unique extension to the full Fock space. Analogous arguments hold for Ŝ†(g), such that
Ŝ(g) is a unitary operator on the full Fock space.

Lastly, we consider the transformation of the S matrix under rotations and boosts,
which is obtained by conjugation . For the k-th order term (3.3), we use the fact that for
β2 < 4π no renormalization is needed and the time-ordered products thus can be extended
by continuity to the total diagonal, such that we can use the transformation (2.51) of the
vertex operators V±β. Transforming the integration measure according to (A.9), it is easy
to see that

Uabc Ŝk(g)U †
abc = Ŝk(gabc) (3.29)

with the transformed adiabatic cutoff gabc(x) ≡ g(xabc) and the transformed coordinates
xabc (A.1). As long as the parameters a, b, c are finite, the support of gabc does not in-
clude τ = 0 nor τ = π if the support of g does not include them, and thus the constant
C(gabc) (3.25) for the transformed adiabatic cutoff is finite if C(g) is finite. It follows that
the series

∑∞
k=0 Ŝk(gabc) is convergent as well, and thus we obtain

Uabc Ŝ(g)U †
abc = Ŝ(gabc) (3.30)

for the full S matrix.

3.2 The Haag–Kastler net

The interacting local net of the Sine–Gordon model is constructed from the relative S
matrices, which are defined as [36]

Ŝg(f) ≡ Ŝ(g)−1Ŝ(g + f) . (3.31)

Since the S matrices Ŝ(g) are unitary operators for any (real) test function g with C(g) <

∞ (3.25), one sees easily that also the relative S matrices are unitary. Furthermore, a
change of the adiabatic cutoff function g outside of the causal hull1 of supp f only results
in a unitary conjugation of the relative S matrix [35, 36]. We can therefore perform the

1The causal hull of a set M is the intersection of its causal future and past, J+(M) ∩ J−(M).
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adiabatic limit g → const on the level of equivalence classes of relative S matrices, where
the equivalence relation is given by unitary conjugation. While this construction as well
as the verification of the Haag–Kastler axioms is by now well-known [42], it is somewhat
scattered throughout the literature, such that we give here a self-contained exhibition.

We start from the functional equation [36]

Ŝ(g + f + h) = Ŝ(g + f)Ŝ(g)−1Ŝ(g + h) , (3.32)

which should hold whenever f is supported in the future of h such that J+(supp f) ∩
J−(supp h) = ∅. Multiplying by Ŝ(g)−1 from the left, we can also write it as [43]

Ŝg(f + h) = Ŝg(f)Ŝg(h) , (3.33)

i.e., the relative S matrices also factorize in a causal way. In perturbation theory, this rela-
tion follows from the causal factorization condition (3.5) for any relativistic QFT order by
order, see for example [44, Thm. 2]. Since we have shown in section 3.1 that the perturba-
tive series for Ŝ converges strongly, the Cauchy product of the series on the right-hand side
of (3.32) converges to the product of the individual series, and therefore the relation (3.32)
indeed holds for the full Ŝ.

g = g′

suppf

supp g

supp g′

J−(f)

J+(f)

supp g+

supp g−

Figure 1: Decomposition of the difference between two adiabatic cutoff functions g and g′,
which coincide in a neighborhood of supp f . We can decompose the difference g − g′ into
g+ +g−, where the cut is made at spacelike separation from supp f such that J+(supp g+)∩
J−(supp f) = ∅ and J−(supp g−) ∩ J+(supp f) = ∅.

For the subsequent derivation, we essentially follow [36, Prop. 8.1]. Consider two adi-
abatic cutoff functions g and g′, which coincide in a neighborhood of the causal hull of
supp f . We can then make the decomposition g′ = g + g+ + g−, where the functions g± are
such that J+(supp g+) ∩ J−(supp f) = ∅ and J−(supp g−) ∩ J+(supp f) = ∅, see Fig. 1 for
an illustration. From the relation (3.32) with the replacements g → g + g−, f → g+ and
h → f , we obtain that

Ŝ(g′ + f) = Ŝ(g′)Ŝ(g + g−)−1Ŝ(g + g− + f) (3.34)
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and hence, multiplying with Ŝ(g′)−1 from the left,

Ŝg′(f) = Ŝ(g′)−1Ŝ(g′ + f) = Ŝ(g + g−)−1Ŝ(g + g− + f) = Ŝg+g−(f) . (3.35)

On the other hand, using relation (3.32) with the replacement h → g− shows that

Ŝ(g + f + g−) = Ŝ(g + f)Ŝ(g)−1Ŝ(g + g−) , (3.36)

and hence

Ŝg+g−(f) = Ŝ(g + g−)−1Ŝ(g + f)Ŝ(g)−1Ŝ(g + g−)

=
[
Ŝ(g + g−)−1Ŝ(g)

]
Ŝ(g)−1Ŝ(g + f)

[
Ŝ(g + g−)−1Ŝ(g)

]−1
.

(3.37)

Combining the identities (3.35) and (3.37), it follows that

Ŝg′(f) = U(g, g′)Ŝg(f)U−1(g, g′) (3.38)

with the unitaries
U(g, g′) = Ŝ(g + g−)−1Ŝ(g) = Ŝg(g−)−1 . (3.39)

That is, a change of the adiabatic cutoff function g → g′ outside the causal hull of f only
results in a unitary conjugation of the relative S matrix.

To define the equivalence classes of relative S matrices, we first define equivalence
classes of adiabatic cutoff functions by

[G]M ≡ {g : g = G = const. on the region (τ, θ) : τ ∈ M} , (3.40)

i.e., we consider all test functions g which are constant on the smallest time slice that
contains the region M . Since global de Sitter spacetime has compact spatial sections, this
is a suitable choice. Given a region M and a test function f such that supp f ⊂ M , we
then define equivalence classes of relative S matrices

SG,M (f) ≡
[
Ŝg(f)

]
[G]M

=
{

Ŝg(f) : g ∈ [G]M
}

/ ∼ , (3.41)

with the equivalence relation ∼ being given by unitary conjugation. That is, we have

Ŝg(f) ∼ Ŝg′(f) ⇔ ∃V : V † = V −1 , Ŝg′(f) = V Ŝg(f)V −1 (3.42)

which indeed holds for all adiabatic cutoffs g ∈ [G]M with V = U(g, g′) (3.39) according
to (3.38), such that SG,M (f) is well defined. One easily checks that also their products are
well defined, i.e., that two different representatives of a product are equivalent, such that

Sg′(f)Sg′(f ′) ∼ Sg(f)Sg(f ′) (3.43)

holds for supp f, supp f ′ ⊂ M and g, g′ ∈ [G]M .
The Haag–Kastler net (in the algebraic adiabatic limit) is then defined by the local

algebras AG(M), which are the algebras generated by the SG,M (f). It remains to verify
the axioms of isotony, locality and (de Sitter) covariance.

– 21 –



Given two regions M1 ⊂ M2, we define the embeddings

iM2M1 : AG(M1) → AG(M2) , AG(M1) ∋ SG,M1(f) 7→ SG,M2(f) ∈ AG(M2) . (3.44)

This embedding of local algebras is well-defined on the level of representatives which are
such that g ∈ [G]M2 (since then also g ∈ [G]M1), and such a representative can always be
found because M1 ⊂ M2. The verification of the isotony axiom iM3M2 ◦ iM2M1 = iM3M1 for
M1 ⊂ M2 ⊂ M3 is then an easy computation, inserting the various definitions for some
g ∈ [G]M3 . For the locality axiom, let us consider two test functions f and h whose supports
are spacelike separated, i.e., J±(supp f) ∩ J∓(supp h) = ∅. Then the causal factorization
of relative S matrices (3.33) holds also with f and h exchanged, such that

Ŝg(f)Ŝg(h) = Ŝg(h)Ŝg(f) (3.45)

for all g. It follows that this relation also holds for the equivalence classes SG,M (f) (3.41),
i.e., the commutator [SG,M (f), SG,M (h)] = 0 vanishes. Choosing spacelike separated space-
time regions M1 and M2 with supp f ⊂ M1 and supp h ⊂ M2, and a bigger region M such
that M1, M2 ⊂ M , a short computation reveals the locality condition for the net:

[iMM1(AG(M1)), iMM2(AG(M2))] = {0} . (3.46)

Instead of Poincaré covariance, we have to show de Sitter covariance of the net. This is
a bit more involved, and we first note that from the transformation (3.30) of the S matrix
we obtain the transformation

Uabc Ŝg(f)U †
abc = Ŝgabc

(fabc) (3.47)

of the relative S matrices (3.31). We recall that fabc(x) = f(xabc), where the transformed
coordinates xabc are defined by (A.5). Given a region M , we define the transformed region
Mabc by

Mabc ≡ {xabc : x ∈ M} , (3.48)

and it follows that
supp g ⊂ M ⇒ supp gabc ⊂ Mabc . (3.49)

Covariance of the net then means that there exists an isometric map αM
abc : AG(M) →

AG(Mabc) which intertwines the algebras for M1 ⊂ M2:

αM2
abc ◦ iM2,M1 = iM2,abc,M1,abc

◦ αM1
abc . (3.50)

That is, if we first transform an element of AG(M1), which after the transformation is an
element of AG(M1,abc), and then embed into the algebra AG(M2,abc) we have the same
result as if we first embed the element that we start with into AG(M2), and then transform
to obtain an element of AG(M2,abc).

We tentatively define the maps α by

αM
abc : AG(M) → AG(Mabc) ,

AG(M) ∋ SG,M (f) 7→ Uabc SG,M (f)U †
abc = SG,Mabc

(fabc) ∈ AG(Mabc) ,
(3.51)
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which are clearly isometric. Again we have to check that they are well-defined: we choose
g ∈ [G]M and f with supp f ⊂ M such that the relative S matrix Ŝg(f) is a representative of
SG,M (f). By the support properties (3.49) of the transformed test functions, it follows that
the transformed relative S matrix Ŝgabc

(fabc) (3.47) is also a representative of SG,Mabc
(fabc).

Choosing a different representative g′ ∈ [G]M , we compute

UabcŜg′(f)U †
abc = Ŝg′

abc
(fabc) = U(gabc, g′

abc)Ŝgabc
(fabc)U(gabc, g′

abc)−1 (3.52)

with the unitaries U(g, g′) defined by (3.39). Namely, if both g, g′ ∈ [G]M , then gabc, g′
abc ∈

[G]Mabc
, and therefore the unitary conjugation (3.38) holds. It follows that also Ŝg′

abc
(fabc)

is a representative of SG,Mabc
(fabc), and the map αM

abc (3.51) is indeed well-defined. To verify
the intertwining relation, we then simply compute for supp f ⊂ M1 ⊂ M2 that

(αM2
abc ◦ iM2,M1)SG,M1(f) = αM2

abcSG,M2(f) = SG,M2,abc
(fabc) ∈ AG(M2,abc) (3.53)

and that

(iM2,abc,M1,abc
◦ αM1

abc)SG,M1(f) = iM2,abc,M1,abc
SG,M1,abc

(fabc) = SG,M2,abc
(fabc) , (3.54)

and both expressions agree as required.

4 Interacting observables

Apart from the relative S matrices, also other interacting observables exist in the Sine–
Gordon model. These are constructed using the Bogoliubov formula[

Ô(x)
]

int
≡ Ŝ(g)−1T

[
O(x) ⊗ eiSint

⊗

]
, (4.1)

in analogy to the relative S matrices (3.31), taking into account the definition of the S
matrix (3.2). In particular, we are interested in the interacting vertex operators

[
V̂±β

]
int

and the interacting field ϕ̂int itself. Another important observable is the stress tensor Tµν ,
whose construction is however more complicated [1]. Again, in general the Bogoliubov
formula (4.1) needs to be understood as a formal power series in g, but we will show that
the series is convergent for the vertex operators and the field itself if β2 < 4π.

4.1 Convergent perturbative series for the interacting observables

The proof of the convergence of the perturbation expansion of the Bogoliubov formula (4.1)
proceeds in complete analogy with the case of the S matrix in section 3.1. We smear the ob-
servable with a test function h, and obtain the series expansion

[
Ô(h)

]
int =

∑∞
k=0

[
Ô(h)

]
int,k

with

[
Ô(h)

]
int,k

≡
k∑

ℓ=0

(−i)ℓik−ℓ

ℓ!(k − ℓ)!T
[
S⊗ℓ

int

]
T
[
O(h) ⊗ S

⊗(k−ℓ)
int

]
, (4.2)

where we used that the series expansion of the inverse Ŝ(g)−1 involves anti-time-ordered
products T .
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Again we show that the series
∑∞

k=0
[
Ô(h)

]
int,k converges strongly on the dense domain

D, which is the span of the vectors eiϕ̂(f)|0α⟩. For this, we have to bound the norm

∥∥∥∥[Ô(h)
]

int,k
eiϕ̂(f)|0α⟩

∥∥∥∥ ≤
k∑

ℓ=0

1
ℓ!(k − ℓ)!

∑
σ1,...,σk=±1

∥∥∥∥∥
∫

· · ·
∫

T
[

ℓ⊗
i=1

eiσiβϕ(τi,θi)
]

× T

O(h) ⊗
k⊗

i=ℓ+1
eiσiβϕ(τi,θi)

 k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)|0α⟩
∥∥∥∥∥ ,

(4.3)

which is done analogously to the previous computation. To avoid repetition, we thus only
list the differences. First of all, we note that for vertex operators O(h) = V±β(h) ≡∫

V±β(x)h(x)
√

−g d2x we obtain exactly the same bounds (3.24) as before, but with one
of the adiabatic cutoff functions g replaced by h and with (k + 1)! instead of k!. Summing
over ℓ, it follows that∥∥∥[V±β(h)]int,keiϕ̂(f)|0α⟩

∥∥∥ ≤ (k + 1)[(k + 1)!]−
4π−β2

8π C(h)[4C(g)]k , (4.4)

where one factor 2k comes again from the sum over the σi. This is summable in k under
the same conditions as for the S matrix, namely β2 < 4π and C(g) < ∞, and it follows
that the sum

∑∞
k=0

[
V±β(h)

]
int,k converges strongly on the dense domain D, such that the

interacting vertex operator
[
V±β(h)

]
int is a well-defined operator on this domain.

For the field operator itself, we instead have to derive the required bounds anew, for
which we can use the formula (2.41). For the smeared field ϕ̂(h), we choose a compactly
supported test function h which satisfies

∫
h(x)

√
−g d2x = 0, since then we have

ϕ̂(h) =
∫

ϕ̂(x)h(x)
√

−g d2x =
∫

ϕ̂(x)∂µ
[
hµ(x)

√
−g
]
d2x = −

∫
∂µϕ̂(x)hµ(x)

√
−g d2x

(4.5)
with another compactly supported test function hµ,2 such that only derivatives of ϕ̂ enter.
In this case, in the result (2.41) we can take the limit α → ∞ in which it simplifies, and

2This is ensured by a version of the Poincaré lemma for functions with compact support, see for exam-
ple [45, App. B and C] for a proof.
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we obtain

lim
α→∞

⟨0α|e−iϕ̂(f)ϕ̂(h)Vγ1(τ1, θ1) · · · Vγn(τn, θn)ϕ̂(h) eiϕ̂(f)|0α⟩
∣∣∣∑n

j=1 γj = 0

= lim
α→∞

⟨0α|e−iϕ̂(f)Vγ1(τ1, θ1) · · · Vγn(τn, θn) eiϕ̂(f)|0α⟩
∣∣∣∑n

j=1 γj = 0

×
∫∫ [[

G+
α (f, τ ′, θ′) − G+

α (τ ′, θ′, f) − i
4π

n∑
k=1

γk ln
∣∣2 cos(τ ′ − τk) − 2 cos(θ′ − θk)

∣∣
+ 1

4

n∑
k=1

γkΘ
[
cos(θ′ − θk) − cos(τ ′ − τk)

]
sgn sin(τ ′ − τk)

]

×
[
G+

α (f, τ ′′, θ′′) − G+
α (τ ′′, θ′′, f) − i

4π

n∑
k=1

γk ln
∣∣2 cos(τk − τ ′′) − 2 cos(θk − θ′′)

∣∣
− 1

4

n∑
k=1

γkΘ
[
cos(θ′′ − θk) − cos(τ ′′ − τk)

]
sgn sin(τ ′′ − τk)

]
− i

4Θ
[
cos(θ′ − θ′′) − cos(τ ′ − τ ′′)

]
sgn sin(τ ′ − τ ′′)

− 1
4π

ln
∣∣2 cos(τ ′ − τ ′′) − 2 cos(θ′ − θ′′)

∣∣] h(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′ h(τ ′′, θ′′)
H2 sin2(τ ′′)

dτ ′′ dθ′′ ,

(4.6)

where we used (2.19) to perform the limit ϵ → 0+. The remaining correlation function is
given by (2.40) and (2.36), and as before the corresponding result involving time-ordered
or anti-time-ordered products is obtained by the simple replacements τj − τk → |τj − τk| or
τj −τk → −|τj − τk|. However, since we only consider the case −γjγk < 4π, all singularities
are integrable such that we can take the limit ϵ → 0+ everywhere, and then we always
obtain the same expression.

Namely, we compute∥∥∥∥∥∥
∫

· · ·
∫

T
[

ℓ⊗
i=1

eiσiβϕ(τi,θi)
]
T

ϕ(h) ⊗
k⊗

i=ℓ+1
eiσiβϕ(τi,θi)

 k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)|0α⟩

∥∥∥∥∥∥
2

=
∫

· · ·
∫

⟨0α|e−iϕ̂(f) T

ϕ(h) ⊗
k⊗

i=ℓ+1
e−iσiβϕ(τi,θi)

T
[

ℓ⊗
i=1

e−iσiβϕ(τi,θi)
]

× T

 k+ℓ⊗
i=k+1

eiσi−kβϕ(τi,θi)

T

ϕ(h) ⊗
2k⊗

i=k+ℓ+1
eiσi−kβϕ(τi,θi)

eiϕ̂(f)|0α⟩
2k∏

i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi ,

(4.7)

where we used that the adjoint of a time-ordered product is an anti-time-ordered product.
Since we consider the case β2 < 4π, the time-ordered and anti-time-ordered products can
be defined everywhere by continuity, and the correlator is in fact independent of the time-
ordering (up to a possible phase, which vanishes in our case). The resulting correlator
satisfies the neutrality condition, and we can thus use the result (4.6) to obtain (in the
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limit α → ∞)∥∥∥∥∥∥
∫

· · ·
∫

T
[

ℓ⊗
i=1

eiσiβϕ(τi,θi)
]
T

ϕ(h) ⊗
k⊗

i=ℓ+1
eiσiβϕ(τi,θi)

 k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)|0α⟩

∥∥∥∥∥∥
2

→
∫

· · ·
∫

lim
α→∞

⟨0α|e−iϕ̂(f)
k∏

i=1
V−σiβ(τi, θi)

2k∏
i=k+1

Vσi−kβ(τi, θi) eiϕ̂(f)|0α⟩

×
∫∫ [

K+
(
f, τ ′, θ′, {σj}, {τj , θj}

)
K−

(
f, τ ′′, θ′′, {σj}, {τj , θj}

)
− i

4Θ
[
cos(θ′ − θ′′) − cos(τ ′ − τ ′′)

]
sgn sin(τ ′ − τ ′′)

− 1
4π

ln
∣∣2 cos(τ ′ − τ ′′) − 2 cos(θ′ − θ′′)

∣∣] h(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′ h(τ ′′, θ′′)
H2 sin2(τ ′′)

dτ ′′ dθ′′

×
2k∏

i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi (4.8)

with the functions

K±
(
f, τ ′, θ′, {σj}, {τj , θj}

)
≡ −1

2

∫∫
Θ
[
cos(θ − θ′) − cos(τ − τ ′)

]
sgn sin(τ − τ ′) f(τ, θ)

H2 sin2(τ)
dτ dθ

+ iβ
4π

k∑
j=1

σj

[
ln
∣∣2 cos(τ ′ − τj) − 2 cos(θ′ − θj)

∣∣− ln
∣∣2 cos(τ ′ − τk+j) − 2 cos(θ′ − θk+j)

∣∣
± iπΘ

[
cos(θ′ − θj) − cos(τ ′ − τj)

]
sgn sin(τ ′ − τj)

∓ iπΘ
[
cos(θ′ − θk+j) − cos(τ ′ − τk+j)

]
sgn sin(τ ′ − τk+j)

]
. (4.9)

We first bound the integrals over τ ′, θ′, τ ′′ and θ′′, in such a way that the bound is
independent of the remaining points (τi, θi). This will allow us then to use the previous
bounds for the remaining integrals.

Clearly we have |Θ(x) sgn(y)| ≤ 1, and can thus bound

∣∣K±
(
f, τ ′, θ′, {σj}, {τj , θj}

)∣∣ ≤ 1
2

∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ k
β

2

+ β

4π

2k∑
j=1

∣∣∣ ln ∣∣2 cos(τ ′ − τj) − 2 cos(θ′ − θj)
∣∣∣∣∣ . (4.10)

To integrate this bound with the test function h over τ ′ and θ′, we first pass to coordinates
u and v according to (3.13) and then use the identities (3.12), such that

∣∣K±
(
f, τ ′, θ′, {σj}, {τj , θj}

)∣∣ ≤ 1
2

∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ k
β

2

+ β

4π

2k∑
j=1

(∣∣∣ln ∣∣∣eiu′ − eiuj

∣∣∣∣∣∣+ ∣∣∣ln ∣∣∣eiv′ − eivj

∣∣∣∣∣∣) .

(4.11)
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Using the Hölder inequality in the limit p → 1, we then compute∣∣∣∣∫ K+
(
f, τ ′, θ′, {σj}, {τj , θj}

) h(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′
∣∣∣∣

≤ 1
2

[∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ kβ

]∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ β

8π

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
∞

2k∑
j=1

∫∫ (∣∣∣ln ∣∣∣eiu′ − eiuj

∣∣∣∣∣∣+ ∣∣∣ln ∣∣∣eiv′ − eivj

∣∣∣∣∣∣) du′ dv′ ,

(4.12)

and furthermore∫∫ ∣∣∣ln ∣∣∣eiu′ − eiuj

∣∣∣∣∣∣ du′ dv′ = 3π

∫ π−uj

−2π−uj

∣∣∣ln ∣∣∣ei(u′+uj) − eiuj

∣∣∣∣∣∣ du′ ≤ 3π2
∫ 3

−3

∣∣∣ln ∣∣∣eiπs − 1
∣∣∣∣∣∣ ds

= 9π2
[∫ 5

3

1
ln[2 − 2 cos(πs)] ds +

∫ 0

− 1
3

ln
[ 1

2 − 2 cos(πs)

]
ds

]
,

(4.13)

where we took into account the range of u (3.13) as well as the periodicity of the inte-
grand, and used the identity (3.12b). The first integral can be bounded by bounding the
integrand by its maximal value at s = 1, while for the second we use that the logarithm
is a monotonely growing function in that interval, such that we can bound the integral by
bounding the cosine (B.1). It follows that∫∫ ∣∣∣ln ∣∣∣eiu′ − eiuj

∣∣∣∣∣∣ du′ dv′ ≤ 9π2
[

4
3 ln 2 +

∫ 0

− 1
3

ln
[ 1

8s2

]
ds

]
= 3π2( ln 2 + 2 + 2 ln 3

)
≤ 15π2 ,

(4.14)

and the same bound for the term involving v′. The bound (4.12) thus reduces to∣∣∣∣∫ K+
(
f, τ ′, θ′, {σj}, {τj , θj}

) h(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′
∣∣∣∣

≤ 1
2

∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ kβ

2

[∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ 15π

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
∞

]
.

(4.15)

The other terms in the limit (4.8) are bounded similarly: we obtain∣∣∣∣ ∫∫ i
4Θ
[
cos(θ′ − θ′′) − cos(τ ′ − τ ′′)

]
sgn sin(τ ′ − τ ′′) h(τ ′, θ′)

H2 sin2(τ ′)
dτ ′ dθ′

× h(τ ′′, θ′′)
H2 sin2(τ ′′)

dτ ′′ dθ′′
∣∣∣∣ ≤ 1

4

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥2

1

(4.16)

and∣∣∣∣∫∫ 1
4π

ln
∣∣2 cos(τ ′ − τ ′′) − 2 cos(θ′ − θ′′)

∣∣ h(τ ′, θ′)
H2 sin2(τ ′)

dτ ′ dθ′ h(τ ′′, θ′′)
H2 sin2(τ ′′)

dτ ′′ dθ′′
∣∣∣∣

≤ 135
2 π3

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥2

∞
,

(4.17)
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and as required all bounds are independent of the other points (τi, θi). For the remaining
integrals in (4.8) we can thus follow the same steps as for the S matrix bounds (3.24), in
particular use the results (2.40) and (2.36), and finally obtain

lim
α→∞

∥∥∥∥∥∥
∫

· · ·
∫

T
[

ℓ⊗
i=1

eiσiβϕ(τi,θi)
]
T

ϕ(h) ⊗
k⊗

i=ℓ+1
eiσiβϕ(τi,θi)

 k∏
i=1

g(τi, θi)
H2 sin2(τi)

dτi dθi eiϕ̂(f)|0α⟩

∥∥∥∥∥∥
2

≤ (k!)1+ β2
4π C(g)2k

[
C̃(0)(f, h) + 2kC̃(1)(f, h) + k2C̃(2)(f, h)

]
≤ (k!)1+ β2

4π C(g)2k(k + 1)2 max
i∈{1,2,3}

C̃(i)(f, h) (4.18)

with C(g) defined in (3.25), and the constants

C̃(0)(f, h) ≡ 1
4

(
1 +

∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥2

1

)∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥2

1
+ 135

2 π3
∥∥∥∥ h(τ, θ)

H2 sin2(τ)

∥∥∥∥2

∞
, (4.19a)

C̃(1)(f, h) ≡ β

∥∥∥∥ f(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

[∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
1

+ 15π

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
∞

]
,

(4.19b)

C̃(2)(f, h) ≡ β2
[∥∥∥∥ h(τ, θ)

H2 sin2(τ)

∥∥∥∥
1

+ 15π

∥∥∥∥ h(τ, θ)
H2 sin2(τ)

∥∥∥∥
∞

]2

. (4.19c)

While we have considered the limit α → ∞ for simplicity, the bounds for finite α follow
analoguously, with the only difference that the constants C̃(i)(f, h) then depend on α.

For the norm (4.3), we thus obtain the bound∥∥∥∥[ϕ̂(h)
]

int,k
eiϕ̂(f)|0α⟩

∥∥∥∥ ≤ (k + 1)(k!)− 4π−β2
8π [4C(g)]k

√
max

i∈{1,2,3}
C̃(i)(f, h) , (4.20)

where a factor 2k again arises from the sum over the σi = ±1, and a factor 2k/k! arises from
the sum over ℓ. This is summable in k under the same conditions as for the S matrix and
the interacting vertex operator, such that the sum

∑∞
k=0

[
ϕ̂(h)

]
int,k, with the test function

h satisfying the condition
∫

h(x)
√

−g d2x = 0, converges strongly on the dense domain
D and the interacting field

[
ϕ̂(h)

]
int is a well-defined operator on this domain. Note that

while the overall magnitude of the bound (4.20) depends on f and thus on the vector in
D on which the interacting field acts, the convergence rate does not, i.e., we have uniform
convergence.

4.2 Interacting field equation

By construction, the free quantized scalar field ϕ̂ (2.15) fulfills the massless Klein–Gordon
equation (2.10)

∇2ϕ̂(τ, θ) = H2 sin2(τ) ∂2ϕ̂(τ, θ) = 0 , (4.21)

which is the equation of motion following from the free action (2.9). We would like to verify
that also the interacting field

[
ϕ̂(h)

]
int satisfies the equation of motion following from the

full Sine–Gordon action (3.1), which reads

∇2ϕ − 2gβ sin(βϕ) = 0 . (4.22)
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Expressing the sine in terms of exponentials, interpreting those as vertex operators, and
smearing the equation with a test function h, we thus want to show that[

ϕ̂(∇2h)
]
int − iβ[V−β(gh)]int + iβ[Vβ(gh)]int = 0 . (4.23)

The most efficient way to do this is to employ the relation

T
[
ϕ(x) ⊗ F ⊗n] = ϕ̂(x) T

[
F ⊗n]+ in

∫
Gret(y, x) T

[
F ⊗(n−1) ⊗ δF

δϕ(y)

]√
−g d2y , (4.24)

which expresses a time-ordered product involving a single scalar field in terms of an ordinary
product and the retarded propagator

Gret(x, y) ≡ Θ(x0 − y0)
[
G+(x, y) − G+(y, x)

]
. (4.25)

This relation expresses the principle of perturbative agreement [46–48], namely that terms
linear and quadratic in the fields can be shifted between free action and interaction without
changing the quantum theory, in the linear case. In perturbation theory, it can always be
fulfilled by a suitable choice of renormalization conditions for any relativistic QFT order
by order, see for example [44, Thm. 9]. Certainly it holds if no renormalization needs to
be done and the time-ordered products can be extended to the diagonal by continuity, as
in our case.

Since the retarded propagator fulfills ∇2Gret(x, y) = δ2(x − y)/
√

−g, smearing (4.24)
with ∇2h and integrating by parts it follows that

T
[
ϕ(∇2h) ⊗ F ⊗n

]
= in

∫
T
[
F ⊗(n−1) ⊗ δF

δϕ(x)

]
h(x) d2x . (4.26)

Taking now F = iSint = 2i
∫

g(x) cos[βϕ(x)]
√

−g d2x, we obtain

δF

δϕ(x) = −βg(x)
[
eiβϕ(x) − e−iβϕ(x)

]√
−g , (4.27)

and dividing (4.26) by n! and summing over n we obtain

T
[
ϕ(∇2h) ⊗ eiSint

⊗

]
= −iβ

∫
T
[[

eiβϕ(x) − e−iβϕ(x)
]

⊗ eiSint
⊗

]
g(x)h(x)

√
−g d2x . (4.28)

Finally, multiplying this equation from the left by Ŝ(g)−1 and comparing with the Bogoli-
ubov formula (4.1) for interacting field operators, we obtain exactly the interacting field
equation (4.23).

5 Conclusion and outlook

We have considered the Sine-Gordon model (with an adiabatic interaction cutoff) on two-
dimensional de Sitter spacetime in the pAQFT framework, and showed the convergence of
the S matrix, of the interacting vertex operator and of the interacting field operator on
a dense domain in the Fock space of the free massless scalar field. For the free field, we
considered a natural one-parameter family of “vacuum” states determined by the mode
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expansion of the massless field. However, the de Sitter symmetry is broken by those states
for all values of the parameter, and only for derivatives of the field is restored in a limit.
We then proceeded to construct the Haag–Kastler net of the interacting theory from the
relative S-matrices, and showed that the Haag–Kastler axioms are fulfilled. As in previous
works, the removal of the interaction cutoff is done on the level of the algebras, taking
the so-called adiabatic algebraic limit, which is essential to verify the covariance axiom.
Compared to Minkowski spacetime, one advantage of working on de Sitter spacetime is
that the spatial sections are compact, such that there are no infrared issues even for the
massless field, such that the field itself (and not only its derivative) is well-defined and we
could work in the standard Fock space representation.

Future possible work includes the construction of other physically interesting observ-
ables such as the stress-energy tensor, analogously to the flat-space result [1], and the
higher-order conserved currents [3, 4]. These should exist since the classical model admits
an infinite number of conserved charges in flat spacetime [2], and one expects that inte-
grability also holds in the quantum theory. While it has been shown recently that these
currents are renormalizable at any order in perturbation theory [5], the convergence of the
perturbation series as well as the conservation of the renormalized currents remain open
problems, even for Minkowski spacetime. Other avenues for future work include quantum
energy inequalities for the Sine–Gordon model in de Sitter spacetime, in analogy to the
ones derived by us in flat spacetime [23]. These are of fundamental importance for the
stability of quantum field theory, both thermodynamically and regarding the structure of
spacetime in the form of singularities; see for example Refs. [49–52] for reviews and existing
results.

It would also be interesting to extend our results to anti-de Sitter (AdS) spacetime, and
to investigate the connection with the AdS/CFT correspondence. The Sine–Gordon model
in AdS has been recently studied to low orders in perturbation theory [53], and combining
the methods presented here with theirs, it might be possible to obtain interesting all-order
results. However, to apply the AdS/CFT dictionary, it is important to be able to take the
adiabatic limit, where the interaction cutoff function g becomes constant. Also this is an
open problem, which is notoriously difficult and has not been resolved even in Minkowski
spacetime3. For de Sitter spacetime, where the spatial sections are compact, this limit
only needs to be taken in the timelike direction, and it is possible that this simplifies the
analysis.
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A Finite symmetry transformations

Here, we derive the expressions for a finite de Sitter symmetry transformation, of the
form (2.7)

eaξrot+bξboost,1+cξboost,2f(τ, θ) = f(τabc, θabc) . (A.1)

This is most easily done by passing to the embedding space, performing the transforma-
tion, and restricting the result to the de Sitter hyperboloid (2.1). We thus use the inverse
embedding (2.5) to promote f to a function of the XA, and use that ξrot is the restriction
of M12 and that ξboost,i are the restriction of M0i to the hyperboloid. Equation (A.1) thus
reads

eaM12+bM01+cM02
f(X) = f(Xabc) , (A.2)

and using that MAB = XA∂XB
− XB∂XA

, one verifies that the solution is given by

X0
abc = a2 − (b2 + c2) cos s

s2 X0 + ac(1 − cos s) + bs sin s

s2 X1 + ab(cos s − 1) + cs sin s

s2 X2 ,

(A.3a)

X1
abc = ac(cos s − 1) + bs sin s

s2 X0 + (a2 − b2) cos s − c2

s2 X1 + bc(1 − cos s) − as sin s

s2 X2 ,

(A.3b)

X2
abc = ab(1 − cos s) + cs sin s

s2 X0 + bc(1 − cos s) + as sin s

s2 X1 + (a2 − c2) cos s − b2

s2 X2 ,

(A.3c)

where we defined
s2 ≡ a2 − b2 − c2 . (A.4)

Finally, combining the embedding (2.2) and the inverse embedding (2.5) with these results,
we obtain the transformed de Sitter coordinates

τabc = arccot
[[

a2 − (b2 + c2) cos s
]

s2 cot τ

− [ac(1 − cos s) + bs sin s] cos θ + [ab(cos s − 1) + cs sin s] sin θ

s2 sin τ

]
,

(A.5a)

θabc = arctan
[−[ab(1 − cos s) + cs sin s] cos τ + [bc(1 − cos s) + as sin s] cos θ +

[
(a2 − c2) cos s − b2] sin θ

−[ac(cos s − 1) + bs sin s] cos τ + [(a2 − b2) cos s − c2] cos θ + [bc(1 − cos s) − as sin s] sin θ

]
.

(A.5b)

These expressions are real for both s2 > 0 (when the rotations dominates over the boosts),
and for s2 < 0 (when the boosts dominate over the rotation). In the latter case, this is seen
by writing s = it with t ∈ R, and using that cos s = cosh t and s sin s = −t sinh t.

For small transformations |a|, |b|, |c| ≪ 1, we obtain to first order

τabc ≈ τ + b cos θ sin τ + c sin θ sin τ , (A.6a)
θabc ≈ θ + a + b sin θ cos τ − c cos θ cos τ , (A.6b)
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which is of course nothing else but

τabc ≈ τ + [aξrot + bξboost,1 + cξboost,2]τ , (A.7a)
θabc ≈ θ + [aξrot + bξboost,1 + cξboost,2]θ . (A.7b)

Finally, one verifies in a long but straightforward computation that

e−aξrot−bξboost,1−cξboost,2f(τabc, θabc) = f(τ, θ) , (A.8)

such that the inverse transformation is obtained by inverting the parameters, and that

√
−g d2x = 1

H2 sin2(τ)
dτ dθ = 1

H2 sin2(τabc)
dτabc dθabc =

√
−g(xabc) d2xabc , (A.9)

as required since rotations and boosts are symmetry transformations.

B Cosine bound

Here, we want to derive the bound

1
2 − 2 cos(x) ≤


π2

8x2 x ∈
[
−π

2 , π
2
]

1
2 x ∈

[
π
2 , 3π

2

]
.

(B.1)

Since cos(x) < 0 for x ∈ [π/2, 3π/2], the second part is obvious. The first part follows from
the results of [54, 55] (see [56] for an overview), and was explicitly derived in [57]; however,
we provide a more direct proof.

Since the cosine is an even function, it is enough to show the bound for x ∈ [0, π/2].
We use the known facts that sin x and cos x are non-negative and bounded by 1 and that
sin x is monotonously increasing and cos x monotonously decreasing on that interval. Then
we have that x sin x ≥ 0 and thus its integral

∫ x
0 t sin t dt = sin x − x cos x is monotonously

increasing, vanishes at x = 0, and is thus non-negative. Therefore, also the function g(x) =
2(sin x − x cos x)(1 − cos x)/ sin2 x is non-negative since all factors are, and its integral∫ x

0 g(t) dt = 2x(1 − cos x)/ sin x − x2 is monotonously increasing, vanishes at x = 0, and is
thus non-negative. Now we note that(

x2

1 − cos x

)′

= sin x

(1 − cos x)2

[2x(1 − cos x)
sin x

− x2
]

≥ 0 , (B.2)

so the function x2/(1 − cos x) is monotonously increasing. It is thus bounded by its value
at x = π/2, which gives the bound (B.1).
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