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Year 1 results of the Legacy Survey of Space and Time (LSST) will provide tighter constraints on small-scale
cosmology, beyond the validity of linear perturbation theory. This heightens the demand for a computationally
affordable prescription that can accurately capture nonlinearities in beyond-ΛCDM models. The COmoving
Lagrangian Acceleration (COLA) method, a cost-effective N-body technique, has been proposed as a viable
alternative to high-resolution N-body simulations for training emulators of the nonlinear matter power spectrum.
In this study, we evaluate this approach by employing COLA emulators to conduct a cosmic shear analysis with
LSST-Y1 simulated data across three different nonlinear scale cuts. We use the 𝑤CDM model, for which the
EuclidEmulator2 (ee2) exists as a benchmark, having been trained with high-resolution N-body simulations.
We primarily utilize COLA simulations with mass resolution 𝑀part ≈ 8 × 1010 ℎ−1𝑀⊙ and force resolution
ℓforce = 0.5 ℎ−1Mpc, though we also test refined settings with 𝑀part ≈ 1 × 1010 ℎ−1𝑀⊙ and force resolution
ℓforce = 0.17 ℎ−1Mpc. We find the performance of the COLA emulators is sensitive to the placement of
high-resolution N-body reference samples inside the prior, which only ensure agreement in their local vicinity.
However, the COLA emulators pass stringent criteria in goodness-of-fit and parameter bias throughout the
prior, when ΛCDM predictions of ee2 are computed alongside every COLA emulator prediction, suggesting a
promising approach for extended models.

I. INTRODUCTION

In the past few decades, galaxy surveys have emerged as
essential cosmological probes, with a level of precision that
matches those of CMB measurements [1–14]. These surveys
can break degeneracies from other probes by measuring both
the background expansion and the growth of structure [15–
17]. As a result, they provide an important test of the ΛCDM
model and help to constrain the behavior of dark energy (DE)
[18, 19]. The new era of stage-IV Large Scale Structure (LSS)
surveys, such as the Legacy Survey of Space and Time (LSST)
[20] and Euclid [21], will deliver additional information on
smaller scales of our Universe. This poses a new challenge
for the theoretical cosmology community, as novel modeling
tools will be required to incorporate this information into the
exploration of theories that go beyond the Standard Model of
cosmology, without biasing parameter inference.

In a weak-lensing analysis, improving small-scale modeling
primarily requires refining the prediction of the matter power
spectrum, 𝑃(𝑘, 𝑧). At linear order, this quantity can be quickly
evaluated with accuracy using Einstein-Boltzmann codes, such
as camb1 and class2 [22] for General Relativity (GR), as well
as eftcamb [23] and hiclass [24] for modified gravity theo-

1 github.com/cmbant/CAMB
2 github.com/lesgourg/class_public

ries [25]. However, the same is not true on nonlinear scales,
where the equations of motion for the matter density field
become coupled, and the linear theory approach of evolving
modes independently can no longer be applied. Recent efforts
have been put forth to efficiently perform convolution inte-
grals appearing in higher order perturbation theory [26], such
as the fastpt code [27, 28], the Effective Field Theory (EFT)
approach [29–36] and its implementation [37–39], as well as
its generalizations for some beyond-ΛCDM models [39–46].
While these perturbative templates are becoming computation-
ally less costly, they cover a more limited range of the scales
being probed by photometric surveys, having only been vali-
dated up to the order of 𝑘 ∼ 0.2 ℎMpc−1 at 𝑧 = 0 [26, 47–50].

Arguably, the most accurate way of computing the matter
power spectrum far into the nonlinear regime is through the
use of high-resolution N-body simulations, which are known
to be time-consuming and computationally expensive3. This
expense only increases when running these codes for beyond-
ΛCDM models, such as in modified gravity theories, where the
equations of motion for the extra degrees of freedom [52] must
be solved in addition to the Poisson equation. At the same time,
Markov Chain Monte Carlo (MCMC) methods often require

3 An estimate of the time taken and the computational cost of running a high-
resolution simulation with stage-IV required specifications is discussed in
Section 2.1 of [51].
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O(106) computations of the matter power spectrum throughout
the parameter space in order to obtain robust constraints in
standard weak-lensing analyses, necessitating predictions of
the power spectrum in O(1) seconds. Currently, the halo
model provides analytic formulas that can be fit to the results of
N-body simulations, allowing for fast predictions of the power
spectrum up to scales of 𝑘 ∼ 10 ℎMpc−1, such as halofit [53–
55] 4, hmcode [57–59] and the halo reaction model approach
react [60, 61].

Alternatively, emulation methods have garnered attention in
the literature as a means of quickly replicating the results of
N-body simulations, both in ΛCDM [62–81], and in beyond-
ΛCDM models [82–90]. In particular, the EuclidEmulator2
(ee2) [91] and the bacco emulator [92] cover a wide range of
parameter space, redshifts, and scales. The former was built
with a training set of 127 high-resolution N-body simulations,
run with the GPU accelerated pkdgrav3 code [93], while the
latter utilizes the rescaling methodology developed by [94] to
predict the nonlinear structure formation of 800 training cos-
mologies from 6 high-resolution simulations. Notably, ee2
can reproduce the results of the Euclid training simulations
to within ∼ 1% error for 𝑧 ≤ 3 and 𝑘 ≤ 1ℎMpc−1, effec-
tively serving as a near substitute for a high-resolution N-body
simulation in ΛCDM and minor extensions.

Nevertheless, exploring the properties of dark energy re-
quires testing a variety of models for which emulators of
the nonlinear power spectrum do not yet exist. Hence, us-
ing emulators to constrain the assortment of beyond-ΛCDM
models with stage-IV LSS data will require research groups
to generate new training sets of O(102) simulations for each
model, utilizing their available computational resources. For
this reason, it was proposed in reference [95] that the COmov-
ing Lagrangian Acceleration (COLA) [96] method could be
a viable alternative to high-resolution N-body simulations in
creating training sets for beyond-ΛCDM emulators. COLA
is an approximate N-body method that allows fast generation
of the matter density field with a reduced number of time-
steps, and thus less computational expense, when compared to
high-resolution simulations.

In this paper, we assess the performance of COLA emula-
tors in constraining extended models by conducting LSST-Y1
simulated cosmic shear analyses. We consider the 𝑤CDM
model, where the dark energy equation of state 𝑤 is a free
parameter, as ee2 is trained for this model and provides a
suitable benchmark. While the original proposal [95] showed
sub-percent agreement between COLA and ee2 in their non-
linear predictions down to scales of 𝑘 ∼ 1 ℎMpc−1 for some
selected cosmologies, in the present work we perform stress
tests of COLA’s performance under large shifts throughout the
𝑤CDM parameter space. As beyond-ΛCDM models introduce
extra parameters that will further have their own degeneracies
with the ΛCDM parameters, it is ideal to have robust agree-
ment even in extreme regions of the prior. One of the goals of
this analysis is to determine the necessary scale cuts on LSST-

4 While this work was in its final stages, an improved version of halofit was
published [56].

Y1 cosmic shear data, such that the COLA-based constraints
are equivalent to those obtained with high-resolution N-body
methods. We aim to inform future analyses of beyond-ΛCDM
models, where high-resolution simulations are scarce. We also
test a variety of strategies for enhancing the performance of
the COLA emulators, including increasing the COLA reso-
lution settings, and calibrating the simulations with multiple
high-resolution reference samples.

This paper is organized as follows: in Sec. II A we discuss
the COLA algorithm and the methodology for running sim-
ulations and constructing training and validation sets for the
emulators. Sec. II B 2 describes how we process the results
from COLA simulations to build emulators and presents vali-
dation tests at the level of the power spectrum. In Sec. II C 1
we provide the details of our simulated LSST-Y1 analyses that
will serve as a test to the COLA emulators. Sec. III presents
cosmological parameter constraints for the LSST-Y1 simulated
analysis using our COLA emulators as well as ee2, assessing
the difference between both results. Within Sec. III, we test two
new ideas motivated by the preceding results and provide fur-
ther details of the corresponding methodology in Appendix B.
Finally, Sec. IV summarizes our conclusions.

II. METHODOLOGY

A. COLA Simulations

COLA [96, 97] is an approximate N-body method that com-
bines second-order Lagrangian Perturbation Theory (2LPT)
with a Particle-Mesh (PM) [98] algorithm, in which the for-
mer part of the code effectively evolves the large and interme-
diate scales, while the small scale evolution is given by the
latter. In COLA simulations the particles’ displacements are
solved on top of the LPT trajectories. In this way, we are
able to reduce the number of time-steps in the simulation that
would otherwise be needed to correctly capture the large scale
dynamics.

In usual N-body simulations, the particles’ positions and
velocities are evaluated by:

d®𝑥
d𝑡

= ®𝑣, (1a)

d®𝑣
d𝑡

= −®∇Φ. (1b)

In the COLA method, however, we define ®𝑥COLA = ®𝑥 − ®𝑥LPT,
and the system is then rewritten as:

d®𝑥
d𝑡

= ®𝑣COLA + d®𝑥LPT
d𝑡

, (2a)

d®𝑣COLA
d𝑡

= −®∇Φ − d2®𝑥LPT

d𝑡2
, (2b)

so that the code evolves ®𝑥 and ®𝑣COLA. At the beginning of the
simulation ®𝑣COLA = 0, which forces the particle’s trajectories
to follow the LPT evolution at large scales. In this way, one
can interpret the COLA method as a Particle-Mesh N-body



3

Default-precision Enhanced-precision

(DP) (EP)

𝑁part 10243 10243

𝐿 [ℎ−1Mpc] 1024 512

𝑁mesh 20483 30723

𝑀part [ℎ−1𝑀⊙] 8.4 × 1010 1.1 × 1010

ℓforce [ℎ−1Mpc] 0.5 0.17

TABLE I. Important settings adopted in our COLA simulations. We
run simulations with two different sets of COLA precision settings,
dubbed default-precision and enhanced-precision. 𝑁part is the total
number of particles in the simulation, 𝐿 is the size of the simulation
box, and 𝑁mesh is the number of mesh grids used to calculate the
force applied to each particle. 𝑀part is the mass resolution, or the
approximate mass per particle, and ℓforce is the size of mesh grids,
called the force resolution. These two quantities are important mea-
sures of a simulation’s precision.

code in the COLA frame, where particles are bound to LPT
trajectories at large scales.

Due to the approximate nature of the COLA method, previ-
ous works [88, 99, 100] have performed careful investigations
into various simulation settings such as the initial redshift of the
simulations, number of time-steps, scale factor spacing, and
force resolution. COLA has passed many different benchmark-
ing tests at the level of the power spectrum [88, 95, 101, 102]
with respect to high-resolution 𝑁-body simulations. The same
procedure has also been performed in modified gravity mod-
els [82–84, 88, 101, 103–105].

1. COLA Simulation Settings

In this work, we run COLA with two different precision set-
tings, dubbed default-precision (DP) and enhanced-precision
(EP), as outlined in Table I. For the default-precision simula-
tions, we have considered a box-size of 𝐿 = 1024 ℎ−1Mpc,
a total number of particles of 𝑁part = 10243, and a mesh
grid of 𝑁mesh = 20483 cell grids, amounting to a force res-
olution ℓforce ≡ 𝐿/𝑁1/3

mesh = 0.5 ℎ−1Mpc. For the enhanced-
precision simulations we have decided to improve the force
resolution of our simulations to ℓforce ≈ 0.17 ℎ−1Mpc, which
is achieved by keeping the total number of particles the same
as the default-precision simulations, but reducing the box-size
to 𝐿 = 512 ℎ−1Mpc and using a more refined mesh grid with
𝑁mesh = 30723.

All simulations were initiated at an initial redshift of
𝑧initial = 19, and used a total of 51 time-steps divided into
five different redshift intervals, each with a time resolution
of Δ𝑎 ≈ 0.02 as shown in Table II. This time resolution is
motivated in [95], where the same number of time-steps was
compared with PM N-body simulations with the same mass
and force resolution as in the enhanced-precision COLA sim-
ulations. As our simulations start at a relatively low redshift,

Redshift Range 𝑁steps

19.0 ≥ 𝑧 > 3.0 12

3.0 ≥ 𝑧 > 2.0 5

2.0 ≥ 𝑧 > 1.0 8

1.0 ≥ 𝑧 > 0.5 9

0.5 ≥ 𝑧 ≥ 0.0 17

TABLE II. Number of time-steps for numerical integration of Eqs. 2a-
2b in different redshift intervals from 𝑧 = 𝑧ini = 19 until 𝑧 = 0,
following [95]. In each interval, the time steps are linearly spaced
in scale factor, 𝑎, so that for each interval, the step size is Δ𝑎 =

(𝑎 𝑓 − 𝑎𝑖)/Nsteps. Here, 𝑎 𝑓 and 𝑎𝑖 are the final and initial scale
factors of the interval. 𝑁steps is chosen to maintain Δ𝑎 ≈ 0.02 in each
interval.

the initial displacement fields are generated using 2LPT, which
guarantees that we mitigate the effects of transients present
when considering only 1LPT [106] for the initial displace-
ments.

Usually, the initial conditions for N-body simulations are
implemented using the back-scaling method, where one feeds
the simulation the linear power spectrum at 𝑧 = 0, and then
back-scales it to the initial redshift of the simulation using the
ΛCDM first order growth factors. In this work, however, we
implement the “forward” approach [107], where at each time-
step of the simulation we feed in the linear transfer functions
that correctly capture large scale evolution. These transfer
functions are computed in the N-body gauge [108–111] using
a modified version of the Einstein-Boltzmann code class [22,
112]. The N-body gauge is a system of coordinates in which we
can introduce the effects stemming from relativistic species,
radiation and neutrinos, that are only relevant on linear scales,
and smoothly transition to the usual Newtonian description on
small scales.

The implementation of relativistic corrections at large scales
using the N-body gauge approach has also been followed by the
Euclid collaboration in the Euclid flagship simulations, as well
as in the high-resolution N-body simulations used to construct
ee2. The implementation in our COLA simulations follows
the procedure outlined in [113]. Our COLA simulations them-
selves were run using the publicly available cola-fml5 code,
and the power spectra from these simulations were evaluated
using the on-the-fly code ComputePowerSpectra available
in the cola-fml library.

Due to the finite volume of cosmological N-body simula-
tions, the lowest wavenumbers of the power spectra computed
from the particle position are undersampled, and the effects
of sample variance become more pronounced. To suppress
this effect, we follow the technique proposed in [114, 115],
known as “pair-fixing”, which consists of averaging the power
spectrum between a pair of simulations with fixed amplitudes

5 https://github.com/HAWinther/FML

https://github.com/HAWinther/FML
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Parameter Min. Max. EE2 Ref.

Ω𝑚 0.24 0.40 0.319

Ω𝑏 0.04 0.06 0.049

𝑛𝑠 0.92 1.00 0.96

𝐴𝑠 × 109 1.7 2.5 2.1

ℎ 0.61 0.73 0.67

𝑤 −1.3 −0.7 −1.0

TABLE III. Boundaries of the parameter space in which our emulators
are designed to be valid, and our analyses are conducted. For each
cosmological parameter listed, we choose minimum and maximum
values following the choices of ee2 [117]. We populate 5% beyond
the boundaries of this space in each direction with COLA training
simulations. Also listed are the values of the ee2 reference cosmology
located at the center of the space, which is used as an anchor in
calibrating the output of our simulations; see Sec. II B 1 for details.

of their initial random field realizations, but opposite phases.
This strategy has also been followed in the ee2 training simu-
lations.

Per design, the COLA method allows us to compute non-
linear realizations of the density field faster than a usual high-
resolution N-body simulation, typically around two orders of
magnitude faster in wall-clock time [116]. Employing 128
cores per simulation, the default-precision COLA simulations
take about 0.7 wall-clock hours on average, and the enhanced-
precision take about 1.5 wall-clock hours. When including a
25% memory buffer and system memory, the default-precision
and enhanced-precision simulations are able to run with 1TB
and 2TB of total memory respectively, though we used 1.5TB
and 3TB. All simulations were run in the SeaWulf cluster at
Stony Brook University and the GridUNESP cluster at the
State University of São Paulo.

2. Defining and Sampling the Parameter Space

In this work, we train emulators for both the ΛCDM and
𝑤CDM models for comparison. The parameter space specified
in Table III is the intended region of validity of our emulators.
Our choice is the same as ee2, but restricting the dark energy
equation of state parameter by setting 𝑤𝑎 = 0 so that 𝑤 = 𝑤0
is a constant value (in particular 𝑤 = −1 for ΛCDM). We also
follow the ee2 treatment of neutrinos using three degenerate
massive neutrinos, but fixing their summed mass to the ee2
reference value Σ𝑚𝜈 = 0.058 eV. However, in order to improve
emulation near the boundary of the ee2 parameter space, our
training simulations are run over a parameter space stretched
symmetrically in each parameter sampled by a total of 10%.
Within this space, we utilize Latin Hypercube (LH) sampling
to select the training points where we run simulations, ensuring
a uniform distribution across each individual cosmological
parameter and efficiently filling the space.

Before running COLA simulations, we determine our train-

ing cosmologies by constructing prototypes of our final emu-
lators using halofit, as it allows for the quick generation of
training sets of different sizes. We also generate validation
sets for each model with 𝑁val = 100 points chosen by LH
sampling within the ee2 boundaries in order to assess errors
due to emulation. Due to the lower computational expense
of COLA simulations compared to a high-resolution N-body,
we are much less constrained in the number of training points.
Using the same emulation choices outlined in Sec. II B 2, we
found that when using 𝑁ΛCDM

train = 400 training LH points for
ΛCDM, we were able to safely emulate halofit power spectra
with an error compared to the validation sets of less than 0.3%
for scales 10−2 ℎMpc−1 ≤ 𝑘 ≤ 𝜋 ℎMpc−1. For 𝑤CDM we ob-
tained the same results using 𝑁𝑤CDM

train = 500 points, increasing
the number due to the extra dimension in its parameter space.

B. Post-Processing COLA Simulations

In this section, we detail the methodology employed to pro-
cess the raw output 𝑃(𝑘, 𝑧) from the COLA simulations and
train emulators, and we evaluate the errors associated with
these processes. As is common practice, we extract from the
simulations only nonlinear corrections to the power spectrum,
as it simplifies the data for emulation. Hence, it is these non-
linear corrections that we use to measure the disagreement
directly between the COLA simulation output and ee2, as well
as the errors in the COLA emulator predictions with respect
to the COLA validation simulations.

1. The Boost Factor: computation and validation

The boost factor is defined as the ratio between the nonlinear
and linear power spectrum of a given cosmology, or vector of
cosmological parameters, θ:

𝐵𝑋 (𝑘, 𝑧 |θ) ≡
𝑃NL (𝑘, 𝑧 |θ)
𝑃L (𝑘, 𝑧 |θ)

. (3)

Here, 𝑋 denotes the nonlinear prescription used. Within the
scope of this paper, this distinguishes between a COLA-based
prescription or a high-resolution N-body prescription such as
ee2. We suppress the dependence on θ when it is understood
from context. By definition, the boost tends towards unity
on large scales where linear theory is applicable, while on
small scales, it primarily captures contributions due only to the
nonlinear clustering of matter. We compute 𝐵COLA (𝑘, 𝑧) using
Eq. 3 only after taking the average of the raw output 𝑃NL (𝑘, 𝑧)
of the two paired-and-fixed simulations, and subtracting the
shot noise term 𝐿3/𝑁part.

Following the approach in [95], we improve the accuracy
of the boost computed from the COLA simulations at a cos-
mology θ by using the boost computed from a high-resolution
N-body prescription at a reference cosmology λ:

�̄�(𝑘, 𝑧 |θ,λ) ≡ 𝐵high−res (𝑘, 𝑧 |λ) ×
(
𝐵COLA (𝑘, 𝑧 |θ)
𝐵COLA (𝑘, 𝑧 |λ)

)
. (4)
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FIG. 1. Bounds on the fractional differences between the boost factors from our COLA training simulations with those of ee2, for each
wavenumber at 𝑧 = 0, for the 50%, 90%, and 100% of lowest error cosmologies inside the ee2 parameter limits. In the left panels, we use Eq. 4
to compute the boost from our COLA simulations employing the ee2 reference as the single reference cosmology (𝑁refs = 1). These results
include both COLA precision settings defined in Table I, and both DE models. The right panels show the effect of using the more general
Eq. 5 to calibrate the 𝑤CDM simulations using additional reference anchors. Considering the expense of high-resolution anchors in extended
models, the top right panel shows the 𝑤CDM default-precision disagreement using only 25 additional references scattered throughout the
𝑤CDM parameter space. Alternatively, the third and fourth panels on the right display errors when the anchors were confined to the ΛCDM
subspace, where we test 100 additional anchors as existing high-resolution ΛCDM emulators allow for a much greater number. The second
panel on the right indicates that only a slight improvement is gained by spreading the 100 additional anchors throughout the entire 𝑤CDM
volume compared to restricting them to ΛCDM. For computationally effective ways to increase 𝑁ΛCDM

refs , see Sec. III E and Appendix B.

In this equation, cosmology-independent differences between
COLA and the high-resolution method are mitigated by taking
the ratio of two COLA predictions, so that COLA is used
to extrapolate the boost factor from a single "anchor" high-
resolution simulation, 𝐵high−res (𝑘, 𝑧 |λ), to a wider range of
cosmologies. While the reference cosmologyλmay be chosen
inside ΛCDM where high-resolution N-body emulators such
as ee2 already exist, the vector θ can nevertheless include
parameters that predict new physics beyond ΛCDM. Indeed,
one approach tested in this work is to use the ee2 ΛCDM
reference cosmology listed in Table III as the anchor in Eq. 4 to
calibrate the 𝑤CDM COLA simulations. As our main interest
is to benchmark our COLA emulators with ee2, we also use
ee2 to compute 𝐵high−res (𝑘, 𝑧 |λ).

The left panels of Fig. 1 compare �̄�COLA (𝑘, 𝑧 |θ,λ) against
𝐵ee2 (𝑘, 𝑧 |θ) for both DE models, and both COLA precision

settings listed in Table I. In each panel, we fix 𝑧 = 0 and
plot the bands that bound the lowest error 50%, 90%, and
100% of cosmologies of the respective training sets at each
wavenumber 𝑘 . Only cosmologies that lie within the ee2
boundary are able to be compared. Therefore, the ΛCDM
panels consider 240 of the 𝑁ΛCDM

train = 400 LH points, and
the 𝑤CDM panels consider 279 of the 𝑁𝑤CDM

train = 500 LH
points. In either DE model, the 90% error bands are within
the 2% range for 𝑘 ≲ 0.5 ℎMpc−1, for both COLA precision-
settings. However, the improvement of the enhanced-precision
simulations appears at higher 𝑘 due to their refined force and
mass resolutions, with the 90% error bands remaining below
3% when 𝑘 ≲ 1 ℎMpc−1. More specifically, the percentage of
𝑤CDM cosmologies in the default-precision runs with errors
at 𝑘 = 1 ℎMpc−1 outside the 2%, 3%, and 4% thresholds,
was 43.0%, 20.8% and 6.81%, respectively. For enhanced-
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precision simulations, these percentages more than halved,
decreasing to 21.2%, 9.0%, and 2.9%.

As Eq. 4 accounts only for cosmology-independent differ-
ences between COLA and the high-resolution N-body method,
cosmology-dependent disagreements will become more pro-
nounced as θ deviates more from the reference cosmology λ.
This rationale suggests incorporating multiple anchors across
the parameter space in order to supplement the ee2 reference
cosmology, and offer more proximate references for every
training point. We therefore generalize �̄�(𝑘, 𝑧 |θ) to the case
of multiple reference anchors (λ1, ...,λ𝑁refs ) by computing a
weighted sum of the boosts calibrated with each reference:

�̃�(𝑘, 𝑧 |θ,λ1, ...,λ𝑁refs ) ≡
𝑁refs∑︁
𝑖=1

𝑤𝑖 �̄�(𝑘, 𝑧 |θ,λ𝑖) . (5)

The weights

𝑤𝑖 =
exp(−𝑑2

𝑖
/𝜎2

𝑑
)∑𝑁refs

𝑗=1 exp(−𝑑2
𝑗
/𝜎2

𝑑
)
, (6)

are functions of the Euclidean distance in the 𝐷-dimensional
parameter space

𝑑2
𝑖 ≡

𝐷∑︁
𝑗=1

(Θ 𝑗 − Λ𝑖 𝑗 )2, (7)

between the normalized θ and the λ𝑖 vectors:

Θ 𝑗 ≡
𝜃 𝑗 − 𝜃 𝑗 ,min

𝜃 𝑗 ,max − 𝜃 𝑗 ,min
Λ𝑖 𝑗 ≡

𝜆𝑖 𝑗 − 𝜆𝑖 𝑗 ,min

𝜆𝑖 𝑗 ,max − 𝜆𝑖 𝑗 ,min
. (8)

The parameter 𝜎𝑑 in the weights is chosen during the pro-
cess of building the emulator, see the discussion at the end of
Sec. II B 2 for details.

In general, spreading high-resolution N-body anchors
𝐵high−res (𝑘, 𝑧 |λ𝑖) throughout the entire parameter space of an
extended model will require great computational cost, sub-
stantially constraining the number of affordable references.
However, using reference anchors confined only to the ΛCDM
subspace, where high-resolution N-body emulators such as
ee2 exist, reduces the cost associated with each reference to
merely that of COLA, allowing for a much larger number of
anchors. Indeed, the similar error profiles betweenΛCDM and
𝑤CDM in the left panels of Fig. 1 indicate the main source
of error comes from modeling the ΛCDM parameters. There-
fore, we use LH sampling to scatter 25 additional reference
anchors throughout the 𝑤CDM space (𝑁𝑤CDM

refs = 26), and 100
additional reference anchors confined to the ΛCDM subspace
(𝑁ΛCDM

refs = 101). In the case of the fewer 𝑁𝑤CDM
refs = 26 an-

chors, we reduced the parameter ranges by 15% percent total
from the ee2 limits before generating the LH, in order to de-
crease the average Euclidean distance, 𝑑, between the training
cosmologies inside the ee2 boundary, and their nearest an-
chors.

⟨𝑑⟩ = 1
𝑁

𝑁∑︁
𝑖=1

|𝚯𝑖 − 𝚲nearest to 𝚯𝑖
| . (9)

The effect of using Eq. 5 with multiple references is shown
in the right panels of Fig. 1 where the 𝑤CDM training simula-
tions are compared to the ee2 boost factor 𝐵ee2 (𝑘, 𝑧) at 𝑧 = 0
in 4 scenarios. The top right panel corresponds to the case
of processing the 𝑤CDM default-precision simulations with
𝑁𝑤CDM

refs = 26 anchors, where we found that 21.9%, 7.2%,
and 1.5% of the cosmologies inside the ee2 boundaries had
errors larger than 2%, 3% and 4% at 𝑘 = 1 ℎMpc−1. There-
fore, the 25 reference anchors showed similar improvement at
𝑘 = 1 ℎMpc−1 as enhanced-precision.

More interestingly, in the third panel on the right of Fig. 1
when the𝑤CDM default-precision simulations were processed
with 𝑁ΛCDM

refs = 101 anchors confined to the ΛCDM subspace,
all errors above 4% at 𝑘 = 1 ℎMpc−1 were eliminated, and
only 13.2% and 1.8% of cosmologies had errors larger than
2% and 3%. In the second panel on the right we include
the same results using 𝑁𝑤CDM

refs = 101 for visual comparison
only, where 11.1%, 1.8%, and 0.4% of cosmologies had errors
above 2%, 3% and 4% at 𝑘 = 1 ℎMpc−1, comparable to the
case of 𝑁ΛCDM

refs = 101. These results suggest that COLA can
effectively be used to model 𝑤CDM cosmologies by extrapo-
lating a large number of ΛCDM anchors, without significant
loss in accuracy compared to the same number of references
in the entire 𝑤CDM space.

Finally, in the bottom right panel of Fig. 1 we anchor the
𝑤CDM enhanced-precision simulations with 𝑁ΛCDM

refs = 101
references, yielding 11.1%, 2.2%, and 1.8% of cosmologies
with errors above 2%, 3% and 4% at 𝑘 = 1ℎMpc−1. The
comparison between the first and third panels on the right
may suggest that using a large number of ΛCDM anchors is
the best approach for further reducing disagreement. How-
ever, Eq. 4 shows that every additional anchor requires a new
COLA simulation to compute 𝐵COLA (𝑘, 𝑧 |λ). Running be-
yond 𝑁ΛCDM

refs = 101 COLA simulations approaches the cost of
the training set itself, therefore one might consider avoiding the
expense by building a dedicated emulator for 𝐵COLA (𝑘, 𝑧 |λ)
from the training simulations, provided this emulation does
not introduce large errors. This possibility is discussed in
Sec. III E, where we also test using the 𝐵COLA (𝑘, 𝑧 |λ) emu-
lator to calibrate the COLA predictions post-emulation rather
than calibrating the training set.

2. Emulating the Boost Factor

In this section, we will describe the steps taken to con-
struct emulators for the boost factor �̃�(𝑘, 𝑧 |θ,λ1, ...,λ𝑁refs )
defined in Eq. 5, so that it may be inferred for arbitrary
choices of the 6 cosmological parameters listed in Tab. III
θ = (Ω𝑚,Ω𝑏, 𝑛𝑠 , 𝐴𝑠 , ℎ, 𝑤) using the training set. We tested
emulators using three methods found in the literature: Gaus-
sian Process Regression (GP), neural networks (NN), and Poly-
nomial Chaos Expansion (PCE); and combined PCE with an
NN to form a fourth method which we denote "Neural Poly-
nomial Chaos Expansion" (NPCE). Their implementation is
detailed in Appendices A 2, A 3, A 4, and A 5.

In order to improve the emulation, ee2 processes the training
data by computing the logarithm of the boost factor. We test
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FIG. 2. 2D projections of the cosmologies where our 𝑤CDM COLA
simulations are run. We use 500 training points (red circles) and 100
validation points (blue triangles), drawing both using LH sampling.
As the desired region of validity of the emulators is within the ee2
parameter boundaries presented in Table III, we confine the validation
set to within these bounds (dashed black line). However, we train in
a region expanded by 5% for each parameter in each direction, to
ensure accurate emulation near the ee2 boundary. We also mark the
ee2 reference cosmology near the center of the space.

this approach using the boost computed from our simulations
�̃�(𝑘, 𝑧):

𝑄NS (𝑘, 𝑧 |θ,λ1, ...,λ𝑁refs ) ≡
log[�̃�(𝑘, 𝑧) |θ,λ1, ...,λ𝑁refs ] . (10)

Here the superscript denotes that a "smearing" of the BAO os-
cillations has not been applied, which differs from the approach
of the bacco emulator [92]. The BAO smearing procedure
used by bacco dampens oscillations in the boost, reducing
the features in the quantity to be emulated. We implement
this approach by using as an emulation variable the following
quantity:

𝑄S (𝑘, 𝑧 |θ,λ1, ...,λ𝑁refs ) ≡

log
[
�̃�(𝑘, 𝑧 |θ,λ1, ...,λ𝑁refs ) ×

(
𝑃L (𝑘, 𝑧 |θ)
𝑃S

L (𝑘, 𝑧 |θ)

)]
, (11)

where 𝑃S
L (𝑘, 𝑧 |θ) is a combination of the linear matter spec-

trum and a version where its BAO signal is removed. Specifi-
cally, this is defined as:

𝑃S
L (𝑘, 𝑧 |θ) ≡ 𝑃L (𝑘, 𝑧 |θ)𝐺 (𝑘, 𝑧) +

𝑃NBAO
L (𝑘, 𝑧 |θ) (1 − 𝐺 (𝑘, 𝑧)), (12)

where

𝐺 (𝑘, 𝑧) ≡ exp(−0.5𝑘2/𝑘2
∗ (𝑧)), (13)

and

𝑘−2
∗ (𝑧) ≡ (3𝜋2)−1

∫
𝑑𝑘𝑃L (𝑘, 𝑧 |θ). (14)

To obtain the linear power spectrum devoid of the BAO sig-
nal, 𝑃NBAO

L (𝑘, 𝑧), we modify the publicly available code from
bacco6. The details of the algorithm are described in Ap-
pendix C of [118], and our modifications are discussed in
Appendix A 1. When employing this method, the smearing
procedure must be applied both when training the emulator,
and in the subsequent recovery of the nonlinear matter power
spectrum.

We obtain the nonlinear power spectrum from the emula-
tor depending on the emulation variable, using the relevant
equation:

𝑃NL (𝑘, 𝑧 |θ) = exp[𝑄NS (𝑘, 𝑧 |θ)] × 𝑃L (𝑘, 𝑧 |θ), (15)
𝑃NL (𝑘, 𝑧 |θ) = exp[𝑄S (𝑘, 𝑧 |θ)] × 𝑃S

L (𝑘, 𝑧 |θ). (16)

Here and throughout, we suppress the explicit dependence
on the anchors (λ1, ...,λ𝑁refs ) for simplicity. In this work,
𝑄S (𝑘, 𝑧) serves as the default emulation variable, used for
the vast majority of our emulators. Exceptions, where we
utilize 𝑄NS (𝑘, 𝑧) instead, are explicitly noted. The following
methodology outlined in this section remains applicable in
either case.

We then normalize the input and output of the emulators to
keep all parameters on a common scale. The emulators were
implemented with slightly different normalization procedures
without noticeable differences in the final result. All emula-
tors normalized the input cosmological parameters via Eq. 8,
however the GP and NN emulators used the ee2 limits from
Tab. III as the maximum and minimum values, while the PCE
emulator used the maximum and minimum values of each pa-
rameter that were sampled in the training set. In addition, the
PCE and NN emulators normalize the output two-dimensional
array 𝑄(𝑘𝑖 , 𝑧 𝑗 ), with 𝑘𝑖 and 𝑧 𝑗 being the sampled wave vector
and redshift output from the simulations. The PCE emulator
does this by finding for every wavenumber and redshift the
minimum and maximum values𝑄min (𝑘𝑖 , 𝑧 𝑗 ) and𝑄max (𝑘𝑖 , 𝑧 𝑗 )
over all cosmologies, and then computing:

�̂�(𝑘𝑖 , 𝑧 𝑗 |θ) ≡
𝑄(𝑘𝑖 , 𝑧 𝑗 |θ) −𝑄min (𝑘𝑖 , 𝑧 𝑗 )
𝑄max (𝑘𝑖 , 𝑧 𝑗 ) −𝑄min (𝑘𝑖 , 𝑧 𝑗 )

, (17)

In the neural network, we normalized using the minimum and
maximum per redshift instead: 𝑄min (𝑧 𝑗 ) = min𝑖 𝑄min (𝑘𝑖 , 𝑧 𝑗 )
and 𝑄max (𝑧 𝑗 ) = max𝑖 𝑄max (𝑘𝑖 , 𝑧 𝑗 ).

Next, we decompose �̂�(𝑘𝑖 , 𝑧 𝑗 ) into a linear combination
of basis vectors called principal components (PCs) in order
to decrease the dimensionality of the emulator’s output. The
principal components capture the maximum variance of the
data, therefore we are able to decrease the number of parame-
ters we emulate per redshift from 𝑁𝑘 = 512, to a much smaller

6 https://bitbucket.org/rangulo/baccoemu/src/master/baccoemu/matter_
powerspectrum.py

https://bitbucket.org/rangulo/baccoemu/src/master/baccoemu/matter_powerspectrum.py
https://bitbucket.org/rangulo/baccoemu/src/master/baccoemu/matter_powerspectrum.py
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FIG. 3. Bounds on the fractional differences between the boost functions at 𝑧 = 0 from various COLA 𝑤CDM emulators, and those from
the 100 validation simulations, for the best 50%, 90%, and 100% of cosmologies. The middle panel shows the slight improvement in the
default-precision emulation errors when incorporating the smearing procedure utilized by bacco via the emulation variable𝑄S (𝑘, 𝑧), compared
to the analogous case when the emulation variable is 𝑄NS (𝑘, 𝑧) following ee2. The emulated boost is recovered from the respective emulation
variables via Eqs. 15-16, while the boost from the simulations is computed directly via Eq. 5. While all default-precision emulators are
equivalent to the COLA simulations within a ∼ 0.5% margin for 𝑘 ≤ 𝜋 ℎMpc−1, only the NPCE method is able to achieve comparable errors
for enhanced-precision, which it does for scales up to 𝑘 ≤ 2𝜋 ℎMpc−1. For these comparisons we use only the ee2 reference cosmology to
calibrate simulations (𝑁refs = 1).

number 𝑁PC ∼ 10 of coefficients, without significant loss of
information. To find the principal components at each redshift
𝑧 𝑗 , we first calculate the sample average across the training set

⟨�̂�⟩(𝑘𝑖 , 𝑧 𝑗 ) =
1

𝑁cosmo

∑︁
θ

𝑄(𝑘𝑖 , 𝑧 𝑗 |θ) , (18)

as well as the sample covariance M 𝑗

(M 𝑗 )𝑖 𝑝 =
1

𝑁cosmo − 1

∑︁
θ

[ (
�̂�(𝑘𝑖 , 𝑧 𝑗 |θ) − ⟨�̂�⟩(𝑘𝑖 , 𝑧 𝑗 )

)
×(

�̂�(𝑘 𝑝 , 𝑧 𝑗 |θ) − ⟨�̂�⟩(𝑘 𝑝 , 𝑧 𝑗 )
) ]
. (19)

Finally, we diagonalize each covariance matrix to obtain
the 𝑁PC eigenvectors Eℓ 𝑗 (𝑘𝑖) with the largest eigenvalues, and
project �̂�(𝑘𝑖 , 𝑧 𝑗 ) onto the subspace spanned by these PCs.
Mathematically, this is expressed by:

�̂�(𝑘𝑖 , 𝑧 𝑗 |θ) = ⟨�̂�⟩(𝑘𝑖 , 𝑧 𝑗 ) +
𝑁PC∑︁
ℓ=1

𝛼ℓ 𝑗 (θ)Eℓ 𝑗 (𝑘𝑖) . (20)

Here, the coefficients 𝛼ℓ 𝑗 (θ) are functions of the cosmological
parameters that constitute the direct output of our emulators.
For each emulation method, we determine 𝑁PC by considering
the trade off between computational speed and accuracy. For
the default-precision emulators, we set 𝑁PC = (10, 11, 13) for
the GP, NN, and PCE, respectively. For enhanced-precision,
we selected 𝑁PC = (13, 11, 15, 15) for GP, NN, PCE, and
NPCE.

In Fig. 3 we display the fractional difference in the 𝑤CDM
validation set at 𝑧 = 0 between the emulated boost, obtained

by dividing Eqs. 15-16 by 𝑃L (𝑘, 𝑧 |θ), and those computed
directly from the simulations using Eq. 5. For the default-
precision simulations, we show our emulation errors which use
𝑄S (𝑘, 𝑧) as the emulation variable in the middle panel, but also
include for visual comparison in the left panel the analogous
errors using 𝑄NS (𝑘, 𝑧). Comparing the range 0.1ℎMpc−1 <
𝑘 < 0.5ℎMpc−1 between the middle and left panels shows the
effect of the smearing algorithm on emulation errors. The GP,
NN, and PCE default-precision emulators all perform similarly
with emulation errors below ∼ 0.5% up to the chosen cutoff
for default-precision, 𝑘max = 𝜋 ℎMpc−1

7.
The enhanced-precision emulation errors are shown in the

right panel of Fig. 3 where we see that GP, NN, and PCE all
exhibited inaccuracies above 1%, using a higher 𝑘max = 2𝜋
ℎMpc−1 due to the increased force-resolution. Therefore,
for enhanced-precision we developed the NPCE method, dis-
cussed in Appendix A 5, which restored emulation errors to
below the 0.5% level. However, comparing Fig. 1 and Fig. 3
shows that emulation errors are subdominant on all scales
when compared to COLA inaccuracies, so emulation errors
are not expected to heavily bias our analysis. Of course, it
is possible that a more pronounced difference in performance
would appear between the emulation methods in the presence

7 For default-precision emulators, we applied 𝑘max = 𝜋 ℎMpc−1 for 𝑧 < 2
and 𝑘max = 𝜋

2 ℎMpc−1 for 𝑧 > 2. Conversely, for the enhanced-precision
emulators 𝑘max = 2𝜋 ℎMpc−1 for 𝑧 < 2 and 𝑘max = 𝜋 ℎMpc−1 for 𝑧 > 2.
Shot noise can dominate the power spectrum output from the simulations on
small scales. Because power dissipates on larger scales for higher redshifts,
we adjust 𝑘max for 𝑧 > 2, to prevent shot noise subtraction from producing
spurious negative power spectrum values at these redshifts.
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Parameter Fiducial Prior

Survey specifications
Area 12300 deg2 –
Shape noise per component 0.26 –
𝑛sources

eff 11.2 arcmin−2 –

Photometric redshift offsets
Δ𝑧𝑖source 0 N [0, 0.02]

Intrinsic alignment (NLA)
𝑎1 0.7 U[-5, 5]
𝜂1 -1.7 U[-5, 5]

Shear calibration
𝑚𝑖 0 N [0, 0.005]

TABLE IV. Survey specifications on which the simulated analysis
is based, and priors for LSST nuisance parameters sampled in the
MCMCs. U[𝑎, 𝑏] represents an uniform distribution with edges
[𝑎, 𝑏], while N[𝑎, 𝑏] represents a Gaussian distribution with mean
𝑎 and standard deviation 𝑏. 𝑖 represents the index of the galaxy bin,
and all our priors are the same for all bins.

of other emulation choices, such as a lower number of training
points, a different 𝑁PC, or different dimensionality of the in-
put. In Appendix A 6, we perform a test to confirm that the GP,
NN, and PCE default-precision emulators agree at the level of
parameter inference.

As a final note, the emulation errors shown in Fig. 3 were
computed using COLA simulations calibrated to only a single
reference anchor 𝑁refs = 1. For multiple anchors, the emu-
lation errors are sensitive to the choice of the parameter 𝜎𝑑

in Eq. 6. While low values of 𝜎𝑑 suppress the sensitivity of
�̃�(𝑘, 𝑧) to anchors at larger distances 𝑑𝑖 , they can also cause
inconsistent modeling between different regions of the pa-
rameter space which manifest in the emulation errors. This is
because the training points nearest to a given test point, and the
test point itself, may heavily weight different anchors, causing
large disagreements between the emulator and the test simu-
lations. Indeed, avoiding this inconsistency is the motivation
for using a weighted sum in Eq. 5 as opposed to using solely
the nearest anchor. Therefore, we choose 𝜎𝑑 for every set of
references by computing the emulation errors of the validation
set for different values of 𝜎𝑑 and using the lowest value pos-
sible before the emulation errors significantly increase beyond
those in Fig. 3. We found that regardless of the DE model,
𝜎𝑑 = 0.5 for 𝑁refs = 26, and 𝜎𝑑 = 0.3 for 𝑁refs = 101, did
not significantly increase emulation errors above those of the
single-anchor cases in Fig. 3.

C. Analysis of LSST-Y1 Simulated Data

In this Section, we describe the simulated cosmic shear
dataset we analyze with MCMCs, how the data vector and co-
variance matrix are generated, and how we quantify deviations
between COLA and ee2.

1. Simulating Cosmic Shear Data

Our analysis is comprised of a simulated cosmic shear sur-
vey based on LSST-Y1, as in [119]. The fiducial data vec-
tors and covariance matrix used in the analysis are computed
following the methodology introduced in [120]. The spe-
cific survey specifications, such as footprint area and effective
number of galaxies per solid angle 𝑛eff are based on the LSST
DESC Science Requirement Document [121], and are shown
in Table IV. The source galaxy redshifts are drawn from a
Smail distribution, 𝑛(𝑧) ∝ 𝑧2 exp[−(𝑧/𝑧0)𝛼], normalized by
𝑛eff , where (𝑧0, 𝛼) = (0.191, 0.870). The drawn samples are
divided into 5 tomographic redshift bins with equal number of
galaxies. The bins are then convolved with a Gaussian redshift
uncertainty of 0.02(1+𝑧). The cosmic shear angular two-point
correlation function is calculated from theory in the following
way. First, the lensing efficiency 𝑞𝑖𝜅 is defined as:

𝑞𝑖𝜅 (𝜒) =
3Ω𝑚𝐻

2
0

2
×

∫ 𝜒𝐻

𝜒

𝑑𝜒′
(
𝜒′ − 𝜒
𝜒

)
𝑛𝑖s (𝑧(𝜒′))

𝑑𝑧

𝑑𝜒′
, (21)

where 𝜒 is the comoving distance. The two-point correlations
in Fourier space can be calculated via the Limber approxima-
tion:

𝐶
𝑖 𝑗
𝜅 𝜅 (ℓ) =

∫
𝑑𝜒

𝜒2 𝑞
𝑖
𝜅 (𝜒)𝑞

𝑗
𝜅 (𝜒)𝑃NL

(
𝑘 =

ℓ + 1
/

2
𝜒

, 𝑧(𝜒)
)
.

(22)
We convert to real-space correlations by transforming the
Fourier-space correlations:

𝜉
𝑖 𝑗
± (𝜃) =

∑︁
ℓ

2ℓ + 1
4𝜋

2(𝐺+
ℓ,2 (𝑥) ± 𝐺

−
ℓ,2 (𝑥))

ℓ2 (ℓ + 1)2 𝐶
𝑖 𝑗
𝜅 𝜅 (ℓ), (23)

where 𝑥 = cos 𝜃 and 𝐺± are analytic functions described in
Appendix A of [122]. The 𝜉𝑖 𝑗± (𝜃) correlation functions are
computed in 26 logarithmically-spaced angular bins between
2.5 and 900 arcmin. To compute correlation functions over
the whole angular bin, the term

𝐺+
ℓ,2 (𝑥) ± 𝐺

−
ℓ,2 (𝑥), (24)

is swapped by the averaged function

𝐺+
ℓ,2 (𝑥) ± 𝐺

−
ℓ,2 (𝑥) =

∫ 𝜃max
𝜃min

(𝐺+
ℓ,2 (cos 𝜃) ± 𝐺−

ℓ,2 (cos 𝜃))𝑑𝜃
𝜃max − 𝜃min

,

(25)
for which analytic expressions are known [123].

Finally, the data vector must be corrected for several sys-
tematic effects:

• Photometric redshift uncertainties: to account for
systematic biases in the photometric redshift measure-
ments, we introduce an offset parameter for the redshift
of each tomographic bin, such that the galaxy number
densities are computed with 𝑛𝑖 (𝑧 +Δ𝑧𝑖). For generating
the fiducial data vector, we assume no redshift uncer-
tainties.
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• Multiplicative shear calibration factor: to account
for systematic biases in the galaxy shape measurements,
we introduce a multiplicative factor 𝑚𝑖 for each tomo-
graphic bin, and the cosmic shear two-point correlation
functions are corrected as 𝜉𝑖 𝑗± → (1 + 𝑚𝑖) (1 + 𝑚 𝑗 )𝜉𝑖 𝑗± .

• Intrinsic Alignment: tidal gravitational fields can ac-
count for correlations between galaxy shapes that are not
caused by weak lensing. To model these correlations,
we use the "nonlinear linear alignment" (NLA) model,
characterized by an amplitude 𝑎 and exponent 𝜂 (see,
e.g. [124, 125]). In this model, the intrinsic shape field
𝛾IA
𝑖 𝑗

is given by:

𝛾IA
𝑖 𝑗 = −𝑎1�̄�1

𝜌cΩ𝑚

𝐷 (𝑧)

(
1 + 𝑧
1 + 𝑧0

) 𝜂1

, (26)

where �̄�1 = 5 × 10−14M⊙ℎ−2Mpc2 is a normalization
constant, 𝜌c = 3𝐻2

0/8𝜋𝐺 is the critical density, 𝐷 (𝑧) is
the growth factor, 𝑧0 = 0.62 is a pivot redshift and 𝑎1
and 𝜂1 are model parameters.

The priors and fiducial values for the nuisance parameters are
shown in Table IV.

We perform the MCMC analysis using Cocoa, the Cobaya-
Cosmolike Architecture8 . Cocoa is a modified version of
CosmoLike [126] multi-probe analysis software incorporated
into the Cobaya framework [127, 128]. The 𝜉± angular cor-
relation functions are calculated in CosmoLike, which takes
the linear matter power spectrum from CAMB [129, 130] cor-
rected for nonlinearities by one of the emulators. We establish
convergence of the chains using the Gelman-Rubin criterion
when |𝑅 − 1| < 0.03.

The fiducial data vectors of our analyses were generated at
different cosmologies in the prior, using ee2 as the nonlinear
prescription. One fiducial data vector is generated at the ee2
reference cosmology, with four more being taken from a 2 × 2
grid in the Ω𝑚 − 𝐴𝑠 plane, and similarly another four from
the 𝐴𝑠 − 𝑛𝑠 plane, keeping other cosmological parameters at
the ee2 reference values. These 8 fiducial grid points are
chosen for each parameter such that there is a "low" (↓) and
a "high" (↑) value, corresponding to normalized values of
Θ ∈ {0.25, 0.75}, leading to Ω𝑚 ∈ {0.28, 0.36}, 𝐴𝑠 × 109 ∈
{1.9, 2.3} and 𝑛𝑠 ∈ {0.94, 0.98}.

For the four Ω↑
𝑚 cosmologies, we also compute data vectors

outside of the ΛCDM subspace, choosing 𝑤 ∈ {−1.1,−0.9}.
In total, we generate 17 fiducial data vectors. The values
of the shifted cosmological parameters in the fiducial data
vectors are summarized in Table V. The covariance matrix
was computed in CosmoCov, using an analytical approach.
Finally, a Gaussian noise realization was generated from the
covariance matrix and added to the fiducial data vectors.

As we expect more significant discrepancies between ee2
and COLA at smaller scales, we test different scale cuts to the
data vector. We exclude data points in increasingly smaller

8 https://github.com/CosmoLike/cocoa

𝜃 𝜃↓ 𝜃↑

Ω𝑚 0.28 0.36

𝐴𝑠 × 109 1.9 2.3

𝑛𝑠 0.94 0.98

𝑤 -1.1 -0.9

TABLE V. "Low" (↓) and "high" (↑) cosmological parameter values
used to create the fiducial cosmologies of our analyses. In this no-
tation, fiducial cosmologies are labeled in the text by the parameters
shifted from the ee2 reference values listed in Table III.

angles based on an angular cutoff 𝜃min. Since 𝜉− at a given an-
gle maps to smaller scales than 𝜉+, its cutoff is more stringent.
We test three angular cutoffs for the cosmic shear correlation
functions 𝜉+ and 𝜉−:

• Cutoff 1 (C1): 𝜃min = 22.0′ for 𝜉+ and 𝜃min = 69.6′ for
𝜉− . This leaves intact 405 out of 780 elements in the
data vector.

• Cutoff 2 (C2): 𝜃min = 11.0′ for 𝜉+ and 𝜃min = 34.8′ for
𝜉− . This leaves intact 495 out of 780 elements in the
data vector.

• Cutoff 3 (C3): 𝜃min = 5.5′ for 𝜉+ and 𝜃min = 17.4′ for
𝜉− . This leaves intact 600 out of 780 elements in the
data vector.

To compute the cosmic shear integral in Eq. 22, we must
provide the nonlinear matter power spectrum up to 𝑘 values
beyond the emulator limits. We perform a linear extrapolation
of exp(𝑄(𝑘)) vs. log(𝑘) for the COLA emulators, and of
𝐵(𝑘) vs. log(𝑘) for ee2 from its maximum value of 𝑘ee2

max ≈
9.41 ℎMpc−1. A Savitzky-Golay filter of order one was used
to filter the last 𝑘-bins of𝑄(𝑘) from the COLA emulators prior
to performing the extrapolation to avoid noise errors.

2. Quantifying tensions between analyses choices

One of the main goals of this analysis is to assess the scale
cuts that need to be adopted so that COLA provides unbi-
ased constraints to cosmological parameters when compared
to analyses based on the ee2 emulator. To quantify deviations
between parameter constraints from the LSST-Y1 simulated
analysis, we first assess the 1D biases in the cosmological
parameters Ω𝑚, 𝑆8 and 𝑤, defined as:

Δ𝜃

𝜎𝜃

=
⟨𝜃⟩COLA − ⟨𝜃⟩ee2√︃
𝜎2
𝜃,ee2 + 𝜎

2
𝜃,COLA

, (27)

where 𝜃 denotes one of the parameters Ω𝑚, 𝑆8 and 𝑤, and
⟨𝜃⟩ and 𝜎2

𝜃
are the sample mean and sample variance of the

parameter 𝜃 in the chains. We take the difference between
COLA and ee2 means, rather than the difference between
means and fiducial parameters, to avoid projection effects.

https://github.com/CosmoLike/cocoa
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The one-dimensional bias does not capture correlations be-
tween cosmological parameters. Therefore, we also employ
the Figure of Bias (FoB) metric, which generalizes the 1D bias
for multidimensional distributions, defined by:

FoB(θ) = [Δ ⟨θ⟩T · (𝐶COLA + 𝐶ee2)−1 · Δ ⟨θ⟩]1/2, (28)

Here θ denotes the vector cosmological parameters, · denotes
matrix multiplication, Δ ⟨θ⟩ = ⟨θ⟩COLA − ⟨θ⟩ee2 is the differ-
ence in parameter sample means in the chains and 𝐶COLA and
𝐶ee2 are the sample covariance matrices of the cosmological
parameters obtained in the MCMCs. In this analysis, θ con-
tains the 6 cosmological parameters listed in Table III, thus we
refer to it as the 6D bias.

As a goodness-of-fit test, we compute the difference in 𝜒2

between the COLA emulators and ee2,Δ𝜒2 ≡ 𝜒2
COLA−𝜒

2
ee2, by

performing importance sampling of the ee2 chains and recal-
culating the 𝜒2 for the same points using the COLA emulators
as the nonlinear prescription.

III. RESULTS FOR LSST-Y1 SIMULATED ANALYSIS

In this section, we present results from our 𝑤CDM anal-
ysis of the LSST-Y1 simulated data using COLA emulators.
In Appendix A 6, it can be seen that the GP, NN, and PCE
default-precision emulators show strong agreement in param-
eter estimation. Therefore, we simply employ the PCE method
for all default-precision COLA emulators in the subsequent
tests, unless otherwise stated. However, the NPCE method
was used for all enhanced-precision emulators, due to its im-
proved accuracy shown in Fig. 3.

We run MCMCs for a variety of fiducial cosmologies and
angular scale cuts, using both ee2 and our COLA emula-
tors to provide the nonlinear correction for the matter power
spectrum. We test a baseline COLA emulator, which em-
ploys default-precision simulations and a single anchor at the
ee2 reference cosmology (𝑁refs = 1). We also test modifica-
tions to this baseline approach, including the use of enhanced-
precision COLA settings, 𝑁𝑤CDM

refs = 26 reference anchors, and
𝑁ΛCDM

refs = 101 reference anchors. Following those results, we
introduce and investigate two more methods which we label
𝑁ΛCDM

refs = 500 and 𝑁ΛCDM
refs = ∞, discussed in Sec. III E. We

will use as a guideline the criteria adopted in the DES-Y3 anal-
ysis [131], seeking a 6D FoB < 0.3 (Eq. 28) in the parameters
{𝐻0,Ω𝑚,Ω𝑏, 𝐴𝑠 , 𝑛𝑠 , 𝑤} between ee2 and COLA constraints,
and a difference |Δ𝜒2 | < 1 for importance-sampled points.

A. Default-Precision Settings Using 𝑁refs = 1

We begin by testing our baseline COLA emulator in the
most idealized scenario when the fiducial cosmology is exactly
equal to the reference cosmology of the emulator. In this case,
the emulator will be calibrated by Eq. 4 to agree with ee2 well
for points in the high-likelihood region of the posterior, thus
one expects optimal agreement between the two prescriptions.
While we perform this test using the baseline emulator, we also
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FIG. 4. Confidence contours (68% and 95%) of the parameters Ω𝑚,
𝑆8, and 𝑤 when the nonlinear matter power spectrum is computed
using either ee2 (pink filled contours) or the baseline 𝑤CDM COLA
emulator (dashed blue lines), all using the most aggressive Cutoff
3. In the top panel we place the fiducial cosmology at the reference
cosmology of the emulator. This yields a low FoB = 0.11, indicat-
ing that only the baseline emulator is needed when the reference is
optimally positioned inside the posterior. However, the bottom panel
shows that this same emulator produces large biases in regions far
from the reference, yielding an FoB = 5.34. These biases correlate
strongly with 𝜎8, with the fiducial value used in the bottom panel
(𝜎8 = 0.93) being significantly greater than that of the ee2 reference
cosmology (𝜎8 = 0.82).

apply the most aggressive mask Cutoff 3. The results are shown
in the triangle plot in the top panel of Fig. 4, where we see
strong agreement in 2D contours between the COLA emulator
and ee2. Specifically, the 6D FoB given by Eq. 28 was 0.11.
With regards to goodness-of-fit, we obtain in this case 66.5%
of points with |Δ𝜒2 | < 1. Therefore, we have the immediate
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FIG. 5. The 1D measure of bias defined in Eq. 27, between the
default-precision COLA emulator and ee2, when only the single
ee2 reference anchor is used. In addition to the ee2 reference, we
test this baseline emulator on 8 fiducial cosmologies far from the
reference, applying three different scale cuts described in Sec. II C 1.
The 8 shifted fiducial cosmologies on the vertical axis are obtained by
starting from the ee2 reference values shown in Table III, and shifting
pairs of values to those listed in Tab. V. The fiducial cosmologies
on the vertical axis are listed in decreasing order of their associated
𝜎8 values, showing a strong correlation with the biases. We use the
same color scheme to distinguish the scale cuts in plots of 1D bias
throughout the paper.

result that even our baseline COLA approach has the potential
for strong agreement with a high-resolution N-body emulator
on the most nonlinear scales tested in this paper, as long as
the reference cosmology is optimally located inside the high-
likelihood region. This suggests that performing exploratory
analyses, such as initial chains using linear scale cuts, could be
a useful approach to identify ideal locations to place anchors
before the final chain.

Nevertheless, given that in general the high-likelihood re-
gion is not known a priori, it is desirable to have an emulator
that obtains accurate constraints throughout the whole param-
eter space. Hence, we perform MCMCs using fiducial cos-
mologies in which two cosmological parameters at a time are
significantly shifted from the ee2 reference values, in order to
reassess the agreement between the baseline COLA emulators
and ee2 in these regions of the prior. We begin these tests
by considering all 4 combinations of high and low Ω𝑚 and
𝐴𝑠 values, and all 4 combinations of high and low Ω𝑚 and
𝑛𝑠 values, according to Table V. We then repeat the previous
analysis using the baseline COLA emulator with Cutoff 3 with
these 8 fiducial cosmologies. The 2D contours corresponding
to the fiducial cosmology (Ω↑

𝑚, 𝐴
↑
𝑠), the most biased of these 8

cases, are shown in the bottom panel of Fig. 4 where we now
see a strong disagreement between ee2 and COLA constraints.
Specifically, the full FoB = 5.34 when the fiducial was shifted
to (Ω↑

𝑚, 𝐴
↑
𝑠). However, in a test where the emulator’s single

reference was set to the fiducial values of (Ω↑
𝑚, 𝐴

↑
𝑠), the FoB

1 0 1 2 0 2 0 5

0 5 0 20
2
COLA

2
EE2

0 20 40

m , As , C1 m , As , C2 m , As , C3

m , As , C1 m , As , C2 m , As , C3

DP, Nrefs = 1 EP, Nrefs = 1

FIG. 6. Histograms of 𝜒2 differences between COLA and ee2 at two
fiducial cosmologies: (Ω↑

𝑚, 𝐴↑𝑠 ) and (Ω↓
𝑚, 𝐴↑𝑠 ), and the three angular

scale cuts tested. We burn-in and thin the ee2 chains, and calculate the
𝜒2 for these cosmologies when using COLA as the nonlinear model,
in order to compute the difference. Here we use COLA emulators
calibrated only with the ee2 reference cosmology, testing both COLA
precision settings: default-precision (blue with horizontal stripes) and
enhanced-precision (yellow with diagonal stripes).

was restored to a low value of 0.40, near the target of 0.3.
More comprehensively, the 1D bias metric of Eq. 27 be-

tween the baseline COLA emulator and ee2 for all 8 of the
aforementioned fiducial cosmologies, and all three angular
scale cuts, is shown in Fig. 5 for the parameters Ω𝑚, 𝑆8 and
𝑤. The fiducial cosmologies are listed in decreasing order of
𝜎8 as it displays a clear correlation with all parameter biases,
especially for fiducial 𝜎8 values larger than the reference value
𝜎8,ref = 0.82. The largest 1D biases in 𝑆8 between COLA
and ee2 are for the fiducial cosmology (Ω↑

𝑚, 𝐴
↑
𝑠), which has

𝜎8 = 0.93. We also notice that 𝑆8 tends to be the most bi-
ased parameter, as it is the most constrained by cosmic shear
surveys. For the (Ω↑

𝑚, 𝐴
↑
𝑠) cosmology, the baseline emulator

produces 1D biases in 𝑆8 of 0.32𝜎𝑆8 , 0.82𝜎𝑆8 and 1.33𝜎𝑆8
using Cutoffs 1, 2, and 3, respectively. The 6D FoB in these
cases is 1.12, 3.18 and 5.34. However, the maximum FoB for
Cutoff 1 occurred for the (Ω↑

𝑚, 𝑛
↑
𝑠) cosmology, which has the

second largest 𝜎8 = 0.90, producing an FoB of 1.30.
Additionally, in Fig. 6 we show the Δ𝜒2 distribution for

cosmologies from the ee2 chains for a fiducial cosmology
with low bias (Ω↓

𝑚, 𝐴
↑
𝑠), and with high bias (Ω↑

𝑚, 𝐴
↑
𝑠). For the

latter region, the Δ𝜒2 disagreement reaches as high as 5, 20,
and 40 for the three respective scale cuts. Therefore, while
the baseline approach achieves low bias near the reference, in
other regions of the prior it can impose non-negligible bias
and Δ𝜒2 compared to ee2, for all three scale cuts.
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FIG. 7. The 1D measures of bias against ee2, now including three
additional COLA emulators, using the high Ω𝑚 fiducial cosmologies
of Fig. 5. The top panel shows the improvement in bias due to using
enhanced-precision simulations for the single-reference emulators.
Alternatively, the bottom panel compares two approaches of increas-
ing the number of reference anchors: using 𝑁𝑤CDM

refs = 26 references,
vs. 𝑁ΛCDM

refs = 101.

B. Enhanced-Precision Settings Using 𝑁refs = 1

With the objective of creating an emulator with low bias
throughout the prior, we now investigate the impact of us-
ing our enhanced-precision COLA emulator with 𝑁refs = 1,
and compare it to the baseline emulator. In the top panel
of Fig. 7 we repeat the tests of the 1D bias from Fig. 5 for
the enhanced-precision emulator, but only for the high Ω𝑚

fiducial cosmologies, as they all displayed higher bias than
their low Ω𝑚 counterparts. The observed trend indicates that
the enhanced-precision emulator did consistently reduce bi-
ases, though minimally. Considering the most biased fiducial
cosmology of the enhanced-precision emulator (Ω↑

𝑚, 𝐴
↑
𝑠), we

compare the tension to the default-precision case:

• DP 𝑁refs = 1: Δ𝑆8/𝜎𝑆8 = 0.32, FoB = 1.12 (C1);

• EP 𝑁refs = 1: Δ𝑆8/𝜎𝑆8 = 0.30, FoB = 0.98 (C1);

• DP 𝑁refs = 1: Δ𝑆8/𝜎𝑆8 = 0.82, FoB = 3.18 (C2);

• EP 𝑁refs = 1: Δ𝑆8/𝜎𝑆8 = 0.70, FoB = 2.52 (C2).

Fig. 6 shows the difference in 𝜒2 between the 𝑁refs = 1
emulators and ee2 at two of the fiducial cosmologies used
in Fig. 5: (Ω↓

𝑚, 𝐴
↑
𝑠) and (Ω↑

𝑚, 𝐴
↑
𝑠). The lower bias fiducial
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FIG. 8. Δ𝜒2 histograms between the COLA emulators and ee2, as
in Fig. 6, now for default-precision emulators calibrated to multiple
references. We assess the 𝑁𝑤CDM

refs = 26 emulator (blue with hori-
zontal stripes) and the 𝑁ΛCDM

refs = 101 emulator (yellow with diagonal
stripes).

cosmology with Ω𝑚 = Ω
↓
𝑚 also shows a better agreement in

𝜒2 with ee2, with 98.7% of the points having |Δ𝜒2 | < 1 for
the default-precision emulator using Cutoff 1, increasing to
98.9% for the enhanced-precision emulator. More significant
disagreements begin to appear at Cutoff 2, with 80.3% of
the points having |Δ𝜒2 | < 1 for default-precision and 92.3%
for enhanced-precision. For the (Ω↑

𝑚, 𝐴
↑
𝑠) fiducial cosmology,

even Cutoff 1 shows a significant disagreement between COLA
and ee2, with only 51.7% of the points having |Δ𝜒2 | < 1
with default-precision, decreasing to 48.1% using enhanced-
precision. More details are provided in Table VI.

These results indicate that the enhanced-precision emulator
only slightly reduced bias against ee2 compared to the default-
precision case, managing for Cutoff 1 to keep the largest 𝑆8
bias to below 0.30𝜎𝑆8 and FoB < 1. However, both single-
reference emulators produced large biases and fail to achieve
the desired FoB < 0.3 throughout the prior, particularly in
regions with 𝜎8 far from the reference value.

C. Default-Precision Settings Using 𝑁𝑤CDM
refs = 26 and

𝑁ΛCDM
refs = 101

Alternatively, we now consider two approaches for cali-
brating the default-precision COLA simulations with multiple
reference anchors according to Eq. 5. We compare the ap-
proaches of using a low number of anchors in the extended
model 𝑁𝑤CDM

refs = 26, and using a high number confined to the
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Cosmo.

Emul.
DP, 1 EP, 1 DP, 26

(wCDM)
DP, 101
(ΛCDM)

Ω
↓
𝑚, 𝐴↑𝑠 , C1 98.7% 98.9% 99.3% 99.2%

Ω
↓
𝑚, 𝐴↑𝑠 , C2 80.3% 92.3% 92.4% 96.0%

Ω
↓
𝑚, 𝐴↑𝑠 , C3 50.4% 58.9% 80.2% 83.7%

Ω
↑
𝑚, 𝐴↑𝑠 , C1 51.4% 48.2% 71.0% 77.8%

Ω
↑
𝑚, 𝐴↑𝑠 , C2 14.2% 17.0% 28.5% 35.8%

Ω
↑
𝑚, 𝐴↑𝑠 , C3 4.1% 4.3% 10.6% 22.6%

TABLE VI. Percentages of MCMC accepted points with |𝜒2
COLA −

𝜒2
ee2 | < 1 at two representative cosmologies. We include four dif-

ferent emulators, labeled by the precision of the COLA simulations
used, and the number of ee2 reference anchors used. The results over-
all show the best agreement in goodness-of-fit for the 𝑁ΛCDM

refs = 101
emulator relative to ee2. We consistently see that the COLA errors
depend significantly on the value of Ω𝑚, which is correlated with 𝜎8,
with better agreement when using fiducial cosmologies with low Ω𝑚

values compared to high Ω𝑚.

ΛCDM subspace 𝑁ΛCDM
refs = 101. In the bottom panel of Fig. 7,

as in the enhanced-precision tests, we present the 1D biases of
the multiple-reference emulators for the high Ω𝑚 fiducial cos-
mologies. A comparison to the top panel suggests that either
approach of using additional anchors to calibrate the COLA
simulations is more effective at mitigating bias than using the
enhanced-precision settings with a single anchor.

Additionally, the bottom panel of Fig. 7 shows that for these
ΛCDM fiducial cosmologies, the strategy of using a large num-
ber of ΛCDM anchors consistently produced less bias against
ee2, than did a low number of 𝑤CDM anchors. The largest
biases continue to occur at the fiducial cosmology (Ω↑

𝑚, 𝐴
↑
𝑠).

For this cosmology, we now see improvements in the tension
for Cutoff 1 and Cutoff 2:

• DP 𝑁𝑤CDM
refs = 26: Δ𝑆8/𝜎𝑆8 = 0.25, FoB = 0.91 (C1);

• DP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.18, FoB = 0.69 (C1);

• DP 𝑁𝑤CDM
refs = 26: Δ𝑆8/𝜎𝑆8 = 0.54, FoB = 2.17 (C2);

• DP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.41, FoB = 1.61 (C2);

Furthermore, Fig. 8 indicates that using multiple anchors
improved the goodness-of-fit of COLA, with the emulator cal-
ibrated to a high number ofΛCDM anchors showing the small-
est differences in 𝜒2 compared to ee2. Whereas the baseline
emulator had 80.3% of the points with |Δ𝜒2 | < 1 compared
to ee2 using Cutoff 2 and the (Ω↓

𝑚, 𝐴
↑
𝑠) fiducial cosmology,

the 𝑁𝑤CDM
refs = 26 and 𝑁ΛCDM

refs = 101 emulators managed to
achieve 92.4% and 96.0% respectively. In addition, for the
(Ω↓

𝑚, 𝐴
↑
𝑠) fiducial cosmology using Cutoff 1, the 𝑁𝑤CDM

refs = 26
and 𝑁ΛCDM

refs = 101 emulators had 71.0% and 77.8% of points
with |Δ𝜒2 | < 1, compared to the 51.4% of the baseline emu-
lator. A more thorough summary is provided in Table VI.
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FIG. 9. 1D biases between two COLA default-precision emulators
and ee2 for fiducial cosmologies outside of the ΛCDM region, for the
two most aggressive scale cuts. While Fig. 7 showed less bias for the
𝑁ΛCDM

refs = 101 emulator compared to the 𝑁𝑤CDM
refs = 26 emulator for

fiducial cosmologies within ΛCDM, we consider whether this holds
when the same fiducial cosmologies are shifted in 𝑤.

As a final comparison between these two approaches of
using multiple anchors, we test whether the 𝑁𝑤CDM

refs = 26
emulator has an advantage in regions of the prior outside of
the ΛCDM space, by varying the fiducial value of 𝑤. We
start from the 4 fiducial cosmologies with high Ω𝑚, but shift
the value of 𝑤 to 𝑤↑ = −0.9 and 𝑤↓ = −1.1, creating 8
new fiducial cosmologies. The 1D biases at those fiducial
cosmologies are shown in Fig. 9. The result appears to hold
that the 𝑁ΛCDM

refs = 101 emulator consistently mitigates large
biases more effectively than the 𝑁𝑤CDM

refs = 26 emulator. We
perform our remaining tests using fiducial cosmologies with
𝑤 ≠ −1, and present more results regarding the 𝑁ΛCDM

refs = 101
approach in the next section.

We emphasize that we are investigating the COLA method
in the context of extended models for which there exist at best
only computationally expensive prescriptions, hence this ex-
pense extends to computing reference anchors that fill the entire
parameter space. Because high-resolution N-body emulators
already exist for ΛCDM, the only significant computational
expense to adding ΛCDM anchors under the present approach
is the associated COLA simulations, though we test eliminat-
ing this expense as well in Sec. III E. Therefore, using a large
number of ΛCDM references to calibrate COLA emulators in
extended models is likely more computationally efficient than
even a modest number of anchors that do not leverage existing
emulators. Hence, we perform our remaining tests using a
large number of ΛCDM references.



15

0.5 0.0 0.5
m/ m

m , As , w

m , ns , w

m , ns , w

m , As , w

0.5 0.0 0.5
S8/ S8

0.5 0.0 0.5
w/ w

DP, N CDM
refs =101 EP, N CDM

refs =101

FIG. 10. 1D measures of bias between COLA emulators and ee2
for fiducial cosmologies outside of the ΛCDM region, for the all
three scale cuts. We use fiducial cosmologies with 𝑤 = 𝑤↓ as Fig. 9
shows larger bias in these cases compared to the analogous 𝑤 = 𝑤↑

cases. We test default-precision and enhanced-precision emulators
with number of references 𝑁ΛCDM

refs = 101.

D. Enhanced-Precision Settings Using 𝑁ΛCDM
refs = 101

Due to the reduction of bias of the COLA emulators us-
ing the 𝑁ΛCDM

refs = 101 anchors approach, and the improved
goodness-of-fit, we now train an 𝑁ΛCDM

refs = 101 emulator with
enhanced-precision simulation settings to assess whether the
combination of the increased precision settings and multiple
anchors techniques can further reduce bias across the prior.
We test this emulator for the most biased fiducial cosmologies
from Fig. 9, those with 𝑤 = 𝑤↓, displaying in Fig. 10 the 1D
biases and comparing them to the default-precision case. As
in the case of 𝑁refs = 1, we see only moderate improvement
in the bias due to the use of the enhanced-precision simula-
tions over default-precision. The largest tensions occur for the
fiducial cosmology (Ω↑

𝑚, 𝐴↑
𝑠 , 𝑤↓) which has a high 𝜎8 = 0.95:

• DP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.17, FoB = 0.54 (C1);

• EP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.16, FoB = 0.40 (C1);

• DP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.47, FoB = 1.54 (C2);

• EP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.39, FoB = 1.10 (C2);

• DP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.70, FoB = 2.61 (C3);

• EP 𝑁ΛCDM
refs = 101: Δ𝑆8/𝜎𝑆8 = 0.65, FoB = 2.20 (C3).

Thus, even in the most extreme cases tested, both of these
emulators maintain low bias for Cutoff 1, with below 0.2𝜎𝑆8
tension in 𝑆8. However, neither emulator achieves the desired
FoB < 0.3. Additionally, for Cutoff 2 both emulators were
pushed above 0.3𝜎𝑆8 tension in 𝑆8 and an FoB > 1.

Table VII shows the fraction of points with |Δ𝜒2 | < 1 for
both 𝑁ΛCDM

refs = 101 emulators for the two most biased fiducial
cosmologies. Across both fiducial cosmologies and three scale

Cosmo.

Emul. DP, 101
(ΛCDM)

EP, 101
(ΛCDM)

Ω
↑
𝑚, 𝐴↑𝑠 , 𝑤↓, C1 76.8% 73.1%

Ω
↑
𝑚, 𝐴↑𝑠 , 𝑤↓, C2 32.7% 36.6%

Ω
↑
𝑚, 𝐴↓𝑠 , 𝑤↓, C1 83.6% 81.7%

Ω
↑
𝑚, 𝐴↓𝑠 , 𝑤↓, C2 52.6% 52.9%

Ω
↑
𝑚, 𝑛↑𝑠 , 𝑤↓, C1 76.9% 71.4%

Ω
↑
𝑚, 𝑛↑𝑠 , 𝑤↓, C2 37.3% 38.5%

Ω
↑
𝑚, 𝑛↓𝑠 , 𝑤↓, C1 82.3% 81.2%

Ω
↑
𝑚, 𝑛↓𝑠 , 𝑤↓, C2 44.1% 45.5%

TABLE VII. Percentages of points within the desired range of
|𝜒2

COLA − 𝜒2
ee2 | < 1 using 𝑁ΛCDM

refs = 101 references with differ-
ent sets of COLA resolution settings. Both emulators show similar
goodness-of-fit, falling outside of the desired criteria at Cutoff 2.

cuts we see very comparable goodness-of-fit. We conclude
that, even with additional references, the enhanced-precision
settings can only slightly help mitigating the COLA emulator
biases. Given the improvement of using 𝑁ΛCDM

refs = 101, in
Appendix C we test whether marginalizing over differences
in the COLA and ee2 data vectors can reduce the remaining
biases.

E. Using 𝑁ΛCDM
refs > 101: Emulating 𝐵COLA (𝑘, 𝑧)

Our results thus far have indicated that the most effective way
to improve the agreement between COLA emulators and ee2 is
using a large number of anchors inside the ΛCDM subspace,
proving effective even in regions where 𝑤 ≠ −1. Due to
the computational expense of running the necessary COLA
simulation for every anchor to compute Eq. 4, our previous
tests limited the number of ΛCDM anchors to 𝑁ΛCDM

refs = 101.
However, the 𝑁ΛCDM

refs = 101 emulators did not stringently
satisfy the DES-inspired accuracy requirement of FoB < 0.3
and |Δ𝜒2 | < 1 throughout the prior, for the scale cuts tested.
Nevertheless, the demonstrated improvement of this strategy
motivates initial testing to assess whether the uncalibrated
boost 𝐵COLA (𝑘, 𝑧) can effectively be emulated, eliminating
the need to run extra COLA simulations in order to increase
the number of ΛCDM anchors. Here, we perform such a
preliminary study using the default-precision simulations, as
we have shown the enhanced-precision simulations provide
only slight improvements.

When using Eq. 5 to calibrate the training simulations, the
most heavily weighted boost, �̄�(𝑘, 𝑧), is at the reference cos-
mology with the smallest distance, 𝑑𝑖 . For each 𝑤CDM train-
ing pointθ, the nearest possible location for aΛCDM reference
is at the ΛCDM-projected point θΛCDM, in which 𝑤 is set to
−1 and the other parameters are unchanged. Under this ratio-
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FIG. 11. 1D biases for both approaches of using 𝑁ΛCDM
refs > 101.

We test these approaches on the low 𝑤 fiducial cosmologies of
Fig. 9, located outside of ΛCDM. While both the 𝑁ΛCDM

refs = 500
and 𝑁ΛCDM

refs = ∞ approaches meet the bias requirements for Cutoff
1 well outside of the ΛCDM region, only the latter is able to meet or
border the requirements for Cutoffs 2 and 3.

nale, the optimal calibration of the training set then requires
computing 𝐵COLA (𝑘, 𝑧 |θΛCDM) for each of the 𝑁𝑤CDM

train = 500
𝑤CDM training points,9 θ. Therefore, we use the 𝐵COLA (𝑘, 𝑧)
emulator to generate these 500 predictions before computing
�̃�(𝑘, 𝑧) with Eq. 5, and label this approach 𝑁ΛCDM

refs = 500.
Details regarding our 𝐵COLA (𝑘, 𝑧) emulator are provided in
Appendix B.

Notwithstanding this idea, emulating 𝐵COLA (𝑘, 𝑧) opens an-
other avenue for modeling the boost. Building a 𝐵COLA (𝑘, 𝑧)
emulator provides all the components needed to compute Eq. 4
using an arbitrary ΛCDM cosmology as the reference in O(1)
seconds. This allows one to optimize the choice of reference
cosmology for every point sampled in an MCMC. Therefore,
we use the ΛCDM-projection of the point being predicted, as
opposed to training points as the reference. We restate Eq. 4
in the present context, with all three boosts being produced
separately by an emulator:

�̄�(𝑘, 𝑧 |θ) = 𝐵ee2 (𝑘, 𝑧 |θΛCDM) ×(
𝐵COLA (𝑘, 𝑧 |θ)

𝐵COLA (𝑘, 𝑧 |θΛCDM)

)
, (29)

By computing a high-resolution prediction for the ΛCDM-
projection of each sampled point, the COLA emulators serve

9 Because we stretch the training space beyond the ee2 boundary, some
𝑤CDM training points have a ΛCDM-projection outside of ee2 limits. In
these cases we compute θΛCDM by setting the relevant parameters to their
values at the nearest boundary.

Cosmo.

Emul. DP, 500
(ΛCDM)

DP, ∞
(ΛCDM)

Ω
↑
𝑚, 𝐴↑𝑠 , 𝑤↓, C1 89.1% 97.2%

Ω
↑
𝑚, 𝐴↑𝑠 , 𝑤↓, C2 54.4% 87.8%

Ω
↑
𝑚, 𝐴↑𝑠 , 𝑤↓, C3 35.9% 60.8%

Ω
↑
𝑚, 𝐴↓𝑠 , 𝑤↓, C1 88.4% 96.5%

Ω
↑
𝑚, 𝐴↓𝑠 , 𝑤↓, C2 58.4% 92.5%

Ω
↑
𝑚, 𝐴↓𝑠 , 𝑤↓, C3 43.6% 63.7%

Ω
↑
𝑚, 𝑛↑𝑠 , 𝑤↓, C1 86.5% 96.1%

Ω
↑
𝑚, 𝑛↑𝑠 , 𝑤↓, C2 50.2% 87.1%

Ω
↑
𝑚, 𝑛↑𝑠 , 𝑤↓, C3 32.5% 58.3%

Ω
↑
𝑚, 𝑛↓𝑠 , 𝑤↓, C1 90.4% 98.2%

Ω
↑
𝑚, 𝑛↓𝑠 , 𝑤↓, C2 62.4% 91.1%

Ω
↑
𝑚, 𝑛↓𝑠 , 𝑤↓, C3 43.0% 64.9%

TABLE VIII. Percentages of points satisfying the desired goodness-
of-fit criteria |𝜒2

COLA − 𝜒2
ee2 | < 1, for the 𝑁ΛCDM

refs = 500 and
𝑁ΛCDM

refs = ∞ approaches. Both methods show improved agreement
in goodness-of-fit with ee2 throughout the prior, particularly in the
𝑁ΛCDM

refs = ∞ case, which produces a majority of points within the
desired Δ𝜒2 range using all scale cuts.

to correct theΛCDM prediction for the extended model param-
eter 𝑤. While in this work we use ee2, 𝐵ee2 (𝑘, 𝑧 |θΛCDM) can
be substituted in Eq. 29 using any fast high-resolution ΛCDM
prescription. Hence, compartmentalizing the calculation of
�̄�(𝑘, 𝑧) with emulators allows us to be flexible in our choice
of anchor. We refer to this as the infinite references approach,
𝑁ΛCDM

refs = ∞. Comparisons at the boost level between COLA
and ee2 using both approaches are provided in Appendix B.

Fig. 11 shows the impact of both approaches on the 1D bi-
ases for the 𝑤 = 𝑤↓ fiducial cosmologies from Fig. 9. Both
approaches show a large reduction in bias compared to previ-
ous emulators. The improvement is particularly pronounced
for the 𝑁ΛCDM

refs = ∞ case, where we also no longer see a strong
correlation between bias and 𝜎8. We list the largest biases oc-
curring for each prescription at each scale cut, now occurring
at various fiducial cosmologies:

• DP 𝑁ΛCDM
refs = 500: Δ𝑆8/𝜎𝑆8 = 0.09, FoB = 0.31 (C1);

• DP 𝑁ΛCDM
refs = ∞: Δ𝑆8/𝜎𝑆8 = 0.04, FoB = 0.29 (C1);

• DP 𝑁ΛCDM
refs = 500: Δ𝑆8/𝜎𝑆8 = 0.26, FoB = 1.08 (C2);

• DP 𝑁ΛCDM
refs = ∞: Δ𝑆8/𝜎𝑆8 = 0.06, FoB = 0.29 (C2);

• DP 𝑁ΛCDM
refs = 500: Δ𝑆8/𝜎𝑆8 = 0.36, FoB = 1.26 (C3);

• DP 𝑁ΛCDM
refs = ∞: Δ𝑆8/𝜎𝑆8 = 0.12, FoB = 0.33 (C3).
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While the 𝑁ΛCDM
refs = 500 emulator only comes close to

FoB < 0.3 on Cutoff 1, having in the worst case tested an
FoB = 0.31, it exhibits more significant bias on the two more
aggressive scale cuts. Meanwhile, the 𝑁ΛCDM

refs = ∞ approach
maintains a bias below or very near the desired FoB < 0.3 on
all three scale cuts for these fiducial cosmologies, only reaching
an FoB = 0.33 in the worst case for Cutoff 3. Furthermore, the
goodness-of-fit of these approaches can be gauged from the
Δ𝜒2 data presented in Table VIII. The 𝑁ΛCDM

refs = 500 emulator
surpasses all previous emulators in goodness-of-fit for chains
with high Ω𝑚 fiducial cosmologies, having more than 86.5%
of points within |Δ𝜒2 | < 1 with ee2 on Cutoff 1. However, the
𝑁ΛCDM

refs = ∞ approach is more successful than that even using
Cutoff 2, where it maintains at least 87.1% of points within
|Δ𝜒2 | < 1, increasing to 96.1% for Cutoff 1.

Therefore, emulating 𝐵COLA (𝑘, 𝑧) makes using an arbitrar-
ily high number of ΛCDM references affordable, which im-
proves the agreement between COLA-based emulators and
those trained with high-resolution simulations. Both𝑁ΛCDM

refs =

500 and 𝑁ΛCDM
refs = ∞ approaches achieve a significant im-

provement over any other emulator tested, reducing bias with
ee2 and matching its goodness-of-fit. The 𝑁ΛCDM

refs = 500
approach represents the logical extent of our previous method-
ology of attempting to refine the training data, producing an
optimally positioned reference for each training point. How-
ever, the results of the 𝑁ΛCDM

refs = ∞ method suggest that it
is more effective not to calibrate the COLA training data be-
forehand, instead using the COLA emulator in tandem with a
high-resolutionΛCDM emulator to individually calibrate each
prediction during the MCMC analysis.

IV. CONCLUSION

One of the greatest challenges for constraining beyond-
ΛCDM models with upcoming Stage-IV surveys such as LSST
and Euclid will be developing methods to quickly model the
matter power spectrum on nonlinear scales. Without this,
beyond-ΛCDM analyses will have to resort to linear scale cuts,
discarding an abundance of data and wasting much of the con-
straining power provided by these surveys. While emulators
trained with high-resolution N-body simulations are effective
tools for this task, such simulations require a formidable com-
putational investment, which would have to be made for every
beyond-ΛCDM model of interest.

In this work, we have tested using COLA-based emulators
as a computationally affordable alternative for modelling the
nonlinear power spectrum. We achieved this by comparing
their performance to the high-resolution EuclidEmulator2
in a 𝑤CDM cosmic shear analysis of LSST-Y1 simulated data,
employing three nonlinear scale cuts. In order to improve the
performance of the COLA emulators, we tested two general
techniques: incorporating high-resolution reference samples
from ee2 and refining the resolution settings of the COLA
simulations. We found that optimally placing a single ref-
erence prediction (𝑁refs = 1) is enough to calibrate COLA
training simulations in a desired region of the prior for even
the most aggressive scale cut, leading to low bias. However,

this approach suffers from large bias in distant regions of the
prior, especially with significantly different 𝜎8 values from
that of the reference cosmology.

Our choice of performing analyses using fiducial cosmolo-
gies with significant shifts in the parameters was motivated
by Stage-IV galaxy survey requirements for investigations in
beyond-ΛCDM models. The fiducial cosmologies employed
include values of 𝜎8 which lie outside the typical range for
ΛCDM investigations, and are challenging to model for any
nonlinear prescription. The bacco emulator for instance,
would not be able to perform a similar analysis, as some of our
fiducial cosmologies themselves lie outside of its parameter
space. However, when working with extensions to the Stan-
dard Model, it is imperative to develop nonlinear prescriptions
for the power spectrum that do not degrade in recovering the
model data vector in any region of the parameter space. Exten-
sions to ΛCDM normally introduce extra parameters with de-
generacies with the six vanilla parameters, therefore, it should
be expected that unusual regions of the original parameter
space will be explored.

Neither increasing to enhanced-precision settings, nor
𝑁refs = 26 reference samples spread throughout the entire
space were able to eliminate bias across the prior, though of-
fering some alleviation. For beyond-ΛCDM models which
do not contain ΛCDM within their parameter space, or an-
other sub-model with existing high-resolution emulators, our
methodology therefore suggests that careful placement of ref-
erence anchors is crucial to avoid large bias. This can be done
by performing initial explorations of the posterior in advance
of the final chain, such as using linear scale cuts, in order to
identify ideal reference cosmologies.

However, for extensions toΛCDM, leveraging existing high-
resolution ΛCDM emulators proved a computationally afford-
able strategy to consistently eliminate significant bias in other-
wise difficult regions of the prior. This was achievable with our
less computationally demanding default-precision COLA sim-
ulations, using a mass resolution 𝑀part ≈ 8 × 1010ℎ−1𝑀⊙ and
force resolution ℓforce = 0.5 ℎ−1Mpc. While the initial method-
ology explored in the paper aimed to refine the training input
to the emulators, so that one self-contained emulator could
be incorporated into an MCMC analysis, our 𝑁ΛCDM

refs = ∞
results suggest reference samples are best incorporated post-
emulation. By training the emulator for the raw boost from
the COLA simulations, 𝐵COLA (𝑘, 𝑧), we are able to calibrate
the prediction of the boost during the MCMC to its nearest
ΛCDM point by using ee2. This approach proved to consis-
tently eliminate bias in all regions of the prior and scale cuts
on which it was tested, either meeting the desired criteria or
bordering the threshold.

It must be acknowledged that the 𝑤CDM model is only a
minor extension to ΛCDM, introducing only one additional
parameter. For more exotic models with several additional
parameters, any approach relying uponΛCDM references may
degrade somewhat in performance. Nevertheless, we expect
that these results hold for beyond-ΛCDM models that modify
the expansion history of our Universe, such as dynamical dark
energy theories, as well as theories that modify the linear order
growth of structure in a scale-independent way [132].
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Additionally, the COLA input itself can also be further im-
proved beyond refining the force and mass resolutions. It is
known that Particle-Mesh based N-body codes suffer from a
loss of power at small scales due to their inability of resolv-
ing the internal structure of halos. To bypass this, different
alternatives have been proposed in the literature, such as the
Potential Gradient Descent methods [133] and neural network
corrections to simulations [134]. Another possible avenue
would be to use field-level emulation techniques such as the
ones presented in [135, 136]. However, as our main proposal
is to use COLA as a viable alternative to model nonlinear
scales in beyond-ΛCDM models, an obvious setback in the
implementation of field-level methods, is that they require us
to run a decent amount of high-resolution N-body simulations
of a given model to act as a true model. Therefore, while field
level techniques are an extremely appealing alternative, they
lack the needed predictability for investigations of alternatives
to the Standard Model.
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Appendix A: Emulation Implementation Details

1. Separating the BAO Signal from Linear Power Spectrum

In this Appendix, we explain in detail our algorithm to re-
move the BAO signal from the linear power spectrum, a step
required in emulating the quantity 𝑄S (𝑘, 𝑧) (Eq. 11). We fol-
low the bacco emulator and employ the methodology outlined
in Appendix C of [118], with slight modifications. The process
can be summarized as follows:

1. Standardize k-range: Ensure 𝑃L (𝑘) covers the range
of 10−4 ℎMpc−1 ≤ 𝑘 ≤ 5 ℎMpc−1. If necessary, lin-
early extrapolate the power spectrum.

2. Linear Log-Log Interpolation: Interpolate the power
spectrum𝑃L (𝑘) using cubic spline at 2𝑛 logarithmically-
spaced points in 𝑘 , ensuring data is evenly spaced in
log-log space for further analysis.

3. Fast Sine Transform: Generate an array of
log[𝑘𝑃L (𝑘)] evaluated at the 2𝑛 𝑘-bins and apply an
orthonormalized type-II fast sine transform to that ar-
ray.

4. Separating Even and Odd Entries: Denoting the in-
dex of the sine-transformed array by 𝑖, divide the array
into two separate arrays of size 2𝑛−1, corresponding to
components with even 𝑖 and odd 𝑖. Save the even and
odd indices into another two arrays.

5. Interpolation and Differentiation: Interpolate both
even and odd sine-transformed arrays using the respec-
tive set of indices. Then, calculate the second derivative
by either differentiating the cubic spline or computing
the finite differences to identify the locations of baryonic
features.

6. Noise Reduction: Average the second derivative points
with their immediate neighbors to reduce noise.

7. Identifying Bumps: Locate the BAO bumps by find-
ing the minimum and maximum values of the second
derivatives for both even and odd arrays, locating the
bump to be removed.

8. Removing Bumps: Remove the region between the
minimum and maximum second derivatives from both
even and odd sine-transformed arrays, filling the gaps
by interpolating the remaining data, scaled by (𝑖 + 1)2,
with cubic splines.

9. Inverse Fast Sine Transform: Recombine the even and
odd sine-transformed arrays, dividing the (𝑖+1)2 scaling,
and apply an inverse fast sine transform to reconstruct
log[𝑘𝑃NBAO

L (𝑘)].

The scipy10 [137] library was used to perform the sine trans-
forms on the power spectra, GSL was used for interpolation.
Our implementation is given in this repository11. We remark
that the BAO signal separation is not unique but rather depends
on the specific methodology employed. Some examples, as
discussed in [138], are the Savitzky–Golay or Gaussian fil-
ters, fitting models such as B-Splines, employing a power law
model with the form 𝑘𝑛, or leveraging the output from Boltz-
mann codes with no baryons. We found that the method of
[118] was sufficient to our needs, and we have not tested other
methods.

2. Gaussian Process Regression

The first method tested to perform emulation is Gaus-
sian Process regression. GP regression is a non-parametric
Bayesian method which assumes any set of function values
has a joint multivariate Gaussian distribution. We denote an
arbitrary principal component amplitude from Eq. 20 at an
arbitrary redshift as 𝛼, which we treat as a function of a 𝐷-
dimensional vector of normalized cosmological parameters θ.
Our training set provides a vectorαobs of 𝑁train observations of
the function at the training points θ𝑖 , which generally contain
noise:

𝛼obs,𝑖 = 𝛼(θ𝑖) + 𝜖𝑖 . (A1)

For simplicity, we assume the function values have been cen-
tered to have mean 0. We take the noise to be Gaussian, such
that 𝜖𝑖 ∼ N(0, 𝜎2

𝜖 ), where 𝜎2
𝜖 is called the noise variance.

We use a Radial Basis Function (RBF) kernel to model the
covariance between values of the function:

𝑘 (θ, θ′) ≡ 𝜎2 exp

[
− 1

2

𝐷∑︁
𝑗=1

(𝜃 𝑗 − 𝜃′𝑗 )2

𝑙2
𝑗

]
. (A2)

10 https://scipy.org/
11 https://github.com/bernardo7crf/Cython_Filter_Files
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where we have the hyperparameters 𝜎2, called the signal vari-
ance, and the {𝑙 𝑗 }, called the correlation lengths. We can form
a covariance matrix, K, from the training points defined by
𝐾𝑝𝑞 ≡ 𝑘 (θ𝑝 , θ𝑞). However, we modify this matrix to account
for noise K̂ ≡ K + 𝜎2

𝜖 I , where I is the identity matrix. The
hyperparameters 𝜎2, {𝑙 𝑗 }, and 𝜎2

𝜖 , are determined from the
training data by maximizing the marginal likelihood:

𝑝(αobs |𝐾) =
1√︃

(2𝜋)𝑁train
��K̂ �� exp

[
−1

2
α𝑇

obsK̂
−1αobs

]
. (A3)

Aside from the training points, we consider a test point θ∗

at which we wish to infer the value of the function 𝛼(θ∗). The
GP assumption states that the value of the function at the test
point is normally distributed along with the observed values at
the training points:[

αobs

𝛼(θ∗)

]
∼ N

([
0

0

]
,

[
K̂ K∗

K∗𝑇 𝐾∗∗

])
(A4)

The vector K∗ contains the covariances between the function
values at the test point and training points, K∗

𝑝 ≡ 𝑘 (θ∗, θ𝑝),
and we define 𝐾∗∗ ≡ 𝑘 (θ∗, θ∗). In order to predict the
value of the function at θ∗, and the prediction uncertainty,
we take the mean and variance of the conditional distribution
𝑝(𝛼(θ∗) |{θ𝑖},αobs) respectively:

𝛼pred (θ∗) = K∗𝑇K̂−1αobs (A5)
𝜎2

pred = 𝐾∗∗ −K∗𝑇K̂−1K∗. (A6)

Here 𝛼pred (θ∗) serves as our (centered) prediction of the prin-
cipal component amplitude at the test point, with 𝜎2

pred provid-
ing the uncertainty in the prediction. We perform a different
regression for every principal component, for every redshift,
using the gpy12 library.

3. Neural Network

Another emulation strategy we have employed is through
the use of neural networks. We use a fully-connected, feed-
forward network consisting of the input layer of normalized
cosmological parameters, three hidden layers with 512 neu-
rons each, and the output layer of principal components 𝛼ℓ 𝑗
according to Eq. 20. We train one NN model for each redshift,
and thus the index 𝑗 will be omitted in the following. The
value of the neurons in each subsequent layer are calculated
via linear transformations (i.e. the application of weights), the
addition of biases to the previous layer, and the application of
an activation function used by [139, 140], which has the form
:

𝑦𝑚+1
𝑛 =

[
𝛾𝑚𝑛 + (1 − 𝛾𝑚𝑛 )

1
1 + 𝑒−𝛽𝑚

𝑛 𝑦𝑚𝑛

]
�̃�𝑚𝑛 , (A7)

12 https://gpy.readthedocs.io/en/deploy/

where 𝑦𝑚+1
𝑛 is the value of the 𝑛-th neuron from the (𝑚 + 1)-

th layer, �̃�𝑚𝑛 is the is the value of the 𝑛-th neuron from the
(𝑚 + 1)-th layer after the application of weights and biases,
and 𝛾𝑚𝑛 and 𝛽𝑚𝑛 are parameters of the activation function that
can be backpropagated during the training. We have tested
several activation functions, and their emulation errors at 𝑧 = 0
and 𝑘 ≲ 1ℎ/Mpc were within approximately 0.8% (Rectified
Linear Unit), 0.5% (sigmoid) and 0.2% (Eq. A7). We have
also tested different numbers of layers, neurons and residual
layers, finding no improvement on the emulation performance.

In order to train the neural network emulators, we adjust the
weights and biases to minimize the 𝐿1 loss function, or the
mean absolute error:

𝐿1 =
∑︁

training

𝑁PC∑︁
ℓ=1

|𝛼truth,ℓ − 𝛼pred,ℓ |, (A8)

where 𝛼truth,ℓ are the principal component weights from the
training sample, 𝛼pred,ℓ are the neural network predictions for
the training sample, and the outermost sum goes through all
samples in the training set.

In order to prevent overfitting, we perform a 𝐿1 − 𝐿2 reg-
ularization, also known as Elastic Net regularization, of the
weights and biases. This encourages the training process to
keep weights and biases to a low absolute value, limiting the
complexity of the model. We keep 10% of the training cos-
mologies as a validation set for early stopping: a technique that
prevents overfitting by ensuring that the validation loss does
not grow during the training. The training process is halted
after 2500 epochs, with an initial learning rate of 10−3 which,
starting from epoch 1500, halves every 200 epochs. Our neu-
ral network is implemented using the keras13 library, and the
loss function is minimized using the adam optimizer [141].

4. Polynomial Chaos Expansion

Polynomial Chaos Expansion is another surrogate mod-
elling technique, which expands the model’s output in orthog-
onal polynomials [142–147]. These polynomials capture the
functional relationship between inputs and outputs. The choice
of polynomial basis in PCE corresponds to the input variables’
probability distribution, and if the inputs do not follow a spe-
cific distribution then PCE reduces to a simple polynomial
expansion.

To perform the PCE, we start with the principal compo-
nents 𝛼ℓ 𝑗 of Eq. 20, calculated for the training set. At fixed
redshift, this represents a 𝑁train × 𝑁PC matrix. We decompose
this matrix as a product of two matrices 𝑋 ×𝑊 , where𝑊 will
contain the polynomial coefficients to be determined, and 𝑋 is
the polynomial basis matrix representing the orthogonal poly-
nomial expansions. To construct the matrix 𝑋 , we calculate
its elements 𝑋𝑖 𝑗 using:

13 https://keras.io

https://gpy.readthedocs.io/en/deploy/
https://keras.io
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𝑋𝑖 𝑗 =

𝑁PC∏
𝑘=1

𝐿𝛽 𝑗𝑘
(𝑥𝑖𝑘).

Here, 𝐿𝛽 𝑗𝑘
are the orthogonal polynomial basis functions, 𝑥𝑖𝑘

are powers of the input variables andβ is a multi-index matrix.
The multi-index β 𝑗 = (𝛽 𝑗1, 𝛽 𝑗2, . . . , 𝛽 𝑗𝐷) specifies the poly-
nomial orders for each input dimension in the 𝑗 th column of
𝑋 . Each 𝛽 𝑗𝑘 is a non-negative integer representing the degree
of the 𝑘th input parameter in the 𝑗 th polynomial term. For
example, consider a 2-dimensional input (𝑥1, 𝑥2) expanded up
to the 2nd order. The β matrix would be:

β =

©«

0 0
1 0
0 1
2 0
1 1
0 2

ª®®®®®®®®®®®¬
Each row inβ represents a different combination of polynomial
terms, with values indicating the powers of 𝑥1 and 𝑥2 for that
combination. We define the candidate set Acand of multi-
indices β to include in the expansion, based on constraints like
the maximum total polynomial degree 𝑝, maximum interaction
order 𝑟 , and an optional 𝑞-norm penalty to induce sparsity:

Acand =

β𝑖 :

(
𝑁PC∑︁
𝑘=1

𝛽
𝑞

𝑖𝑘

) 1
𝑞

≤ 𝑝,

𝑁PC∑︁
𝑘=1
𝛽𝑖𝑘≠0

1 ≤ 𝑟


We then use Elastic-Net regression to determine the optimal
PCE coefficients 𝑊 that balance the mean-squared error be-
tween the PCE model and training data with 𝐿1 (lasso) and 𝐿2
(ridge) regularization terms to help prevent overfitting.

After solving the regression problem to obtain the optimal
PCE coefficient matrix𝑊 , we can evaluate the principal com-
ponent amplitudes 𝛼 for a new cosmology θ∗ as:

𝛼pred (θ∗) = 𝑋θ∗ ×𝑊

where 𝑋θ∗ is the row of the polynomial basis matrix corre-
sponding to θ∗, evaluated using the selected multi-indices in
A.

5. Neural PCE

During the emulation of the enhanced-precision simula-
tions, we observed performance issues characterized by in-
creased prediction errors. To address this problem, we devel-
oped a hybrid model, combining PCE with neural networks,

which we have termed the Neural PCE (NPCE). In NPCE, PCE
is used for initial prediction, and the NN performs a correc-
tion phase, similar to the iterative refinement process in ODE
solvers.

A standalone PCE emulator was trained as described in A 4,
and its outputs served as inputs to a neural network model. The
neural network was designed with input and output layers sized
to match the PCE output, incorporating 2 to 7 hidden layers
based on problem complexity, with each layer containing 32 to
128 neurons. The activation function specified in A7 was used
alongside a residual connection between the input and out-
put layers. The network’s weights were initialized randomly
and trained using the PCE predictions as inputs against the
data, aiming to minimize mean squared error via the L-BFGS
algorithm.

For predictions at new cosmologies, the NPCE model re-
fined initial PCE emulator predictions through the neural net-
work, yielding improved accuracy. The residual connection in
the neural network allowed it to learn corrections to the PCE
predictions. It is important to note that we trained the PCE
and neural network components separately, rather than as an
integrated model. By adding the neural network, we increased
the model parameters by approximately 10% compared to us-
ing PCE alone, without the need to modify the PCE training
process itself.

The effectiveness of this model is demonstrated through
a comparison of the prediction errors between the existing
emulators and NPCE in Figure 3. The results show a reduction
in error rates using the new model, with the error being under
∼ 0.25% for most cosmologies on all scales, indicating a
successful improvement in performance.

6. Testing Emulator Equivalence

We now test whether the three emulator techniques, namely
Gaussian Process regression, neural networks, and Polynomial
Chaos Expansion, are equivalent at the level of parameter in-
ference. For this test, we ran MCMCs using the LSST-Y1 sim-
ulated cosmic shear data. We utilized the three emulated meth-
ods, where each emulator was trained with default-precision
simulations and𝑁refs = 1. We use the ee2 reference cosmology
as the fiducial, and employ a scale cut even more aggressive
than Cutoff 3, with 𝜃min = 2.7′ for 𝜉+ and 𝜃min = 8.7′ for
𝜉− . Fig. 12 shows the confidence contours and marginalized
posteriors of several cosmological parameters obtained with
the three emulators. We see strong agreement in the 1D dis-
tributions, and we conclude that any of the three emulation
techniques can be used interchangeably.

Appendix B: 𝑁ΛCDM
refs = 500 and 𝑁ΛCDM

refs = ∞, Comparisons at
the Boost Level

In order to implement the 𝑁ΛCDM
refs = 500 and 𝑁ΛCDM

refs = ∞
approaches, the same emulator for the uncalibrated boost
𝐵COLA (𝑘, 𝑧) was used, trained on the 𝑁𝑤CDM

train = 500 𝑤CDM
cosmologies. In both cases emulation now enters the pipeline
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FIG. 12. 68% and 95% confidence contours of several cosmologi-
cal parameters from MCMCs run with three emulation techniques:
Gaussian Process regression (pink filled contours), neural network
(blue dashed lines) and Polynomial Chaos Expansion (maroon dotted-
dashed lines). In both panels, the COLA emulators are trained with
default-precision simulations calibrated to the ee2 reference cosmol-
ogy, which also serves as the fiducial cosmology. We use a scale cut
even more aggressive than Cutoff 3 for this test, with 𝜃min = 2.7′ for
𝜉+ and 𝜃min = 8.7′ for 𝜉− .

in two places. In the 𝑁ΛCDM
refs = 500 approach, the 𝐵COLA (𝑘, 𝑧)

emulator serves to compute the COLA prediction at the ref-
erence cosmologies in Eq. 4, before the �̃�(𝑘, 𝑧) emulator is
then subsequently trained. Meanwhile, in the 𝑁ΛCDM

refs = ∞
approach the 𝐵COLA (𝑘, 𝑧) emulator is used in Eq. 29 both to
evaluate the COLA prediction at the 𝑤CDM point and again
at the ΛCDM-projected point. Therefore, we use the more
effective NPCE method, and a larger 𝑁PC = 25, in order to
prevent a compounding of emulation errors in our analysis.
With the higher number of principal components, there was lit-
tle improvement observed in implementing the BAO-smearing
procedure, therefore we use 𝑄NS (𝑘, 𝑧) as the emulation vari-
able for the 𝐵COLA (𝑘, 𝑧) emulator. This is advantageous in
the 𝑁ΛCDM

refs = ∞ approach as one would otherwise need to
compute 𝑃L (𝑘, 𝑧 |θΛCDM) in addition to 𝑃L (𝑘, 𝑧 |θ) merely to
recover the boosts from the emulation variable.

The NPCE 𝐵COLA (𝑘, 𝑧) emulator utilizes a polynomial ex-
pansion up to the 12th order in the cosmological parameters.
Additionally, the neural network responsible for the correction
phase consists of 3 layers and 128 neurons, employing the
activation function presented in Eq. A7. Fig. 13 shows the
emulation errors in 𝐵COLA (𝑘, 𝑧) at 𝑧 = 0. As the reference
COLA predictions in both 𝑁ΛCDM

refs = 500 and 𝑁ΛCDM
refs = ∞

approaches are confined to ΛCDM, we compute the emula-
tion errors in the ΛCDM validation set, in addition to the
𝑤CDM validation set. We see that the emulator of the un-
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FIG. 13. Bounds on the best 50%, 90%, and 100% of emulation
errors at 𝑧 = 0 for our NPCE 𝑤CDM emulator of the uncalibrated
𝐵COLA (𝑘, 𝑧) used for the 𝑁ΛCDM

refs = 500 and 𝑁ΛCDM
refs = ∞ ap-

proaches from Sec. III E. The emulation errors in the ΛCDM vali-
dation set quantify the error introduced in emulating the raw COLA
prediction 𝐵COLA (𝑘, 𝑧) at the ΛCDM reference cosmologies, which
is involved in both approaches. The errors in the 𝑤CDM valida-
tion set do similarly for the 𝑤CDM prediction of 𝐵COLA (𝑘, 𝑧) in the
𝑁ΛCDM

refs = ∞ approach.

calibrated 𝐵COLA (𝑘, 𝑧) achieves an error of less than 0.3% on
all scales used 𝑘 ≤ 𝜋ℎMpc−1 for either validation set. In the
𝑁ΛCDM

refs = 500 approach, we opted to use the NPCE method for
the �̃�(𝑘, 𝑧) emulator as well following the choices detailed in
Sec. II B 2, using 𝑁PC = 25. We set the parameter 𝜎𝑑 = 0.2 in
Eq. 6, which yields emulation errors similar to the PCE errors
displayed in the middle panel of Fig. 3. To improve predictive
performance we increased the number of layers in the neural
network step to 7.

In Fig. 14 we present the disagreement between the COLA
boosts and ee2 at 𝑧 = 0, when using �̃�(𝑘, 𝑧) with𝑁ΛCDM

refs = 500
and �̄�(𝑘, 𝑧) for the 𝑁ΛCDM

refs = ∞ method. Here, we use the
simulation output directly to compute 𝐵COLA (𝑘, 𝑧) for 𝑤CDM
cosmologies in the calculation of the respective boosts, and
use the NPCE 𝐵COLA (𝑘, 𝑧) emulator to obtain the COLA pre-
dictions at ΛCDM references. We perform this comparison
for both the 279 𝑤CDM training cosmologies inside the ee2
parameter space as was done for the right panels in Fig. 1, as
well as for the 𝑤CDM validation set. This is because both
approaches are similar in their treatment of the training set,
calibrating the training simulations, either exclusively or most
heavily, to their ΛCDM-projected cosmologies. However, for
predictions of the validation points, the 𝑁ΛCDM

refs = ∞ strategy
is able to calibrate these predictions to their respectiveΛCDM-
projected cosmologies, unlike the 𝑁ΛCDM

refs = 500 case.
For the training cosmologies, the 𝑁ΛCDM

refs = 500 approach
produced errors at 𝑘 = 1ℎMpc−1 above 1%, 1.5%, and 2%
for only 26.5%, 10.4%, and 2.5% of cosmologies respectively.
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FIG. 14. Following Fig. 1, the comparisons of the boost from COLA
to ee2, for the training set and validation sets, using the 𝑁ΛCDM

refs = 500
and 𝑁ΛCDM

refs = ∞ methodology. For 𝑁ΛCDM
refs = 500 references we

compute the boost using 𝐵(𝑘, 𝑧) = �̃�(𝑘, 𝑧) as in Eq. 5, while for
𝑁ΛCDM

refs = ∞ references we use 𝐵(𝑘, 𝑧) = �̄�(𝑘, 𝑧) as in Eq. 29. For
these comparisons, we evaluate the respective equations for the boost
by computing 𝐵COLA (𝑘, 𝑧) directly from simulations for the 𝑤CDM
predictions, while using the NPCE emulator for theΛCDM-projected
predictions as we lack the requisite ΛCDM simulations.

Meanwhile the 𝑁ΛCDM
refs = ∞ approach had 20.8%, 9.0%, and

4.3% of these cosmologies outside the 1%, 1.5%, and 2%
thresholds. However, in the validation set, the 𝑁ΛCDM

refs = 500
references yielded 31.0%, 12.0%, and 1.0% of cosmologies
outside of those respective criteria, while the 𝑁ΛCDM

refs = ∞
method only yielded 17.0%, 3.0%, and 1.0%. Therefore,
excluding the O(0.1%) emulation errors shown in Fig. 13, the
𝑁ΛCDM

refs = ∞methodology manages to reproduce the ee2 boost
predictions at 𝑘 = 1ℎMpc−1 at sub-percent error for ∼ 80% of
cosmologies throughout the 𝑤CDM parameter space.

Appendix C: Mitigating Biases Using Principal Component
Analysis

As a final technique to mitigate the biases in the COLA
analyses, we try a procedure inspired by baryonic effect mit-
igation using Principal Component Analysis [148–150]. As
a high number of ee2 ΛCDM references proved an effective
approach to reducing the bias of COLA, we consider whether
differences in the ΛCDM data vectors between COLA and ee2
can effectively be marginalized over in extended models. We
start by generating an LHS of 30 ΛCDM cosmologies in a
space shrunken symmetrically by 30% total from the ee2 lim-
its in each parameter, in order to lessen the variability of the
data vectors.

For each cosmology, we compute two cosmic shear data
vectors d, one using a COLA emulator for nonlinear correc-
tions and another using ee2. We then generate a difference
matrix Δ such that each column is the difference of the COLA
and ee2 data vectors for one cosmology. The shape of Δ is
𝑁DV × 30, where 𝑁DV is the number of elements in the data
vector. Schematically, this reads:

Δ =

 (d
ee2
1 − dCOLA

1 ) ... (dee2
30 − dCOLA

30 )

𝑁DV×30

. (C1)

Performing a Cholesky decomposition on the survey covari-
ance matrix 𝐶 = 𝐿𝐿𝑇 , we then weight the difference matrix
by Δ𝐿−1 = 𝐿−1Δ. We then perform a Singular Value Decom-
position on Δ𝐿−1 , such that Δ𝐿−1 = 𝑈Σ𝑉 , where 𝑈 and 𝑉 are
square orthogonal matrices of shapes 𝑁DV × 𝑁DV and 30× 30,
respectively. Σ is a matrix of shape 𝑁DV × 30 whose first
30 rows form a diagonal matrix with the singular values, and
the other elements are zero. The first 30 columns of 𝑈 are
eigenvectors of Δ𝐿−1 , denoted by e𝑖:

𝑈 =


...

e1 ... e30 ...

...

𝑁DV×𝑁DV

. (C2)

By reweighting these vectors with 𝐿, they can be used to de-
scribe the differences between COLA and ee2 data vectors in
the ΛCDM model. The Cholesky and Singular Value decom-
positions were performed using scipy [137]. To incorporate
the principal components in the analysis, at each step of the
MCMC, we correct the final data vector as:

d = dNo PC + 𝐿
𝑛PC∑︁
𝑖=1

𝑄𝑖e𝑖 , (C3)

where 𝑄𝑖 is a parameter sampled in the MCMC with large flat
priors [−100, 100], and 𝑛PC is the number of principal com-
ponents chosen to correct the data vector. By marginalizing
the cosmological parameter constraints over 𝑄𝑖 , we expect to
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mitigate the differences between COLA and ee2 results at the
cost of increasing the error bars. We remark that this method
only relies on ΛCDM predictions of the matter power spec-
trum, and we want to test whether this procedure can mitigate
biases in extended models, in our case wCDM.

In Fig. 15 we show 2D contours when marginalizing over
PCs is employed and when it is not. The 𝑁ΛCDM

refs = 101
default-precision emulator was used for these tests. We in-
clude two fiducial cosmologies using Cutoff 2, showing mixed
results between the two cases. While marginalizing over 1
PC broadened the posterior, which can alleviate tension, the
posterior did not always move in the correct direction so as
to lessen the difference in the means between the COLA and
ee2 constraints. Fig. 16 shows a more complete assessment,

using the 4 fiducial cosmologies with 𝑤 = 𝑤↓, and the two
more aggressive scale cuts. Here we plot the difference in
the means Δ𝜃 = 𝜃COLA − 𝜃ee2 and the error bars separately
𝜎𝜃 =

√︃
𝜎2
𝜃,ee2 + 𝜎

2
𝜃,COLA, to show the effect of PC marginal-

ization on 𝜎𝜃 .

The results in Fig. 16 are mixed, showing a broadening of
error bars but failing to consistently reduce the difference in
means between the COLA emulators and ee2. Hence, we
did not extensively test marginalizing over a larger number
of PCs. This approach can likely be improved by adjusting
the principal components for each cosmology sampled in the
chain.
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FIG. 15. Confidence contours (68% and 95%) for Ω𝑚, 𝑆8 and
𝑤, in three cases: ee2 (pink filled contours), the 𝑁ΛCDM

refs = 101
default-precision COLA emulator (blue dashed lines), and the same
COLA emulator when marginalizing over 1 PC is employed (maroon
dotted-dashed lines). The top panel shows results using the fiducial
cosmology (Ω↑

𝑚, 𝐴
↑
𝑠 , 𝑤

↓). We observe that the 2D contours from the
COLA chain employing marginalization, completely enclose the ee2
contours and spread the 1D distributions in the direction of the ee2
distributions, relative to the COLA chains without PC marginaliza-
tion. However, in the bottom panel where the fiducial cosmology
(Ω↑

𝑚, 𝐴
↓
𝑠 , 𝑤

↓) is used, the 1D distributions spread in the direction
opposite of the ee2 constraints.
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FIG. 16. 1D differences between COLA emulators and ee2 for fidu-
cial cosmologies outside of the ΛCDM region, for the two most
aggressive scale cuts. We test the effect of marginalizing over a PC
measuring the difference between the COLA and ee2 data vector,
using our default-precision emulator with 𝑁ΛCDM

refs = 101.
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