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Axion insulators possess a quantized axion field θ = π protected by combined lattice and
time-reversal symmetry, holding great potential for device applications in layertronics and
quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large
spin-s representation, which maintains the same inherent symmetry but possesses a notable
axion field θ = (s + 1/2)2π. Such distinct axion field is confirmed independently by the
direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern
numbers, as well as the topological magneto-electric effect. We show that the guaranteed
gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer
surface Chern number, hinting an unusual quantum anomaly violating the conventional
bulk-boundary correspondence. Furthermore, we ascertain that the axion field θ can be pre-
cisely tuned through an external magnetic field, enabling the manipulation of bonded trans-
port properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms
by the quantized non-reciprocal conductance or topological magnetoelectric response. Our
work enriches the understanding of axion insulators in condensed matter physics, paving
the way for future device applications.

Symmetry plays an essential role in understanding the behavior of condensed materials 1–4. For
example, in the presence of time-reversal symmetry, three dimensional insulator typically falls into
two categories: one is trivial insulator while the other is topological insulator 5, 6. These divergent
categories can be well described within the framework of the Chern-Simons theory, where the
Lagrangian incorporates an additional symmetry allowed term Lθ =

∫
dtdr3αθ/(4π2)E ·B with

E and B the conventional electric and magnetic fields, α the fine structure constant, and θ the
gauge dependent axion term 7. Because of the 2π periodicity under a gauge transformation 8, the
axion term here is well defined within the region [0, 2π). Besides, as the quantity E ·B flips sign
under time-reversal (T ) operation, the axion field manifests only two distinct values, that is, θ = 0
for normal insulator and θ = π for topological insulator 7. Furthermore, the non-vanishing axion
term in the Lagrangian would introduce additional magneto-electric responses to the Maxwell
equations and in turn, results in a distinctive topological magneto-electric effect 9–11, furnishing a
hallmark to the quantized axion field.
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In addition to the time-reversal (T ) symmetry, the quantized axion field θ = π can also be pro-
tected by combined lattice and time-reversal symmetry (for example S = T τ1/2 with τ1/2 the half
translation operator)12, as the quantity E · B undergoes the same sign reversal. This kind of ma-
terials, termed axion insulator 13–22, holds significant potential in layertronics 23–27 and quantum
computing 28, 29. MnBi2Te4 and its family have recently been proposed as axion insulators in the
antiferromagnetic state 13, 30–34, which finds a concise description with an effective Hamiltonian
defined on the orbital and spin-1/2 spaces 31. Because the symmetry transformations of high
spin representations and spin-1/2 are identical (see Supplementary Section 1), in this work, we
generalize this model to other spin species and thus propose a high spin axion insulator (HSAI)
preserving the same symmetry. We find that the HSAI with spin-s possesses a notable axion field
θHSAI = (s + 1/2)2π. It carries a multiple quantized helical hinge current (QHHC) that is ro-
bust against disorders even in the absence of the topologically protected gapless exciations, which
contradicts the integer surface Chern number. Consequently, HSAI exhibits an unusual quantum
anomaly that violates the conventional bulk-boundary correspondence. In contrast to the case of
spin-1/2 axion insulator, the direct calculation of the axion term shows that the large axion field in
high-spin case originates mostly from localized surface Wannier functions while, in the bulk, the
axion field is either 0 or π. Strikingly, we show that the axion field in HSAI can be tuned precisely
by manipulating the magnetic configuration through an external magnetic field, providing a pio-
neering tuning knob to control the QHHC and the quantized magneto-electric response. Possible
experimental realization in ultra-cold atoms is also discussed.

Results
Effective model for the HSAI
Recalling the effective four-band Hamiltonian for the spin-1/2 axion insulator 31, we consider a
generic model defined on the high spin space which can be expressed as

H =
3∑

i=0

diΓi +∆ms · s⊗ τ0. (1)

Here, d0,1,2,3 =
[
m0 −Bk2, Akx, Aky, Akz

]
with A, B, m0 the system parameters. Γ0 =

s0 ⊗ τ3 and Γi=1,2,3 = si ⊗ τ1 where si and τi are matrices defined on the high spin space and
2 × 2 orbital space, respectively. The momentum k =

(
kx, ky, kz

)
is defined on a cubic lat-

tice with the lattice constant a0 inside the first Brillouin zone. This model Hamiltonian is given
directly from the spin-1/2 axion insulator. A construction from symmetry perspective is provided
in Supplementary Section 2. It is evident that the first term in Eq. (1) describes a high-spin topo-
logical insulator, which preserves both time-reversal (T ) and parity (P) symmetries. The second
term describes the exchange interaction between topological electrons and normalized magnetic
spins ms =

(
mx

s , my
s , mz

s

)
with ∆ the exchange strength, resembling that in MnBi2Te4, hence

explicitly breaks the time-reversal symmetry while preserves the S symmetry in the infinite size
limit along z-direction. We consider the antiferromagnetic phase of an even-layer slab involving
only the antiparallel (or canted) spins in the top and bottom layers as illustrated in Fig. 1a, which
restores the combined parity and time-reversal (PT ) symmetry. Unless otherwise specified, we
adopt the typical model parameters as follows: A = m0 = 1, B = ∆ = 0.6, a0 = 1.

Figure 1(b) displays the two dimensional energy spectra of the spin-3/2 HSAI in the absence (blue
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dashed lines) and presence (red solid lines) of the magnetic exchange term. In the former case,
the time-reversal symmetry is present, where the energy spectrum is gapped in the bulk but has
two conducting surface states on each side (blue dashed lines). These two surface states can be
accurately fitted by a massless Dirac band E1 ∼ k and a cubic band E2 ∼ k3 (inset in Fig. 1b).
Turning on the exchange term in the latter case opens a band gap as indicated by the red solid
lines in Fig. 1b. In both cases, the energy spectra are doubly degenerated because of the inherent
(T or PT ) symmetry.

Layer-resolved Chern number, quantized helical hinge current and quantum anomaly
To explore the topological properties of the HSAI, we calculate the layer-resolved Chern number
Cz along ẑ-direction 30, 35 along with the cumulative Chern number C̃z =

∑z
−Lz/2

Cz. Given the
Chern number C = (s + 1/2)2 in the odd-layer case 36, the system is a high Chern number insu-
lator as shown in Supplementary Section 6. In the even layer system, the opposite layer-resolved
Chern numbers are overall confined antisymmetrically inside few surface (top and bottom) layers
as shown in Fig. 1c, resulting in a vanishing total Chern number C = 0. Nevertheless, the sur-
face Chern number on one side turns out to be well quantized [Ctop(bot)

surf = ∓2] when s = 3/2
as long as the Fermi level lies inside the energy gap (Fig. 1d). Because the layer-resolved Chern
number is related to the axion field through the relation θHSAI = (Cbot

surf − Ctop
surf )π

37. The oppo-
sitely quantized surface Chern numbers in spin-3/2 HSAI thereby assure a quadruple axion field
θHSAI = 4π. Moreover, since the Chern number difference between neighboring top (bottom)
and side surfaces is an integer, HSAI supports a possible hinge state that is absent in spin-1/2
axion insulator 24, which allows a subsequent QHHC owing to opposite chiralities on different
surfaces. Nonetheless, we find that this QHHC survives counterintuitively without the existence
of any hinge state.

To clarify this, let us first examine the average position ⟨z/Lz⟩ on the front surface of the slab at
y/Ly = −1/2. The results shown in Fig. 2b reveals two branches (red lines in Fig. 2b) concen-
trated unexpectedly around the bottom hinge (z/Lz = −1/2) and propagating rightwards because
of the positive group velocity. By contrast, we observe two other branches concentrate oppositely
around the top hinge (z/Lz = 1/2), which, simultaneously, propagate leftwards as depicted by
the blue lines. Note that only the results for the front surface (at y/Ly = −1/2) are presented
here. In the presence of PT symmetry, the energy spectrum in Fig. 2b is doubly degenerated as
stated above. There are four additional branches existing on the other surface at y/Ly = 1/2.
Because the wavefunctions on the diagonal hinges are connected by this PT symmetry, they must
propagate along the same direction, supporting a helical hinge current.

We then turn to the spectrum density A(kx, E) on a semi-infinite slab 38–40, where the system
extends infinitely along +ẑ-direction but remains unchanged along the lateral directions. A(kx, E)
on the front lower hinge illustrated by the blue dashed line in Fig. 2a are plotted in Fig. 2c. It
shows that A(kx, E) originates mostly from the right-moving energy bands, agreeing remarkably
well with the average position in Fig. 2b. This spectrum density can be verified experimentally
by using the nano angle-resolved photoemission spectroscopy and microscopy 41–43. Besides, the
high spectrum density on the hinge indicates the presence of a hinge current, the current density
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of which can be quantitatively determined by 24, 40

jx(EF , r) = − e

hπ

∫ π

−π

dkxIm{Tr[
∂HHSAI(kx, r)

∂kx
Gr(EF ; kx, r)]}, (2)

where EF is the Fermi energy labeled by the white line in Fig. 2c, r = (y, z), HHSAI(kx, r) is the
Hamiltonian for the HSAI and Gr(EF ; kx, r) is the retarded Green’s function.

The upper panel in Fig. 2d presents the hinge current density Jx(z) =
∑0

y=−Ly/2
jx(r) as a func-

tion of the layer index z. We see that Jx(z) is verily confined on the hinge, in agreement with
⟨z/Lz⟩ and A(kx, E). Strikingly, this hinge current decays oscillatively into the side surface, ex-
hibiting a beating mode (magenta line) in sharp contrast to that in spin-1/2 axion insulator 24.
This peculiar behavior can be quantitatively fitted by the superposition of two power-law decay-
ing edge currents J1

x(z) =
a1√
z
cos (2kF1z + ϕ1) and J2

x(z) =
a2√
z
cos (2kF2z + ϕ2)

44, where kF1

and kF2 are the Fermi momenta for the two distinct modes marked by the white stars in Fig. 2c,
while a1(2) and ϕ1(2) are fitting parameters. The integral of the current density over the layer
index provides the current flux Ix(z) =

∫ z

0
dz̃Jx(z̃) (middle panel in Fig. 2d), which oscillates

around 2e/h and coincides perfectly with the fitting data. Additionally, the z-averaged current
⟨Ix(z)⟩ =

∫ z

0
dz̃Ix(z̃)/z (red line) quantizes to 2e/h only a few layers away from the hinge.

Imposing a finite thickness along ẑ-direction enables us to calculate the moving average current
⟨Ix(z)⟩MA =

∫ z+7

z−7
dz̃Jx(z̃). The result displayed in the bottom panel demonstrates a helical

hinge current quantized precisely to ±2e/h. Although the HSAI supports a QHHC identical to
its integer surface Chern number, the topologically protected gapless exciations in lower dimen-
sion are completely absent as plotted in Fig. 2b. It worths note that the energy gap in Fig. 2b
may be induced by the finite size effect. Our analysis in Supplementary Section 3 shows that
the size dependence of the energy gap comes from the bulk bands, which demonstrates that this
energy gap originates from the magnetic exchange interaction. Consequently, the conventional
bulk-boundary correspondence that an integer Chern number must hold chiral edge states fails in
HSAI, establishing an unusual quantum anomaly.

Non-reciprocal conductance
Owing to the chirality bonded to the quantized surface Chern number, this QHHC can be unveiled
by the non-reciprocal conductance GN

ij = Gij − Gji in a six-terminal device sketched in Fig. 2e,
where Gij is the differential conductance 24, 45. In this device, two longitudinal leads (terminals 5
and 6) are intimately connected to the two ends of the sample while four transverse leads (termi-
nals 1, 2, 3, and 4) are attached to different hinges on the front surface. Figure. 2f shows three
representative non-reciprocal conductances versus the Fermi energy EF in the clean limit (solid
lines), with non-magnetic Anderson disorder (dashed lines) and with magnetic Anderson disorder
(dashed dotted lines). In general, GN

65 = 0, GN
31 = −2e2/h and GN

42 = 2e2/h when the Fermi
level lies inside the band gap for all three cases, consistent with the current distribution in Fig. 2d
as well as the layer-resolved Chern numbers in Fig. 1d. This verifies that the QHHC is topolog-
ical protected as the quantized non-reciprocal conductance is immune to both non-magnetic and
magnetic Anderson disorders that even breaks the global PT symmetry 5, 6.

Since multiple frequency ac current is robust against ambient perturbation, to detect this QHHC,
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we employ an alternate detection in which terminals 2, 4, 5, and 6 are grounded whereas a har-
monic voltage V (t) = V0 sin (ω0t) with a periodicity T = 2π/ω0 is applied alternatively to termi-
nal 1 or 3 as illustrated in Fig. 2g. During the first (second) half period, a positive (negative) volt-
age is applied to terminal 1 (3) as an input while the current flows i3(t) [i1(t)] from terminal 3 (1) is
detected as an output. Their combination gives rise to an asymmetric net current i(t) = i1(t)+i3(t)
as shown in Fig. 2h. Performing a Fourier transform converts i(t) into I(ω). The non-reciprocal
conductance can then be determined from the equation F (ω) = |I(ω)(ω2 − ω2

0)|/(2Nω0V0) with
N the number of periodicity (see Supplementary Section 4 for details). The result displayed in
Fig. 2i shows that F (ω) = GN

13 when ω = 2ω0. Thus, non-reciprocal conductance measurements
offer a reliable experimental method to visualize the QHHC in HSAI.

Axion term
The HSAI can alternatively be characterized by the axion term 7, which can be evaluated directly
from the hybrid Wannier functions (HWFs) constructed in terms of the Bloch wavefunctions 46.
In this scenario, the axion term on a slab is defined as 46

θslabCS = − 1

Lz

∫
d2k

∑

n

[znkΩ̃
xy
knn], (3)

where znk is the hybrid Wannier charge center along ẑ-direction and Ω̃xy
knn is corresponding non-

Abelian Berry curvature.

Figure 3(a) shows znk in the first Brillouin zone for a six-layer HSAI with spin-3/2. These znk
consist of two different types, those localized on the top and bottom surfaces as emphasized by
the red and blue lines and those extending into the bulk denoted by black lines. Those surface
Wannier bands will disappear under a periodic boundary condition when connecting the top and
bottom surfaces. The total axion term of the slab can subsequently be divided into two parts
θslabCS = θbulkCS + θsurfCS with θbulkCS and θsurfCS the axion terms corresponding to the surface and bulk
HWFs. The bulk axion term θbulkCS is identical to that obtained analytically from the Chern-Simons
three form in the infinite size limit46. In Fig. 3b, we show θbulkCS (red upside down triangle), θsurfCS

(black circle) together with θslabCS (blue triangle) versus the inverse thickness 1/Lz. There are three
distinctive features in this figure. First, the total axion term shows an obvious tendency quantized
to θslabCS = 4π when the system size approaches infinity (1/Lz → 0), which confirms the quadruple
axion term in two dimensional HSAI slab. Second, the axion term originates completely from the
surface HWFs although the bulk HWFs also result in a small value that decreases θbulkCS at finite
size. Third, the axion term θsurfCS obeys the relation θsurfCS = (Cbot

HWF −Ctop
HWF )π in the infinite size

limit, whereCtop(bot)
HWF is the top (bottom) surface Chern number obtained from the surface HWFs as

indicated by cyan diamond (magenta square). These peculiar results reaffirm the unusual quantum
anomaly and also the quadruple axion term θHSAI = 4π in HSAI with spin-3/2.

Topological magneto-electric effect
Such quadruple axion term implies a unique topological magneto-electric effect 13, 30. When apply-
ing a magnetic field Bz to the HSAI along ẑ-direction, the Hamiltonian in Eq. 1 acquires a Peierls
phase 30, which redistributes the electron chargeQ(z) in accordance to the confined layer-resolved
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Chern number Cz as shown in Fig. 3c. The ensuing charge polarization P =
∑Lz/2

z=−Lz/2
zQ(z)/Lz

almost quantizes to P ≈ 4αϕ, where α is the fine structure constant and ϕ is the total magnetic flux
penetrating the HSAI slab. In comparison, a quantized orbital magnetization can emerge under
an external electric field Ez when incurring a potential drop δU = eEzLz in the HSAI Hamilto-
nian 47. The red square in Fig. 3(d) shows the orbital magnetization M as a function of δU , which
agrees quantitatively well with the ideal case benchmarked by the black line. These two results
independently certify the quadruple axion term θHSAI in spin-3/2 HSAI. The slight deviation
from the exactly quadruple value originates from the finite size effect, which is further revealed
by the size scalings of the axion term θslabCS /π, polarization coefficient P/(αϕ), and magnetization
coefficient M/(αδU) against the inverse layer thickness 1/Lz in Fig. 3e. We also evaluate the
axion term and the surface Chern numbers for spin-5/2 HSAI in terms of the HWFs (Fig. 3f). The
results displayed in Fig. 3g demonstrate that spin-5/2 HSAI possesses a surface Chern number
C

top(bot)
HWF = ∓4, a total axion term θslabCS = 9π, a surface axion term θsurfCS = 8π and a bulk axion

term θbulkCS = π. Systematic results for the spin-5/2 HSAI are provided in Supplementary Section
5. The topological properties for HSAI with different spin species are summarized in Table. 1,
giving a distinct axion field θ = (s+ 1/2)2π and Ctop/bot

surf = ∓(1/2 + 3/2 + · · ·+ s).

Tunable topological phase transition
In the presence of an in-plane magnetic field, the antiparallel magnetic moments in the top and
bottom layers become canted with the canting angle γ proportional to the magnetic field strength
as illustrated in Fig. 4a. In this case, the quantized axion field in the infinite size limit is protected
by mxP symmetry where mx is the mirror plane normal to x-direction. In Fig. 4b, we compare
two dimensional band gaps as functions of γ for spin-1/2 axion insulator and spin-3/2 HSAI.
Because the exchange gap is determined by the perpendicular magnetization Mz, the band gap
for spin-1/2 axion insulator decreases monotonically as γ is enlarged and finally becomes zero
when γ = π/2. On the contrary, the band for spin-3/2 HSAI exhibits a gap close at γ = π/4 as
shown in Fig. 4c, suggesting a possible topological phase transition. Indeed, Figure 4e shows that
the surface Chern number obtained using both the Bloch wavefunctions and the HWFs(Fig. 4d)
changes from +2 (−2) to +1 (−1) when γ = π/4. At this point, the HWFs are connected at the
Γ point (Fig. 4d), therefore the Berry curvature and the surface Chern number can transfer from
one side to the other 48, leading to an axionic phase transition. Such topological phase transition
is further affirmed by the axion field, the polarization and magnetization coefficients shown in
Fig. 4f.

Discussion
The device application of axion insulators requires the fine-control of the transport signals such
as the magneto-electric response or the QHHC, which are identical to the axion field. In spin-1/2
axion insulators, the axion term cannot be tuned without disrupting the existing S symmetry or
refabricating the setup 49. Nevertheless, because different surface bands shown in Fig. 1b can be
coupled via the in-plane exchange interaction (Mxsx⊗τ0), an apparent topological phase transition
between axion insulators with different axion fields occurs in the HSAI. Consequently, the axion
term θHSAI (in unit of π), hence the QHHC GN

ij (in unit of e2/2h) and the magneto-electric
effect P/(αB) [M/(αE)] in HSAI can be precisely adjusted from 4 to 2 via the application of an
external magnetic field. Thus, our work opens up an exciting possibility for the groundbreaking
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advancement in the practical application of axion insulators.

In conclusion, we have proposed a HSAI defined on the high spin space and shown that this HSAI
possesses a multiple axion field protected by the combined lattice and time-reversal symmetry.
Notably, the axion term in the bulk of a HSAI still quantizes to θ = 0 or θ = π while the sur-
face of HSAI possesses a large axion term and a consistent integer Chern number, which can be
tuned by manipulating the magnetic configuration through an external magnetic field. These re-
sults extend the scope of recently discovered axion insulator in magnetic topological materials. In
ultra-cold fermions on a honeycomb lattice, the exchange gap can be introduced by complex next-
nearest-neighbour tunneling terms through circular modulation of the lattice position 50. We thus
propose that our theory can be tested in high spin ultra-cold fermions on a stacked honeycomb
lattice, where the non-reciprocal conductance can be detected by the orthogonal drifts analogous
to a Hall current under a constant force to the atoms 50, 51.

Methods
Caltulations of the layer-resolved Chern number, magnetization, and polarization. In a HSAI
slab with periodic boundary conditions along the lateral dimensions, the momenta kx and ky are
good quantum numbers because of the translation symmetry. Therefore, the layer-resolved Chern
number can be calculated by projecting the total Chern number into specific layer, which can be
written as

Cz =
1

π

∑

Em(k)<EF<En(k)

∫
dkxdkyIm

⟨mk|P̂z∂kxHHSAI |nk⟩⟨nk|∂kyHHSAI |mk⟩
[Em(k)− En(k)]2

. (4)

Here, EF is the Fermi energy, Em(n)(k) is the eigenenergy of HHSAI with |mk⟩ (|nk⟩) the corre-
sponding eigenstates, P̂z = |ψz⟩⟨ψz| is the projecting operator. The integral is performed inside
the first Brillouin zone.

Under an electric fieldEz along ẑ-direction, a potential drop occurs inside the HSAI slab along the
same direction. The onsite energy in each layer acquires an additional value eEzz with z the layer
index and the total potential drop in the HSAI slab is δU = eEzLz. The orbital magnetization can
then be obtained accordingly by using

M =
−e
2πh

∑

Ẽm<EF<Ẽn

∫
dkxdkyIm

(Ẽm + Ẽn − 2EF )

(Ẽm − Ẽn)2
⟨m̃|∂kxH̃HSAI |ñ⟩⟨ñ|∂kyH̃HSAI |m̃⟩, (5)

where H̃HSAI = HHSAI + eEzz with Ẽm(n) and |m̃⟩ (|ñ⟩) its eigenenergy and eigenstate, respec-
tively.

Applying a magnetic field Bz along ẑ-direction introduces a gauge potential to the HSAI lattice
and thus breaks the in-plane translation symmetry. Inside each unit cell, HSAI acquires a gauge
field ϕ0 =

∫
drA · r/Ψ0 with Ψ0 = h/(2e) the magnetic flux quantum. The total magnetic flux
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penetrating the HSAI slab is ϕ = BzLxLy. We adopt the Landau gauge A =
(
−yBz, 0, 0

)
, so

the translation symmetry along ŷ-direction is broken while that along x̂-direction sustains. In this
case, the charge distribution induced by the magnetic field can be obtained by using the Green’s
function method, yielding

q(z) =
e

π

∑

x,y

∫ EF

−∞
dEImTrGr(E, r), (6)

where r =
(
x, y, z

)
and the Green’s function Gr(E, r) = (E + iη − HHSAI)

−1 with η the
imaginary line width function. On the other hand, as kx is still a good quantum number, the
charge distribution along ẑ-direction can be alternatively obtained by using

q(z) =
e

2π2

∑

y

∫ EF

−∞
dE

∫
dkxImTrGr(E, kx, y, z). (7)

Moreover, because only the negative charge originating from electrons are considered here in
Eqs. 6 and 7, to derive the unbalanced charge distribution and in turn the polarization, the uniform
background charge compensating the positive ions in the lattice has to be removed from the results,
which has the form qback = −∑Lz/2

z=−Lz/2
q(z)/Lz because of the charge conservation. As a result,

the charge distribution has the form Q(z) = q(z) + qback. The charge polarization can finally be
expressed as P =

∑Lz/2
z=−Lz/2

zQ(z)/Lz.

Caltulations of the axion term using the hybrid Wannier function. In a HSAI slab, the hybrid
Wannier wavefunction |hn,k⟩ can be constructed from the Bloch wave function. We thus have
|hn,k⟩ = 1/2π

∫ π

−π
dkz|nk⟩e−i(k·r+kzz). In this case, the hybrid Wannier charge center takes the

form znk
= ⟨hn,k|z|hn,k⟩ 46. To calculate the non-Abelian Berry curvature, we divide the two-

dimensional Brillouin zone into a regular mesh with bx and by being the primitive reciprocal
vectors that define the mesh. Then the gauge covariant Berry curvature has the form 52

Ω̃xy
knn = i(⟨∂̃xhn,k|∂̃yhn,k⟩ − h.c.), (8)

where |∂̃ihn,k⟩ = (|h̃n,k+bi⟩ − |h̃n,k−bi⟩)/2. The wavefunctions constructed by a linear combina-
tion of the occupied bands at neighboring mesh point are |h̃n,k±bi⟩ =

∑
n′(Snn′

k,k±bi
)−1 ×|hn′,k±bi⟩,

where the matrix Snn′
k,k′ = ⟨hn,k|hn′,k′⟩.

Green’s function method for calculating the differential conductance Gij . The differen-
tial conductance Gij corresponds to the transmission coefficient Tij from terminal j to termi-
nal i, which can be derived by using the non-equilibrium Green’s function method. Based on
the Landauer-Büttiker formula 45, the transmission coefficient Tij can be expressed as Tij =

Tr[ΓiG
rΓjG

a], where Γi(j) = i[Σi(j) − Σ†
i(j)] is the line width function and Gr = (Ga)† =

[EF + iη − HHSAI − ∑
iΣi]

−1 with EF the Fermi energy, η the imaginary line width func-
tion and Σi the self energy due to the coupling to terminal i. To incorporate the disorders, we
generate random potentials δE ∈

(
−W/2, W/2

)
for the non-magnetic Anderson disorders or

δMz ∈
(
−Wz/2, Wz/2

)
for magnetic Anderson disorders at each site r, then add these random
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potentials to the Hamiltonian in the Green’s functions. The results in the presence of disorders are
calculated under 10 times average (Fig. 2f).

Data availability
The data that support the plots within this paper and other findings of this study are available from
the corresponding author upon request. Source data are provided with this paper.

Code availability
The code that is deemed central to the conclusions is available from the corresponding author
upon request.
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spin-s θslabCS θsurfCS θbulkCS Ctop
HWF Cbot

HWF Ctop
surf Cbot

surf

1/2 π 0 π 0 0 -1/2 1/2
3/2 4π 4π 0 -2 2 -2 2
5/2 9π 8π π -4 4 -9/2 9/2
7/2 16π 16π 0 -8 8 -8 8
...

Table 1: Axion terms and surface Chern numbers for axion insulators with different spins.

Figure 1: Model of the HSAI. a Schematic for the HSAI defined on the |s,mz⟩ space. The
blue arrows represent the electron spin with different magnetic quantum number mz, which takes
values ranging from −s to s individually. b Energy spectra of the spin-3/2 HSAI along M→
Γ →R path on a slab of thickness Lz with (red solid lines) and without (blue dashed lines) the
magnetic exchange interaction. Here, the black lines refer to bulk bands. Inset: Energy dispersion
for the spin-3/2 HSAI in the absence of magnetic exchange term near the charge neutral point
(solid lines) and the fitting data (markers). c Layer-resolved Chern number Cz and the cumulative
Chern number C̃z =

∑z
−Lz/2

Cz versus the layer index z for the spin-3/2 HSAI. The surface

Chern numbers Ctop(bot)
surf that summarize the layer-resolved Chern number on the upper (lower)

half side is −2 (+2). d Surface Chern number as a function of the Fermi energy EF for the spin-
3/2 HSAI. Here, the thickness of the HSAI slab is Lz = 20.
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Figure 2: Transport properties of the spin-3/2 HSAI. a Schematic current flow in a HSAI.
The red arrows denote the quantized helical hinge currents. b Energy spectrum and the average
position ⟨z/Lz⟩ on the front surface for a HSAI nanowire with Ly = 30, Lz = 16. c Spectrum
density A(kx, E) for the front lower hinge as labeled by the blue line in a on the kx − E plane.
Here, the system size is Ly = 30, Lz = ∞/2. The white dashed line represents the Fermi
energy EF = 0.1. The white stars that mark the intersects between the Fermi energy and the
spectrum are the Fermi momenta kF1 and kF2. d Top and middle panels are the current density
Jx(z), current flux Ix(z) and its z-averaged flux ⟨Ix(z)⟩ versus the layer index z for a semi-infinite
system with size Ly = 30, Lz = ∞/2. The blue dots are the fitting data. Bottom panel shows
the distribution of the moving averaged current ⟨Ix(z)⟩MA on the front surface with system size
Ly = 30, Lz = 150. e Bird’s eye view (top panel) and high-angle shot (bottom panel) for the
six terminal device. f Ensemble-averaged non-reciprocal conductances versus the Fermi energy
in the clean limit (W=0), with non-magnetic Anderson disorders of strength W = 1 and with
magnetic Anderson disorders of strength Wz = 0.3. Here, the system size is Lx = 31, Ly = 20,
Lz = 21, and the size of transverse terminals is 10× 10. g Experimental setup to detect the non-
reciprocal conductance. In this setup, terminals 2, 4, 5, and 6 are grounded. The voltage is applied
alternatively to terminal 1 or terminal 3. h Corresponding temporal dependent current output with
parameters G13 = 4.5e2/h, G31 = 2.5e2/h. i F (ω) as a function of the frequency ω.
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Figure 3: Axion term and topological magneto-electric effect. a and f Hybrid Wannier charge
centers znk along R→Γ→M→R loop inside the first Brillouin zone for a six-layer HSAI slab with
spin-3/2 (a) and spin-5/2 (f), respectively. b and g are corresponding axion terms and the surface
Chern numbers versus the inverse layer thickness obtained by using the HWFs. c Magnetic field
induced charge distribution along ẑ-direction and the layer-resolved Chern number for a spin-3/2
HSAI with Lz = 24. Here, the charge polarization is obtained on a HSAI slab with open boundary
condition along ŷ-direction (Ly = 40) but periodic boundary condition along x̂-direction. The
magnetic flux inside one unit cell is ϕ0 = Ba20 = 0.01h/e. d Electric field induced orbital
magnetization for a spin-3/2 HSAI with Lz = 20. The black dashed line shows the ideal case
(IC) with an exact axion term θ = 4π. e Size scaling of the axion term θslabCS /π, polarization
coefficient P/(αϕ), and magnetization coefficient M/(αδU) at δU = 0.001. We have checked
that the slight deviation of P/(αϕ) originates from the finite size effect.
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Figure 4: Phase transition in spin-3/2 HSAI. a Canted HSAI under an in-plane magnetic field.
γ is the canting angle between the magnetic vector and ẑ-axis (polar angle). b Energy gaps versus
γ for spin-3/2 HSAI and for spin-1/2 axion insulator, respectively. c Energy spectra for the
HSAI with spin-3/2 (black solid lines) and spin-1/2 (blue dashed lines) at γ = π/4. d Hybrid
Wannier charge center znk as a function of kx for a HSAI slab at γ = π/4. e Surface Chern
numbers obtained from the effective Hamiltonian in Eq. (1) and the HWFs versus γ. f Axion term
θslabCS /π, polarization coefficient P/(αϕ) (ϕ0 = 0.01h/e) and magnetization coefficient M/(αδU)
(δU = 0.001) versus γ. The thickness of the HSAI is Lz = 20.
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1 Spin matrices for different spins

The spin matrices for different spin species can be generated mathematically from the Clifford

algebra [1, 2], which are

spin-
s

sx sy sz
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2 Hamiltonian for high spin axion insulator from sym-

metry perspective

The model Hamiltonian for the high spin axion insulator can be built from the high spin

topological insulator preserving both parity and time-reversal symmetry [3]. These parity

and time-reversal symmetry on the orbital and spin basis are defined as P = τz and T =

e−isyK, respectively, where τz is the Pauli matrix acting on orbitals, sy is the spin matrix

shown in Sec. 1, and K is the complex conjugation operator. Since (the odd power of) the

spin matrices sx,y,z flip sign under the time-reversal symmetry, the minimum Hamiltonian

for a high-spin topological insulator preserving both parity and time-reversal symmetry thus

3



reads

H0 = (m0 −Bk2)s0 ⊗ τz +
∑

i=x,y,z

Aikisi ⊗ τx, (1)

where k2 = k2x + k2y + k2z , m0, B, Ai=x,y,z are system parameters. The first term in Sup-

plementary Eq. (1) is the kinetic energy while the second term represents the spin-orbital

coupling. Due to the time-reversal symmetry, the axion field of H0 is quantized. In the

main text, we take the spin orbit coupling Ax = Ay = Az for convenience. However, our

theory is universal and is not limited to special parameters. It also worths note that the spin

orbital coupling is crucial for the quantized axion field, which otherwise becomes θ0 = 0 if

Ai=x,y,z = 0. In the presence of magnetic ordering, the time-reversal symmetry is explicitly

broken. However, in the antiferromagnetic phase, the combined lattice and time-reversal

symmetry is still well preserved because the magnetic moments on the adjacent layers are

antiparallel. The magnetic layers introduces an exchange interaction into the system, which

recasts the Hamiltonian as

H = H0 +∆ms · s⊗ τ0, (2)

where ∆ is the exchange gap between the magnetic moment ms and the topological electrons

with spin s. In three dimension limit, the system preserves the symmetry S = Tτ1/2 with

τ1/2 the half translation operator along z-direction. Whereas, this S symmetry breaks into

combined parity and time-reversal symmetry that can be defined as PT = σze
−isyK on a

slab geometry, where σz is the Pauli matrix switching the magnetic moments between the

top and bottom layers
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Supplementary Fig. 1: Size dependence of the energy gap. a and b show the band
structures for systems in the antiferromagnetic and ferromagnetic cases, respectively. In the
ferromagnetic case, the system is a spin-3/2 Chern insulator. The red lines in b denote the
four gapless edge states. Here, the system size is Ly = 20, Lz = 10. c, energy gap for
the HSAI versus Ly. d, size dependence of the HSAI band gap (red triangle) and Chern
insulator bulk band gap (blue up-side-down triangle) with Ly = 20. The results for the
Chern insulator bulk band gap is obtained after removing the surface states (red lines). All
parameters for the model Hamiltonian are exactly the same as those in the main text.

3 Finite size effect

To rule out the possibility of the finite-size effect induced energy gap in HSAI, we study

the size dependence of the energy gap. Supplementary figures 1 a and b show the band

structures of a one-dimensional nanowire with size Ly = 20 and Lz = 10 for the system in

the antiferromagnetic and ferromagnetic cases, respectively. In the ferromagnetic case, the

system is a spin-3/2 Chern insulator with a Chern number C = 4 (see Sec. 6). Therefore,

there are four gapless edge states denoted by the red lines in Supplementary Fig. 1 b, in

sharp contrast to the gapped band structure for a HSAI in Supplementary Fig. 1 a. On the

other hand, figure 1 c shows the band gap for the HSAI as a function of Ly. It is apparent

that this gap is independent of the size Ly. To further rule out the possibility of the finite-

5



size effect along z-direction, we compare the band gap for the HSAI with the bulk band gap

of the Chern insulator after removing the edge bands (red lines in Supplementary Fig. 1b).

The results plotted in Supplementary Fig. 1d show that the two band gaps as functions of

Lz coincide quantitatively with each other, which demonstrates that the band gap in HSAI

is also induced by the bulk bands rather than the finite size effect due to the overlapping

between edge states on top and bottom surfaces.

4 Alternate detection

The temporal dependent asymmetric current output in the main text has the form

i(t) =





V0G31 sinω0t, 2nπ/ω0 < t ≤ (2n+ 1)π/ω0

V0G13 sinω0t, (2n+ 1)π/ω0 < t ≤ (2n+ 2)π/ω0

(3)

for an arbitary integer n, where Gij is the conductance from terminal j to terminal i as

explained in the main text, V0 and ω0 are the amplitude and frequency of the alternative

harmonic voltage input, respectively. Performing a Fourier transform with respect to t

converts the current into the frequency domain, which yields

I(ω) =
ω0

2π

∫ π/ω0

−π/ω0

dte−iωti(t)

=

N/2∑

n=−N/2

V0

[
G31

∫ (2n+1)π/ω0

2nπ/ω0

dte−iωt sinω0t+G13

∫ (2n+2)π/ω0

(2n+1)π/ω0

dte−iωt sinω0t

]

=

N/2∑

n=−N/2

V0ω0e
−i2nπω/ω0

ω2
0 − ω2

(1 + e−iπω/ω0)(G13e
−iπω/ω0 −G31).

(4)

Therefore, the non-reciprocal conductance can be unveiled by the function F (ω) = |I(ω)(ω2−

ω2
0)|/(2Nω0V0) with N the truncation of the summation n. If ω = 2ω0, F (ω) = G13−G31 =

GN
13 with GN

13 the non-reciprocal conductance when N approaches infinity. However, the

function F (ω) = 0 if otherwise. Consequently, the quantized helical hinge current can be

6



readily detected by using the alternate method proposed in the main text.

5 High spin axion insulator with spin-52

The spin matrices for spin-5/2 are 6× 6 as shown in Sec. 1 because the magnetic quantum

numbermz has six values ranging from −5/2 to 5/2. As illustrated in Supplementary Fig. 2a,

the model Hamiltonian for the high spin axion insulator (HSAI) defined on spin-5/2 space

shares the same form as the spin-3/2 HSAI despite that the spin matrices are different. Thus,

all quantities presented in the main text can be obtained identically by incorporating the

spin matrices for spin-5/2. It is important to note that all parameters in this supplementary

information are the same as those in the main text.

Supplementary Fig. 2: Model of the HSAI with spin-5/2. a Schematic for the HSAI
with spin-5/2. The magnetic quantum number mz takes values from −5/2 to 5/2. b Two
dimensional energy spectra for spin-5/2 HSAI along kx (ky = 0) in the absence (blue dashed
lines) and presence (solid magenta lines) of the exchange interaction. The black lines are
bulk bands. Inset: Solid lines are energy spectra of the HSAI without magnetic exchange
term near the charge neutral point while markers are the fitting data. c Layer-resolved Chern
number C(z) and the cumulative Chern number C̃(z) =

∑z
−1/2C(z) versus the layer index

z. d Surface Chern number as a function of the Fermi energy EF . Here, the thickness of the
spin-5/2 HSAI slab is Lz = 60 and the Fermi energy is EF = 0.
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Supplementary figure 2b shows the energy spectra for the spin-5/2 HSAI with and without

the exchange term, respectively. In the absence of the exchange term, the system is a

spin-5/2 topological insulator preserving both time-reversal and space inversion symmetries

individually. It has a gaped bulk band but supports three gapless surface bands at each

surface. In this case, the three surface bands can be perfectly fitted by a linear Dirac

band E1 ∼ k, a cubic band E2 ∼ k3 and a quintuple band E3 ∼ k5 as shown in the

inset in Supplementary Fig. 2b. The exchange term between the magnetic moments and

the spin-5/2 topological electrons explicitly breaks the time-reversal symmetry of the HSAI

and hence opens an exchange surface gap. When the Fermi energy lies inside the band

gap, the lay-resolved Chern number C(z) can be derived by projecting the TKNN formula

into the specific layer. The results are shown in Supplementary Fig. 2c along with the

cumulative Chern numbers C̃(z) =
∑z

−Lz/2
C(z). We discover that the layer-resolved Chern

numbers lie oppositely inside few surface layers, leading to a vanishing total Chern number

C = 0. However, the surface Chern number in one side is Csurf
bot(top) = ±9/2, which indicates a

distinctive axion term θ5/2 = (Csurf
bot −Csurf

top )π = 9π [4]. This axion term is well preserved as

long as the Fermi energy remains inside the band gap as shown in Supplementary Fig. 2d.

Even though the surface Chern number in spin-5/2 HSAI is not an integer, it still sup-

ports an identically quantized helical hinge current due to the difference of the quantum

anomalous Hall conductances between top (or bottom) surface and the neighboring side

surfaces. To explore this quantized helical hinge current, we examine the average position

⟨z/Lz⟩ (Supplementary Fig. 3b) as well as the energy spectrum A(kx, E) (Supplementary

Fig. 3c) on a HSAI slab. The two results shown in Figs. 3b and c confirm a pair of helical

hinge currents on the front surface of the HSAI slab at y = −Ly/2. Because of the inherent

PT symmetry, two additional helical hinge currents exist on the other surface at y = Ly/2.

The diagonal hinge currents are connected by this PT symmetry. They much propagate

along the same direction. Therefore, in analogy to that in spin-3/2 HSAI and spin-1/2 axion

insulator, the spin-5/2 HSAI also support helical hinge currents that propagate oppositely
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Supplementary Fig. 3: Quantized helical hinge current in HSAI with spin-5/2.
a Schematic current flow in a spin-5/2 HSAI slab. b One dimensional energy spectrum and
the average position ⟨z/Lz⟩ on the front surface as functions of kx with Ly = 20, Lz = 24.
c Spectrum density A(kx, E) for the front lower hinge as marked by the purple star in a on
the kx − E plane. Here, the system size is Ly = 20, Lz = ∞/2. d Top and middle panels
are the current density Jx(z), current flux Ix(z) and its z-averaged flux ⟨Ix(z)⟩ versus the
layer index z for a semi-infinite system with size Ly = 20, Lz = ∞/2. The blue dots are
the fitting data using three power law decaying edge currents with momenta kF1, kF2 and
kF3 as marked by the white dots in c. Bottom panel shows the distribution of the moving
averaged current ⟨Ix(z)⟩MA on the front surface with system size Ly = 20, Lz = 150

on the neighboring hinges. To further quantitatively uncover those helical hinge currents,

we calculate the current density Jx(z), current flux Ix(z), z-average current ⟨Ix(z)⟩ and the

moving averaging current flux ⟨Ix(z)⟩MA in accordance with the formalism provided in the

Methods. The results are plotted in Supplementary Fig. 3d. On one hand, Jx(z) and Ix(z)

(solid magenta lines in the top and middle panels) coincide remarkably well with the fitting

data (blue dots) obtained from the superposition of three power law decaying edge currents

J i=1,2,3
x = ai cos (2kFia0 + ϕi)/

√
z, where kFi refers to the Fermi momenta marked by the

white dots in Supplementary Fig. 3c, ai and ϕ0 are fitting parameters, certifing that the
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beating mode of Jx(z) comes from the superposition of the coherent edge currents on the

same hinge. This beating mode occurs only in the HSAI since it originates from the super-

position of two or more coherent edge currents while spin-1/2 axion insulator harbors only

one edge current. On the other hand, one can see that ⟨Ix(z)⟩ and ⟨Ix(z)⟩MA quantize to

±4.5e/h only a few layer away from the hinge. Thus, those signatures evidently confirms

the quantized helical hinge current identical to the surface Chern number.
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Supplementary Fig. 4: Transport properties of the spin-5/2 HSAI in a six ter-
minal device. a Ensemble-averaged non-reciprocal conductances versus the Fermi energy
in the clean limit, with non-magnetic Anderson disorders W = 1 and with magnetic An-
derson disorders Wz = 0.3. Here, the system size is Lx = 31, Ly = 20, Lz = 21, and the
size of transverse terminals is 10× 10. b Corresponding temporal dependent current output
between terminals 1 and 3 with parameters G13 = 2.5e2/h and G31 = 7e2/h. c F (ω) as a
function of the frequency ω.

In the same six terminal device as schematically shown in Fig. 2e in the main text, we

calculate the non-reciprocal conductance for the spin-5/2 HSAI by using the non-equilibrium

Green’s function method. Three representative non-reciprocal conductances GN
31, G

N
42 and

GN
65 as functions of the Fermi energy EF are plotted in Supplementary Fig. 4a under different

conditions (in the clean limit W = 0, with non-magnetic Anderson disorders W = 1.0

and with magnetic Anderson disorders Wz = 0.3). We see that GN
31 = 4.5e2/h, GN

42 =

−4.5e2/h and GN
65 = 0 when the Fermi energy lie inside the band gap regardless of the

presence of disorders, confirming that those quantized non-reciprocal conductances are chiral

and robust against both non-magnetic and magnetic disorders. As a result, the quantized

helical hinge current is topological protected. This quantized helical hinge current can be
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measured by using the alternate detection method, which eliminates the contribution from

the conductive side surface. During the first half period, a positive voltage is applied to

terminal 1, while current flows from terminal 3 is detected [i3(t)]. Owing to the opposite

chirality, the hinge current in this case is completely blocked, allowing only the current

on the side surface to flow from terminal 1 to terminal 3. In the second half period, the

harmonic voltage is moved to terminal 3, and the current output i1(t) from terminal 1

includes contributions from both the side surface and the hinge. Consequently, the temporal

dependent current i(t) = i1(t) + i3(t) is asymmetric as shown in Supplementary Fig. 4b.

The amplitude difference between the positive and negative current originates from the

chirality of quantized helical hinge current. This difference can be revealed quantitatively

by the function F (ω) as explained in Sec. 4, which equals to the non-reciprocal conductance

GN
13 = G13 − G31 when ω = 2ω0 (Supplementary Fig. 4c). This further affirms that the

quantized helical hinge current in HSAI with different spins can be experimentally observed

via the alternate detection proposed in the main text.

We next examine the axion term and the topological magneto-electric effect bonded to

it. The axion term can be calculated in terms of the hybrid Wannier functions on a two

dimension HSAI slab with thickness Lz. Supplementary figure 5a shows the surface axion

term θsurfCS , bulk axion term θbulkCS , and the total axion term θslabCS as functions of the inverse

layer thickness 1/Lz. It shows that the total axion term θslabCS of the spin-5/2 HSAI is 9π

when the system size approaches infinity while the bulk axion term quantizes to θbulkCS = π

simultaneously. Therefore, in analogy to the spin-1/2 case, the spin-5/2 HSAI is an axion

insulator protected by the PT symmetry in the bulk. The surface axion term corresponding

from the surface Wannier function is θsurfCS = 8π, which is consistent with the Chern number

of the surface Wannier function shown in the same figure and is independent of the system

size. As the surface Wannier functions exist only on a slab geometry, they are independent

of the system size and disappear under the periodic boundary condition. Thus, the axion

term in the bulk for the spin-5/2 HSAI is π, which equals to θbulkCS obtained here on a slab
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Supplementary Fig. 5: Axion term and the topological magneto-electric effect
in HSAI with spin-5/2. a Axion terms and the surface Chern numbers versus the inverse
layer thickness obtained by using the HWFs. b Magnetic field induced charge distribution
along ẑ-direction and the layer-resolved Chern number for a spin-5/2 HSAI. Here, the charge
polarization is obtained on a HSAI slab with open boundary condition along ŷ-direction
(Ly = 40) but periodic boundary condition along x̂-direction. c Electric field induced orbital
magnetization for a spin-5/2 HSAI. The black dashed line shows the ideal case (IC) with an
exact axion term θ = 9π. d Size scaling of the axion term θslabCS /π, polarization coefficient
P/(αϕ), and magnetization coefficient M/(αδU). Here, the system size is Lz = 24.

geometry when the system size is infinity. This quantized axion term is also protected by

the PT symmetry in analogy to the spin-1/2 axion insulator. The non-vanishing axion term

of the slab indicates an identical topological magneto-electric effect. In the presence of an

external magnetic field, the electrons can be pushed from one side to the other as plotted

in Supplementary Fig. 5b, resulting in a charge polarization with the coefficient P/(αϕ)

identical to the axion term θslabCS , where P is the charge polarization, α is the fine structure

constant and ϕ the total magnetic flux penetrating the HSAI slab. Furthermore, the charge

distribution is consistent with the layer-resolved Chern numbers C(z) obtained from the

Bloch wave functions as shown in the same figure. By contrast, the electric field induced

magnetization (red squares) shown in Supplementary Fig. 5c also agree quantitatively well

with the ideal case with an exact quantized axion field θIC = 9π (black line), in which the

slope of the dataM/(αδU) refers to the magnetization coefficient with δU the total potential
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drop across the HSAI slab. The slight deviation between them can be ascribed to the finite

size effect, which is further unveiled by the size scalings of the axion term θslabCS /π, polarization

coefficient P/(αϕ), and magnetization coefficientM/(αδU) shown in Supplementary Fig. 5d.

The results establish the equivalence of the slab axion term, the polarization coefficient and

the magnetization coefficient.
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Supplementary Fig. 6: Topological phase transition in HSAI with spin-5/2. The
red solid line plots the band gap for the HSAI with spin-5/2 as a function of the canting
angle γ while the blue square refers to the corresponding axion term θslabCS . The axion term
is θslabCS = 9π in the green region, θslabCS = 7π in the yellow region, and θslabCS = 3π in the cyan
region. In the magenta regions, the gap is closed, therefore the axion term is not well-defined
since the system is a metal. Here, the system size is Lz = 40.

Finally, we explore the topological phase transition in spin-5/2 HSAI under the driven

of an in-plane magnetic field, which turns the antiparallel spins into canted spin state. The

red line in Supplementary Fig. 6 plots the two dimensional energy band gap for the spin-5/2

HSAI as a function of the canting angle γ. It exhibits more gap closing and reopen than

the spin-3/2 HSAI in the main text, which indicates much rich topological phase transitions.

The blue squares in the same figure show the corresponding axion terms obtained using the

hybrid Wannier function. We observe that the axion term changes from 9π (green region) to

7π (yellow region) then to 3π (cyan region) when the canting angle γ is enlarged. Moreover,
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there exist two regions (magenta regions) where the band gap vanishes. In theses regions

the system is a metal, therefore the axion term is not well-defined [5]. It is also important

to note that the topological phase transition originates solely from the surface axion term

θsurfCS while the bulk axion term θbulkCS remains unchanged during the process. Because the

transport signals in HSAI such as the non-reciprocal conductance identical to the quantized

helical hinge currents and the topological magneto-electric response are proportional to the

axion field, the HSAI thus provides a platform to realized the goal of axionic topological

phase transition.

6 Even-odd effect of the high spin axion insulator
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Supplementary Fig. 7: Even-odd effect of HSAI. a and b are layer-resolved Chern
number for spin-3/2 and spin-5/2 HSAI with different layer thicknesses Lz = 19 (red triangle)
and Lz = 20 (blue square). The Chern numbers and axion fields are labeled in the figure.

In the odd layer system, the net magnetization is non-vanishing because of the uncompen-

sated magnetic layer. We can thus simulate this state by using parallel magnetic moments

on both top and bottom layers. In order to reveal the difference between them, we explore

the layer resolved Chern numbers, which can be obtained by using Eq. (4) in the methods.

The results displayed in Supplementary Fig. 7 show that the layer-resolved Chern numbers

for odd layer systems distribute symmetrically on the top and bottom layers, leading to a

vanishing axion field θ = 0 while a nonzero Chern number C = (s+ 1/2)2 analogous to the
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odd layer MnBi2Te4 [6]. Therefore, the odd layer system is a high Chern number insulator.

On the contrary, the even layer system is a HSAI with an axion field θ = (s+1/2)2π because

of the asymmetric layer-resolved Chern numbers.
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