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"A galloping dog."

"A dolphin bends its body flexibly."

"A young girl is jumping."

"A man is scuba diving and swaying fins."

"A woman is dancing."

"A woman bends arms."

"A woman is stomping."

Fig. 1. Our AniClipart creates clipart animations guided by text prompts while preserving the visual identity of the input static clipart and achieving
frame-to-frame consistency. The left panel displays different animations generated from the same clipart input, guided by different text prompts. On the right
panel, we present animations with diverse input categories. We denote the initial clipart with a dashed-line box.

Clipart, a pre-made graphic art form, offers a convenient and efficient way
of illustrating visual content. Traditional workflows to convert static clipart
images into motion sequences are laborious and time-consuming, involving
numerous intricate steps like rigging, key animation and in-betweening.
Recent advancements in text-to-video generation hold great potential in
resolving this problem. Nevertheless, direct application of text-to-video gen-
eration models often struggles to retain the visual identity of clipart images
or generate cartoon-style motions, resulting in unsatisfactory animation out-
comes. In this paper, we introduce AniClipart, a system that transforms static
clipart images into high-quality motion sequences guided by text-to-video
priors. To generate cartoon-style and smooth motion, we first define Bézier
curves over keypoints of the clipart image as a form of motion regularization.
We then align the motion trajectories of the keypoints with the provided
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text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss,
which encodes adequate knowledge of natural motion within a pretrained
text-to-video diffusion model. With a differentiable As-Rigid-As-Possible
shape deformation algorithm, our method can be end-to-end optimized
while maintaining deformation rigidity. Experimental results show that
the proposed AniClipart consistently outperforms existing image-to-video
generation models, in terms of text-video alignment, visual identity preser-
vation, and motion consistency. Furthermore, we showcase the versatility of
AniClipart by adapting it to generate a broader array of animation formats,
such as layered animation, which allows topological changes. The project
page is https://aniclipart.github.io.

Additional Key Words and Phrases: Clipart Animation, Text-to-Video Diffu-
sion, Score Distillation Sampling, As-Rigid-As-Possible Shape Deformation.

1 INTRODUCTION
Clipart, a collection of readily pre-made graphic elements, provides
a convenient solution for swiftly enhancing visual content without
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crafting custom artwork from scratch. Its user-friendliness and wide
range of styles render it an ideal tool for enhancing the visual appeal
of documents, presentations, websites, and other mediums. The
animated clipart takes all these benefits and elevates them to the
next level. Compared to the static counterpart, the animated clipart
is particularly effective in grabbing users’ attention, making key
messages easier to follow, and adding a spark of enjoyment to the
content.

In traditional production, animating an existing clipart is delicate
and laborious, including various steps like rigging, key-framing,
in-betweening, and carefully considering timing and spacing. Re-
cent advancements in Text-to-Image (T2V) synthesis (e.g., Stable
Diffusion [Rombach et al. 2022]) have revolutionized the creation
of high-quality clipart, shifting it from purely manual labor to a
more automated process. However, automatically animating a given
clipart is still underexplored.
The growing demand for animated cliparts and their labor-

intensive creation process highlight the need for a system that can
animate an existing clipart with minimal or no manual intervention.
A natural solution is using recent Text-to-Video (T2V) models that
accept a text prompt and an image simultaneously [Chen et al. 2023b,
2024; Xing et al. 2023b; Zhang et al. 2023]. However, these models
prove inadequate for generating clipart animations for two reasons.
First, there is a significant discrepancy in motion patterns between
videos generated by existing large-scale T2V models and those in cli-
part animations. The training datasets for video generation models
consist of natural-style videos that exhibit realism, complexity, and
subtlety in motion. In contrast, cartoon-style clipart animations fa-
vor straightforwardness and simplicity, aiming for rapid conveyance
of messages. Second, video generation models tend to synthesize
videos that compromise the visual identity and distinct features
of the original clipart, due to pixel-level distortions in the output
videos, such as flickering backgrounds and blurred patches. Hence,
the disparity in motion paradigms and pixel-level distortion render
the state-of-the-art video generative models unsuitable for clipart.

In this paper, we present our system, AniClipart, which leverages
pretrained large-scale T2V models to animate a given clipart and
align it with a text prompt while addressing the aforementioned
challenges. Inspired by the standard animation pipeline, we define
keypoints on the clipart and distill the keypoints’ trajectory from
the T2V model to generate animations. By driving the clipart using
these keypoints, we successfully avoid pixel-level artifacts and better
preserve the visual identity of the clipart. Moreover, by confining the
motion to selected keypoints, we significantly reduce the complexity
of motion and bridge the domain gap between different motion
patterns.
Specifically, we assign Bézier curves as motion trajectories for

each keypoint, determining the positions of keypoints in each
keyframe and ensuring smooth transitions between frames. To align
the motion with a text prompt, we propose the use of Video Score
Distillation Sampling (VSDS) loss to optimize the parameters of the
Bézier trajectories, distilling motion knowledge from a pretrained
T2V diffusion model. Score Distillation Sampling (SDS), a technique
introduced in Dreamfusion [Poole et al. 2022], extends the knowl-
edge acquired from pretrained diffusion models to tasks beyond

their original scope. This capability is invaluable in fields with lim-
ited data availability, such as generating 3D models [Mildenhall
et al. 2020] and vector graphics [Jain et al. 2022] from pretrained
image diffusion models. To extend SDS from the image domain to
the video domain, we input the animated clipart into a video dif-
fusion model [Wang et al. 2023a] and assess the disparity between
the current motion and the video diffusion model’s motion prior
based on the text description. This enables us to achieve precise and
contextually appropriate animation results.
Moreover, one key aspect of clipart animation is preserving the

visual identity of the input. This requires retaining its local details
and shape rigidity. To achieve this, in addition to the SDS loss, we
propose incorporating a skeleton loss in the trajectory optimization
process. This skeleton loss constrains the length variation of the
skeleton formed by keypoints, thereby ensuring shape regularity.
The optimization of both losses is integrated with a 2D shape de-
formation algorithm, specifically the As-Rigid-As-Possible (ARAP)
shape manipulation [Igarashi et al. 2005], to preserve the rigidity of
deformation. We further make the ARAP algorithm differentiable,
allowing it to warp the clipart to a new pose defined by the up-
dated keypoint positions, while also enabling backpropagation of
gradients from the image-level loss to update the keypoints.

Extensive experiments and ablation studies demonstrate our Ani-
Clipart’s ability to generate vivid and attractive clipart animations
from text descriptions across various subjects, including humans,
animals, and objects. Our system also supports layered animation
to handle motion patterns involving topological changes and self-
occlusion. Our contributions in this work can be summarized as:

(1) We introduce a novel system capable of generating anima-
tions for clipart based on textual descriptions, marking a
step forward in automatic animation generation.

(2) We successfully utilize VSDS loss to distill motion from
large-scale T2V models and apply it to optimize keypoint
trajectories, resulting in semantically meaningful motions
while creating abstract cartoon-style clipart motion patterns.

(3) We integrate shape deformation algorithms with our skele-
ton loss to effectively maintain the visual identity of the
original clipart across the generated animation.

2 RELATED WORK
This section summarizes the prior works that closely relate to our
approach. Given the breadth of topics related to 2D character ani-
mation, a comprehensive survey of each related topic is beyond the
scope of this study. In this paper, we develop a system to animate
existing 2D clipart (Section 2.1) based on text input. Instead of train-
ing a feed-forward network from scratch, we leverage a pretrained
T2V model (Section 2.2) and employ score distillation sampling loss
(Section 2.3) to extract motion.

2.1 Animating 2D Cartoon Characters
Figure 2 shows a simplified animation pipeline. We highlight three
critical steps to animate 2D cartoon characters: rigging, key ani-
mation and in-betweening. Recent studies have concentrated on
developing automated algorithms for these critical steps.
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Key Animation In-betweening

Fig. 2. A simplified animation pipeline.

Rigging is a time-consuming step in animation that con-
structs skeletons for characters. Along with skinning algo-
rithms [Forstmann and Ohya 2006; Kavan et al. 2007; Le and Lewis
2019], transformations applied to the skeletons can be distributed
across the entire shape. This rescues animators from having to draw
every frame manually. Automatic rigging techniques can be classi-
fied into two categories. The first category maps a predetermined
skeletal template onto the character [Baran and Popović 2007; Li
et al. 2021a], but it lacks flexibility when characters are not compat-
ible with the template. The second category can generate rigs for
broader categories. Traditional approaches [Au et al. 2008; Huang
et al. 2013; Tagliasacchi et al. 2012] analyze geometric features of the
mesh to produce curve-skeletons but often ignore movable parts. In
recent years, deep learning-based methods [Liu et al. 2019; Xu et al.
2020] demonstrate a robust capacity for rig generation, offering a
viable alternative for animators.

Key Animation. To define character poses in keyframes, animators
create a deformable puppet, typically represented by a triangular
mesh, on the characters and manually adjust handles (e.g., skele-
tons and control points generated in rigging) across the keyframes.
However, defining key poses is still challenging for those without
animation skills [Fan et al. 2018]. Researchers have thus focused on
developing methods to transfer motion to predefined puppets. Hor-
nung et al. [2007] fitted a 3D model onto 2D characters and then
animated them with 3D motion. Animated Drawings [Smith et al.
2023] creates rigged characters from children’s art, and maps prede-
fined human motion for animation. Bregler et al. [2002] and DeJuan
and Bodenheimer [2006] captured and transferred motion from ex-
isting cartoons, enriching the expressiveness of animations with
diverse movements. Furthermore, recent advancements include ex-
tracting motion from videos. Live Sketch [Su et al. 2018] transfers
video-derived motion trajectories to sketches, Pose2Pose [Willett
et al. 2020] uses cluster algorithms to select key poses from video-
tracked performances, and AnaMoDiff [Tanveer et al. 2024] warps
the character according to the optical flow extracted from a driving
video.

In-betweening. Inserting drawings between keyframes can trans-
form choppy and disjointed animations into smooth and seamless
sequences. A straightforward approach involves interpolating be-
tween keyframes with shape interpolation algorithms [Alexa et al.
2000; Baxter et al. 2009, 2008; Chen et al. 2013; Fukusato and Mae-
jima 2022; Fukusato and Morishima 2016; Kaji et al. 2012; Whited
et al. 2010]. Nevertheless, these algorithms often struggle to pro-
duce life-like movements [Fukusato et al. 2023]. On the other hand,
recognizing animation in-betweening as a subset of frame interpo-
lation opens the door to applying recent advancements in video
frame interpolation techniques [Huang et al. 2022; Jiang et al. 2018;
Liu et al. 2017; Lu et al. 2022; Niklaus and Liu 2018, 2020; Niklaus

et al. 2017a,b; Park et al. 2020; Reda et al. 2022; Sim et al. 2021; Xu
et al. 2019]. However, Siyao et al. [2021] pointed out that animation
videos possess their distinct features, such as flat color regions and
exaggerated motions, which lead general video interpolation mod-
els to perform poorly. Consequently, there is a growing focus on
developing algorithms tailored for the animation domain [Chen and
Zwicker 2022; Li et al. 2021b; Siyao et al. 2023, 2021].
In our paper, we develop a system that automates these three

crucial steps: we use a hybrid rigging algorithm to create accu-
rate skeletons for both humans and objects. We select points along
motion trajectories as the keyframes and refine them using video
diffusion models. Additionally, the motion paths enable us to inter-
polate frames at any point to ensure smooth animation.

2.2 Text-to-Video Generation
Generating videos from text descriptions is challenging due to the
scarcity of high-quality text-video pairs, the variable lengths of
videos, and the high computational cost involved. As T2V gener-
ation extends the principles of T2I creation, the development of
T2V models follows a trajectory similar to that of T2I: transform-
ers [Hong et al. 2022; Kondratyuk et al. 2023; Villegas et al. 2022;
Wu et al. 2022] and diffusion models [Gupta et al. 2023; Ho et al.
2022]. Regarding training strategy, one research direction involves
training a T2V model from scratch utilizing both image and video
data to learn their joint distribution [Ho et al. 2022; Singer et al.
2022]. Such a method demands significant training time and com-
putational resources. Recent studies have explored the integration
of additional temporal consistency modules into existing T2I mod-
els (e.g., Stable Diffusion [Rombach et al. 2022]), using text-video
data pairs to train the newly-added layers (or finetune the entire
model) [Blattmann et al. 2023; Ge et al. 2023; Girdhar et al. 2023;
Guo et al. 2023; Singer et al. 2022; Yuan et al. 2024]. This training
paradigm leverages the robust image prior of T2I models to main-
tain spatial consistency, while additional dedicated modules learn
to extend temporal dimension, thereby accelerating convergence.
However, attempting to animate clipart using these models often
leads to pixel-level artifacts, such as distortion and blurriness, in the
resulting videos. Moreover, since these models are primarily trained
on natural videos, they are not well-suited for generating clipart
animation. To address these issues, we propose a solution that in-
volves distilling motion from T2V diffusion models and leveraging
it to optimize the motion trajectories of keypoints defined on clipart.
By adopting this approach, we can better regulate the motion and
achieve the desired cartoon animation style required by clipart.

2.3 Score Distillation Sampling
T2I diffusionmodels are pretrained on an extensive collection of text-
image pairs, providing a comprehensive understanding of relations
between text descriptions and 2D images. Utilizing image diffusion
models beyond image synthesis and transferring prior knowledge
to new tasks, particularly those with limited annotated data, have
become a prominent research area. DreamFusion [Poole et al. 2022]
has shown the feasibility of generating 3D representations (e.g.,
NeRF [Mildenhall et al. 2020]) from a text description using only
2D image diffusion models, with a newly devised loss function
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Fig. 3. The system diagram of AniClipart. There are 𝐾 Bézier paths, {𝐵𝑖 }𝐾𝑖=1, serving as the motion trajectories of 𝐾 keypoints. We select frame numbers𝑄 ,
define timesteps, and sample points along the adjusted Bézier paths to determine new positions of keypoints. These new keypoints guide the differentiable
ARAP algorithm to warp the triangular mesh, transforming the clipart to new poses. Subsequently, we use a differentiable renderer to convert the updated
shapes into a video𝑉 and send it to a video diffusion model 𝜖𝜙 to compute loss functions.

– score distillation sampling loss. SDS is similar to the diffusion
model training loss but distinctively excludes the U-Net Jacobian
term. This modification eliminates the need for computationally
expensive backpropagation within the diffusion model and guides
the optimization process toward aligning the images with the textual
conditions. Subsequently, SDS loss is widely used to optimize other
generation tasks, including artistic typography [Iluz et al. 2023;
Tanveer et al. 2023], vector graphics [Jain et al. 2022], sketches [Qu
et al. 2023; Xing et al. 2023a], meshes [Chen et al. 2023a] and texture
maps [Metzer et al. 2023; Tsalicoglou et al. 2023]. The advent of T2V
diffusionmodels [Bar-Tal et al. 2024; Chen et al. 2023b, 2024; Dai et al.
2023; Ni et al. 2023; Wang et al. 2023b] naturally projects the image
SDS loss to extended dimensional applications. Recently, video SDS
loss has been applied to create vector sketch animations [Gal et al.
2023]. This research involves predicting the positions of all points
within a sketch for each frame and using VSDS loss to align the
entire animation with a textual prompt. However, this technique
falls short for clipart animation due to its inability to maintain shape
rigidity and the resultant inconsistency in animation across frames.
In our study, we apply VSDS loss specifically to refine the motion
trajectories of keypoints.

3 ANICLIPART
In this section, we provide a detailed elaboration of our AniClipart.
We begin with an overview of our method (Section 3.1), followed
by the introduction of the implementation in three main aspects:
clipart preprocessing (Section 3.2), Bézier-driven animation (Section
3.3) and loss functions (Section 3.4).

3.1 Method Overview
In the clipart preprocessing stage, we detect keypoints, build skele-
tons, and construct a triangular mesh over the clipart for shape
manipulation. In the Bézier-driven animation phase, we attach a
Bézier curve to each of these keypoints, serving as the motion tra-
jectories regulating these keypoints over time. When the keypoints

reach their new positions at a specific time, we use the differen-
tiable as-rigid-as-possible shape deformation algorithm [Igarashi
et al. 2005] to adjust the entire clipart to new poses according to the
new keypoint positions. Such continuous deformation results in a
series of consecutive frames, which can be naturally concatenated
to create a video 𝑉 . This video is then sent to a pretrained video
diffusion model [Wang et al. 2023a] to compute the video score
distillation sampling loss [Poole et al. 2022]. Along with a skeleton
length loss to maintain the clipart’s shape integrity, we optimize
the parameters of Bézier curves to ensure that the animation aligns
with the provided text description. We show the overall workflow
of our method in Figure 3 and explain the detail for each component
in the following subsections.

3.2 Clipart Preprocessing
Similar to the traditional animation procedure, the first step is char-
acter rigging, which detects keypoints over the clipart and builds
skeletons between these points. State-of-the-art keypoint detection
algorithms [Jiang et al. 2023; Mathis et al. 2018; Ng et al. 2022; Sun
et al. 2023; Xu et al. 2022; Yang et al. 2023a; Ye et al. 2022] perform
well in assigning predefined keypoints to articulated characters.
Nonetheless, such methods are often limited to object categories
within their training datasets. This constraint becomes evident when
dealing with clipart, which encompasses various cartoon objects.
Therefore, we adopt a hybrid approach for keypoint detection.

We use off-the-shelf UniPose [Yang et al. 2023b] to predict the key-
points and skeletons that have semantic meanings for articulated
objects, such as humans (see Figure 4). UniPose unifies keypoint
detection tasks into a comprehensive, end-to-end, prompt-driven
framework capable of identifying keypoints across a diverse cat-
egory of objects, including articulated, rigid, and soft objects. We
choose this algorithm for its robust generalizability (e.g., its efficacy
with cartoon-style images) and its fine-grained granularity, such
as adding more details to a jaguar’s existing keypoints by giving
a prompt like "tail". For broader categories, like sea animals and
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Input Skeletonization Triangulation

Fig. 4. Clipart preprocessing. We use UniPose [Yang et al. 2023b] to detect
keypoints and skeletons of articulated objects (e.g., humans).

(1) Contour Points (2) Straight Skeleton (3) Simplified Skeleton

Fig. 5. Keypoint detection for broader categories.

plants, our keypoint detection algorithm involves three steps (see
Figure 5 for illustrations):

(1) Detecting contour points and connecting them to build
boundary edges;

(2) Generating straight skeletons by inwardly propagating
edges in their perpendicular directions. For intersections
where skeletons overlay are marked as keypoints;

(3) Pruning unnecessary outer skeletons and merging adjacent
intersections where the distance between them is shorter
than a predetermined threshold. Commonly, we set the
threshold as

0.7 · 1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

length(𝑠𝑖 ),

where 𝑠𝑖 is the 𝑖-th skeleton and 𝑁𝑆 is the total number of
skeletons. Adjusting this threshold allows for the generation
of skeletons with varying levels of complexity.

After keypoint detection, we use a triangulation algo-
rithm [Shewchuk 1996] to create a mesh for deformation-based
animation (see Figure 4).

3.3 Bézier-Driven Animation
Prior research [Gal et al. 2023] forecasts new positions for sketch
control points at distinct timesteps. This approach, however, oc-
casionally struggles to ensure temporal coherence throughout the
animation frames. Additionally, as the complexity of the sketch esca-
lates, the technique often falls short of preserving the fidelity of the
original design. These inconsistencies produce significant distortion
for clipart animation. Users expect animations to flow smoothly,
and any shape distortion could jeopardize the overall quality of the
animation.
To tackle the aforementioned problems, we define motion tra-

jectories on a few keypoints rather than control all the points. We

𝐵!

𝐵"

𝑝!!
𝑝!#
𝑝!$
𝑝!%
⋮
𝑝"!
𝑝"#
𝑝"$
𝑝"%

𝐵!

𝐵"

Initial PathsKeypoints

Fig. 6. Motion path initialization. We create a cubic Bézier curve for
each keypoint, with the curve’s start point matching the initial keypoint
position precisely. Thismeans the animation begins with the object’s original
position. The initial curves are short in our experiments, but we intentionally
elongate them in this figure for clearer visualization.

employ 2D deformation algorithms to animate the entire clipart
according to the keypoint motion. By this means, we reduce the
search space for the motion creation while simultaneously maintain
the clipart’s appearance. We particularly choose cubic Bézier curves
as the motion trajectories due to their extensive application in the
design field. Such parametric Bézier curves can be flexibly manipu-
lated by altering the coordinates of control points. We assign a cubic
Bézier curve for each keypoint, with each curve’s start point accu-
rately aligned with the keypoint coordinate, ensuring the animation
originates from the clipart’s initial pose, as shown Figure 6. For the
remaining three points of each curve (i.e., two control points and
an endpoint), we randomly initialize the positions, while making
the initial curve length short, which ensures the initial animation
presents moderate motions.
Formally, a clipart 𝑆 contains 𝐾 keypoints, denoted as {𝑘𝑖 }𝐾𝑖=1,

corresponding to 𝐾 cubic Bézier curves, {𝐵𝑖 }𝐾𝑖=1, where each curve
𝐵𝑖 includes four control points, 𝐵𝑖 = {𝑝 𝑗

𝑖
}4
𝑗=1. To monitor the pro-

gression of these keypoints over time, we define a sequence of
timesteps, 𝑇 = {𝑡𝑞}𝑄

𝑞=1, with 𝑡
𝑞 ∈ [0, 1] and 𝑄 denotes the total

number of frames in the animation. At every timestep 𝑡𝑞 , we sample
points on each cubic Bézier curve to determine the new positions
of the keypoints, resulting in a set of updated positions, {𝑘𝑞

𝑖
}𝐾
𝑖=1.

These new positions allow us to adjust the triangular mesh grid
using the ARAP deformation algorithm [Igarashi et al. 2005]. ARAP
allows users to deform the 2D shape by intuitively dragging sev-
eral keypoints. It proposes a two-step closed-form algorithm that
initially determines each triangle’s rotation and then adjusts the
scale. ARAP has real-time performance while minimizing distortion
across the triangular mesh. We further make the ARAP algorithm
differentiable, enabling backpropagation of gradients. Subsequently,
we warp the clipart, producing a new shape 𝑆𝑞 . We then use a dif-
ferentiable renderer ℛ to convert this altered shape into a pixel
image, denoted as 𝐼𝑞 = ℛ(𝑆𝑞). Repeating this procedure across all
defined timesteps gives us a sequence of frames, 𝐼 = {𝐼𝑞}𝑄

𝑞=1. These
frames are then temporally stacked to create a video 𝑉 for further
processing.
In our approach, we propose the arrangement of timesteps to

create looping animations, drawing inspiration from the observation
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that clipart animation frequently exhibits periodical movement pat-
terns. These animations are designed to repeat continuously without
any noticeable breaks at the end of the sequence. For a predeter-
mined frame count 𝑄 , we begin by organizing timesteps in a mono-
tonically increasing order but cap the sequence at 𝑄/2 frames. This
yields {𝑡𝑞}𝑄/2

𝑞=1 , where 𝑡
1 = 0, 𝑡𝑄/2 = 1, and 𝑡1 < 𝑡2 < · · · < 𝑡𝑄/2.

Afterward, to achieve a seamless looping effect, we invert this se-
quence and append it to the original, thereby generating a complete
loop:

𝑇loop = {𝑡0, . . . , 𝑡𝑄/2, 𝑡𝑄/2, . . . , 𝑡0}. (1)

For our clipart examples, 𝑇loop successfully creates animations
with natural and rhythmic motions. For animations that do not
require looping, designers are free to choose 𝑇no−loop = {𝑡𝑞}𝑄

𝑞=1,
where 𝑡1 = 0, 𝑡𝑄 = 1, and 𝑡1 < 𝑡2 < · · · < 𝑡𝑄 , allowing for flexibility
in animation styles.

3.4 Loss Functions
We use video SDS loss to animate a clipart with user-provided text
input. To ensure the structural integrity of the original clipart, we
also incorporate a skeleton preservation component in the total loss
function.
Video SDS Loss. Unlike the image SDS loss, which focuses on

augmenting a 2D image with additional content based on a single
image input, the VSDS loss takes a video as input. It suggests how to
add content across a sequence of images while simultaneously main-
taining consistency across frames. In our setting, the updatedmotion
trajectories are used to create a video 𝑉 = {𝐼𝑞}𝑄

𝑞=1 ∈ Rℎ×𝑤×𝑄 . We
select an intermediate diffusion timestep 𝑡 and infuse the video 𝑉
with a randomly sampled noise 𝜖 , which results in 𝑉𝑡 = 𝛼𝑡𝑉 + 𝜎𝑡𝜖 ,
where 𝛼𝑡 and 𝜎𝑡 are parameters from the noising schedule. Follow-
ing this, we pass the noise-injected video 𝑉𝑡 and the text condition
𝑐 to a pretrained T2V diffusion model [Wang et al. 2023a]. The
model will output a predicted noise 𝜖𝜙 (𝑉𝑡 , 𝑡, 𝑐). Then, we compute
the VSDS loss as follows:

∇𝜃 ℓVSDS = E𝑡,𝜖

[
𝑤 (𝑡) (𝜖𝜙 (𝑉𝑡 , 𝑡, 𝑐) − 𝜖)

𝜕𝑉

𝜕𝜃

]
, (2)

where𝑤 (𝑡) is a constant that relies on 𝛼𝑡 and 𝜃 is the control points
of cubic Bézier curves. This loss measures the discrepancy between
the model’s predicted noise and the actual noise 𝜖 , steering the
Bézier-driven animation towards alignment with the text descrip-
tion. The optimization process updates the shape of Bézier curves
gradually, and is conducted iteratively until it reaches convergence.
Skeleton Loss. Optimizing motion trajectories using ∇𝜃 ℓVSDS

produces animations that align with the text input. Nevertheless,
the solely VSDS-incorporated optimization process encounters dif-
ficulties in preserving the clipart’s authentic appearance in the
animation. To preserve the structure of the objects, we leverage the
skeleton extracted by the keypoint detection algorithms (Section
3.2) to guarantee minimal deviation in skeletal component lengths
from their original measurements. Suppose there are 𝑁𝑆 skeletal
components, {𝑠𝑖 }𝑁𝑆𝑖=1, in the original structure, we can get a new

skeleton, {𝑠𝑞
𝑖
}𝑁𝑆
𝑖=1, at a specific frame 𝑞 based on the updated key-

point positions {𝑘𝑞
𝑖
}𝐾
𝑖=1. The overall skeleton loss is:

ℓskeleton =
1
𝑁𝑆

𝑄∑︁
𝑞=1

𝑁𝑆∑︁
𝑖=1

(length(𝑠𝑞
𝑖
) − length(𝑠𝑖 ))2 . (3)

Total Loss and Optimization. The weighted average of two
terms then defines the final loss function:

ℓtotal = ∇𝜃 ℓVSDS + 𝜆ℓskeleton, (4)
where 𝜆 = 25 serves as a weighting factor to balance the relative
significance of text alignment and the preservation of appearance.
Given that the ARAP [Igarashi et al. 2005] is a closed-form algo-
rithm that solves equations to determine new positions of vertices
on triangular meshes, our entire process is differentiable, and the
gradient can be backpropagated to update the motion trajectories.

4 EXPERIMENTS
To evaluate the effectiveness of our proposed AniClipart, we con-
ducted extensive quantitative and qualitative experiments to assess
our method’s superiority over the alternative solutions. We organize
this section as follows: We first introduce the experimental setup of
our system (Section 4.1). After introducing the evaluation metrics
(Section 4.2), we present the comparison between our model and a
closely related study [Gal et al. 2023], as well as leading T2V gen-
eration models, highlighting the distinctions and contributions of
our approach within the clipart field (Section 4.3). Furthermore, we
present the outcomes of ablation studies to validate our method’s
superiority over the substitutional techniques in the animating pro-
cedure (Section 4.4). We also show our method’s capability in han-
dling more challenging topology-changing cases by incorporating
layer information (Section 4.5).

4.1 Experiment Setup
We collected 30 cliparts from Freepik∗, including 10 humans, 10
animals, and 10 objects, with each clipart resized into 256 × 256. We
optimized the positions of control points for Bézier curves with an
Adam [Kingma and Ba 2014] optimizer for 500 steps, with a learning
rate of 0.5. We used ModelScope text-to-video [Wang et al. 2023a]
as the diffusion backbone, setting the entire animation to 24 frames
and adjusting the SDS guidance scale to 50. The entire process of one
clipart animation, conducted on an NVIDIA RTX A6000, requires
about 25 minutes with 26GB memory consumption.

Typically, clipart is stored and distributed in two formats: bitmap
and vector graphics. In our experiments, we conducted evaluations
using clipart in the Scalable Vector Graphics (SVG) format. Our
decision to focus on vector representation yields enhanced visual
perception quality and more diverse outcomes: the scalability of
SVG facilitates the production of high-resolution frames, while the
inherent layered structure enables us to create complex animations
with topological changes. Each SVG file includes multiple geometric
shapes known as Paths, which are controlled parametrically by se-
quences of 2D control points. In our animation process, we update
the control points according to the barycentric coordinates after
adjusting the triangular shape with the ARAP algorithm. Then we
∗https://www.freepik.com/

https://www.freepik.com/
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"A fencer 
waves a 
sword."

"A crab is waving 
its pincers and 
legs."

"A caterpillar 
arches and 
contracts its 
body."

AniClipart Gal et al. AniClipart Gal et al. AniClipart Gal et al.

"A woman is 
dancing with her 
legs moving up 
and down."

AniClipart Gal et al.

Fig. 7. AniClipart versus Gal et al. [2023]. We select four consecutive frames from the output animation to illustrate the differences. Our method effectively
maintains the original shape, producing reasonable and visually pleasing animations. On the other hand, the approach by Gal et al. drastically alters the
characters’ appearance and lacks continuity and consistency across frames.

use DiffVG [Li et al. 2020] to convert clipart from vector graph-
ics format to bitmap, which is subject to video diffusion models.
Our method is not limited to vector clipart; rasterized clipart can
be processed using the same procedure with comparable output
quality. The primary distinction lies in the warping operation for
bitmap images, wherein pixel patches (instead of control points) are
relocated to new positions.

4.2 Evaluation Metrics
To evaluate the quality of AniClipart, we conducted assessments at
both the bitmap-level and vector-level of the generated animations.

Bitmap-level Metrics. To compare our system with state-of-the-
art methods, we focus on two objectives for evaluating the quality of
the generated animation: (1) maintaining the visual identity of the
input clipart and (2) ensuring alignment between the text descrip-
tions and the resulting animations. For visual identity preservation,
we employed CLIP [Radford et al. 2021] to calculate the average
cosine similarity scores between the feature representations of the
input clipart image and each frame within the generated animation.
To measure the alignment between the videos and text descriptions,
we utilized X-CLIP [Ni et al. 2022], an extension of the CLIP model
adapted for the video domain, to compute similarity scores.

Vector-level Metrics. Consistent with prior research [Gal et al.
2023], we observed that CLIP and X-CLIP fail to capture the nuanced

differences between animations produced in the ablation study. Con-
sequently, we leveraged vector graphics outputs as a more precise
means of evaluation. To bemore specific, we computed three distinct
metrics:

(1) Dynamism. This refers to the average trajectory length of all
keypoints in an animation, as a measure of the motion mag-
nitude in the results. Notably, when the keypoints’ locations
are predicted directly for each frame (see "w/o Trajectory" in
Figure 9), we connect two keypoints in consecutive frames
as the pseudo-trajectory.

(2) Temporal Consistency. A vector graphic’s shape is defined by
a set of control points along the contours. We calculate the
Hausdorff distance (represented by 𝐷𝐻 ) between two sets
of control points in adjacent frames. We then use 1 − 𝐷𝐻 as
the similarity score. We average these scores throughout the
animation sequence to determine the level of consistency.

(3) Distortion. We first calculate the curvature of each point in
the initial clipart. For each frame, we recalculate the curva-
ture, and the difference between the initial curvature and the
curvature for each frame determines the level of distortion.

4.3 Comparison to State-of-the-Art Methods
Given the scarcity of existing works on direct clipart animation, we
compared our system to two alternatives: (1) a prior work [Gal et al.
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Method Identity
Preservation ↑

Text-Video
Alignment ↑

Ours 0.9414 0.2071
Gal et al. 0.8379 0.1879

ModelScope 0.8618 0.2021
VideoCrafter2 0.8403 0.1992
DynamiCrafter 0.8008 0.1741
I2VGen-XL 0.8813 0.1999

Table 1. Quantitative comparisons to Gal et al. [2023] and state-of-the-art
T2V models.

2023] that concentrates on animating vector sketches, and (2) the
state-of-the-art T2V generative models.
AniClipart versus Gal et al. [2023]. Both our AniClipart and

Gal et al.’s method aim to extract motion priors using pretrained
T2V diffusion models with VSDS losses. Despite this commonality,
there are two major differences. A key difference is the absence of a
rigidity constraint in Gal et al.’s method, which leads to noticeable
alterations in the character’s appearance over different frames, as
shown in Figure 7. While minor distortions are acceptable in ab-
stract sketches, they become catastrophic for clipart with delicate
parametric edges when animating. Gal et al.’s algorithm drastically
modifies the appearance of all characters, rendering it unsuitable
for clipart applications. Our method incorporates the ARAP de-
formation algorithm to explicitly uphold the rigidity of the clipart,
thereby maintaining a consistent appearance through all frames and
achieving the highest CLIP similarity scores, as shown in Table 1.

Another key distinction lies in the optimization target. Gal et al.’s
method predicts new positions for all control points in a sketch,
whereas ours focuses on altering only a small number of detected
keypoints. Our method refines a motion trajectory for each key-
point, ensuring smooth motion regardless of the complexity or the
quantity of control points in the original clipart. The number of
keypoints is orders of magnitude less than that of the control points
in the entire sketch (ours 13 versus Gal et al.’s 1067 for the fencer ex-
ample), effectively reducing the searching space of the optimization
process. Our keypoint-focused approach with the ARAP effectively
maintains the integrity of the in-frame appearance and produces
semantically consistent motion across the whole clipart. Addition-
ally, predicting new positions for control points (or keypoints) can
sometimes lead to inconsistent movements across consecutive time
steps (see the supplementary video). In contrast, our method of
distributing timesteps along a Bézier curve (Section 3.3) success-
fully eliminates the above issue, ensuring an inter-frame motion
consistency.
AniClipart versus T2V Models. In our experiments, we ras-

terized vector clipart into bitmap images and incorporated Mod-
elScope [Wang et al. 2023a], VideoCrafter2 [Chen et al. 2024], Dy-
namiCrafter [Xing et al. 2023b] and I2VGen-XL [Zhang et al. 2023]
to generate respective videos. In particular, ModelScope, the video
backbone model of our method, cannot accept text descriptions and
images simultaneously. Therefore, we mixed the initial image with
random noise and sent the noise-injected image to ModelScope to
create videos. We set the blending ratio at 0.84. A higher ratio can

I2VGen-XLDynamiCrafterVideoCrafter2ModelScope

Fig. 8. Results of T2Vmodels. These methods only preserve the semantics
of the input clipart but fail to preserve the details, leading to low identity
preservation scores. Furthermore, these approaches frequently yield anima-
tions with limited movement, resulting in inferior text-video alignment.

create larger motions but at the expense of losing visual identity,
while a lower ratio can preserve the visual identity better but create
almost static objects. We chose the latter three models because of
their state-of-the-art video generation performances and ability to
simultaneously accept text and image as inputs. In Figure 8, we show
the representative frames in the videos created by T2V models. We
observe two primary issues: (1) T2V models often generate some
pixel-level artifacts, including shape distortion and blurred patches,
thus cannot well preserve the original character’s visual identity,
leading to lower identity preservation scores compared to ours. (2)
The motion generated by T2V models is less pronounced compared
to that of our system. Specifically, ModelScope strikes a decent bal-
ance between identity preservation and motion generation with
a carefully chosen blending ratio but sometimes fails to drive the
character to move at all, resulting in an inferior score in text-video
alignment (Table 1). VideoCrafter2 may produce reasonable videos
for a few cliparts. But in many cases, it fails to add motion to the
objects. DynamiCrafter tends to add extra shapes and textures to
the input clipart without introducing noticeable motions, thereby
having the lowest text-video alignment score in Table 1. In addition,
I2VGen-XL can produce moderate animations (e.g., the fencer) but
at times drastically changes the appearance of the subjects (e.g., the
dancing woman). Consequently, the text-video alignment scores of
these models do not match up to the standards set by our methods.

User Study. We conducted a subjective user study to evaluate the
perceptual quality of our AniClipart over other comparing methods.
We excluded the Gal et al. [2023] in this study because their algo-
rithm’s GPU memory usage increases in proportion to the number
of control points. This is a problem because vector clipart often has
more than 1000 points, which requires a significant amount of GPU
resources. The user study comprised two distinct tasks to visually
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Full LBS w/o Trajectory Image SDS w/o SkeletonLinear Interp. X-CLIP Loss

Fig. 9. Results of ablation study. Eliminating key components from our system could lead to animations with restricted movements (e.g., Linear Interp. and
Image SDS), shape distortions (e.g., LBS, X-CLIP Loss and w/o Skeleton), and inconsistencies across frames (e.g., w/o Trajectory). Motion details are rendered
by the overlaid blue trajectories, and shape details are highlighted by dash-lined circles.

evaluate (1) the preservation of visual identity and (2) the alignment
between text and video. In the first task, we presented 30 static cli-
parts to participants, with each clipart followed by five animations
created by AniClipart, ModelScope, VideoCrafter2, DynamiCrafter
and I2VGen-XL, respectively. Each participant’s task was to identify
the animation that best preserved the visual identity of the original
clipart. The second task presented the participants with 30 textual
prompts, each followed by the same set of five animations as in the
first task. Here, we asked participants to select the animation they
believed most closely matched the text prompt.

We conducted the user study via an online questionnaire, recruit-
ing 48 participants in the study. To analyze the results, we calculated
the average selection ratio of users across the 30 questions for both
tasks, with the results presented in Table 2. The results clearly show
that AniClipart significantly outperforms four other methods in
terms of visual identity preservation due to the deformation algo-
rithm in our system. Regarding text-video alignment, ModelScope
occasionally produces reasonable animations that maintain identity,
benefiting from a carefully optimized blending ratio. However, the
other three T2V models often fail to produce noticeable motions
that align with the text, revealing a limitation in their ability to
ensure text-video coherence.

User Selection% ↑

Identity
Preservation

Text-Video
Alignment

Ours 93.61 82.57
ModelScope 2.15 10.35
VideoCrafter2 0.97 2.08
DynamiCrafter 1.39 1.81
I2VGen-XL 1.88 3.19
Table 2. Subjective user study results.

4.4 Ablation Study
In this section, we elaborate on the ablation study conducted to val-
idate the effect of each essential component of our system, with the
quantitative results detailed in Table 3. We also show a qualitative
comparison of the ablation study in Figure 9. In the following of
this subsection, we describe each component in detail.
ARAP Deformation. To analyze the effectiveness of ARAP in-

corporation, we substituted the deformation module with Linear
Blend Skinning (LBS), which stands as another prevalent algorithm
in shape deformation, where the new position of each point is
determined by the spatially weighted transformations of the key-
points. In our study, we implemented LBS with bounded biharmonic
weights [Jacobson et al. 2011]. Nonetheless, LBS frequently pro-
duces animations with unrealistic deformations, such as the shoul-
der squeezing in the dancing man case and leg distortion in the dog
case in Figure 9. In Table 3, LBS also has higher distortion score
when compared to ours. For settings without any 2D deformation
algorithm employed, the generation aligns with the settings of the
comparison between ours and Gal et al. [2023] (see Figure 7), which
is inferior to our method.

Bézier-Driven Animation. We define Bézier curves as the mo-
tion trajectories for keypoints, aiming to achieve smooth and fluid
animations. To understand their significance, we eliminated all mo-
tion paths and predicted the keypoints’ new positions in each frame.
This setting could create animations matching the text description,
but unfortunately, it failed to preserve frame-to-frame consistency,
resulting in noticeable flickering effects ("w/o Trajectory" entries
and Figure 9). Its dynamism score is the highest in Table 3 since the
positions of keypoints change drastically in each frame, leading to
the lowest frame consistency score. We further linked the keypoints
in two frames to visualize the pseudo-trajectories in Figure 9, validat-
ing the significant inconsistency across frames. When we replaced
Bézier curves with straight lines, the generated motions were overly
simple. We refer to this setting as "Linear Interp." in the quantitative
and qualitative results. Notably, such straight-line guided results
presented the highest consistency score and the lowest distortion
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Dyna. ↑ Cons. ↑ Dist. ↓

Full 20.87 0.9673 50.98
LBS 17.13 0.9785 60.56
w/o Trajectory 102.66 0.9452 65.22
Linear Interp. 8.96 0.9814 42.42
X-CLIP Loss 8.16 0.9760 108.81
Image SDS 7.57 0.9779 59.07
w/o Skeleton 16.18 0.9675 265.92

Table 3. Quantitative results of the ablation study with "Dyna.", "Cons." and
"Dist." representing Dynamism, Temporal Consistency, and Distortion, re-
spectively. Our proposed method achieves a well-balanced trade-off among
these three metrics.

rate in Table 3; we attribute such phenomenon to their limited mo-
tions, with little shape changes in the results. For instance, Figure 11
displays the optimized trajectories with only two control points (i.e.,
linear interpolation), where the motion shows limited range and the
appearance shows little change. Please find the side-by-side com-
parison in the accompanying video to better compare the motions
produced in the animation results. These two alternative compari-
son methods clearly show that cubic Bézier curves are important in
creating realistic and lifelike movements.
Loss Functions. The video SDS loss ∇𝜃 ℓVSDS is crucial for gen-

erating motion trajectories that are in harmony with motion priors
from text-to-video diffusion models. Replacing VSDS with another
temporal-aware loss function, such as X-CLIP loss [Ni et al. 2022],
does not produce reasonable motions aligned with the text prompt.
Instead, the resulting animation displays unusual movements and
significant distortions. Additionally, switching to an image-based
SDS loss ∇𝜃 ℓSDS compromised the animation’s relevance to the text
input (the lowest dynamism score in Table 3). Furthermore, omit-
ting skeleton loss ℓskeleton results in unnatural limb proportions,
diverging from human anatomical accuracy, see the visual details
in Figure 9 and the highest distortion in Table 3.

4.5 Extensions
We propose two extended implementations to our system to further
increase the variety and quality of animations produced.

Layered Animation. We create a triangular mesh for clipart de-
formation in the clipart preprocessing stage (Section 3.2). However,
such a single mesh may struggle to adequately handle cases involv-
ing self-occlusion and topological changes in animation. To enhance
the capability of our system in solving the above-mentioned prob-
lem, we suggest shifting towards multi-layer animations through
an enhanced clipart preprocessing strategy, layer separation, which
involves:

(1) partitioning the vector clipart into distinct groups;
(2) independently identifying keypoints and skeletons within

each group;
(3) establishes joint points in different layers’ overlapping re-

gions to prevent detachment.
We show an example in Figure 10 to illustrate the improvement of
the clipart layers and the grouping operation.

Single Mesh Layered Mesh

Fig. 10. Layered animation. The separation of different layers enables
the animation involving topology changes. The left side shows the single-
layered mesh and its corresponding animation result, presenting a distorted
appearance. The right side illustrates the layered mesh anchored by two
keypoints, producing animations with more natural motion.

4 Points
(Cubic Bézier)

8 Points 16 Points

2 Points
(Line)

Fig. 11. The animation of optimized Bézier trajectories can be made
smoother by increasing the number of control points.

Higher-Order Bézier Trajectory. In our experiments, we have
demonstrated that cubic (i.e., controlled by four points) Bézier curves
effectively guide the motion trajectories of keypoints to produce
plausible animations. It is worth noting that the motion trajectories
can be defined by higher-order Bézier curves. Introducing additional
control points enables the optimization to create more detailed
motions. We include such examples for comparison in Figure 11,
showcasing optimized trajectories with different numbers of control
points. After comparing the generated animations (see the supple-
mentary video), we conclude that cubic Bézier curves are adequate
for creating both practical and visually pleasing animations. Al-
though higher-order Bézier curves can incorporate finer details into
animations, they involve more Bézier controlling parameters and
necessitate a larger number of frames (e.g., 36 or 48) in optimiza-
tion, leading to prolonged time and higher computation resources
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"A girl
waves hands."

"A girl 
energetically 
waves hands."

"squatting"

AniClipart

(a)

(b)

Fig. 12. Limitations. (a) Constrained by the capability of the T2V model,
our AniClipart outputs similar motion trajectories, ignoring the variability
in the provided text prompts. (b) The limited number of frames in the T2V
model makes it challenging to animate a jumping girl into a squatting
position.

in creating animations. We leave such an "expressiveness versus
complexity" trade-off to designers in actual scenarios.

5 CONCLUSION AND DISCUSSION
In this paper, we propose a system that aims to animate a given
clipart based on a provided text description. Our approach involves
defining keypoints on the clipart and utilizing Bézier curves as
motion trajectories to govern the movement of these keypoints,
resulting in seamless and smooth motions. An important aspect
of our method is that it generates motion trajectories without re-
quiring additional training data. Instead, we extract motion priors
from a pretrained text-to-video diffusion model using VSDS loss.
To animate the clipart while preserving its visual identity, keypoint
trajectories are also constrained by a newly proposed skeleton loss
and then used to drive the clipart using ARAP deformation. Exten-
sive experiments demonstrate the system’s capability to produce
high-quality clipart animations.

Despite the visually pleasant results produced, our AniClipart suf-
fers from several limitations. Our method is constrained by the video
backbone models. For instance, these models lack the ability to pro-
duce videos that precisely align with detailed textual descriptions.
As illustrated in Figure 12(a), we present optimized trajectories based
on two different prompts. Nonetheless, the term "energetically" fails
to be accurately reflected in the trajectories’ lengths, resulting in
two motions of similar dynamism. Fortunately, the VSDS loss is not
dependent on the underlying model, indicating a more sophisticated
T2V model would help alleviate this problem.

Our system may face challenges when generating motions that
significantly deviate from the original clipart pose, see Figure 12(b).
The VSDS loss in such cases has two tasks: deforming the shapes

to align with the text prompts and driving motion. However, the
current video models do not have enough frames to achieve this
transition. To overcome this challenge, users may manually drag
the keypoints and deform the shape to align with the target text
before starting the optimization process.
For future work, we have plans to explore 3D extensions. Our

framework for optimizing motion trajectories by distilling T2V mod-
els can be directly integrated into 3D models using suitable shape
deformation and differentiable rendering algorithms. This extension
will enable us to animate 3D characters and objects.
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