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Abstract

We consider a quantum scalar field in a classical (Euclidean) De Sitter background, whose
radius is fixed dynamically by Einstein’s equations. In the case of a free scalar, it has been
shown by Becker and Reuter that if one regulates the quantum effective action by putting a
cutoff N on the modes of the quantum field, the radius is driven dynamically to infinity when
N tends to infinity. We show that this result holds also in the case of a self-interacting scalar,
both in the symmetric and broken-symmetry phase. Furthermore, when the gravitational
background is put on shell, the quantum corrections to the mass and quartic self-coupling
are found to be finite.

1 Introduction

The motivation for this work came originally from the cosmological constant problem. By
Lorentz invariance, the vacuum expectation value (VEV) of the energy-momentum tensor of a
quantum field must be of the form 1

⟨Tµν⟩vac = −⟨ρ⟩vac gµν , (1.1)

and thinking of the field as an infinite collection of oscillators, the vacuum energy density is the
sum of the vacuum energies of all the oscillators. In flat space, putting a cutoff C on the spatial
momenta, 2 one gets

⟨ρ⟩vac =
∫ C

0

d3q

(2π)3
1

2

√
q2 +m2 ∼ C4

(4π)2
. (1.2)

The same conclusion can be reached by calculating the Euclidean effective action of a quantum
field in a background metric gµν : there is a quartically divergent term proportional to the
spacetime volume. (This calculation is reviewed in Appendix A). Using this in the Einstein
equations leads to a curvature that grows like a power of the cutoff. The first argument of this
type is generally credited to Pauli (unpublished, see [1]), who found that if the cutoff C is of
the order of the mass of the electron, the universe would not extend further than the Moon.
Nowadays we know that quantum field theory is valid way beyond the scale of the electron, and
the problem becomes much worse [2]. One could also assume that a “bare” cosmological term

1e-mail address: renata.ferrero@fau.de
2e-mail address: percacci@sissa.it
1Here we work in signature −+++, but the rest of the paper is based on Euclidean calculations.
2We reserve the symbol Λ for the cosmological constant.

1

ar
X

iv
:2

40
4.

12
35

7v
1 

 [
he

p-
th

] 
 1

8 
A

pr
 2

02
4



cancels most or all of the vacuum energy, but this is ad hoc and leaves us with an enormous fine
tuning problem.

The calculation in (1.2) has been criticized by Akhmedov, and then by Ossola and Sirlin
[3, 4], since the momentum cutoff breaks the Lorentz invariance that was assumed in (1.1). By
considering alternative regularization methods that preserve Lorentz invariance, they concluded
that the vacuum energy of free quantum fields cannot diverge more than quadratically. This is
significant, but not enough to solve the problem, and in any case interacting fields could still
give rise to a quartic divergence.

A more radical critique has appeared recently in a paper of Becker and Reuter [5]. They
claim that the estimate (1.2) is not self-consistent, in the sense that the VEV of the energy-
momentum tensor is calculated in one metric (usually the Minkowski metric) and then used in
another one. A self-consistent calculation would amount to calculating the VEV of the energy-
momentum tensor in the same metric that solves the Einstein equations. The general argument
for using the flat space estimate (1.2) in curved spacetime, is that the divergences of quantum
fields are universal, because every manifold is flat on very small scales. Becker and Reuter argue
that this is misleading and does not reflect correctly the physics. Instead, they show that a
background-independent calculation leads to opposite conclusions, namely the curvature of the
metric decreases as more modes of the quantum field are taken into account, and goes to zero
in the limit when the cutoff goes to infinity. The calculation is done on a Euclidean De Sitter
space (a sphere) and there are two main ways in which it deviates from the standard one. The
first is the use of a dimensionless cutoff, which is especially natural on a compact manifold,
where the spectrum of the Laplacian is discrete. The second is that one has to take into account
the backreaction of the quantum field before sending the cutoff to infinity. We will review this
calculation for a free scalar field in Section 2.

The original calculation for a free scalar on S4 has been later generalized to gravitons of S4 [6]
and a scalar on a hyperboloid [7]. The latter calculation shows that the use of dimensionless
cutoffs can be extended also to the case when the spectrum is continuous.

The main aim of this work is to extend the Becker-Reuter results for the cosmological constant
problem to the self-interacting case and to evaluate the main properties of the effective action. In
contrast to the free case, in a self-interacting theory the mass receives quantum corrections, that
in standard QFT calculations are quadratically divergent and pose fine tuning problems that are
similar to those of the cosmological constant. One motivation of this work was the hope that the
procedure that removes the fine tuning of the cosmological constant may also be able to alleviate
the fine tuning of the mass. Another motivation came from arguments of observability. What
do we mean when we say that a universe containing N modes of a single massless scalar field
has a certain curvature, and that the curvature decreases with N? One seems to be implicitly
admitting the existence of an observer outside the universe that can compare its scale to that of
another universe with a different number of modes N ′. It would be better to make “relational”
statements, for example by saying that the ratio R/m2 has a certain value, where m is the mass
of some field. 3 Since this mass receives quantum corrections, it could conceivably happen that
m2 scales with N in the same way as R, in which case the physical meaning of the Becker-Reuter
results would be much weakened.

The outcome of our calculations is encouraging. First of all, we find that the behavior of the
curvature is not modified by the presence of the interactions, while the VEV of the scalar (when
nonzero) has a finite limit when the cutoff goes to infinity. The decreasing behavior of curvature
as a function of the cutoff thus appears to be a robust feature. What is more surprising, we

3This is in practice what we do when we say that our universe is large compared to a hydrogen atom, for
example.
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find that when the metric is put on shell, the quantum corrections to the mass are finite. Both
the quadratic and the logarithmic corrections that arise in the standard way of calculating, are
canceled. This removes the fine tuning problems and also turns the Becker-Reuter result into
a statement about the dimensionless ratio R/m2, which is arguably a more physical quantity
than R or m2 separately. In addition, we find that also the quantum corrections to the scalar
self-coupling, that usually are logarithmically divergent, are finite when the metric is put on
shell.

The plan of the paper is as follows. In Section 2 we review the arguments of Becker and
Reuter concerning the cosmological constant problem for a free scalar field, possibly also in
the presence of a nonminimal coupling to curvature. Section 3 contains general formulae for
the case of the self-interacting scalar. Section 4 then gives our main results for the symmetric
phase, while in Section 5 we consider the broken symmetry phase. A discussion of the results
is given in Section 6. Appendix A contains, for the sake of comparison, the calculation of the
effective action with heat kernel methods and a dimensionful cutoff. Appendix B is a summary
of properties of certain special functions.

2 Free scalar field

In this section we review and extend the results of [5]. We assume that we are in a semiclassical
regime where the metric gµν can be treated as a classical field with the (Euclidean) Hilbert
action (and cosmological term)

SH(g) =
1

16πG

∫
d4x

√
g [2Λ−R] , (2.1)

interacting with a quantum scalar field ϕ with action

Sm(ϕ; g) =

∫
d4x

√
g

[
1

2
(∂ϕ)2 +

1

2
ξRϕ2 +

1

2
m2ϕ2 +

1

4!
λϕ4

]
. (2.2)

The backreaction of the scalar field on the metric is encoded in the effective action (EA). At
one loop it is given by the familiar formula

Γ(g, ϕ) = SH(g) + Sm(g, ϕ) +
1

2
Tr log(∆/µ2) (2.3)

where

∆ = −∇2 + E , E = ξR+m2 +
1

2
λϕ2 (2.4)

and µ is a suitable scale that does not appear in the equations of motion (for example one could
set µ = m). In this section we restrict ourselves to a free scalar field, thus we set λ = 0 and
m2 > 0.

Variation of the EA with respect to the metric yields the semiclassical Einstein equations

Rµν −
1

2
Rgµν + ΛBgµν = 8πG⟨Tµν⟩ (2.5)

where the l.h.s. comes from the classical Hilbert action (with a bare cosmological term) and the
r.h.s is the VEV of the energy-momentum tensor of the quantum field.
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2.1 Spectrum, cutoff and effective action on S4

For our purposes it is enough to study the EA on a Euclidean De Sitter space, i.e. a sphere S4.
The metric of the sphere is almost completely determined by O(5) symmetry, the only remaining
degree of freedom being the radius r, or equivalently the (constant) scalar curvature R = 12/r2.
In the following we shall therefore obtain the equation of motion by simply deriving the action
with respect to R. For example, recalling that the volume of the four-sphere is

V4 =
384π2

R2
, (2.6)

the Hilbert action for a spherical metric can be written

SH(R) =
48πΛB

GR2
− 24π

GR
(2.7)

and deriving with respect to R we obtain the familiar equation

R = 4Λ . (2.8)

One great advantage of working on a sphere is that the spectrum of the Laplacian is well-
known and therefore it is possible to calculate the EA without resorting to heat kernel asymp-
totics. Furthermore, it makes the use of a dimensionless cutoff particularly natural. The Lapla-
cian −∇2 on S4 has eigenvalues λℓ with multiplicity mℓ, given by

λℓ =
R

12
ℓ(ℓ+ 3) , mℓ =

1

6
(ℓ+ 1)(ℓ+ 2)(2ℓ+ 3) , ℓ = 1, 2 . . . (2.9)

The operation Tr in the definition (2.3) of the EA is a functional trace that on the sphere can
be written explicitly as a sum over all eigenstates of the Laplacian. We regulate the sum by
putting an upper bound N on the quantum number ℓ:

1

2
TrN log(∆/µ2) =

1

2

N∑
ℓ=1

mℓ log

(
λℓ + E

µ2

)
. (2.10)

We should contrast this to the more standard choice of cutting off the sum at some cutoff C
with dimension of mass, such that

λℓ < C2 . (2.11)

At this stage there is no significant difference between the two procedures, because the dimen-
sionless and the dimensionful cutoffs are simply related by

C2 =
R

12
N(N + 3) . (2.12)

However, we shall see in the following that when we demand that the background metric satisfy
Einstein’s equations, the two procedures lead to very different conclusions.

With the N -cutoff in place, the total number of modes that is included in the trace is

f(N) =
N∑
ℓ=1

mℓ =
1

12
N(N + 4)(N2 + 4N + 7) . (2.13)
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2.2 Massless free field

If we put m = λ = ξ = 0 we have a massless free scalar field with vanishing expectation value
and kinetic operator ∆ = −∇2. Its classical action vanishes and the EA depends only on the
metric:

ΓN (R) = SH(R) +
1

2
TrN log(−∇2/µ2)

= V4

[
ΛB

8πG
− 1

16πG
R

]
+

1

2

N∑
ℓ=1

mℓ log

(
R

12µ2
ℓ(ℓ+ 3)

)
=

48πΛB

GR2
− 24π

GR
+

1

2
f(N) log

(
R

12µ2

)
+

1

2
T(N, 0) , (2.14)

where we split the log into a R-dependent and an R-independent term. We defined the dimen-
sionless function

T(N, z) =

N∑
ℓ=1

mℓ log (ℓ(ℓ+ 3) + z) , (2.15)

representing the quantum trace for a sphere of radius R = 12µ2. In this first application, z = 0
and T(N, 0) is just a field-independent, quartically divergent constant. Notice that the last
two terms in (2.14), that are of quantum origin, do not renormalize the classical gravitational
couplings. In particular, there is no quartically divergent renormalization of the cosmological
constant. 4

Both terms of the classical action go to zero for large R, so the logarithmically growing
quantum term dominates in this regime. On the other hand, for R → 0 the cosmological term
dominates and diverges to ±∞, depending on its sign. Thus, in the presence of a positive bare
cosmological constant the EA must have a minimum as a function of R. (See Figure 1.) To find
it we derive the EA with respect to R, arriving at the equation

24π

GR3
(−R+ 4Λ) =

1

2R
f(N) , (2.16)

The solution of this equation is a sphere of curvature

R =
24π

Gf(N)

(
−1±

√
1 +

GΛf(N)

3π

)

≈ 48

√
πΛ

G

(
1

N2
− 4

N3

)
+

(
600

√
πΛ√
G

− 288π

G

)
1

N4
+

(
−1728

√
πΛ√

G
+

2304π

G

)
1

N5

+

(
5106

√
πΛ√

G
+

864π3/2

G3/2
√
Λ

− 11808π

G

)
1

N6
+

(
−16728

√
πΛ√

G
− 10368π3/2

G3/2
√
Λ

+
49536π

G

)
1

N7

+O(1/N8) , (2.17)

where ≈ means that we take the dominant behavior for large N and in the expansion we have
selected the solution with the upper sign. This is Becker and Reuter’s main result. We see that,
opposite to standard lore, the curvature of spacetime decreases when more quantum modes are
included in the calculation.

4This is somewhat reminiscent of unimodular gravity, where the quartically divergent term is independent of
the metric. Note that the last term can be interpreted as

∫
d4x

√
gR2, which is scale-independent.
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Figure 1: The EA as a function of R for a free massless scalar and G = Λ = µ = 1 and
increasing N . The continuous black curve is the classical action. It has a minimum at R = 4
and asymptotes to zero for R→ ∞. The dashed curves correspond to adding the first 1, 2, 3 or
4 modes. The minimum moves up and to the left for increasing N , and the second derivative at
the minimum increases.

Note that whereas the size of the universe depends on Λ, one can always make the universe
as large as one wants by choosing N sufficiently large. Thus, there is no reason to think of Λ
as being small. In fact, in the following, we will always assume that Λ is of order one in Planck
units.

It is also worth noting that the quantum term in the EA, that gives rise to this behavior, is
the one that generates the trace anomaly. This should not come as a surprise, given that the
only dynamical degree of freedom of the metric is its overall scale. In fact, on a sphere the only
independent component of Einstein’s equations (2.5) is the trace

−R+ 4ΛB = 8πG

∫
d4x

√
g⟨Tµ

µ⟩∫
d4x

√
g

, (2.18)

where in the r.h.s. we exploited homogeneity. Comparing this to (2.16) and recalling that the
classical system was scale invariant, we find that∫

d4x
√
g⟨Tµ

µ⟩ = f(N) (2.19)

is the trace anomaly.
In [5] an alternative calculation has been given where a direct definition of the VEV of the

energy-momentum tensor, based on the quantization of the classical energy-momentum tensor,
gives ∫

d4x
√
g⟨Tµ

µ⟩ = −f(N) . (2.20)

With this definition, the semiclassical Einstein equations have a solution even when the bare
cosmological constant is zero. It is remarkable that in spite of the different sign, both definitions
ultimately lead to similar conclusions. In this paper we shall stick to the first definition, where
⟨Tµ

µ⟩ is defined by a variational procedure applied to the quantum EA.
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Figure 2: Left panel: the real and imaginary parts of the function T(10, z). Right panel: the
function S(10, z) defined in (2.24).

2.3 Nonminimal coupling

Before coming to the massive case, we consider briefly the effect of a nonminimal coupling
1
2ξϕ

2R. For a constant scalar, the equation of motion implies ϕ = 0. We thus do not need to
consider other backgrounds. The EA (2.3) on a spherical background is now:

ΓN (R) = SH(R) +
1

2
TrN log

(
−∇2 + ξR

µ2

)
= V4

[
ΛB

8πG
− 1

16πG
R

]
+

1

2

N∑
ℓ=1

mℓ log

(
R

12µ2
(ℓ2 + 3ℓ+ 12ξ)

)
=

48πΛB

GR2
− 24π

GR
+

1

2
f(N) log

(
R

12µ2

)
+

1

2
T(N, 12ξ) . (2.21)

We note that T(N, 12ξ) is again a field-independent constant, so this term does not affect
the equations of motion. However, now that the second argument of T is nonzero, there are
additional issues that may arise. Figure 2 shows the function T(10, z) and its derivative S(10, z).
They are seen to have poles at z = −ℓ(ℓ+ 3) for ℓ = 1, . . . , 10, that correspond to points where
the arguments of the logs in the sum become zero. Furthermore T(N, z) becomes complex for
z < −4. For our present problem, this means that we must have ξ > −1/3. The gravitational
equation of motion is again (2.16), so the solutions of the simultaneous equations of motion are
identical to those of the case ξ = 0 discussed previously.

2.4 The massive case

We gradually increase the complication by adding a mass term. Once again we can set ϕ = 0
by its equation of motion. Then the EA for the metric becomes

ΓN (R) = SH(R) +
1

2
TrN log

(
−∇2 +m2 + ξR

µ2

)
= V4

[
ΛB

8πG
− 1

16πG
R

]
+

1

2

N∑
ℓ=1

mℓ log

(
R

12µ2
(ℓ2 + 3ℓ+ 12ξ) +

m2

µ2

)
=

48πΛB

GR2
− 24π

GR
+

1

2
f(N) log

(
R

12µ2

)
+

1

2
T

(
N,

12m2

R
+ 12ξ

)
. (2.22)
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The quantum trace is independent of ϕ, so the scalar potential does not receive any quantum
corrections. Since the sum is finite, we can take the derivative under the sum, so that the
equation of motion for the metric can be wrtten in the form

24π

GR3
(−R+ 4Λ) =

1

2R
f(N)− 6m2

R2
S

(
N,

12m2

R
+ 12ξ

)
, (2.23)

where we introduced a new dimensionless function

S(N, z) ≡ ∂T(N, z)

∂z
=

N∑
ℓ=1

mℓ
1

ℓ(ℓ+ 3) + z
. (2.24)

An explicit formula for this function in terms of harmonic numbers is given in (B.11), but we
see already from this definition that this function diverges quadratically with N , for fixed z.
It is clear that in the limit m2 → 0 and ξ → 0 at fixed R we get back (2.16). For z ≪ 1 we
have just a small deformation of the massless solution. We are interested in the physically more
realistic case z ≫ 1, when, in the corresponding Lorentzian world, the Compton wavelength of
the scalar particles is much smaller than the Hubble radius.

When m2 is not zero, R appears explicitly in the function S, and this makes the equation
of motion unsolvable analytically. Motivated by the result of the massless case, let us make the
ansatz

R =
K2

N2
+
K3

N3
+
K4

N4
+ . . . (2.25)

and check whether it is consistent. For the leading behaviour we can keep only the first term
with coefficient K2. In this case the second argument of S is

z = yN2 + . . . , (2.26)

where y = 12m2

K2
. Note that the ξ-term is negligible in this approximation. We insert the ansatz

in the equation of motion and use the expansion (B.12) of S
(
N, yN2

)
for large N . When one

makes the ansatz for R, the equation of motion becomes a divergent series in N with highest
power N6, and the logarithms are finite. 5 The coefficient of the highest divergence is

1

24K3
2

[
K2

2 − 2304πΛ

G
− 24K2m

2 + 288m2 log

(
1 +

K2

12m2

)]
. (2.27)

We can set it to zero by fixing K2. Due to the presence of K2 in the log, this can only be done
numerically, after m2 has been fixed. An example of a numerical solution, as a function of m2G
and for for specific values of ξ and ΛG is given in Figure 3. In order to have an analytic formula
we can expand to first order in m2, leading to a second order algebraic equation whose solution
is (2.28) below.

The other coefficients in (2.25) can be determined iteratively. We can remove all the diver-
gences from the equation of motion by expanding R up to order N−8. We insert the ansatz in
the equation of motion and expand it up to order N0. We thus arrive at an equation of the form

C6

K3
2

N6 +
C5

K4
2

N5 +
C4

K5
2

N4 +
C3

K6
2

N3 +
C2

K7
2

N2 +
C1

K8
2

N1 +
C0

K9
2

= 0 ,

5We refer here to the equation of motion in the form (2.23). If R is assumed nonzero, we can remove factors
of R from the denominators, and this lowers the degree of the divergence. If we remove the volume factor, the
leading divergence is N2. If we write the equations in the standard way R = 4Λ + . . ., there are no divergences
at all, due to the already noticed automatic cancellation of the logN terms.
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where the coefficients Ci are polynomials depending on the couplings, on K2 . . .K8−i and on

log
(
12m2

K2

)
. Apart from C6, that depends only on K2 quadratically, the coefficients Ci depend

in general on K2, . . .K8−i, and are linear in K8−i. This structure thus lends itself to an iter-
ative solution, where killing the coefficient of N6 determines K2, killing the coefficient of N5

determines K3 etc. Killing all divergences determines the coefficients up to K7. In order to
calculate the coefficient Ki one need to expand the equation of motion to order nEOM in N ,
which requires S to order nS, which in turn requires expanding the harmonic numbers to order
nH , as in the following table:

K2 K3 K4 K5 K6 K7

nEOM 6 5 4 3 2 1
nS 2 1 0 -1 -2 -3
nH 0 -1 -2 -3 -4 -5

In order to arrive at some closed expressions we assume that m2 is small compared to Λ and
1/G (recall that we generally assume Λ ≈ 1/G). Then the linearized equations can be solved
and in the limit N → ∞ give for the first few coefficients

K2 =
48
√
πΛ√
G

+ 12m2 +O(m4) , (2.28)

K3 = −192
√
πΛ√
G

− 48m2 +O(m4) , (2.29)

K4 =
600

√
πΛ√
G

− 288π

G
+ 12m2

[
32

3
− 6

√
π√

GΛ
+ 12ξ + (1− 6ξ) log

(
16πΛ

Gm4

)]
, (2.30)

K5 = −1728
√
πΛ√

G
+

2304π

G
+ 96m2

[
−8

3
+

6
√
π√

GΛ
− 12ξ − (1− 6ξ) log

(
16πΛ

Gm4

)]
,(2.31)

K6 =
24554

√
πΛ

5
√
G

+
864π3/2

G3/2
√
Λ

− 11808π

G

+12m2

[
388

15
− 247

√
π√

GΛ
+ 488ξ + (1− 6ξ)

(
41− 6

√
π√

GΛ

)
log

(
16πΛ

Gm4

)]
, (2.32)

K7 = −216
√
πΛ

5
√
G

(333− 320ξ + 960ξ2)− 10368π3/2

G3/2
√
Λ

+
49536π

G

+48m2

[
116

15
+

261
√
π√

GΛ
− 504ξ − (1− 6ξ)

(
43− 18

√
π√

GΛ

)
log

(
16πΛ

Gm4

)]
. (2.33)

The iterative procedure could of course continue determining the coefficients of negative powers
of N , but that would require expanding the function S even further.

We see that the relation K3 = −4K2, that holds in the massless case, continues to hold at
linear order in a small mass. Further, we observe that in the limit m→ 0 the coefficients K2,3,4,5

reduce to the ones we had already encountered in (2.17). However, some of the coefficients in
K6 and K7 have a different limit. This indicates that the limit m→ 0 and the limit N → ∞ do
not commute, at this very subleading order.

Figure 3 compares the linearized iterative solution to a numerical solution of the full equation
(2.23). We see that the linear approximation is reasonably good also for masses that are not
astronomically smaller than the Planck mass.

In conclusion, we see that also a massive field will give rise to a universe whose curvature
decreases with the UV cutoff.

9



Figure 3: The curvature R as a function of m2G, for GΛ = 1, ξ = 0 and N = 109. Continuous
line: numerical solution of (2.23), dashed line: the iterative solution, to linear order inm2, which
is practically indistinguishable from its first iteration (2.28).

3 The interacting case

Let us now consider the interacting case, with kinetic operator (2.4). The (off-shell) EA for
constant ϕ on the sphere is

ΓN (R,ϕ) = SH(R) + Sm(ϕ,R) +
1

2
TrN log

(
−∇2 +m2 + 1

2λϕ
2 + ξR

µ2

)

= V4

[
ΛB

8πG
− 1

16πG
R+

1

2
m2ϕ2 +

1

4!
λϕ4 +

1

2
ξϕ2R

]
+
1

2

N∑
ℓ=1

mℓ log

(
R

12µ2
ℓ(ℓ+ 3) +

m2 + 1
2λϕ

2 + ξR

µ2

)
, (3.1)

where the second line shows the classical action and the third line is the one loop trace. The
quartic self-interaction leads to a nontrivial dependence of the quantum corrections on ϕ. As in
the previous sections, let us rewrite the quantum corrections in the form

1

2
log

(
R

12µ2

)
f(N) +

1

2
T

(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
. (3.2)

The function T(N, z) is complex for z < −4. One can see this and other properties in the left
panel of Figure 2, showing the real and imaginary parts of T(10, z). Since now z depends on the
field ϕ, it means that the effective potential can become complex for some values of the field.
We will return to this point in Section 5.3.

The equation of motion of ϕ is

64π2

R2
ϕ(6m2 + 6ξR+ λϕ2) +

6λϕ

R
S

(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
= 0 , (3.3)

while the equation of motion for the metric is

24π

GR3

(
R− 4Λ− 8πGϕ2(2m2 + ξR+ λϕ2/6)

)
+

1

2R
f(N)− 6m2 + 3λϕ2

R2
S

(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
= 0 . (3.4)

10



In both cases the first term is the classical one and the second term is the quantum contribution.
The right panel of Figure 2 shows a plot of S(10, z). Unlike T, it is everywhere real, but it has
simple poles at the same locations where T has, and is regular elsewhere. For large N , these
poles form a thick forest for −N(N + 3) < z < −4.

To discuss stability we will also need the second derivatives of ΓN . In general one would take
functional derivatives with respect to ϕ and gµν , but given that we only consider O(5)-invariant
backgrounds, these reduce to ordinary derivatives. In particular δgµν = 2rδrḡµν , where r is the
radius and ḡµν is the metric of the unit sphere. Then, the information about the stability is
contained in the Hessian

H =

(
∂2ΓN
∂ϕ2

∂2ΓN
∂ϕ∂R

∂2ΓN
∂R∂ϕ

∂2ΓN
∂R2

)
whose matrix elements are

Hϕϕ = V4

[
m2 + ξR+

1

2
λϕ2 +

λR

64π2
S+

3λ2ϕ2

16π2
∂S

∂z

]
, (3.5)

HϕR = HRϕ = V4

[
− ϕ

3R
(6m2 + 3Rϕ+ λϕ2)− λϕ

64π2
S− 3λϕ

32π2R
(2m2 + λϕ2)

∂S

∂z

]
, (3.6)

HRR = V4

[
ϕ2(12m2 + 4ξR+ λϕ2)

4R2
− R− 6Λ

8πGR2
− f

768π2
+

(2m2 + λϕ2)

64π2R
S+

3(2m2 + λϕ2)2

64π2R2

∂S

∂z

]
.

(3.7)
Depending on the shape of the effective potential, the scalar field will have a VEV that can

be zero or nonzero. We refer to these two situations as the symmetric and the broken phase,
respectively.

4 The symmetric phase

We begin by observing that the equation of motion of ϕ (3.3) always has a solution at ϕ = 0.
Inserting in the equation of motion of the metric (3.4), the latter reduces to (2.23). Thus, the
solution for a free massive field discussed in Section 3 will also be a solution for the interacting
theory in the symmetric phase. However, in the interacting case the potential receives quantum
corrections.

4.1 Stability

The solution ϕ = 0 is not always stable: it may be a maximum or a minimum of the potential.
Classically this is determined by the sign of m2. In the quantum theory the stability is typically
determined by the second derivative of the effective potential. In the present situation where the
metric is also dynamical, things are a bit more complicated: the first, third and fifth terms in
the square bracket in (3.5) are the second derivatives of the effective potential proper, whereas
the second and fourth, that are linear in R, are second derivatives of the quantum-corrected
nonmininal interactions. For the stability of the Euclidean solution what matters are the second
derivatives of the full action, as in (3.5). In the symmetric phase it simplifies to

Hϕϕ = V4

[
m2 + ξR+

λR

64π2
S

(
N,

12m2

R
+ 12ξ

)]
. (4.1)

We have to evaluate the Hessian at the solution. We observe that since V4 ∼ R−2 ∼ N4, the
Hessian will be quartically divergent with N . This, however, merely reflects the fact that in the

11



limit N → ∞ spacetime becomes flat and its volume infinite. What matters more is the density
of the Hessian.

The function S diverges quadratically with N . However, when we evaluate the Hessian on
shell, the R in the prefactor of S goes to zero like N−2, removing the quadratic divergence.
Things are bit more subtle than that because the second argument of S also depends on N on
shell, via the inverse of the curvature. Clearly, what we have to do is use everywhere the ansatz
(2.25) and expand systematically. It will be sufficient to keep the leading order of the large N

expansion. Then the second argument of S can be written z ∼ yN2 with y = 12m2

K2
(the ξ term

is sub-sub-leading and can be neglected). We can then use the expansion (B.12) and we find a
finite density

Hϕϕ

V4
= m2

{
1 +

λ

32π2

[
K2

12m2
+ log

(
12m2

K2 + 12m2

)]
+O(N−1)

}
(4.2)

where K2 is given by (2.28). Recalling that 0 < m2 < K2, this matrix element of the Hessian is
always positive. Thus, for m2 > 0 we are in the symmetric phase, also taking into account the
quantum corrections.

For ϕ = 0 the off-diagonal elements HRϕ and HϕR are zero. There remains the RR-element,
that simplifies to

HRR = V4

[
−R− 6Λ

8πGR2
− f

768π2
+

m2

32π2R
S+

3m4

16π2R2

∂S

∂z

]
(4.3)

We have seen that for large N , S(N, yN2) ∼ N2. The derivative of S is

S′(N, z) ≡ ∂S(N, z)

∂z
= −

N∑
ℓ=1

mℓ
1

(ℓ(ℓ+ 3) + z)2
. (4.4)

Since the numerator in the sum is cubic, and the denominator is quartic in N , one expects the
sum to diverge logarithmically with N . However, when we go on shell, the second argument of
S′ diverges as z ∼ yN2 and evaluating the function in this limit gives the result (B.14). Thus
we find that S′ is finite, and overall each of the three quantum terms in (4.3) is quartically
divergent. The coefficient of this divergence can be estimated for small m and is positive. Thus
the solution is stable also in the direction of gravitational perturbations. For m2 = 0 this can
also be gleaned from Figure 1.

4.2 Renormalization

The density of the Hϕϕ can be interpreted as a quantum-corrected effective mass, and therefore
the preceding calculation also leads to the important physical conclusion that the quantum
correction to the mass is finite. In order to appreciate this point, let us compare the preceding
calculation with a more standard quantum field theoretical procedure. Normally one would treat
ϕ and R as being externally fixed, and look for the dependence of the Hessian on the cutoff.
Thus we would expand (4.1) for large N keeping R fixed, leading to

Hϕϕ

V4
∼ m2 + ξR+

λR

64π2

[
1

6
N2 +

2

3
N − 2(6m2 + (6ξ − 1)R)

3R
log[N ]

]
+ finite terms . (4.5)
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Then, one could define the quantum-corrected mass and nonminimal coupling by

m2
eff =

1

V4

∂2ΓN

∂ϕ2

∣∣∣∣
ϕ=0,R=0

(4.6)

ξ2eff =
1

V4

∂3ΓN

∂R∂ϕ2

∣∣∣∣
ϕ=0,R=0

(4.7)

and one sees from (4.5) that these quantities are divergent, namely

m2
eff = m2 − λ

16π2
m2 logN +O(N0) (4.8)

ξeff = ξ +
6λ

64π2

[
1

6
N2 +

2

3
N − 4

(
ξ − 1

6

)
log[N ]

]
+O(N0) . (4.9)

We recognize here the standard logarithmic divergence of the mass that is proportional to the
mass itself, and the fact that the log divergence in ξ vanishes in the conformal case. When
one compares this to the standard results obtained with a dimensionful momentum cutoff (see
Appendix A) there is only one unusual feature, namely the power divergences, that normally
affect the mass, appear here in ξ instead.

This slight oddity, however, is due to the fact that our cutoff is dimensionless, and disappears
when we use (2.12) to convert the dimensionless cutoff N to a dimensionful cutoff C. If we do
this, (4.5) becomes

Hϕϕ

V4
∼ m2+ξR+

λ

32π2

{
C2+

2√
3
C
√
R−m2 log[C2/R]−

(
ξ − 1

6

)
R log[C2/R]

}
+finite terms ,

(4.10)
which, aside from the linearly divergent term and a finite additive constant, is identical to
(A.5). Whether we look at it in this form, or with the dimensionless cutoff as in (4.5), this
result shows the presence of divergences, that one would normally absorb in the definition of
a renormalized mass and nonminimal coupling. However, this is unnecessary when we put the
metric on shell. Since then R ∼ K2/N

2, the first term in the bracket in (4.5) becomes finite,
the second goes to zero, the coefficient of 12m2 logN becomes finite, equal to λK2

384π2 , and the
coefficient of (6ξ−1) logN goes to zero. We seem to remain just with the logarithmic divergence
that renormalizes the mass.

However, let us have a more careful look at the finite terms in (4.5). They are given by

finite terms =
(6m2 + (6ξ − 1)R)

3R

ψ0

5 +
√

9− 48m2+ξR
R

2

+ ψ0

5−
√

9− 48m2+ξR
R

2


(4.11)

where ψ0 are polygamma functions. When we set R = K2/N
2 and expand for largeN , using that

ψ0(x) ∼ log(x) for x → ∞, we see that the apparently finite terms actually have a logarithmic
divergence that exactly cancels the one in (4.5), leaving behind just a finite term

λ

32π2
m2 log

(
12m2

K2

)
.

When R is on shell, it becomes actually impossible to separate the mass from the nonminimal
interaction, so defining an effective mass as the sum of these two terms, on shell, the preceding
calculation leads to

m̃2
eff ≡ 1

V4

∂2ΓN

∂ϕ2

∣∣∣∣
ϕ=0,R=R∗

= m2 +
λ

384π2

[
K2 + 12m2 log

(
12m2

K2

)]
+O(N−1) (4.12)
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where R∗ is the solution. However, the contribution of ξR on shell is negligible, so this can be
rightfully be seen as the quantum-corrected mass.

This is not equal to (4.2) for the following reason. In addition to the terms of orderN0 that we
have already considered, the expansion (4.5) contains infinitely many terms with inverse powers
of N , that also contain R. The terms with odd powers of 1/N are of the form 1/(N2k+1Rk)
and therefore go to zero for N → ∞, whereas terms with even powers of 1/N are of the form
1/(N2kRk) and leave a finite contribution. Resumming all these contributions makes up the
difference between the partial result (4.12) and the correct full result (4.2). The only advantage
of this alternative route is to make connection with the standard approach and to see in detail
how the cancellation of divergences works.

The renormalization of the quartic self-interaction works in a similar way. The quantum-
corrected λ is given by

λeff ≡ 1

V4

∂4ΓN

∂ϕ4

∣∣∣∣
ϕ=0

= λ+
9λ2

16π2
S′
(
N,

12(m2 + ξR)

R

)
. (4.13)

Let us follow the standard procedure and expand S′ for large N and fixed R. As we saw in (4.4),
S′(N, z) grows as 1

3 log[N ] +O(N0), so off shell we find the familiar logarithmic divergence

λeff = λ+
3λ2

16π2
log[N ] +O(N0) . (4.14)

This is in perfect agreement with the standard calculation with dimensionful cutoff (A.8). How-
ever, let us proceed also in this case by a more careful evaluation keeping also the terms of order
O(N0). They are given by

3λ2

32π2

ψ0

5 +
√

9− 48m2+ξR
R

2

+ ψ0

5−
√

9− 48m2+ξR
R

2

 (4.15)

+

√
3λ2(6m2 + (6ξ − 1)R)

16π2
√

−16m2R+ (3− 16ξ)R2

ψ1

5 +
√

9− 48m2+ξR
R

2

+ ψ1

5−
√

9− 48m2+ξR
R

2

 .

When we put the gravitational field on shell by using (2.25), the arguments of the polygamma
functions becomes of order N and we have, for large N , ψ0 ∼ logN , ψ1 ∼ 1/N . However, the
coefficient of ψ1 is of order 1/

√
R, so those terms give finite contributions, whereas the ψ0 terms

cancel the explicit logN in (4.14). What remains is a finite renormalization of λ:

λeff = λ+
3λ2

32π2

[
1 + log

(
12m2

K2

)]
, (4.16)

where K2 is given by (2.28). As in the calculation of m̃2
eff , this shows that the divergences

cancel, but it does not give the correct finite part. This is because the terms with inverse powers
of N also contain inverse powers of R that, on shell, make them finite. The correct result can
be obtained most straightforwardly by using directly the on-shell expansion (B.14) in (4.13):

λeff = λ+
3λ2

32π2

[
K2

12m2 +K2
+ log

(
12m2 +K2

K2

)]
. (4.17)
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5 Broken phase

It is well known that strictly speaking phase transitions can occur only in the limit of infinite
volume and therefore are not possible on spherical spacetimes. However, we have seen that
when the metric is required to solve the semiclassical Einstein equations, its volume goes to
infinity in the limit N → ∞. There is thus a chance that phase transitions may occur in
this limit. In this section we give some preliminary results on this issue. We shall see that
starting with a symmetry-breaking classical potential, also the perturbative effective potential
can have nontrivial vacua. However, this is not a conclusive argument due to various hurdles,
some of which already arise in flat spacetime [8], while others are peculiar to the spherical
geometry [9]. In particular, it is well-known that the effective potential must be convex, a
condition that is violated by the perturbative result. Furthermore, it is complex in the region
between the two inflection points. The perturbative effective potential gives the energy of
a homogeneous field configuration, but the minimum of the energy for fields between the two
minima is a nonhomogeneous configuration and is energetically degenerate with the minima. The
complex potential between the inflection points gives the decay rate of the unstable homogeneous
state, while in the region outside the inflection points but inside the minima, the decay is a
nonperturbative process.

On the sphere we encounter some additional complications. To see this, consider the argu-
ments of the logs in the formula for the EA:

R

12
ℓ(ℓ+ 3) +m2 +

1

2
λϕ2 , (5.1)

where we have put ξ = 0 for simplicity. We consider a fixed large value of N . When m2 < 0
there is the danger of the argument of the log becoming negative. This danger is greates for the
lowest eigenvalue, so let us focus first on the mode ℓ = 1. The argument of the first logarithm,
R
3 +m2 + 1

2λϕ
2 is positive for any value of ϕ as long as −R/3 < m2 < 0 but if m2 < −R/3 it

becomes zero for ϕ2 = 2
λ

(
|m2| − R

3

)
≡ ϕ21 and negative for ϕ2 < ϕ21. So the effective potential has

a singularity at ±ϕ1 and is complex for ϕ2 < ϕ21. The second logarithm gives another singularity
at ϕ22 = 2

λ

(
|m2| − 5R

6

)
< ϕ21 and an additional imaginary contribution for ϕ2 < ϕ22. Each mode

gives rise to a pole and an imaginary contribution until eventually R
12ℓ(ℓ+3) becomes sufficiently

large to offset the negative m2.
If N is greater than this value of ℓ, then increasing N at fixed R will not add further poles.

However, we want to keep R on shell. If R ≈ N−2 as in the symmetric phase, and we will see
that this is the case, then increasing N can increase the number of logs with negative argument.
In fact, for N → ∞, we have R→ 0, so the first logarithm has a singularity at

ϕ2 = −2m2

λ
. (5.2)

Keeping the parameters fixed and taking the limit N → ∞, the poles form a dense forest for
ϕ2 < 2|m2|/λ. The problem is that the stationary points of the effective potential may occur
inside this region, and in this case the physical meaning of the solution is obfuscated. We will
say that the theory is in the broken phase if the effective potential has nontrivial minima in the
region where the effective potential is real.
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5.1 Approximate solution

Next we look for solutions of the equations (3.3), (3.4) with ϕ ̸= 0. In this case we can eliminate
S from these two equations and obtain a simpler equation:

24π

GR3

(
−R+ 4Λ− 16πGm2

3λ
(3m2 + 3ξR− λϕ2)

)
=

1

2R
f(N) (5.3)

This is very similar to (2.16), except that the l.h.s. now depends on the scalar. It is convenient
to replace the system (3.3-3.4), where the function S appears twice, with the system (3.3-5.3),
where the function S appears only once.

The equations can be solved numerically, but they can also be solved analytically if one
makes some additional approximation. Motivated by some preliminary numerical investigations,
we begin with the ansatz (2.25), supplemented by the assumption that the VEV of the scalar is
independent of N in the large N limit:

R =
K2

N2
+
K3

N3
+ . . . , ϕ = F0 +

F2

N2
+ . . . . (5.4)

Due to the complication of the broken phase, in the following we will limit ourselves to the
leading term of each expansion. This means that the solution for z must have the form (2.26),
where y is a constant. The nonminimal coupling ξ can be ignored in this leading order. We
solve (5.3) for R, insert in (3.3) together with the ansatz, expand for large N and extract the
coefficient of the highest power of N , namely N2. Demanding that this coefficient be zero leads
to the following equation for y:

−8(56π3Gm4 + 6π2λΛ)

9λ(3λΛ− 20πGm4)
y−

8πm2
√
πG(4Gm4π(64π2y2 − 15λ) + 9λ2Λ)

9λ(3λΛ− 20πGm4)
=

1

6

[
1− y log

(
1 +

1

y

)]
(5.5)

This equation cannot be solved in closed form, but can be solved graphically by intersecting the
line on the l.h.s. with the graph of the function on the r.h.s. When the intersection occurs for
y ≪ 1, the logarithmic term can be neglected and the r.h.s. becomes equal to the constant 1/6.
In this regime the solution can be approximated by

y =
1

32π2
3λ2Λ− 28πGλm4 ± 8πm2

√
λ
√
4πGλΛ−m4G2(48π2 − λ)

12πGm4 − λΛ
(5.6)

From K2 = RN2, using the solution for R and (2.13) we obtain to leading order

K2 = 6

128π2m4G

λ
y ±

√(
128π2m4G

λ

)2

y2 − 16π

(
80πm4

3λ
− 4Λ

G

) . (5.7)

Inserting in this formula the approximate solution (5.6) we obtain a complicated expression for
K2. Finally from (2.26) and solving the formula for z (with ξ → 0 and R → K2/N

2) for ϕ, we
obtain the constant value of ϕ:

F 2
0 =

yK2 − 12m2

6λ
, (5.8)

that should be compared to the minimum of the classical potential at ϕ2 = −6m2/λ.
When one uses (5.6) to write K2 and F0 one obtains very long expressions that we do not

report here, but that can be easily plotted. In any case, assuming that the solution is within the
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Figure 4: Contour plot of the solution (5.6) for Λ = 1, as function of m2 and λ. The solution has
a singularity near the boundary of the colored region (blue curve in the bottom) and becomes
complex outside/below it. The black V is the y = 0 level curve. The function is positive outside
the V and negative inside. The distance between the level curves is 0.0005. The dot is the
reference point.

domain of the approximations, we have thus shown that in the broken phase it is self-consistent
to assume that in the limit N → ∞, R ∼ N−2 and ϕ ∼constant.

To get a feeling of the parameter space where the approximation of neglecting the log term
may be valid, we show in Figure 4 the function y(m2, λ). It is zero on the V-shaped level curve
given by

λ =
2πm2G

3Λ

(
5m2 ±

√
25m4 +

64πΛ

G

)
(5.9)

so we expect the approximation to be good in a neighborhood of that curve. On the other hand,
if we let λ tend to zero for fixed m2 or m2 grow for fixed λ, the solution hits a singularity.

In order to establish the stability of the solution, in the leading large N approximation
Equation (3.5) reduces to

Hϕϕ

V4
≈ 1

36

(
18λ

32π2

)2(
−128π2m4G

λ
+

64π2

18λ
K2y

)(
32π2

18λ
+
∂S

∂z

)
. (5.10)

In the approximate solution one can insert the formulas (5.6) and (5.7) for y and K2 and obtain
a very complicated but completely explicit formula.

5.2 Reference point

We can compare the approximate solution to a numerical solution of the full equations, for some
specific values of the couplings. For example, let us choose

ΛG = 1 , m2G = −0.01 , λ = 0.02 , ξ = 0 .
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Figure 5: Numerical solution of the equations of motion for R (left) and the corresponding
value of z (right), with 10000 < N < 1000000. The plot on the left is superimposed on the
curve R = K2/N

2, giving an estimate of the parameter K2 ≈ 77. The plot on the right is
superimposed on the curve z = yN2, giving an estimate of the parameter y ≈ 0.00295.

Inserting these values in (5.6) we obtain y = 0.00293, so this point should lie in the domain of
the approximation.

Figure 5 shows the numerical solution of equations (3.3,3.4) for increasing N . It fits perfectly
the leading behavior given in (5.4), for the parameter values K2 ≈ 77 and F0 = 1.697 (we do
not plot ϕ as a function of N because it is constant within 10 decimal places, over the whole
range). For these values of the couplings, one can also compare the approximate formula for the
effective mass (5.10) to the full formula (3.5), and again we observe excellent agreement. One
can see numerically that the mass converges very rapidly to a finite value as a function of N .

In the following table we compare the numerical results for the reference point with N = 106,
to the approximate solution of the preceding section and we find very good agreement.

y K2 F0 m2
∗

full numerical 0.00295 77 1.6972 0.01916
approximate analytic 0.00293 76.9 1.6965 0.01919

5.3 Numerical solutions

Having found an solution of the equation in some range of parameter space, we will now try
to get some sense for how far the solution extends. For that we shall probe numerically some
directions in parameter space. A systematic exploration is beyond the aim of this paper and
will be left for the future.

In view of possible realistic applications, we are mainly interested in the limit Gm2 → 0. We
begin by taking this limit, keeping all other parameters fixed. Starting from the reference point
of Section 5.2, that has m2 = −1/100, we decrease the modulus of m2 and observe that the
value of R decreases by a fractionally very small amount, while ϕ tends towards zero. This is the
expected behavior, since the classical potential has a phase transition at m2 = 0 and one expects
the VEV of ϕ to be zero for m2 > 0. However, the solution ceases to exist at m2 ≈ −0.0007.
The reason for this is that the solution enters the region where the potential is complex.

At some large and fixed N , we see from (5.1) that decreasing m2 has the effect of decreasing
the value of ϕ where the first pole occurs. For sufficiently large N the first term in (5.1), with
ℓ = 1, is negligible, and the first pole occurs at (5.2). However, decreasing m2 also decreases
the value of ϕ where the minimum of the potential occurs, and the minimum moves faster than
the pole, so that eventually the poles fall outside the minima, and the solution falls in the
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Figure 6: The effective potential at the reference point and N = 100. Black curve: real part of
the potential, shifted by −8.717 × 106; red curve: imaginary part of the potential, multiplied
by 20000. The real part of the potential looks smooth, but it has two poles, as shown by the
enlargements below.

region where the effective potential is complex. See Fig. 7. Thus we find that the theory has a
symmetric phase for m2 > 0 and a broken phase for m2 more negative than some critical value.
For m2 < 0 but greater than this critical value, the potential at the solution is complex. Thus
there is no continuous transition between the two phases.

A different way of reaching small masses is to decrease |m2| and λ at the same rate. In the
classical potential, such a limit keeps the VEV of ϕ constant. If we start again from the reference
point and send m2 to zero in this way, the numerical solution does not seem to encounter any
obstacle. In fact, the location of the first pole is always fixed at the value (5.2), which is
numerically ∼ 1, but the solution is also almost constant and has a finite limit ϕ ≈ 1.6927. That
this should be the case can also be seen analytically. In fact, looking at (5.6,5.7,5.8) we see that
for m2 ∼ λ ∼ ϵ→ 0 we have y ∼ ϵ, K2 ∼ ϵ0 and F0 ∼ ϵ0.

5.4 Renormalization

Having established that for N → ∞ the solution in the broken phase, at least in some region
of parameter spaces, has the leading behavior R ∼ K2/N

2 and ϕ ∼ F0, we can look at the
renormalization of the mass and quartic coupling, defined as derivatives of the effective potential
at the nontrivial minimum. Since ϕ ̸= 0, there are now new terms compared to the symmetric
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Figure 7: Numerical solution starting from the reference point on the left and decreasing the
absolute value of m2. Left, black: position of the minimum of the effective potential as function
of m2. Left, red: position of the pole of the first logarithm, superimposed on the curve (5.2).
Right: solution for R as function of m2. All with G = Λ = 1, ξ = 0, λ = 1/50, N = 106.

phase. For the mass we have

m̃2
eff ≡ 1

V4

∂2ΓN

∂ϕ2

∣∣∣∣
ϕ=ϕ∗,R=R∗

= m2 + ξR+
λR

64π2
S

(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
+
3λ2ϕ2

16π2
S′
(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
. (5.11)

Since ⟨ϕ⟩ ∼ F0 is independent of N for N → ∞, the arguments of S and its derivative are the
same as in the symmetric phase, except for the replacement of 12m2 by 12m2 +6λF 2

0 . We have
already seen in (4.2) that RS(N, yN2) is finite and in (4.4) that and S′(N, yN2) is finite. Then,
by the same arguments used in the symmetric phase, the quantum correction to the mass is
finite on shell.

The quantum-corrected λ is given by

λeff ≡ 1

V4

∂4ΓN

∂ϕ4

∣∣∣∣
ϕ=ϕ∗

= λ+
9λ2

16π2
S′
(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
(5.12)

+
27λ3ϕ2

2π2R
S′′
(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
+

27λ4ϕ4

π2R2
S′′′
(
N,

12m2 + 6λϕ2

R
+ 12ξ

)
.

The first term is finite, as we have just seen, and the remaining two terms contain

S′′(N, z) = 2

N∑
ℓ=1

mℓ
1

(ℓ(ℓ+ 3) + z)3
(5.13)

S′′′(N, z) = −6
N∑
ℓ=1

mℓ
1

(ℓ(ℓ+ 3) + z)4
(5.14)

that are convergent even before going on shell. Thus, the renormalization of λ is finite on shell
also in the broken phase.
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6 Discussion

Let us summarize our main points. For a self-interacting scalar field ϕ in a Euclidean De Sitter
space, the spectrum is discrete and it is natural to cut off the sum over modes at some value
N of the principal quantum number ℓ. The total number of modes that is kept in this way is
O(N4). Then:
(1) In the symmetric phase, solving the semiclassical Einstein equations and the equation for ϕ,
that come from varying the quantum EA, the De Sitter radius is found to grow linearly with N
for large N , while the VEV of the scalar is zero.
(2) In the symmetric phase, the mass and the quartic coupling of the scalar, defined as the
second and fourth derivative of the EA at the solution of the above mentioned equations of
motion, receive only a finite renormalization when N → ∞.
(3) We have found evidence for the existence of a broken phase when m2 is sufficiently negative.
This phase seems to be separated from the symmetric phase by a region where the potential
at the solution is complex. These results will have to be confirmed by further analyses and
the meaning of the complex region will have to be investigated. In the broken phase, as in the
symmetric one, the De Sitter radius grows linearly with N , the VEV of the scalar is independent
of N and the renormalizations of the mass and coupling are finite.

There are two main features in the calculations that lead these results. The first is the use of a
dimensionless cutoff. In the case of a sphere S4, where the spectrum of the Laplacian is discrete,
this is the most natural option and is closely related to ideas in noncommutative geometry [10,11].
6 One may think that there cannot be an essential difference between a dimensionless cutoff
and a standard one with dimension of momentum, since they can be related as in (2.12). Given
that the constant of proportionality is the curvature R, switching from one to the other changes
the interpretation of the divergences, as we saw in the comparison between (4.5) and (4.10). For
example, the usual quadratic divergence of the mass gets reinterpreted, with the dimensionless
cutoff, as a divergence of the nonminimal coupling and what remains is just the logarithmic
divergence, proportional to the mass itself. This is to be expected of a dimensionless regulator,
and is partly similar to what happens e.g. in dimensional regularization. This, however, is in
a sense a secondary effect. As long as one treats R as an arbitrary externally given parameter,
there are divergences independently of the dimension of the cutoff.

The second feature is the need to go on shell, more precisely that the equation for the
metric has to be solved before sending the cutoff to infinity. In the calculation of R, this is
what produces a decrease of R with N . In the calculation of the EA, it is by putting the
metric on shell that the quantum corrections to the mass and quartic coupling become finite.
The cancellation of divergences could be seen in part as a consequence of dimensional analysis,
due to our unconventional choice for the dimension of the cutoff. Indeed, the quadratic (N2)
divergence in (4.5) is seen to be canceled multiplicatively by the on shell N -dependence of the
prefactor R. However, the logarithmic divergences, both in (4.5) and in (4.13) are canceled
additively when one puts the metric on shell, indicating that this is a more subtle effect.

We emphasize that both features are necessary to arrive at the results. We have already seen
that if we treat ϕ and especially R as externally fixed backgrounds, then the curvature is an
increasing function of N and the sums over N defining the effective mass and quartic coupling
are divergent. Thus, the use of a dimensionless cutoff is not enough and the necessity of going
on shell is clear. This is the feature that in [5, 12, 13] was called background independence: The

6It is amusing to note that, as in noncommutative geometry, it may be possible to see in our calculations
a form of UV/IR mixing: the limit N → ∞ is certainly the UV limit of the theory, but it gives rise, via the
gravitational equations of motion, to an infinite volume (an IR divergence).
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necessity of using a dimensionless cutoff may be less obvious at this point. For this reason it
is instructive to consider an alternative point of view, that we have described in Appendix A.
We start from the usual way of calculating the divergences in curved spacetime, based on the
small-time (asymptotic) expansion of the heat kernel [14]. The integral over the heat kernel
“time” is cut off at s = 1/C2, leading to the usual C4, C2 and logC divergences. We have
already seen that these divergences are present in our calculation but get cancelled when the
metric is put on shell. Going on shell at fixed C would not improve the situation regarding the
divergences. However, if we take C2 ∼ RN2 and use the equations of motion at fixed N , C is
seen to have a finite limit when N → ∞ [5]. Since C never goes to infinity, also the apparently
divergent expressions C4, C2 and logC are actually finite. This shows that the finiteness of the
quantum-corrected m2 and λ depends crucially on taking N and not C as the basic definition of
cutoff. One may add that just counting the number of field modes, unlike choosing a maximal
momentum, is independent of the choice of units and is therefore a logically cleaner definition.

The cancellation of divergences that we observe for the scalar effective potential is reminiscent
of the very old notion of gravity as a universal regulator [15–18]. Looking for historical prece-
dents, there is also some similarity between the approach to the cosmological constant problem
adopted here and some old ideas of Adler [19] and Taylor and Veneziano [20,21]. The similarity
lies in the presence, in the EA, of nonlocal functions of the spacetime volume. In particular,
Taylor and Veneziano consider the consequences of a term of the form (in our notation)

βΛ2V4 log(V4/C
4) (6.1)

where β is some numerical constant. This dependence on the volume is quite similar to the
quantum term in (2.14), that in the limit N → ∞ can be rewritten

− C4V4
1536π2

[
log(V4µ

4) + constant
]
. (6.2)

In both cases we have a V4 log V4 structure, with the difference that in our case the cutoff appears
outside the log, whereas in their case it appeared inside.

We conclude with some comments on future extensions. Whereas the generalization of these
results to gravitons has already been considered in [6], it is of obvious interest to look also at
spinor and vector fields. The main shortcoming of the present calculations is that they have
been derived in Euclidean signature. In order to be more confident that the conclusions apply
to the physical world, it will be necessary to rederive them in Lorentzian signature. As for the
interactions, we have limited ourselves to a simple one loop calculation. It will be interesting to
see if the cancellations hold also at higher orders.
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A Comparison with heat kernel evaluation

A.1 The divergences

Evaluating the EA with the Schwinger-De Witt method and a UV momentum cutoff C, we
obtain

ΓC(R,ϕ) = V4

[
ΛB

8πG
− 1

16πG
R+

1

2
m2ϕ2 +

1

24
λϕ4 +

1

2
ξϕ2R

]
− 12

R2

{
C4

2
− C2

(
m2 +

1

2
λϕ2 +R

(
ξ − 1

6

))
+ log

(
C2/µ2

) [ 29

2160
R2 +

1

2
ξ

(
ξ − 1

3

)
R2 +

(
ξ − 1

6

)(
m2 +

1

2
λϕ2

)
R

+
1

8
λ2ϕ4 +

1

2
λm2ϕ2 +

1

2
m4

]}
+ . . . , (A.1)

where the ellipses stand for subleading, finite terms. The normal procedure is to treat R and ϕ
as externally fixed parameters, to absorb the divergences in renormalized parameters Λ, G, m2,
ξ, λ, and only then solve the resulting equations. For the sake of comparison with the procedure
in the text, where we solve the equations at finite N and then take the limit, here we shall look
at the solutions of the equations for finite C and then consider the limit.

It is still the case that ϕ = 0 is a solution of the ϕ equation of motion. For simplicity we shall
limit ourselves here to the symmetric phase. The equation of motion of the metric, evaluated
at ϕ = 0, has the solution

R = 6
8πΛ + 2Gm2C2 −GC4 −Gm2 log

(
C2/µ2

)
12π + (1− 6ξ)GC2 +Gm2(6ξ − 1) log (C2/µ2)

(A.2)

If we turn off the gravitational interaction setting G = 0, this reduces to the classical solution
R = 4Λ. For ξ ̸= 1/6, the leading behavior of this solution for large C is

C2

ξ − 1/6
+O(logC) . (A.3)

This is the usual statement that curvature increases, and the universe becomes smaller, as we
increase the cutoff. In the conformal case m2 = 0 and ξ = 1/6 the solution is instead

R = 4Λ− 1

2π
GC4 . (A.4)

The effective (quantum corrected) mass and nonminimal coupling can be read off from

1

V4

∂2ΓC

∂ϕ2

∣∣∣∣
ϕ=0

= m2 + ξR+
λ

32π2

[
C2 −

(
m2 +R

(
ξ − 1

6

))
log
(
C2/µ2

)]
. (A.5)

The mass has both a quadratic and logarithmic divergence, whereas the nonminimal coupling
has only a logarithmic divergence:

m2
eff =

1

V4

∂2ΓC

∂ϕ2

∣∣∣∣
ϕ=0,R=0

= m2 +
λ

32π2
[
C2 −m2 log

(
C2/µ2

)]
+ . . . , (A.6)

ξeff =
1

V4

∂3ΓC

∂R∂ϕ2

∣∣∣∣
ϕ=0,R=0

= ξ − λ

32π2

(
ξ − 1

6

)
log
(
C2/µ2

)
+ . . . . (A.7)
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The effective quartic coupling is

λeff =
1

V4

∂4ΓC

∂ϕ4

∣∣∣∣
ϕ=0

= λ− 3λ2

32π2
log
(
C2/µ2

)
+ . . . . (A.8)

It is clear that in this approach, putting the background metric on shell does not help at all.
If anything, it makes the EA more divergenct.

A.2 Recovering finiteness

We shall now see how we can recover the main results of this paper from this starting point. We
use the relation (2.12), that, in view of taking the limit N → ∞, we can simplify to

C2 ∼ R

12
N2 . (A.9)

We have seen that using the equation of motion for R including a finite number N of modes,
R decreases as K2/N

2. Then the key step is the observation that, using this relation, the
dimensionful cutoff (A.9) has a finite N → ∞ limit

C2 → K2

12
. (A.10)

In other words, if we take N rather than C to be the primary definition of cutoff, and we use
the equation of motion of R before taking the limit, we see that C never goes to infinity. Then,
using (A.10) in (A.6) and (A.8) we obtain finite results

m2
eff = m2 +

λ

32π2

[
K2

12
+m2 log

(
12µ2

K2

)]
, (A.11)

λeff = λ+
3λ2

32π2
log

(
12µ2

K2

)
. (A.12)

If we choose the renormalization scale µ = m, the first of these is identical to (4.12), whereas
the second differs from (4.16), by a finite additive constant.

B Some special functions

The harmonic number H(n), for integer n, is defined as

H(n) =

n∑
ℓ=1

1

ℓ
(B.1)

It satisfies

H(n+ 1) = H(n) +
1

n+ 1
. (B.2)

Iterating this relation m times we find

m∑
ℓ=1

1

ℓ+ n
= H(m+ n)−H(n) . (B.3)

Taking the limit n→ ∞ we find that

lim
n→∞

(H(m+ n)−H(n)) = 0 . (B.4)
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One can extend the definition of H(x) to the real domain in such a way that these relations
still hold for real arguments. For x→ ∞,

H(x) ≈ log(x) + γ +
1

2x
− 1

12x2
+

1

120x4
+ . . . (B.5)

where γ ≈ 0.5572 is the Euler-Mascheroni constant, and for a→ ∞

H(x+ a)−H(a) ≈ x

a
− x(x+ 1)

2a2
+
x(1 + x)(1 + 2x)

6a3
+ . . . (B.6)

We can use these properties to write an explicit expression for the function S(N, z). Since
in S(N, z) we have a second order polynomial in the denominator, we can find the root of that
polynomial:

ℓ(ℓ+ 3) + z = (ℓ+ x+) (ℓ+ x−) (B.7)

where

x± =
3±

√
9− 4z

2
. (B.8)

Hence, by fraction decomposition

1

ℓ(ℓ+ 3) + z
=

1√
9− 4z

(
1

ℓ+ x−
− 1

ℓ+ x+

)
(B.9)

Then, summing and using (B.3) we obtain

N∑
N=1

1

ℓ(ℓ+ 3) + z
=

1√
9− 4z

(H(N + x−)−H(x−)−H(N + x+) +H(x+)) . (B.10)

One can deal in a similar way with the sums that have ℓ, ℓ2 or ℓ3 in the numerator, and one
finds

S(N, z) =
1

6

{
N2 + 4N + (2− z) [H(N + x−)−H(x−)−H(N + x+) +H(x+)]

}
. (B.11)

When the metric is put on shell, z diverges quadratically with N , because it contain inverse cur-
vature. We are thus led to evaluate the function S for z = yN2, where y = 12m2

K2
is independent

of N . We obtain

S
(
N, yN2

)
=

1

6

[
1− y log

(
1 +

1

y

)]
N2 +

2

3(1 + y)
N +

10 + 57y

36(1 + y)2
+

1

3
log

(
1 +

1

y

)
+O(1/N)

(B.12)
It is remarkable that although each of the harmonic numbers diverges logarithmically with N ,
in the sum these divergences cancel exactly. In fact, when we replace z = yN2 (with y > 0) the
square bracket in (B.11) reduces just to

log

(
1 +

1

y

)
. (B.13)

In a similar way one can evaluate the derivative 7

S′(N, yN2) ∼ 1

6

[
1

1 + y
+ log

(
1 +

1

y

)]
+O(1/N) . (B.14)

7In fact using ∂
∂z

= 1
N2

∂
∂y

. this could be obtained directly from (B.12).This is not an obvious statement, since
S is divergent.
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