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An accurate description of information is relevant for a range of problems in atomistic

modeling, such as sampling methods, detecting rare events, analyzing datasets, or performing

uncertainty quantification (UQ) in machine learning (ML)-driven simulations. Although

individual methods have been proposed for each of these tasks, they lack a common theoreti-

cal background integrating their solutions. Here, we introduce an information theoretical

framework that unifies predictions of phase transformations, kinetic events, dataset opti-

mality, and model-free UQ from atomistic simulations, thus bridging materials modeling,

ML, and statistical mechanics. We first demonstrate that, for a proposed representation, the

information entropy of a distribution of atom-centered environments is a surrogate value

for thermodynamic entropy. Using molecular dynamics (MD) simulations, we show that

information entropy differences from trajectories can be used to build phase diagrams, identify

rare events, and recover classical theories of nucleation. Building on these results, we use this

general concept of entropy to quantify information in datasets for ML interatomic potentials

(IPs), informing compression, explaining trends in testing errors, and evaluating the efficiency

of active learning strategies. Finally, we propose a model-free UQ method for MLIPs using

information entropy, showing it reliably detects extrapolation regimes, scales to millions of

atoms, and goes beyond model errors. This method is made available as the package QUESTS:

Quick Uncertainty and Entropy via STructural Similarity, providing a new unifying theory for

data-driven atomistic modeling and combining efforts in ML, first-principles thermodynamics,

and simulations.

I. INTRODUCTION

Information is a fundamental concept in science that brings unifying views in a range of fields,

from thermodynamics1 and communication theory2 to deep learning.3 Specifically within statistical
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thermodynamics, the concept of information relates to the number of microstates accessible by a

macrostate and is often referred to as “entropy”. Along with the internal energy and other state

variables, entropy connects the microscropic description of a system, such as fluctuations in atomic

positions, to its macroscopic properties, such as phase stability or heat capacity. The parallels

between thermodynamic entropy and information theory2 have motivated quantitative descriptions

of thermodynamic entropy by analyzing information contents from simulations, though this has

proven challenging.4–13 Connecting information and thermodynamic entropies often requires an

explicit definition of the degrees of freedom for the system, such as pair distribution functions,10,14,15

motion coordinates4,8 or displacements around known lattice sites13 in addition to correction factors.

In principle, the entropy can be computed exactly for systems such as liquids,14,15 where many-body

expansions of correlation functions fully approximate the entropy due to spatial arrangement of

particles. More generally, however, this hand-crafted approach, along with combinatorial configura-

tional spaces and expensive free energy estimation methods, hinders the computation of entropy

within atomistic simulations and lowers the fidelity of ab initio materials thermodynamics.

In a related field, the use of hand-crafted features was influential in classical interatomic potentials

(IPs), where explicit functional forms define energy functions for certain terms.16,17 In the context

of atomistic data and simulations, machine learning interatomic potentials (MLIPs) often exhibit

better accuracy and versatility than their classical counterparts18–28 and do not require a predefined

functional form as adopted in the latter.16,17 Particularly with neural network (NN) potentials,

many-body interactions can be approximated by decomposing the total energy into site-centered

energies that can be predicted from localized symmetry functions.18 Although this strategy has

greatly improved the development of new MLIPs, the black-box behavior of several ML models

hinders their use in extrapolation regimes where little to no information about an atomic environment

is present in the training domain.29–31 Thus, understanding the information contents within datasets

is not only essential for thermodynamic analysis, but also for improving training efficiency, robustness,

and uncertainty quantification (UQ) methods within atomistic ML.

In this work, we propose a theory that connects information entropy and thermodynamic entropy

differences in the context of atomistic data and simulations. By proposing a unified view of

atomistic information theory, we show that the information entropy from a distribution

of local descriptors predicts thermodynamic entropy differences, detects and recovers

classical theories of nucleation, explains trends in MLIP errors, rationalizes dataset

analysis/compression, and provides a robust UQ estimate for ML-driven simulations in

a number of exemplar applications. First, when compared against entropies obtained with the
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thermodynamic integration method, our method correctly estimates entropy differences across a range

of volumes and temperatures for the phase transition between α and β tin and the phase transition

between face-centered cubic (FCC) and body-centered cubic (BCC) copper at high temperatures

and pressures. Then, by building on this connection between information and thermodynamic

entropy, we show that the method further can be used to explain rare events, recovering results

from classical nucleation theory from a simple information analysis and quantifying entropies along

transformation pathways. Using theorems from information entropy, we additionally apply our

method to analyze datasets for MLIPs, analyzing their completeness, compressing them based on

their maximum entropy, and explaining trends in test errors reported in the literature. Finally, we

use conditional information values to perform UQ without relying on models, demonstrating the

robustness of our metric and its use in detecting failed simulations. In all examples, we show how

information contents can be used to obtain unexpected physical insights from atomistic datasets,

including alternative analyses for critical nuclei or correlations in error metrics for datasets. This

work provides an unifying view on atomistic thermodynamics, dataset construction, and UQ, and can

be extended to enable faster and more accurate materials modeling beyond predictions of potential

energy surfaces.

II. RESULTS

A. Connecting atomistic representations to information entropy

To approximate a one-to-one mapping between atomistic environments and data distributions, we

propose a descriptor for atomic environments inspired by recent studies in continuous and bijective

representations of crystalline structures32 and similar to the DeepMD descriptors.23 Given their

success in a range of applications,23,33 the representation offers a rich metric space without sacrificing

its computational efficiency. This simplified representation allows us to perform non-parametric

estimates of data distributions even in extremely large datasets. To obtain the descriptor, we begin

by sorting the distances from a central atom i to its k-nearest neighbors (within periodic boundary

conditions, if appropriate) and obtain a vector X
(1)
i with length k,

X
(1)
i =

[
w(ri1)
ri1

. . . w(rik)
rik

]T
, rij ≤ ri(j+1), (1)

with 1 ≤ j ≤ k due to the k-nearest neighbors approach and w a smooth cutoff function given by
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w(r) =


[
1−

(
r
rc

)2]2
, 0 ≤ r ≤ rc,

0, r > rc.

(2)

However, the radial distances alone do not capture bond angles and cannot be used to fully

reconstruct the environment, so we construct a second vector to augment X
(1)
i that aggregates

distances from neighboring atoms, inspired by the Weisfeiler-Lehman isomorphism test and analogous

to message-passing schemes in graph neural networks (see Methods and Fig. S1),

X
(2)
in =

〈√
w(rij)w(ril)

rjl

〉
n

, j, l ∈ N (i), Xin ≥ Xi(n+1), (3)

where j and l are atoms in the neighborhood N of atom i, ⟨.⟩n represents the arithmetic mean

between the n-th elements of the sequence (details in the Supplementary Text), and 1 ≤ n ≤ k − 1

due to the number of k-nearest neighbors pairs. The final descriptor Xi is obtained by concatenating

X
(1)
i and X

(2)
i . Furthermore, as this representation requires only the computation of a neighbor list,

it can be easily parallelized and scaled to large systems.

To quantify the information entropy from a distribution of feature vectors {X}, we start from

the definition of the Shannon entropy H,2

H [p(x)] = −
∫

p(x) log p(x)dx, (4)

where log is the natural logarithm, implying that H is measured in units of nats. Given a kernel Kh

with bandwidth h, we can perform a kernel density estimate (KDE) of the distribution of atomic

environments Xi to obtain a non-parametric estimation of the information entropy of p(x),34

H ({X}) = − 1

n

n∑
i=1

log

 1

n

n∑
j=1

Kh(Xi,Xj)

 , (5)

which corresponds to a discrete version of the original information entropy in Eq. (4) (see derivation

in the Supplementary Text). If the kernel is defined in the space Kh : RN × RN → [0, 1], then the

entropy from Eq. (5) recovers useful properties from information theory such as well-defined bounds
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(0 ≤ H ≤ log n) and quantifies the absolute amount of information in a dataset {X}. This contrasts

with other relative metrics of entropy in atomistic datasets,35 which can be ill-defined depending

on the distances between feature vectors. In our case, H = log n implies Kh(Xi,Xj) = δij , which

is the case when all points are dissimilar from each other. H = 0, on the other hand, implies

Kh(Xi,Xj) = 1, ∀i, j, which represents a degenerate dataset with all points equivalent to each

other. We discuss other useful properties of the information entropy for atomistic simulations in the

Supplementary Text.

To quantify the contribution of a data point Y to the total entropy of the system, we define the

differential entropy δH as

δH(Y|{Xi}) = − log

[
n∑

i=1

Kh(Y,Xi)

]
, (6)

where δH is defined with respect to a reference set {X} and can assume any real value.

In this work, we choose Kh to be a Gaussian kernel,

Kh(Xi,Xj) = exp

(
−∥Xi −Xj∥2

2h2

)
, (7)

where the bandwidth h is selected to rescale the metric space of X according to the average density

of atomic configurations (Supplementary Text, Sec. 6). An overview of this method, named Quick

Uncertainty and Entropy from STructural Similarity (QUESTS), is shown in Fig. 1a, and a range of

toy examples for the method are provided in the Supplementary Text (Figs. S3–S10). The code is

available at https://github.com/dskoda/quests.

B. Information entropy predicts differences in thermodynamic entropy

Using the information entropy defined in Eq. (5), we hypothesize that non-parametric

descriptor distributions derived from atomistic simulations can be used to predict

thermodynamic entropy differences. Experimental entropy values include numerous additional

contributions from configurational (e.g., disorder in solid solution), vibrational (e.g., position and

momenta), electronic, magnetic, and other effects not accounted for by our structure-based descriptor

approach. Hence, we restrict our comparison to entropy differences obtained from thermodynamic

integration (TI) at constant temperature and volume/pressure. This eliminates the dependence

https://github.com/dskoda/quests
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of the computed values on the partition function due to momenta of atoms, and still provides a

useful way to compute entropy values that otherwise depend on costly simulations. In particular,

we computed phase diagrams for two well-known systems using classical simulations: the BCC-FCC

phase boundary of Cu under high pressures and temperatures (180 ≤ P ≤ 280 GPa, 3600 ≤ T ≤ 4800

K), and the α to β phase transformation of tin around 286 K. As entropy differences in solid-solid

phase transformations tend to be small, often smaller than one Boltzmann constant kB, obtaining

exact entropies is essential to produce accurate phase diagrams from simulations. We started by

performing MD simulations of Cu at low atomic volumes (6.5–8.0 Å3/atom) in the NVT ensemble

using a classical IP based on the embedded atom method (EAM) from Mishin et al..36 For each

temperature, volume, and phase, we obtained the Helmholtz free energy F within the TI method and

calculated the entropy by taking the derivative of the free energy with respect to the temperature

(see Methods). Then, we computed the reference entropy difference between the BCC and FCC

phases at each volume and temperature. To compare our information theoretic method against

these TI-derived entropies, we performed MD simulations at the same (V, T) pairs, but without

the coupled Hamiltonian used for the reference free energy; instead, we use Eq. (5) to analyze

the information entropy of the descriptor distributions. At a bandwidth of approximately 0.082

Å−1 (see Fig. S8), the differences of information entropy agree quantitatively with those obtained

with TI, with a mean absolute error (MAE) of 0.003 kB/atom (Fig. 1b). Systematic deviations

from the TI entropies are found as the volume increases, which could be an artifact of the selected

bandwidth or functional form of the descriptors. Nevertheless, despite the approximations from the

descriptors and KDE, we successfully recovered not only trends in thermodynamic values, but also

the exact values of entropy differences for the BCC and FCC Cu. Using the energy values from the

same simulations, we compared the phase boundary from both methods by mapping the Helmholtz

free energy space F(V, T) into a Gibbs G(P, T) phase diagram (Methods). The BCC-FCC phase

boundaries for Cu within the ranges of 180–280 GPa and 3600–4800 K are similar in shape and

values despite the impact of small entropy errors in phase boundary shifts (Fig. 1c). Nevertheless,

the phase boundary computed with the EAM potential and our QUESTS method is close to a

phase boundary from the literature,37 which was obtained using density functional theory (DFT)

calculations and the quasi-harmonic approximation. Although an ideal free energy method would

recover the exact boundary obtained from the TI, this comparison suggests that our method is

within reasonable deviation from the original results.

To demonstrate that entropy differences can be computed beyond constant volume assumptions,

we analyzed the phase transformation between the α and β phases of tin using the modified EAM
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FIG. 1. Information entropy is a surrogate for thermodynamic entropy differences. a, Schematic
of the information-theoretical approach to obtain the information entropy of local atomic environments.
A Gaussian kernel between the site-centered descriptors is used to produce a non-parametric estimate for
the probability distribution (see Sec. IIA). b, Entropy differences between BCC and FCC Cu at different
temperatures and densities, as obtained by thermodynamic integration (TI) and our method, are nearly
identical. Higher atomic volumes are shown with brighter colors. Different points with the same color
correspond to different temperatures at the same volume. c, Phase boundaries of Cu computed using our
method (red) and from TI (black) using a force field are similar in shape and ranges. A reference phase
boundary from the literature, computed using DFT and a quasiharmonic approximation, is shown in green.37
d, Differences in Gibbs free energy between α and β phases of Sn at 0.6 GPa using our method (red) and TI
(black). Despite the different approaches to compute G, the results are consistent in values and correctly
predict a phase transformation around the same temperature ranges. e, The phase boundaries between α-Sn
and β-Sn computed using our method (red) and TI (black) show good agreement across a range of pressures
and temperatures.

(MEAM) potential from Ravelo and Baskes.38 In this transformation, the density undergoes a change

of approximately 20% from α- to β-Sn. First, we obtain the free energies with TI by mapping from

the NVT to NPT space to ensure the consistency of the calculation at different values of λ (see

Methods). On the other hand, our QUESTS approach allows computing entropies directly from NPT

simulations for each phase. From these results, we compute the free energy differences at each (P, T)
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as ∆G = ∆U − T∆S + P∆V , where U and V are obtained from the average energies and volumes

during the simulations. Figure 1d shows that the free energy differences between our method and

TI at constant pressure of 0.6 GPa are in reasonable agreement. Small errors in entropy differences

in our method lead to a larger derivative of the free energy curve and overestimate the transition

temperature by about 10%. Across a range of pressures and temperatures, the agreement between

our method and TI is shown on the phase diagram of Fig. 1e. Although differences in transition

temperatures suggest that the accuracy of our method can be further improved, this quantitative

agreement between descriptor distributions, information entropy, and statistical mechanics can

simplify computations in first-principles thermodynamics.

TABLE I. Comparison between information entropy (∆H) and experimental entropies of melting (∆Sm),
derived from experimental melting enthalpies (∆Hm) and temperatures (Tm) at 1 bar. The environments for
solid and liquid phases were obtained from the DC3 dataset.39 In this dataset, the structures correspond to:
FCC Al, BCC Fe and Li, HCP Ti, and diamond Si and Ge.

Element ∆Hm (kJ/mol) Tm (K) ∆Sm (kB) ∆H (kB)

Al 10.7 933 1.38 1.36
Fe 13.8 1811 0.92 0.83
Ge 36.9 1211 3.67 3.15
Li 3.0 454 0.80 1.26
Si 50.2 1687 3.58 3.03
Ti 14.2 1943 0.88 1.12

As an additional example beyond solid-solid phase transitions, we computed entropies of melting

of different elements obtained using our QUESTS method and the DC3 dataset.39 By analyzing

results from independent simulations, we verified whether our method can be generalized to obtain

thermodynamic quantities solely from dataset analysis. To do that, we computed the information

entropy difference between the liquid and the solid phase at the melting temperature for Al, Fe,

Ge, Li, Si, and Ti in the DC3 dataset, and compared the results with their experimental melting

entropies. The results are shown in Table I. While a direct comparison between experimental and

computational entropies depends on the accuracy of the interatomic potential employed in the

simulation, the convergence of the entropy calculation, and many other factors, we observed that

our method predicts melting entropies from the simulations that generally agree with experimental

results. For Al and Fe, the information entropy of melting is quite close to the experimental values,

with an error smaller than 0.1kB/atom. For Li and Ti, our method overestimates the entropy of

melting by 0.46 and 0.26kB/atom, respectively. In the cases of Ge and Si, our method correctly

predicted entropies much larger than the results for the other elements, but underestimated the values

compared to experimental entropies. Because these systems experience a semiconductor-to-metal
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transition upon melting, we hypothesized this discrepancy can be related to the electronic entropy

component missing in our information entropy of the vibrational contribution only. Indeed, when

density of states from DFT calculations are used to compute the electronic entropy of melting

for Si and Ge, we obtain values of 0.17 and 0.11 kB/atom, respectively. When these values are

added to the QUESTS-predicted entropy, we obtain errors around 0.4kB/atom for both Si and Ge,

in line with the error seen for Li and Ti. Although the values of entropy of melting can greatly

vary with the choice of potential, contributions to the total entropy, and other factors, the analysis

also demonstrates that the interatomic potentials used for Si and Ge40,41 correctly produce a much

richer phase space for their liquid phase compared to other elements. Accordingly, this approach to

quantifying information entropy and recovering meaningful thermodynamic values can be extended

in the future to efficiently estimate the computation of phase boundaries of many other systems

while using a fraction of the computational cost of TI.

C. Information-theoretical description of kinetics in simulations

Beyond systems at equilibrium, free energy is also the main component of a number of kinetic

transitions and out-of-equilibrium events. When analyzing these phenomena using computation,

entropy cannot be quantified using TI or methods that assume equilibrium conditions, and may be

ill-defined in some cases. To bypass this limitation, we use the QUESTS approach to compute the

information entropy along a kinetic event by analyzing the distribution of descriptors in each frame

of a trajectory. In this case, although the entropy may not correspond exactly to the thermodynamic

entropy, it behaves like an order parameter for a phase transformation, where the equilibrium states

have an interpretable, quantitative value for this parameter. As a model system, we simulated the

nucleation of copper using the potential from Mishin et al. with an undercooling of approximately

420 K, pressure of 1 bar, and nearly 300,000 atoms in the simulation cell. The main stages observed

during the trajectory included: (1) nucleation of a crystal from the melt; (2) crystal growth regime;

and (3) solidified system with residual liquid and grain boundaries (Fig. 2a). The nucleation event

was obtained by gradually decreasing the temperature of the molten system (Fig. 2b) over 2 ns, and

verified by post-processing the results. Classification of the atomic environments using the common

neighbor analysis (CNA)42 reveals the appearance of a dominant FCC phase in the second half of

the simulation, with rapid growth for about 100 ps, and a plateau in later stages (Fig. 2c).

To quantify the information entropy along this trajectory but maintain the consistency with the

thermodynamic variables at the equilibrium states, we computed the amount of information of each
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FIG. 2. Information entropy is an order parameter for rare events and recovers the classical
theory of nucleation. a, Visualization of the solidification trajectory during the nucleation, growth,
and solid states. FCC, HCP, and BCC phases are shown with green, red, and blue colors, respectively.
Non-identified phases are represented in gray. b, Average (black) and instantaneous (gray) temperature and
c, number of FCC atoms derived from the MD simulation. The shaded blue area indicates the time window
where crystal growth is observed. The critical nucleus is observed around 917 K. The black dots indicate the
frames corresponding to nucleation, growth, and final solidified system visualized in a. d, Entropy computed
for each frame using our information theoretical method. e, Average δH using the first frame (melt) as
reference for the entire solidification trajectory. The drop in the average δH around 1.25 ns suggests that
the phases during growth are well-represented in the melt. f, Largest cluster size in the simulation box,
obtained by grouping atoms with δH ≤ 0. The orange lines represent the range of estimated critical nuclei
sizes estimated using the experimental interfacial energy and average undercooling for each time step. g,
Cluster size distribution in the melt prior to nucleation. The size distribution follows a power law similar to
predictions from the CNT (fitted black line).

saved frame using our method and a fixed bandwidth of 0.057 Å−1. This bandwidth corresponds to

the one obtained for the mean of atomic volumes of solid and melt and the relation in Fig. S8. The

resulting information entropy along the solidification trajectory is shown in Fig. 2d. We find an

entropy change during the solidification process of approximately 0.38 kB/atom. As a reference,

the experimental entropy of fusion of copper at ambient pressure and 1357.8 K is 1.17 kB/atom,

and the entropy of fusion computed with the EAM potential is 1.09 kB/atom.43 This discrepancy

between our method and the reference values can be explained by three effects: (1) the undercooling

lowers the entropy difference between the liquid and solid phases (Fig. S11); (2) the end point of the
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simulation has not fully solidified; and (3) the final product is not a single, pure crystal. Otherwise,

good qualitative and semi-quantitative agreement is obtained. To demonstrate the effects of (2)

and (3), we observe in Fig. 2c that not all atoms are classified as FCC atoms. In fact, nearly 40%

of the approximately 300k atoms in the simulation are classified as “other” by the adaptive CNA

algorithm,44 and 18% correspond to HCP phases crystallized as defected (mis-stacked) interfaces.

The existence of these phases are also visualized in Fig. 2a by the gray areas (liquid) and red planes

(HCP). As an estimate for the actual entropy change, we combine the effects of the undercooling

(∆S900 K ≈ 0.87∆S1358 K) and the partial solidification (factor of approximately 0.6), reaching a

value of 0.57 kB between the liquid and crystallized phase. Indeed, if we compute the entropy

difference between the melt and a pure FCC Cu structure at 915 K using our method, the resulting

entropy difference is 0.60 kB/atom. Thus, the higher diversity in atomic environments of 0.22

kB/atom observed in the solid phase and quantified by the QUESTS method within the entropy

order parameter of Figs. 2a,d must be due to defects, stacking faults, grain boundaries, and other

structural features.

Beyond the thermodynamic variables, it is useful to verify whether the transient nucleation and

growth can be modeled using the concept of information entropy. To analyze the configuration

space accessed by the trajectory during nucleation and growth, we computed the differential entropy

δH during the simulation using Eq. (6) with the first frame of the simulation used as the reference

dataset for the calculation. As the first frame corresponds to the pure melt, the values of δH

indicate how well represented each environment of the test frame is compared to the melt. Figure

2e shows the average values of the differential entropy δH across each frame of the simulation. Prior

to nucleation, the average δH steadily decreases with the temperature, representing the decrease

in phase space sampled during the simulation. At the onset of growth around 1.25 ns into the

simulation trajectory, the average δH suddenly drops. Finally, as the solid phase becomes dominant,

the higher values of δH show that the solid phase is less represented in the melt than the liquid phase,

as expected. Nevertheless, the average differential entropy is still negative, indicating that the phase

space of the solid is still present in the liquid phase. As the definition of δH is related to a functional

derivative of the information entropy relative to an explored phase space (Supplementary Text, Sec.

4), the decrease in δH during the growth phenomenon may be analogous to a discontinuous heat

capacity from the first-order phase transition. Indeed, fluctuations in entropy are related to the heat

capacity, and a discontinuity in δH during the phase transformation would explain a divergence of

this value during the rare event.

This existence of solid clusters in the liquid phase is a typical assumption from the classical
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nucleation theory (CNT), which uses near-equilibrium assumptions to model an out-of-equilibrium

event. However, quantifying their distributions directly from atomistic simulations can be challenging.

Discrete classification of the solid phases, e.g., using a-CNA, typically prevents identification of the

structure of the liquid phase, as very few clusters are found and classified correctly as solid-like when

they are found in the melt. To verify if our information theoretical model would reproduce expected

phenomena from nucleation theory, we computed the values of δH for each frame in the simulation,

but this time using an MD trajectory of pure FCC copper as reference. To ensure a conservative

estimate of what defines a “solid-like” cluster, the reference dataset was taken from MD simulations

at a lower temperature of 400 K and pressure of 1 bar in the NPT ensemble. Then, frames of

the original solidification trajectory were compared against snapshots of this low-T reference MD.

Instead of considering environment labels assigned by an algorithm, we propose that nuclei in the

melt are formed by environments with high overlap with the phase space of the pure

solid. In practice, this means that subcritical nuclei can be identified by taking environments Xmelt

such that δH(Xmelt|{Xsolid}) < 0, and generalizes the nucleation theory to a continuous space rather

than a discrete one. Using this method, we obtained the number and size of clusters by using a graph

theoretical analysis, where nodes are environments with δH ≤ 0, edges connect nodes at most 3 Å

apart, and clusters are the sets of connected components (Methods). Then, we analyzed the largest

cluster size among all extracted subgraphs (Fig. 2f). With this analysis, we observed the largest

cluster size is typically below 100 atoms until the nucleation event, when it reaches the value of 114

atoms. In contrast, the CNA method recovers a maximum of 170 FCC-like environments within the

entire simulation box and across all pre-nucleation frames. To compare this with predictions from

the CNT, we calculated the critical nucleus size given the average, time-dependent undercooling.

The melting enthalpy and temperature for the EAM potential were also used to perform such

estimate.43 Furthermore, the solid-liquid interfacial energy was adopted from the experimental range

between 0.177 and 0.221 J/m2 for copper.45–47 This range of predictions is shown in Fig. 2f in

orange. The results demonstrate that nucleation happens when the largest cluster identified by our

information theoretical method falls roughly within the range of experimental critical nucleus sizes.

Prior to the nucleation event, only a single other frame intersects the region of maximum cluster

size. Visualization of the cluster indicates that the graph at that frame is better approximated as

two nuclei rather than a single favorable critical nucleus (Fig. S12). On the other hand, the critical

nucleus from point 1 in Fig. 2a,f approaches a more convex shape compared to the other outlier.

Beyond the critical nuclei, we verify that the distribution of cluster sizes in the melt can also be

predicted using our approach. Figure 2g shows that, for all pre-nucleation snapshots, the cluster
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sizes follow approximately a power law. An analytical expression derived from the CNT (Methods),

when fit to the data, also perfectly matches the data distribution, with a predicted surface energy of

about 0.104 J/m2. While this value underestimates the experimental range of 0.177–0.221 J/m2,45–47

it is still remarkably close to the overall data considering the approximations of the cluster definition,

surface-to-volume ratios, and other factors not accounted for in our approach. This agreement

between the CNT analysis and information entropies suggest that our method can be extended to

analyze other principles of nucleation and growth theories or other kinetic events, and elucidate

other dynamic process in materials simulations.

D. Information-theoretical dataset analysis for machine learning potentials

In the previous sections, we showed how distributions of atom-centered representations connect

information and thermodynamic entropies. Whereas obtaining thermodynamic entropies can be

useful to analyze physically motivated phenomena from simulations, the information component of

the same approach can be used to improve atomistic ML models. For example, non-global MLIPs

typically predict potential energy surfaces from fixed or learned atom-centered representations.

Despite the wide usage of these models, constructing optimal datasets for these potentials is still

a challenge.48–50 Works such as the ones from Perez et al. proposed quantifying entropy as a way

to build diverse atomistic datasets,35,49 but their approximation to entropy in the descriptor space

prevents recovering true values of information, as defined by information theory, from datasets.

Within information theory, the entropy of a probability distribution has a lower bound of zero (in

the case of a Dirac delta distribution) and an upper bound (in the case of a uniform distribution)

that depends on the support of the distribution (see Supplementary Text). Furthermore, while

training models on large amounts of data can enhance the generalization power of NNIPs,51–53 it

is still unclear whether training sets can be made more efficient while achieving similar or better

results. As generating training data requires computationally-expensive ground truth calculations

and large dataset sizes lead to more expensive training routines, it is important to understand how

to minimize dataset sizes while maximizing their coverage in the configuration space.

Borrowing from a fundamental concept in information theory, we hypothesize that the infor-

mation entropy of atomistic datasets indicates the limit of their (lossless) compression,

and can thus explain results from learning curves in MLIPs. The theoretical results from information

theory already guarantee the compression limits that can be applied to any generic dataset,2 but

it is not clear whether the same effect can be observed in atomistic datasets. If true, this enables
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us to: (1) explain trends in learning curves in ML potentials; (2) quantify redundancy in existing

datasets; and (3) evaluate the sampling efficiency of iterative dataset generation methods. As an

initial test for (1), we computed the entropy H as a function of dataset size of different molecules in

the rMD17 dataset,22 which has been widely used to evaluate the performance of different MLIPs.

The bandwidth was adopted as a constant value of 0.015 Å−1 to ensure that data points have small

overlap, which represents an underestimation of the extrapolation power of MLIPs. The information

entropy of six selected molecules is shown in Fig. 3a (see Fig. S13 for all molecules). At the low data

regime, the total dataset entropy increases rapidly with the number of samples. On the other hand,

in the high data regime, the values of H quickly saturate because little novelty is obtained from more

data points sampled from the same MD trajectories. As expected, the saturation point depends on

the molecule under analysis. Benzene, a stiff molecule with six redundant environments for both

carbon and hydrogen, reaches its maximum entropy in less than 100 samples. Azobenzene, a molecule

with atomic environments exhibiting two- and four-fold degenerate environments, approaches its

maximum entropy value at 1000 samples. A similar behavior is seen in uracil, which has degenerate

connectivity despite differences of composition. As our method does not consider composition effects,

the true values of information may vary, though the diversity of vibrational motion is still captured

by the descriptor distributions. The datasets of aspirin, a much more diverse molecule, are not

fully converged even at 10,000 samples. As this molecule has more rotatable bonds and unique

atomic environments than its counterparts, it is expected that its information content is larger,

as shown by its higher entropy, and requires more samples to saturate. Ethanol is an outlier for

this trend. Despite being much smaller than the other molecules, its information entropy takes

a long time to reach a maximum, which is unexpected at first. To explain this result, we notice

that the distribution of energies for the rMD17 dataset varies according to the molecule (Fig. S14).

Molecules such as ethanol and malonaldehyde, despite small, have broader distributions compared

to their counterparts, which correlates positively with higher information gaps (Fig. S15a). Thus,

if we assume that energy distributions correlate with the accessible phase space on a per-system

basis, then the information gap correctly captures this effect for the molecules, including ethanol,

explaining this counterintuitive outlier.

We hypothesize that the mismatch between the amount of information in each molecule and the

constant number of samples used can partially explain the trends in testing errors across models. To

validate this observation, we compared the information gap — defined as the information entropy

difference between asymptotic and finite sample size values in Fig. 3a — with the testing errors

reported for MACE models trained on these per-molecule dataset splits.28 The correlation between
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FIG. 3. Information entropy measures dataset completeness, compressibility, and sample
efficiency in MLIPs. a, Information entropy of selected molecules from the rMD17 dataset as a function of
the dataset size. Simpler molecules exhibit lower entropy and converge faster, while more diverse molecules
require more samples to converge. b, correlation between the error in predicted forces and the information
gap for all molecules in the rMD17. The errors were obtained from Ref. 28 for MACE. Higher number of
rotatable bonds is shown with brighter colors. A circle indicates errors when 1000 samples are used to train
the models, and crosses are errors when only 50 samples are used to train the models. ρ is the Pearson’s
correlation coefficient. c, information entropy (blue bars) of each subset of the GAP-20 dataset. The
maximum entropy is given by log n (gray bars), where n is the number of atomic environments. The results
are sorted by ascending dataset entropy. d, information gap obtained by compressing the “Fullerenes” and
“Graphene” subsets of GAP-20 by up to 20% of their original sizes. While the information gap of “Graphene”
remains close to zero, the one from “Fullerenes” monotonically increases as the dataset size decreases. e,
test errors relative to the errors obtained when a MACE model is trained on the full subset of GAP-20.
The results show that the “Graphene” subset can be compressed by up to 20% of its size without loss of
performance, whereas this is not the case for the “Fullerenes” subset. f, information entropy for the ANI-Al
dataset computed for each generation of active learning. Oversampling of certain phases leads to a total
reduction of entropy. This is further supported by as demonstrated by g, showing decreasing novelty in the
samples. In this approach, novelty is the fraction of environments showing δH > 0 when the dataset of all
previous generations are taken as reference. h, Despite the reduction in entropy, the diversity of the dataset
increases monotonically, showing that the phase space continues to expand, though at lower efficiency.

the two quantities is shown in Fig. 3b, and the information gap curves are shown in Fig. S16. The

information gap is a strong predictor of the error in forces, with a Pearson correlation coefficient

of 0.89. Even for a constant number of samples (Fig. S17), the information gap explains major

variations in force errors for the models, with the ethanol molecule being the only exception to

the trend. This suggests that, in a typical MLIP model, the information gap may relate to a
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minimum theoretical error that can be achieved across a sampled PES, similar to the

lossless compression theorem for information theory. Conversely, test errors for molecules such

as benzene may be equivalent to the training error of the models, as a near-zero information gap

suggests that the training set contains complete information about a given configuration space. As

the benchmarks in the literature are performed at a constant number of samples, test errors vary

due to differences of information content in each subset, and the information metric can be used to

create trade-offs between accuracy and training set sizes.

Analogously, this notion of completeness can be useful to post-process existing datasets and

quantify redundancy due to sampling and data curation. Within information theory, entropy is used

to inform the development of lossless compression algorithms and encoding methods, which is closely

related to our goal of dataset reduction without loss of information. To demonstrate this approach

beyond the rMD17 molecular dataset, we computed the entropy of different subsets of the GAP-20

dataset.54 The comparison between the subset entropy and the maximum possible entropy for a

dataset with the same number of environments is shown in Fig. 3c. This difference between the

maximum possible entropy and the subset entropy, shown with grey bars in Fig. 3c, is the opposite

of the information gap. Instead of quantifying how much information is needed to reach a converged

dataset, a large difference between log n and the dataset entropy often indicates oversampling in a

dataset. In the field of MLIPs, test errors are typically used to quantify saturation of a dataset.54

However, our information theoretical analysis provides absolute bounds to the entropy and quantifies

the completeness of the dataset without training any model. For example, the difference between

the actual information contained in the “Graphene” subset of GAP-20 and the absolute limit given

by log n shows that this subset has large redundancy compared to the “Fullerenes” subset, where

the difference between the maximum and actual entropy is smaller. The bounds also illustrate how

different datasets can exhibit larger diversity. For example, structures labeled under the “Liquid”

and “Amorphous_Bulk” categories are maximally diverse, with environments mostly distinct with

the bandwidth used to compute the KDE (0.015 Å−1, see Methods). This may be a consequence of

both the larger accessible phase space by these amorphous and liquid structures and the original

farthest point sampling approach used when constructing the dataset.54

To illustrate the relationship between information entropy and dataset compression, we computed

the entropy curves of different subsets of the GAP-20 dataset. Then, we trained a NNIP based

on the MACE architecture28 on (judicious) fractions of the subsets, computing test errors as a

function of training set size and, thus, entropy. Fig. 3d exemplifies this relationship for the labels

“Graphene” and “Fullerenes” of GAP-20, which exhibit large (Graphene) and small (Fullerenes) levels
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of redundancy (Fig. 3c). In the former, datasets as small as 20% of the original one still exhibit

entropies around 4.25 nats, similar to the full one. Accordingly, their test errors remain constant

across all dataset sizes (Fig. 3e), with a value of 0.96 ± 1.37 meV/Å for force errors relative to model

trained on the full training set. Despite fluctuations in total entropy caused by the random sampling

approach — which depend on unit cell sizes and ordering of structures in the dataset, and become

more sensitive at the low-data regime — these results show that our model-free analysis of dataset

entropy correctly informed the redundancy of the dataset. On the other hand, the dataset labeled

as “Fullerenes” is less redundant, and subset entropies monotonically decrease as the training set size

goes down. As expected, the test errors also increase with smaller training set sizes, reproducing

known patterns in learning curves of MLIPs (Fig. 3e). Although this example considers only a

random sample of data points when “compressing” a dataset, different algorithms can be used in

future work to evaluate optimal subsets with maximum entropy for compression of training sets for

MLIPs55 or also evaluation of extrapolation and completeness in fast data generation approaches.56

Finally, to exemplify how information theory can be useful to evaluate active learning (AL)

strategies in MLIP-driven atomistic simulations, we analyze dataset metrics of the ANI-Al dataset,57

which constructed a dataset for aluminum by starting from random structures and performing over

40 generations of sampling and retraining with NNIP-driven MD simulations. Figure 3f shows how

the entropy varies as new configurations are sampled by the AL. In the initial stages of the active

learning, the entropy of the dataset quickly increases, then peaks around generation 12, before

subsequently decreasing. To explain this effect, we observe that the increase in diversity of this

dataset57 comes at the cost of oversampling certain regions of the configuration space. In fact,

fewer than 5% of the environments sampled after the third round of AL are novel according to our

information-theoretical criterion (Fig. 3g). This suggests that although MD simulations provide

a physically meaningful way to sample new configurations, most sampled configurations may be

already contained in the original training sets. This may be especially true for large periodic cells

where a handful of unknown environments (i.e., δH > 0) may not be easily separated from the

numerous known (or similar-to-known) environments (δH ≤ 0) that may surround them. To verify

that the total coverage of the configuration space still increases, we propose an additional metric of

dataset diversity D,

D ({X}) = log

[
n∑

i=1

eδH(Xi)

]
, (8)
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that reweights each data point’s contribution to the information entropy based on how well-sampled

its region of the configuration space is (Supplementary Text, Section 7). Indeed, Figure 3h shows

how the dataset diversity continues to grow even when the entropy decreases. This approach of

measuring dataset diversity is related to the concept of “efficiency” in information theory2 and may

be used to propose new ways to sample atomistic configurations or automatically create datasets for

MLIPs in the future.

E. Model-free uncertainty quantification for machine learning potentials

When information theory is used to analyze a single dataset, as in the previous section, environ-

ments are compared against other environments in the same dataset. However, reference datasets

{X} may not contain the tested sample Y, often leading to δH(Y|{X}) > 0. As such, we propose

that differential entropies can be used as a model-free uncertainty estimator for a given

dataset. Whereas uncertainty quantification (UQ) methods for MLIPs usually rely on models58,59 —

i.e., prediction uncertainties are associated to variances in model predictions — we propose instead

that UQ can be performed based on the data alone. This approach is similar to Gaussian process

regression methods,19,60,61 which compute an uncertainty by inverting a covariance matrix computed

for training points, or parametric models on a latent space.62 Differently from other approaches,

however, our method performs a fast non-parametric estimate directly on the atomistic data space,

thus bypassing the need for a model. While this approach can be expensive for large datasets,

it is easily parallelizable, is backed by theoretical results, and is guaranteed to provide a robust

uncertainty estimate, as it does not rely on the randomness associated with model training or

inference.

To exemplify how information theory can be used for UQ in MLIPs, we computed the values of

δH for different subsets of the GAP-20 dataset discussed in the previous section. Then, we compute

the overlap between one subset given another reference set of configurations. Figure 4a exemplifies

the values of these overlaps for the “Fullerenes” (Fu), “Graphene” (Gr), and “Nanotubes” (NT)

subsets of the dataset (see Fig. S18 for complete results). The results show that environments in

the “Graphene” split are mostly contained in the other two subsets, with a minimum overlap of 86%

between “Graphene” and “Fullerenes”. On the other hand, “Fullerenes” contains a sizeable portion

of “Nanotubes”, with an overlap of 68%, but not the other way around. Similarly, “Nanotubes”

contains almost all environments of the “Graphene” dataset, but “Graphene” contains only 53% of

the environments in “Nanotubes,” as also illustrated in Fig. 4b. This analysis also allows us to
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FIG. 4. Information entropy quantifies overlaps between datasets and is a model-free UQ
method. a, Overlap between test and reference sets for the GAP-20 carbon dataset. Only a subset of the
data is shown for clarity (see Fig. S18 for complete matrix). b, Histogram of differential entropies for the
nanotubes (NT) and graphene (Gr) subsets of GAP-20. The small number of positive δH (GR | NT) values
shows that the “Graphene” split is nearly contained in the “Nanotubes” split, but not the other way around.
c, Test errors of a MACE model trained either on the fullerenes (Fu), graphene (Gr), or nanotubes (NT)
subset of the GAP-20 dataset. Parity plots exhibiting higher errors are those with lower overlaps between
train and test sets shown in a. d, Correlation between RMSE and δH for a MACE model trained on the
Defects subset of GAP-20. The values of δH are computed using the training and validation set of the model
as reference. The δH was truncated to 50 nats for clarity. Brighter colors indicate higher density of points.
e, The average RMSE increases with higher δH. The δH was truncated to 100 nats for clarity.

identify how each subset is constructed without having to label the structures beforehand. For

example, Fig. S18 shows that the “Graphene” subset is also contained by the “Defects” and “Surfaces”

datasets, but not fully covered by the “Graphite” dataset. The subsets labeled as amorphous or

liquid do not overlap with any of the others, even though their phase space could have been similar

depending on their construction method. Finally, large subsets such as “Defects” and “SACADA”

contain several parts of the other subsets, largely due to the way they were created. While there

were labels available for the GAP-20 dataset, this overlap analysis can be used to compare pairs of

datasets in general, regardless of available labeling.

To verify whether overlap between training and testing sets is useful as a predictor of uncertainty

and error metrics, we trained MACE models to one of the “Graphene”, “Fullerenes”, and “Nanotubes”

subsets of GAP-20, then tested the models on the three splits. Figure 4c shows the test errors

obtained from such training-testing splits. When models are tested on the “Graphene” subset, all

of them perform near perfect predictions, as expected by the high overlap between the “Graphene”

subset and the others. Models tested on the “Nanotubes” subset exhibit higher errors, with the
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MACE model trained on “Fullerenes” showcasing a slightly better result compared to the one trained

on “Graphene.” Finally, models tested on “Fullerenes” but trained on the other two subsets perform

poorly and exhibit large errors in forces. These results reproduce exactly the trends in Fig. 4a, and

the errors follow a power law for distinct train/test sets with clear anti-correlation between the error

and overlap (Fig. S19).

To further this observation, we trained a MACE model on the “Defects” split of the GAP-20

dataset. Then, four other splits with increasing overlaps with “Defects” were selected as test sets:

“Fullerenes” (22% overlap), “Graphite” (50%), “Nanotubes” (75%), and “Graphene” (100%) (Fig.

S18). Force errors were then evaluated for this model and correlated with the values of δH, as

shown in Fig. 4d. For environments where δH > 0, the RMSE is often above 0.1 eV/Å. On the

other hand, when δH ≤ 0, errors typically stay below 0.3 eV/Å. To demonstrate that higher values

of δH usually lead to higher errors beyond the correlation plots, we computed the average RMSE

for each window of δH. Figure 4e shows that average errors continue to increase as the values of

δH also increases, showing that points with larger distances to the training set tend to exhibit

larger extrapolation errors. On the other hand, points slightly outside of the known domain, thus

with positive but near zero δH, often show average errors comparable to the ones in the training

set. Interestingly, Fig. 4e also shows that force errors continue to decrease as δH becomes more

negative. This correlates with the idea that unbalanced datasets bias the training process and end

up minimizing the loss for data points with higher weight (i.e., with more negative δH). The same

observation is valid for the maximum error within each range of δH (Fig. S20), illustrating how

the differential entropy does not exhibit false negatives for the dataset and model under study, i.e.,

negative entropy values necessarily lead to small errors provided that errors are small everywhere in

the training set. Furthermore, because the uncertainty threshold δH > 0 as extrapolation metric is

guaranteed by the theory (Supplementary Text, Section 4), our UQ metric detects points outside

of the training domain without the need for additional calibration or fitting empirical parameters.

Thus, our information theoretical approach provides a robust, model-free alternative to quantifying

errors in MLIPs and can be used beyond NN models.

F. Information-based detection of outliers in large-scale simulations

To further illustrate how our information theoretical method can be used for outlier detection

in large-scale ML-driven simulations, we produced an MD trajectory of (dynamically strained)

tantalum using a supercell containing approximately 32.5 million atoms and the SNAP potential21
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(see Methods). In these large models, obtaining uncertainty estimates of energy/force predictions

can be challenging even at the postprocessing stage, especially if it requires re-evaluating predictions

with several models, such as with an ensemble approach. Furthermore, uncertainty thresholds

may not be well-defined for models such as SNAP, where the choice of weights, training sets, and

hyperparameters can lead to substantial variations of model performance.49 Finally, ML-driven

simulations of periodic systems may fail in completely different ways compared to simpler molecular

systems,30,31 where bond lengths and angles are often sufficient to detect an extrapolation behavior.

FIG. 5. Differential entropies detect outliers due to extrapolation in large-scale simulations. a,
Distribution (blue) and cumulative density function (CDF, red) of estimated δH values. 87% of the atoms
exhibit δH < 0 nats and thus are reasonably close to the training set. b, Visualization of a 32.5M atom
snapshot of BCC Ta simulated with SNAP. Colors represent the values of the estimated δH, with blue atoms
indicating environments reasonably within the training set (δH < 0) and red atoms indicating environments
outside of the training set (δH > 0). Values of δH were truncated to the range [−5, 5] to facilitate the
visualization of divergent colors. c, Example of high-uncertainty region encountered during the simulation.
The formation of a disordered, non-BCC phase (red) in the simulation leads to unphysical behavior in the
trajectory. d, The unphysical behavior cannot be identified only by errors in forces. Even outside of its known
domain, the SNAP model exhibits errors within the range of systems within the training set. The number
of environments in each region is shown by the color scale, with brighter colors indicating exponentially
denser regions of the error-δH space. e, Computational performance of the approximate nearest neighbors
search. At the low-resource side (N = 3 queried neighbors per environment, index constructed with m = 5
neighbors), the values of δH for all 32.5M atoms are evaluated in about 100 seconds when performed in a
single node with 56 threads. For the SNAP dataset, the true δH for all environments is computed in about
255 s (wall-time) with the same hardware and parallelization settings.

Using the true δH for the 32.5M atom system, we analyzed a snapshot of the tantalum MD

trajectory with our information theoretical method to identify possible anomalies due to extrapolation

during the simulation. Figure 5a shows that about 13% of the environments exhibit δH > 0, some

of which are as large as δH = 55.8 nats, showing that a substantial number of environments are

outside of the training domain of SNAP. Figures 5b,c illustrates these results at the atomistic
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model, with colors representing the values of δH computed with respect to the training set of SNAP.

Despite starting with a monocrystalline BCC structure of tantalum (in blue colors, often within the

SNAP training set), the simulation proceeded to form amorphous-like phases (Fig. 5b) that are

unexpected in such trajectories. Although the model prevents obvious unphysical configurations

such as overlapping atoms, distinguishing between model failures and new physical phenomena in

these simulations is mostly unclear without our information theoretical approach. To illustrate

this challenge, we computed the ground truth forces for the atomistic system from an interatomic

potential, and analyzed the errors of the predictions (Fig. 5d). The results show that the SNAP

model under investigation does not exhibit high extrapolation errors, as the forces RMSE are within

the same range of errors of environments having δH < 0. Instead, the formation of the amorphous

phase can be due to lower predicted energies compared to the true energies, which can be more

challenging to compare given the global nature of this quantity. Therefore, even having access to

the ground truth potential would not allow the classification of a trajectory as failed within these

constraints, and instead would rely on human inspection. On the other hand, the differential entropy

detects these outliers without the need for a calibrated threshold, providing a conservative estimate

for understanding model extrapolation in a completely model-free approach.

At larger scales, one drawback of computing entropy values is the necessity of computing kernel

matrices between each test point and the entire training set. As the number of test points nY and

training examples nX grow, the cost of computing such matrices increases with O(nXnY ). To verify

if this is a problem in a large atomistic model, we approximate the values of δH by truncating the

summation in Eq. (6) and using an approximate nearest neighbors approach (see Supplementary

Text, Section 5), which decreases the complexity to O(nY N log nX), with N the number of neighbors

in the descriptor space. As computing δH for each point Y is an embarrassingly parallel task, the

search can be distributed over different processes or threads to expedite the computation of this

differential entropy. Figure 5e shows the total query times for the 32.5M environments of tantalum

relative to the SNAP training set (4224 environments) as a function of approximate nearest neighbors

parameters and parallelized over 56 threads. As the index is constructed to increase the accuracy of

the approach (higher values of m, see Methods), larger query times are obtained, with the slowest

time obtained when an index with m = 100 is created and k = 30 neighbors are queried for each of

the 32.5M test environments. In that case, the computation of δH used a wall time of 1000 seconds

when parallelized on 56 threads on 56 Intel Xeon CLX-8276L CPUs from the Ruby supercomputer.

On the other hand, the fastest set of parameters (m = 5, k = 3, 56 threads) spent 100 seconds in

the same hardware. As a reference, computing the exact δH values for the 32.5M atom system
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with respect to the SNAP dataset (4224 environments) takes a walltime of about 255 seconds using

the same hardware and parallelization settings. While the approximate δH has better scaling for

larger reference datasets and is not critical for the SNAP dataset, performing the nearest neighbor

search adds additional time constants compared to the brute-force exact calculation of the true δH.

While the timings can further be improved with additional parallelization, code optimization, or

use of GPU architectures, our results already demonstrate that the computation of the differential

entropy, either in approximate or complete way, is accessible even for systems with a large number

of environments.

III. DISCUSSION

Our results show how a unified information theoretical approach can be used in a range of

problems in atomistic modeling. By computing distributions of atom-centered representations from

simulations, we obtained quantitative agreement between information and thermodynamic entropies.

This allowed us to predict phase boundaries, free energy curves, and transition entropies at low costs

compared to thermodynamic integration. These surprising results may suggest that these descriptor

distributions may approximate the Boltzmann distribution sampled during the MD simulations.

Because the feature space of several atom-centered representations are not injective,63 this property

depends on the choice of descriptor. Future work can lead to other fixed or learned representations

that can be computed at scale and better approximate the Boltzmann distributions, therefore

enabling the computation of higher-accuracy entropies compared to the current study.

In addition to entropy at equilibrium, our method enabled proposing entropy as an order

parameter along kinetically driven events such as nucleation and growth. The results paralleled

experimental entropies of transition for the given undercooling and quantified the information

entropy gain relative to defect formation, partial solidification, and more. Furthermore, using

the notion of overlap in phase space, we showed how information theory can recover results from

classical nucleation theory and identify nuclei with sizes in agreement with its postulates. Future

investigations can refine the approximations used in the calculations, such as the CNT assumption of

spherical clusters, constant surface energies, and so on. As determining entropy in out-of-equilibrium

conditions can be challenging, our approach may open a path to understand free energies in rare

events and other pathways, and rationalize different nucleation, growth, and phase transformation

phenomena from atomistic simulations.

Beyond atomistic properties, our information-based analysis of datasets and uncertainty explains



24

multiple results within learned interatomic potentials. In particular, we showed how information

and diversity content in a dataset can be quantified, explaining error trends in MLIPs, rationalizing

dataset compression, predicting extrapolation errors, and detecting failed simulation trajectories.

Furthermore, because information entropy provides a quantitative estimation of “surprise” of a

random variable, we proposed its use as a robust UQ metric for ML-driven atomistic simulations

and showed it can be computed even for large atomistic systems. As this strategy does not depend

on models, it can be adapted to any MLIP to provide general uncertainty metrics and may be a

universal UQ method for atomistic simulations.

In future work, several improvements can help generalize the method beyond simpler simulations.

For example, the approach does not take into account composition, as the representation does

not account for element type. For simple molecular systems, bonding patterns (e.g., valence

rules) sometimes map distributions of atomic environments to different parts of the information

entropy space due to the construction of the k-nearest neighbors descriptor based on interatomic

distances. However, for inorganic crystals, this approximation may not be valid, and may have to

be incorporated into the approach to account for true configurational entropies, as seen in alloys.

Moreover, although our model succeeded in predicting relative configurational entropy differences,

computation of true entropy values requires incorporating effects of velocity (i.e., complete vibrational

entropy), electronic, magnetic, and other components to the final results, all of which influence the

phase transformations of materials. Finally, whereas the current computational implementation is

sufficient for the analysis of tens of millions of environments, improvements in parallelization and

hardware utilization can allow the approach to scale beyond being a post-processing tool and towards

a real-time UQ for MD. Fast computation of distances using GPUs, multi-node parallelization, or

better approximate nearest neighbors computation can be implemented in future versions of the

code, allowing greater scaling in computing kernel density estimates and their resulting entropies.

Nevertheless, the quadratic scaling of true entropy computation may be necessary for a rigorous

definition of thermodynamic entropy in arbitrary datasets.

IV. CONCLUSIONS

In this work, we proposed an unified view for atomistic simulations based on information

theory. By performing a kernel density estimation over distributions of atom-centered features, we

obtained values of information entropy that: (1) predict thermodynamic entropy in equilibrium,

and extend it to out-of-equilibrium conditions as an order parameter; (2) recover classical theories
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of nucleation for simulations containing rare events; (3) rationalize trends in testing errors for

machine learning potentials, relating model performance to information quantities; (4) proposes a

compression approach for atomistic datasets based on information theory; and (5) provides a model-

free uncertainty quantification approach for atomistic ML. These contributions are demonstrated

with numerous examples, such as phase boundaries obtained from thermodynamic integration

methods, a solidification trajectory, known benchmarks from the MLIP literature, and a simulation

of a system containing about 32.5M atoms. As increasingly accurate and scalable ML models are

proposed for atomistic simulations, this work proposes a rigorous way to optimize their training

process, automate evaluation of thermodynamic and kinetic properties, and assess the performance

of the results. Additional developments in atomistic information theory can continue to translate

developments in machine learning and statistical thermodynamics into faster and more accurate

materials modeling.

METHODS

Information entropy and QUESTS method

Representation: the representation of atomic environments was computed as described in Section

II A of the main text and Section 1 of the Supplementary Text. Throughout this work, a number of

k = 32 neighbors was used to represent the atomic environment, with a cutoff of 5 Å. To accelerate

the calculation of the representation, the code that computes the descriptors was optimized using

Numba64 (v 0.57.1) and its just-in-time compiler. For periodic systems, the feature vectors were

created by adapting the stencil method for computing neighbor lists and parallelizing the creation

of features across bins.

Information entropy: the information entropy of descriptor distributions was computed as

described in Section IIA of the main text and Section 2 of the Supplementary Text. Throughout

this work, the natural logarithm was used for the entropy computation, which scales the information

to natural units (nats). The scaling of bandwidth (Section 6 of the Supplementary Text) with

respect to the volume calibrates the metric space to reproduce the values of kB. However, when

not specified, we adopt a bandwidth of 0.015 Å−1. This leads to final entropy values with unscaled

values compared to the Boltzmann constant kB , but still respecting the properties of the information

entropy (Section 2 of the SI). In this case, we show the units as nats instead of kB. The procedure

is similar for the computation of the differential entropy δH, and the units adopted are the same.
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Entropies of melting: to obtain the results shown in Table I, we computed the average volume

of each system using the same number of frames for solid and liquid phases. This enables us to

estimate entropies without considering significant density changes upon melting, which could cause

bandwidth values to change and lead to fluctuations in the entropy computation.

Entropy asymptotes: the asymptotic behavior of entropies in the learning curves of Fig. 3a and

S13 was obtained by fitting a function of the form

f(N) = a− b exp
[
−c(logN)2

]
, (9)

with a, b, c parameters obtained from the entropy curve as a function of training set size N . The

first and last three points were discarded during the fitting process. The fit was performed using

a non-linear least squares method implemented in SciPy65 (v. 1.11.1). This functional form was

found to closely approximate the curves shown in Fig. 3a and S13.

Molecular dynamics simulations

All MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) software66 (v. 2/Aug./2023). All simulations were performed using a 1 fs

time step, except when stated otherwise.

Thermodynamic Integration: free energies of solids were computed by assuming a potential

energy Uλ that couples a reference system with potential energy Uref and the interacting one UIS

such that

Uλ = λ2UIS + (1− λ2)Uref ,

where the quadratic term λ2 reduces the impact of sampling the space of (N,V, T, λ) with a uniform

grid in λ, and thus creates a denser sampling around λ = 0 or λ = 1 which mitigates numerical

integration errors. The Helmholtz free energy F of the interacting system is obtained first taking

the derivative of the free energy of the system corresponding to Uλ with respect to λ,

(
dFλ

dλ

)
N,V,T

=

〈
∂Uλ

∂λ

〉
λ

,
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where U is the energy of the system. Integrating the expression above in λ, we obtain

FIS = Fref +

∫ 1

0
2λ ⟨UIS − Uref⟩λ dλ,

where Fref is known for any given temperature and volume. We adopted the Einstein crystal as

the reference, and modified the fix ti/spring67 in LAMMPS to obtain energies for each (V, T, λ)

without using a switching function. Using this, we performed different simulations for each point of

the grid, thus ensuring stricter convergence of the average energy differences UIS − Uref for each λ.

We used a uniform grid with a spacing of 0.02 for λ, leading to 51 data points for each phase and

(V, T ). Numerical integration was performed using the function from the QUADPACK library68

interfaced by SciPy65 (v. 1.11.1).

Entropy from TI: given the free energy computed using the TI method, the entropy by taking the

derivative of the Helmholtz free energy with respect to the temperature,

S = −
(
∂F

∂T

)
N,V

.

As the free energy is not computed for an infinitely dense grid of (V, T ) values, numerical derivatives

can lead to inaccurate values of entropy. To mitigate this problem, we fit a quadratic 2D polynomial

to the free energies as a function of the independent variables (V, T ). The fit is performed using the

Lasso method (L1 regularization) for all polynomial features up to degree 2 using the scikit-learn69

(v. 1.3.0) library, with α = 10−4 and a maximum of 106 iterations. Then, with the interpolated

values of free energy, we obtain the entropy by taking the numerical derivatives of F with a fine

grid of temperatures at each value of volume.

Phase diagrams from TI: given the convenience of using the NVT ensemble when performing

thermodynamic integration calculations, we constructed P-T phase diagrams by first obtaining

free energies in the (N,V, T ) space. Then, using the value of average pressure for each volume,

we map each point (P, T ) into a volume V , and the resulting (V, T ) into a free energy F . With

these variables, we compute the Gibbs free energy as G(P, T ) = F (V (P, T ), T ) + P × V (P, T ).

The functions (V, T ) → F and (P, T ) → V are performed as described before, thus using a two-

dimensional polynomial regressor with degree 2 and L1 regularization. We observed that direct

mappings (P, T ) → F led to numerical inconsistencies that drastically affected the outcomes of the
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phase diagram, especially given the small entropy differences between the phases. On the other

hand, the step-wise mapping was found to be more numerically stable.

FCC-BCC Cu phase transition at high pressure: the phase boundary between the FCC and

BCC phases of copper was simulated using the EAM potential from Mishin et al.36 The phases were

simulated at four volumes: 6.5, 7.0, 7.5, and 8.0 Å3/atom, which correspond to the range of high

pressures shown in Fig. 1b. All calculations were performed with 20× 20× 20 supercells, leading to

an FCC cell with 32,000 atoms and a BCC cell with 16,000 atoms. Simulations were performed at 9

temperatures between 3000 and 5000 K separated by 250 K, and 51 values of λ. The MD simulation

was performed at the NVT ensemble with the Langevin thermostat implemented in LAMMPS70

and a damping constant of 0.5 ps. The simulation was equilibrated for 100 ps before a 1 ns-long

production run. During the production run, the pressure, energy, and the coupled energy UIC −Uref

were averaged for every time step, and later printed for post-processing in the TI approach. A spring

constant of 34.148 eV/Å2 was used to attach the Cu atoms to their ideal lattice sites, thus modeling

the Einstein crystal.

Entropy calculations using our QUESTS method were performed in the NVT ensemble using

the same temperatures and volumes as the TI method. Simulations used the same cell sizes as

the TI, but had 100 ps-long production runs. Snapshots were saved every 2.5 ps. Entropy values

were obtained by randomly sampling 200,000 environments of the saved trajectory with a variable

bandwidth determined by their volume.

α− to β−Sn phase transition: the phase boundary between the α and β phases of tin was

simulated using the MEAM potential from Ravelo and Baskes38. The equilibrium lattice parameters

for these structures were found to be aα = 6.483 Å, aβ = 5.830 Å, and cβ = 3.183 Å. All calculations

were performed with a 12× 12× 12 supercell for α and 12× 12× 24 for β, leading to a cell with

13,824 atoms each. For the TI, simulations were performed at three different volumes, corresponding

to 98%, 100%, and 102% of the equilibrium volumes of each phase, 7 temperature values between

200 and 350 K spaced by 25 K, and 51 values of λ. The MD simulation was performed at the NVT

ensemble with the Langevin thermostat implemented in LAMMPS70 and a damping constant of

0.5 ps. The simulation was equilibrated for 40 ps before a 500 ps-long production run. During the

production run, the pressure, energy, and the coupled energy UIC −Uref was averaged for every time

step, and later printed for post-processing in the TI approach. A spring constant of 2.0 eV/Å2 was

used to attach the Sn atoms to their ideal lattice sites, thus obtaining an ideal Einstein crystal as

reference system.

Entropy calculations using our QUESTS method were performed in the NPT ensemble at 1 bar
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and same temperatures as the TI method. Simulations used the same cell sizes as the TI, but had

200 ps-long production runs, with snapshots saved every 10 ps. Entropy values were obtained by

randomly sampling 100,000 environments of the saved trajectory with a constant bandwidth of

0.038 Å−1, which corresponds to the bandwidth for the average of the volumes between the α and β

phases (Fig. S8).

Cu solidification: the solidification trajectory of copper was simulated using the EAM potential

from Mishin et al.36 A 42× 42× 42 supercell of FCC copper (296,352 atoms) was simulated above

the melting point to produce the structure of the liquid, then cooled to 924 K. Starting at the

temperature of 924 K, the system was cooled to 914 K over the course of a 2 ns-long simulation in

the NPT ensemble with the Nosé-Hoover thermostat and barostat71,72 implemented in LAMMPS.

Damping parameters for the temperature and pressure were set to 0.1 and 3.0 ps, respectively, a 2

fs time step was used for the integrator, and constant pressure of 1 bar. Over the trajectory, the

number of FCC atoms was computed using the common neighbor analysis (CNA) implemented in

LAMMPS.42

Large-scale Ta simulation: The atomistic configuration with “amorphous-like” substructures (Fig.

5) used in benchmarking performance of our information-based detection of structural anomalies

resulted from a large-scale MD simulation of crystal plasticity in body-centered-cubic metal Ta.

The simulation was performed using a SNAP potential fitted to the dataset of the original SNAP

potential.21 However, rather than using the DFT ground-truth reference values of energies, forces and

stress in the original fitting dataset, all the same quantities were re-computed using an inexpensive

interatomic potential of the embedded-atom-method (EAM) type. Given that both SNAP and EAM

simulations can be performed at scales large enough to perform simulations of metal plasticity of the

kind described in Zepeda-Ruiz et al.,73 the intention was to observe if a SNAP potential fitted to

such a proxy training dataset could reproduce plastic strength predicted by the proxy potential itself.

The SNAP simulation considerably diverged from the proxy EAM simulation both in predicted

plasticity behavior and in producing the “amorphous-like” regions that never appeared in the proxy

EAM simulation.

Machine learning potential

MACE architecture: the ML force fields for GAP-20 in this work were trained using the MACE

architecture.28 We used the MACE codebase available at https://github.com/ACEsuit/mace (v.

0.2.0). Two equivariant layers with L = 3 and hidden irreps equal to 64x0e + 64x1o + 64x2e were

https://github.com/ACEsuit/mace
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used as main blocks of the neural network model. A body-order correlation of ν = 2 was used for

the message-passing scheme, and the spherical harmonic expansion was limited to ℓmax = 3. Atomic

energy references were derived using a least-squares regression from the training data. The number

of radial basis functions was set to 8, with a cutoff of 5.0 Å.

MACE training: the MACE model in this work was trained with the AMSGrad variant of the

Adam optimizer,74,75 starting with a learning rate of 0.02. The default optimizer parameters of

β1 = 0.99, β2 = 0.999, and ε = 10−8 were used. The exponential moving average scheme was

used with weight 0.99. In the beginning of the training, the energy loss coefficient was set to

1.0 and the force loss coefficient was set to 1000.0. The learning rate was lowered by a factor of

0.8 at loss plateaus (patience = 50 epochs). After epoch 500, the training follows the stochastic

weight averaging (SWA) strategy implemented in the MACE code. From there on, the energy loss

coefficient was set to 1.0 and the force loss coefficient was set to 100.0. The model was trained for

1000 epochs. A batch size of 10 was used for all models, except in the Defects subset of GAP-20,

for which the batch size was adopted as 5. Each dataset was split randomly at ratios 70:10:20 for

train/validation/test. The best-performing model was selected as the one with the lowest error on

the validation set.

Classical nucleation theory analysis

Critical cluster size: following known results from the classical nucleation theory (CNT), the

critical cluster size r∗ of a monocomponent, spherical cluster in a melt is given by

r∗ =
2γSLTm

∆Hm∆T
,

where γSL is the interfacial energy between the solid and liquid, Tm is the melting temperature,

∆Hm is the latent heat of melting, and ∆T is the undercooling. For the solidification of copper,

experimental values of γSL range between 0.177 and 0.221 J/m2.45–47 Whereas the experimental

melting temperature at 1 bar is 1357.77 K, with latent heat equal to 13.26 kJ/mol, we used the

values determined for the potential, with Tm = 1323 K and ∆Hm = 11.99 kJ/mol.43 The ranges of

critical cluster sizes in Fig. 2f were obtained by assuming a spherical cluster and an atomic volume

of 12.893 Å3/atom obtained from the simulations. The dependence of the transition entropy with

the undercooling, shown in Fig. S11, was obtained by extrapolating data from the NIST-JANAF
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thermochemical tables76 by assuming a constant heat capacity Cp = 32.844 J/mol K for the liquid

copper.

Graph-theoretical determination of clusters: As classification methods such as (a-)CNA

cannot detect solid-like clusters in the melt, we assumed that clusters can be identified by the overlap

in phase space between the melt and a pure solid phase. To create such a reference phase space, we

first sampled a trajectory of an FCC Cu solid at 1 bar and 400 K at the NPT ensemble using the

potential from Mishin et al.36 and the Nosé-Hoover thermostat and barostat71,72 implemented in

LAMMPS, with damping parameters equivalent to 0.5 and 3.0 ps for the temperature and pressure,

respectively. We simulated a 20× 20× 20 supercell containing 32,000 Cu atoms. Initial velocities are

sampled from a Gaussian distribution scaled to produce the desired temperature, and with zero net

linear and angular momentum. The simulation was equilibrated for 40 ps, after which five snapshots

separated by 5 ps were saved to create the reference dataset, which contained 160,000 environments.

Using the reference environments, we computed the differential entropy δH of each frame of the

solidification trajectory prior to growth. Then, we used a graph theoretical approach to determine

the cluster sizes. Specifically, we considered that environments with δH ≤ 0 with respect to the

solid are nodes in a graph, and edges connect environments at most 3.0 Å apart. Then, clusters are

defined as 2-connected subgraphs of the larger graph. The cluster sizes are given by the number of

nodes in each subgraph, and the maximum cluster in each frame of the trajectory is estimated by

the largest subgraph.

Cluster size distribution: within the CNT, the expected number of clusters with radius r, denoted

here as Nr, depends on the free energy difference between the solid and liquid phases ∆Gr,

Nr = N0 exp

(
−∆Gr

kBT

)
,

with N0 a constant, T the temperature, and kB the Boltzmann constant. The free energy difference

assumes spherical clusters and balances the volumetric free energy difference between the solid-liquid

phases ∆gSL and the interfacial free energy γSL,

∆Gr =
4

3
πr3∆gSL + 4πr2γSL.

The fit in Fig. 2g is obtained by fitting the unknowns N0, ∆gSL, and γSL for the equation
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logNr = logN0 −
4πr3

3kBT
∆gSL − 4πr2

kBT
γSL.

In this case, the values of r are estimated from the cluster size from the graph-theoretical approach

and a density of 8960 kg/m3. The fit was performed for the temperature of 917 K, which is

approximately the temperature of solidification during the simulation, and used all cluster sizes of

the first 120 steps of the simulation. The nucleation event is observed at the 125th step.

Uncertainty quantification

Novelty of an environment: a sample Y is considered novel with respect to a reference set {X}

if δH(Y|{X}) > 0. Therefore, the novelty of a test dataset {Y} with respect to {X} is computed as

the fraction of environments Y ∈ {Y} such that δH(Y|{X}) > 0. On the other hand, the overlap

between a test dataset {Y} with respect to {X} is the fraction of environments Y ∈ {Y} such that

δH(Y|{X}) ≤ 0. Larger positive values of δH imply that the test point Y is further away from the

training set {X}.

Novelty in active learning: specifically in Fig. 3g, the novelty of sampled configurations at

generation n > 1 is obtained by computing the differential entropy δH with respect to the complete

dataset at generation n− 1.

Correlations between error and δH: Force errors in Fig. 4d were computed by taking the norm

between the predicted and true force for each atom, thus assigning a single error per environment.

To average the errors for each δH, as shown in Fig. 4e, we binned the values of δH in 20 bins of

uniform length ℓ. Then, for each bin, we averaged the errors for all points within 0.75ℓ of the center

of the bin. This creates a running average effect for the errors, reducing the effect of discontinuities

with small displacements of bin centers. At the same time, the bin length ℓ is determined by the

range of the values of δH.

Approximate nearest neighbors: The approximate nearest neighbors for feature vectors X was

computed using PyNNDescent (v. 0.5.11), that implements a search strategy based on k-neighbor

graph construction.77 The number of neighbors used to construct the index is represented with m in

Fig. 5a. The default number of trees, leaf sizes, and other parameters were used in the construction

of the index. Searches were performed using an epsilon value of 0.1.
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DATA AND CODE AVAILABILITY

The code for QUESTS is available on GitHub at the link https://github.com/dskoda/quests.

Persistent links will be created at Zenodo at publication time.
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SUPPLEMENTARY TEXT

1. Derivation of the descriptor

Consider a representation f : S → X that maps atomic environments S into features X ∈ X , with

X ⊂ Rd, and denote f(Si) = Xi. The effectiveness of the function f is often computed according to

the following properties:32

1. Invariance: the representation encodes all symmetries of the system, i.e. given a symmetry

operation T : S → S, f(S) = f(T (S)).

2. Completeness: if two descriptors are equal, f(Si) = f(Sj), then the originating structures

are equal up to a symmetry operation, Si = T (Sj).

3. Metric: the function f induces a metric d in the descriptor space X .

4. Continuity: arbitrarily small displacements of atoms in S ideally lead to arbitrarily small

distances between features in X .

5. Speed: the representation should be fast to compute.

6. Invertibility: given Xi = f(Si), it is possible to reconstruct Si up to a symmetry operation.

The field has many representations, several of which exhibit different properties. Here, we derive

a new representation which is expected to satisfy several of the properties above. The representation

mailto:dskoda@ucla.edu
mailto:lordi2@llnl.gov
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is inspired in simple distances distributions, which have been proven to satisfy these properties32

and have been used for other materials systems33.

a. Radial terms

As a first order approximation, one can obtain an invertible mapping between the structures by

taking the pairwise distances between atoms, then reconstructing them using the information from

all atoms at once32. In particular, to make a fixed-length representation, one can take the distances

towards the k-nearest neighbors of each atom as a representation,

rij = ∥ri − rj∥ , (S1)

where

ri1 ≤ ri2 ≤ . . . ≤ rik. (S2)

As distances between atoms infinitely far apart should be negligible according to a metric that

relates to machine learning potentials, we take the representation as being the inverse of distances,

X
(1)
ij =

w(rij)

rij
, (S3)

where Xi1 ≥ . . . ≥ Xik and w is a cutoff function given by

w(r) =


[
1−

(
r
rc

)2]2
, r ≤ rc

0 , r > rc

, (S4)

where rc is a cutoff distance. The weight function was chosen to satisfy two criteria: (1) fast

convergence of the descriptor; and (2) scaling of each component of X1 approaching r−3/2 to

resembles the relationship between entropy and distances in an ideal gas. Figure S2 shows how the

combination of the weight function (S4) and the inverse distance 1/rij approximates a dependence



3

of r−3/2
ij .

In principle, given a large number of neighbors, the unit cell parameters, and rc, an input

structure S may be reconstructed from f(S) = {X(1)} up to an isometry.32

b. Cross terms

As the structure can only be reconstructed from the set of representations of all neighbors,

increasing the amount of information in each local environment is desirable. This would also allow

us to distinguish between environments containing the same set of nearest-neighbor distances, but

different angles. One way to do so is to incorporate distances between atoms in a neighborhood of i,

X
(2)
ijl =

√
w(rij)w(ril)

rjl
, (S5)

which is performed for each neighbor l of atom j in the neighborhood of i. The weights w(rij)

and w(ril) ensure that smaller distances rjl are less important far away from the center of the

neighborhood. The square root ensures that X
(2)
i has the same scaling and units as X

(1)
i . The final

representation on a per-neighbor basis is

X
(2)
ij =

(
X

(2)
ij1 , . . . , X

(2)
ijk

)
, (S6)

with the constraint X
(2)
ij1 ≥ . . . ≥ X

(2)
ij(k−1). Finally, the second-order representation term for each

atom is given by

X
(2)
i =

1

k

∑
j

X
(2)
ij . (S7)

Where the radial distances X
(1)
i already suffice for reconstruction when all i’s are considered,

the pairwise cross distances X
(2)
i may help reconstructing environments only from the vector

Xi =
(
X

(1)
i ,X

(2)
i

)
, even though reconstruction may not be guaranteed for this descriptor. If instead

of an average in Eq. (S7) we concatenated all vectors X
(2)
ij , then reconstruction could be guaranteed

within the sphere limited by rc. Continuity of this descriptor is only possible when this cutoff rc is

smaller than the distance of the central atom to the k−th nearest neighbor, as switching between
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neighbors would create a discontinuity for the aggregated contributions.

2. Dataset entropy

According to information theory, the entropy H of a distribution p(x) is defined as

H = −
∫

p(x) log p(x)dx, (S8)

where p(x) is the distribution of data points, log is the natural logarithm, and the value of entropy

is integrated over the entire data space x ∈ X . In our case, using this definition has two problems:

(1) it assumes the knowledge of the prior distribution p(x) over the data space; and (2) it requires

the integration over the entire configuration space. Obtaining both requires exhaustively sampling

the potential energy surfaces (PESes), which is undesirable.

Recently, Perez et al. proposed the use of entropy-maximization schemes for automatic dataset

generation for machine learning (ML) interatomic potentials (IPs)35,49. To bypass the problems

above, the authors approximated the entropy using a classical non-parametric estimation from the

literature34. Up to a constant, that estimate is given by

H ({X}) = 1

n

n∑
i=1

log

(
nmin

j
∥Xi −Xj∥

)
, (S9)

with Xi the descriptor of atom i, n the number of descriptors in the set {X}, and ∥.∥ the L2

norm. One problem with this description is that the nearest-neighbor distance in the descriptor

space may not be a good approximation of the distribution density p(x) and strongly depends on

the choice of descriptor. Furthermore, the information penalty for overlapping descriptors (i.e.,

∥Xi −Xj∥ → 0) is H → −∞, which may be undesirable. Often, when sampling PESes, oversampling

certain configurations is expected, which can pose a problem to a measure of entropy that drastically

penalizes any overlap between two points. Finally, the value of entropy is unbounded, assuming any

real value. This prevents concrete analogies both with thermodynamics and information theory.

To bypass these problems, we model the distribution of data points p(x) using a kernel density

estimation (KDE) and use to quantify the entropy of a dataset. This first estimate is obtained

by using a normalized kernel Kh(X,Xi) with bandwidth h and averaging over all data points in a

dataset {Xi},
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p(X) =
1

n

n∑
i=1

Kh(X,Xi). (S10)

Then, as sampling the input space X is undesirable when calculating the integral in Eq. (S8), we

propose an empirical estimate34 given by

H ({X}) = − 1

n

n∑
i=1

log p(Xi). (S11)

This equation corresponds to the empirical entropy for a set of points. Now, using Eq. (S10) to

compute log p(Xi) further simplifies this equation to

H ({X}) = − 1

n

n∑
i=1

log

 1

n

n∑
j=1

Kh(Xi,Xj)

 , (S12)

To finally compute the entropy, a Gaussian kernel between descriptors can be used,

Kh(Xi,Xj) = exp

(
−∥Xi −Xj∥2

2h2

)
, (S13)

where ∥.∥ is the L2 norm. Along with Equation (S12), the computation of the kernel allows us to

measure the information entropy of a given atomistic dataset with a single parameter h.

3. Properties of the entropy

The main difference between Eqs. (S12) and (S9) lies on the fact that overlapping points in

the former do not lead to H → −∞, which is desirable when sampling potential energy surfaces.

Moreover, appropriate choice of a kernel Kh abstracts away from descriptor distances and maps the

entropy back to the space of probability distributions. As a consequence, our entropy (S12) exhibits

the following properties:

• Bounds: the normalization of the kernel, 0 ≤ Kh(Xi,Xj) ≤ 1, implies that 1 ≤∑
j Kh(Xi,Xj) ≤ n, so H is bounded between 0 and log n.
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• Minimum entropy: H = 0 corresponds to a degenerate dataset created with multiple copies

of a single Xi, thus one that does not provide information about a space X but only for a

single point. This is exactly what one expects from p(x) → δ(x) in Eq. (S8).

• Maximum entropy: H = log n corresponds to a dataset with zero overlap between data

points, hence conveying maximal information. In information theory, this corresponds to

distributions where all outcomes are equally likely.

• Entropy grows with dataset size: Because of the log n term, datasets composed by

non-overlapping data points always bring more information as the training set grows.

• Entropy can decrease as new points are added: In addition to the log n effect, if new

points overlap substantially with the existing dataset, the entropy of the new dataset may be

smaller than the entropy of the original dataset.

• Units: because of the reliance on the probability distributions, the entropy has units (nats)

and can be used to compare datasets and descriptors. For example, for the same datasets,

incomplete descriptors should have lower entropy than complete ones, as the former map two

points to the same representation. For the same descriptors, richer datasets should have

higher entropy than redundant ones.

These entropy properties correspond exactly to those in the field of information theory and, as a

consequence of Eq. (S8), also relate to some of those from statistical mechanics.

4. Differential entropy

In addition to the dataset entropy from Eq. (S12), one can compute the expected variation in

entropy from adding a new point to the dataset even when the distances ∥X−Xi∥ are not infinite.

In information theory, this corresponds to how much information the new data brings to the dataset

considering its current distribution of points. Considering an arbitrary point in Eq. (S12), we define

the differential entropy δH of adding a point Y to a dataset {Xi}i=1,...,n can be quantified as

δH(Y|{Xi}) = − log

[
n∑

i=1

Kh(Y,Xi)

]
. (S14)
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This form is related to the functional derivative of the information entropy from Eq. (S8) with

respect to the probability distribution p(x),

δH
δp(x)

= −1− log p(x), (S15)

thus representing the sensitivity of the entropy H with respect to variations of its distribution p(x).

In our work, we shift it for convenience by a constant 1− log n (partially due to the normalization

of the kernel and p(x)) and adopt δH = log n − log p(x), as this leads to δH = 0 for a density

estimate of non-overlapping points. Furthermore, the term “differential entropy” is usually employed

in information theory to describe the entropy of a continuous probability distribution. In our case,

we prefer to reserve this term to the quantity given by δH and avoid using different terms for

continuous or discrete probability distributions.

Equation (S14) above has interesting properties for dataset analysis and construction:

• There is no limit to “information novelty”: Contrary to H in Eq. (S12), δH does not

have an upper bound. If the point Y has near-zero overlap with all points {Xi} of the existing

dataset — and thus has maximal novelty — then Kh(Y,Xi) → 0 and δH → +∞.

• Duplicating one isolated point from the training set brings zero information: If a

point Y overlaps perfectly with only one data point in {Xi}, the sum over kernel values is

one and δH = 0.

• Negative δH implies redundant information: A point that overlaps with multiple points

may have the summation over kernel values greater than one, leading to δH < 0. The latter

situation corresponds to points that are overrepresented in the dataset {Xi}

• Lower bound: the differential entropy has a lower bound − log n ≤ δH, where n is the

size of the dataset {X}. This can only be achieved in the case where Kh(Y,Xi) = 1, and

represents the scenario where all points overlap. The result can be interpreted as an absolute

threshold for dataset redundancy.

With the properties above, it follows that the differential entropy of the points in the training

set is always smaller or equal to zero, which allows us to compute uncertainties without arbitrary

thresholds.

The entropy of a system can be recovered from the values of δH by
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H({X}) = log n− 1

n

n∑
j=1

δH(Xj |{X}). (S16)

Importantly, however, the differential entropy δH cannot be used to measure the entropy

H({Xi}i=1,...,n+1) compared to H({Xi}i=1,...,n) when the point Xn+1 is added to {Xi}i=1,...,n.

As the new estimated probability distribution p(x) changes given the knowledge of Xn+1, the density
1
n

∑
j Kh(Xi,Xj) may change when the summation index is allowed to go from 1 to n+1 instead of

1 to n.

5. Entropy in the nearest-neighbors limit

In the limit of non-overlapping points, the sum over kernel values Kh(Xi,Xj) from Eq. (S12)

can be simplified to Kh(Xi,Xi) = 1 plus the nearest neighbor value,

H ({X}) ≈ log n− 1

n

n∑
i=1

log

[
1 + max

j ̸=i
Kh(Xi,Xj)

]
, (S17)

thus resembling the result from Eq. (S9). The assumption of a nearest neighbor dominance expedites

the calculation of the entropy. However, the result may not be accurate, as it requires points with

small overlap in the descriptor space, an unusual assumption when dealing with PESes. On the

other hand, computing all pairwise kernels Kh(Xi,Xj) can be expensive for a large dataset {X}. A

good compromise is to implement the summation over the neighborhood Nk of Xi, which contains

the k-nearest neighbors of Xi,

H ({X}) ≈ − 1

n

n∑
i=1

log

1
k

∑
Xj∈Nk(Xi)

Kh(Xi,Xj)

 , (S18)

and query the k-nearest neighbors with average complexity O(kd logN), where N is the reference

dataset size. Several approximations and nearest neighbors search methods can be employed to

obtain the nearest neighbors in the feature space. In the main results of this paper, we used an

approach based on nearest neighbors graph, which can handle dataset sizes on the order of millions,

and is helpful when performing uncertainty quantification.
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The use of approximate nearest neighbors for the computation of δH is analogous to that from

H,

δH(Y|{X}) ≈ − log

 ∑
Xj∈Nk(Y)

Kh(Y,Xj)

 . (S19)

An immediate consequence of this approximation is that the value of δH is overestimated, as

contributions from neighbors outside of the k-neighborhood of each vector are neglected. As the

values of k increase, δH necessarily decreases, reaching a minimum when the full dataset size is used

for its computation. Therefore, when used with the absolute threshold δH > 0, the approximate δH

are conservative estimates of the uncertainty. Some approximate nearest neighbor methods also

have recall smaller than 100%, representing the case where some of the true nearest neighbors are

not recalled during the query. Although a lower recall could affect the computation of absolute

values such as thermodynamic entropies, less accurate δH are still overestimated with respect to an

ideal nearest neighbor search. This demonstrates that, despite the approximations of truncating the

expansion of δH, this value can provide conservative estimates when used as an UQ metric.

6. Dependence of entropy with the bandwidth

The non-parametric estimation of the information entropy H described in Eq. (S12) requires

fitting a KDE to the data distribution. In the current work, this selection is challenging due to two

issues: (1) differences in density lead to changes in the metric space of the descriptors X; and (2)

differences in entropy can vary with the choice of bandwidth. Because lower densities (higher atomic

volumes) lead to lower distances in the descriptor spaces, we propose a variable bandwidth that

decreases with increasing atomic volume,

h(V ) = a exp
(
−bV 2

)
+ c, (S20)

where a, b, and c are unknown parameters. To estimate these parameters in a self-consistent way,

we first performed simulations for the copper Einstein crystal at the NVT ensemble using the spring

constant of 34.148 eV/Å2, as described in the Methods, and for volumes from 6 to 50 Å3/atom.

The fix ti/spring command in LAMMPS was used with a value of λ that ensures that only the
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harmonic oscillator is considered in the simulation. Then, for each volume, the entropy of the

system is computed for a range of entropies, varying from 0.010 to 0.090 Å−1. As the entropy of the

Einstein crystal is independent of the volume, we estimate the values of bandwidth that would keep

the entropy reasonably constant across the range of volumes. Figure S8 shows the results of this

investigation, and the fitted bandwidth prediction that rescales the (arbitrary) information entropy

to the thermodynamically relevant units kB/atom.

7. Dataset diversity

As shown in Fig. 3 of the main paper, the dataset entropy depends on how frequent each

environment is sampled in the configuration space. Therefore, entropy values can often reduce even

as dataset sizes drastically increase. To create a measure of dataset diversity that is more robust to

oversampling, we propose to express the diversity D as

D ({X}) = log

[
n∑

i=1

1∑n
j=1K(Xi,Xj)

]
= log

[
n∑

i=1

exp (δHi)

]
, (S21)

where δHi = δH(Xi|{X}). This analytical form is proposed to satisfy the following properties:

• For non-overlapping datasets, D recovers H: this can be demonstrated by verifying

that, in datasets where K(Xi,Xj) = δij , δHi = 1,∀i and D({X}) = H({X}) = logn.

• An entirely new data point increases the summation in diversity by one: this

follows from the fact that, for a new point X(n+1) that does not overlap with any of the other

points Xi, δH(n+1) = 0.

• D has the same units of δH, which is determined by the base of the logarithm, and thus

is nats for this work.

• Repeating data points in the training set does not increase its diversity, even if

the entropy can be reduced. This follows from the summation of inverse of p(Xi), which

approximately re-weights the distribution of data points based on their frequency according

to other points.

Within this definition, the diversity D of a dataset represents the coverage of the configuration

space. However, it does not express the same value as log n, the maximum information entropy.
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Whereas log n is agnostic to the coverage of the space, D attempts to quantify exactly how many

unique points are present in the system. For example, a degenerate system with H = 0 also has

D = 0 regardless of log n.

8. Toy examples for QUESTS

a. 2D visualization of the entropy

To visualize the concepts of entropy and distributions, we sampled 100 points in a two-dimensional

space from a 2D Gaussian with mean zero and covariance matrix equal to the identity. Then, we

computed the values of p(x) from a KDE and its corresponding δH for each point on the 2D grid.

Figures S3 and S4 show how the entropy H and the differential entropy δH behave with different

distributions, bandwidths, and rescaling. If the objective was to reproduce the original Gaussian,

as in a standard KDE, the choice of higher bandwidths (Fig. S3c) better approximates the actual

distribution. While this example is more difficult to visualize in a high-dimensional space of atomistic

environments, the distribution plots illustrate the analogous result that would happen to them.

b. Visualization and distance for the atomistic representation

The representation proposed in this work was created on a per-environment basis, with radial

distances and cross distances, as explained in Section IIA above and shown in Fig. S1. The

representation can be visualized in a single plot and used to differentiate between standard crystal

structures, such as BCC, FCC, and HCP (Fig. S5). This descriptor can also be used upon

modification of the original structure, such as strain. In Fig. S6, an FCC structure is strained between

-5% and 5%, and the representation is visualized according to the applied strain. Interestingly, the

distance between the descriptors and the applied strain varies near-linearly within this range.

c. Information entropy and heat capacity

Although the information entropy can be rescaled using the values of the bandwidth, it is relevant

to verify whether they follow the same seen in physics models. One of such models is the Debye’s

model, which considers atoms interacting via harmonic potentials as a model for phonons and heat

capacity. To obtain classical MD trajectories that match the physics from the Debye model (and

the zero-point energy in quantum harmonic oscillators), we used the quantum thermal bath (QTB)
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implemented in LAMMPS.78 We simulated a 10× 10× 10 box of particles with the FCC structure,

unit cell parameter of 3.645 Å, and mass of 62.5 g/mol. The bond terms are determined by the

spring constant k = 1.0 eV/Å2 and an equilibrium distance of 2.5775 Å. Bonds are created for

particles that are between 2.0 and 3.0 Å apart. Then, the simulation is performed using a QTB at

constant temperature, varying from 10 to 1000 K, fmax = 120 ps−1, Nf = 100, constant volume.

The simulation was performed with an equilibration run of 300 ps and a production run of 100 ps

using a timestep of 2 fs. The results are shown in Fig. S7. Although the entropy was obtained with

a constant, low value of bandwidth (0.015 Å−1), the entropy of a fitted Debye model matches closely

that from the extracted simulations. Importantly, the entropy does not approach zero at 0 K due to

the residual motion from the simulations that mimic the behavior of the zero-point energy.

d. Information entropy upon denoising

To exemplify how the entropy H and the descriptors can be used to quantify information within

atomistic systems, we analyzed trajectories with decreasing diversity of atomic environments from

Ref. 79. Because the deviations of the atoms from their ideal lattice sites were removed with a

denoising method to enable phase classification, we expect the values of H to decrease accordingly.

To validate this intuition for H, we computed the information entropy of four denoised phases of

copper, as shown in Fig S9. As vibrational motion is removed from the system, the values of H for

the crystalline phases FCC, BCC, and HCP decrease until reaching zero.79 On the other hand, the

liquid phase cannot be fully denoised, and the residual disorder is manifested in a higher information

entropy value. This example suggests that the connection between configurational degrees of freedom

and information H can be interpreted as similar to the information entropy.

e. Information entropy and Lindemann’s melting criterion

The Lindemann melting criterion is a well-known estimate for the melting point of materials.80

According to this estimate, melting often happens when the ratio between the root mean square

displacement (RMSD) of atoms with respect to their ideal lattice positions and the ideal interatomic

distances approaches a constant factor, often around 0.10 for several metals. To verify if our method

could reproduce these results, we gradually added noise to the positions of prototypical FCC, BCC,

and HCP crystal structures. To obtain a statistically meaningful result, we employed a 25× 25× 25

supercell for each of the structures, thus creating structures with 15,625 atoms. Then, for each level
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of noise, we computed the RMSD with respect to the ideal lattice sites, and the entropy of the

noisy configuration. When a bandwidth of 0.057 Å−1 is used for the chosen volumes (Fig. S8), the

resulting entropy is shown in Fig. S10. The results show that the entropy increases rapidly with the

RMSD, and reaches values around 0.2 to 0.5 kB with a normalized RMSD between 0.1 and 0.125.

As typical entropies of solids prior to melting are around this range of 0.2 to 0.5 kB, considering

the entropy of a liquid around 1.3 kB and melting entropies between 0.8 and 1.1 kB, this result

reproduces the intuition behind Lindemann’s melting rule based on the entropy values. While many

other factors are responsible for melting and the Lindemann criterion is a rough approximation, this

toy example shows that the addition of noise to the system leads to entropy values compatible with

expected ranges.
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FIG. S1. Visualization of the distances used to create the X1 and X2 representation.

0 1 2 3 4 5
r (Å)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
lte

rn
at

iv
e 

X
1

1 / r

1 / r3/2

w(r) / r

w(r) / r3/2

FIG. S2. Dependence of a proposed X1 functional form according to interatomic distances. A cutoff of 5 Å
is used for the weight function w(r).
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FIG. S3. 2D example of the KDE, bandwidth, and entropy. a, estimated p(x) for a set of points (marked
with x). b, the values of p(x) can be mapped directly to δH. This creates a common reference of δH > 0 for
points “outside” of the training set, shown here in red, and δH < 0 for points “inside” the training set, shown
in blue. c, effects of the bandwidth in estimating the probability distribution. A large bandwidth estimates
the values as a single Gaussian, whereas a small bandwidth considers each point individually. d, effects of
rescaling the coordinates of a distribution by a factor f in the entropy H. Denser distributions lead to lower
entropy, whereas larger spread relates to higher entropy if the bandwidth is kept constant.
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entropy as more concentrated data points and higher entropy as larger spread. A regular occupation of the
(2D) configuration space (bottom right) leads to the highest entropy among all examples. The color follows
the same scale as S3b, with red points having δH > 0 and blue points having δH < 0.
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A fitted Debye model is shown with a dashed orange line.

5 10 15 20 25 30 35 40

Volume (Å3/atom)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

B
an

dw
id

th
 (

Å
−1

)

FIG. S8. Proposed dependence of the kernel bandwidth with the volume. The bandwidth saturates at
high volumes to ensure that residual information is captured from the data despite the non-thermodynamic
behavior.



19

0 2 4 6 8
Denoiser Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
tr

op
y 

(n
at

s)

bcc
fcc
hcp
liq

FIG. S9. Information entropy of four phases of copper (FCC, HCP, BCC, and liquid) for the denoised
trajectories from Ref. 79 from the main paper.



20

0.0 2.5 5.0 7.5 10.0 12.5
RMSD / interatomic distance (%)

0.0

0.2

0.4

0.6

0.8
bcc
fcc
hcp

En
tr

op
y 

(k
B
/a

to
m

)

FIG. S10. Root mean square deviation (RMSD) of atoms in FCC, BCC, and HCP structures, and
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FIG. S12. a, maximum cluster size throughout the solidification trajectory, as depicted in Fig. 2f of the main
paper. The black dots indicate two frames when the maximum cluster size surpasses the minimum required
for nucleation. The visualization of these two clusters is shown in b and c. Whereas both have approximately
the same number of atoms, b is much less compact compared to c, and may be better represented by two
separate clusters instead of one. This may be an artifact of the graph-theoretical approach used to identify
connected atoms in the simulation cell given values of δH.
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