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Abstract—Although tokamaks are one of the most promising
devices for realizing nuclear fusion as an energy source, there are
still key obstacles when it comes to understanding the dynamics
of the plasma and controlling it. As such, it is crucial that
high quality models are developed to assist in overcoming these
obstacles. In this work, we take an entirely data driven approach
to learn such a model. In particular, we use historical data from
the DIII-D tokamak to train a deep recurrent network that is
able to predict the full time evolution of plasma discharges (or
“shots”). Following this, we investigate how different training
and inference procedures affect the quality and calibration of
the shot predictions.

I. INTRODUCTION

In a wide range of fields, dynamics modeling is a funda-
mental tool that can be used to gain better understanding of
a given system. Dynamics models are especially useful in the
context of control, as they allow for prediction of responses
to system perturbations over time, which can then be used
to design and implement control sequences that optimize for
desirable behaviors.

Such benefits are especially apparent in tokamak systems.
Tokamaks are toroidal devices which magnetically confine
plasma at high temperatures and pressures for prolonged
periods, during which nuclear fusion reactions occur within the
plasma. The tokamak system is one of the most promising ap-
proach to realizing nuclear fusion as an energy source. While
strides are being made to improve the efficiency, stability, and
reliability of the system, there are crucial control challenges
which remain [1].

Since running these devices is extremely expensive, domain
experts rely on virtual representations of the system dynamics,
such as simulators and dynamics models. Simulators typi-
cally rely on first principles and simulate the dynamics via
known equations which describe the theoretical behavior of
the plasma. However, simulators are prohibitively expensive
in terms of time and computation, and despite these costs,
they are often still unable to accurately describe the plasma’s
dynamics.

Concurrently, massive strides have been made in machine
learning (ML), where advances in algorithms and modeling

architectures paired with data and compute have allowed for a
completely data-driven approach to learning highly accurate
models. This approach is promising for the nuclear fusion
setting, and indeed, numerous recent works have applied ML
methods to tokamak modeling [2, 3, 4, 5, 6].

In this work, we focus on learning a dynamics model for the
DIII-D tokamak, a tokamak in San Diego, California operated
by General Atomics. Since the device has been in operation
since 1986, we are able to draw from a wealth of previous
plasma discharges (or “shots”) from the device to train a deep
recurrent network. A typical shot on DIII-D lasts around 6-
8 seconds, with a 1 second ramp up phase, several second
flat top phase, and one second ramp down phase. DIII-D also
has several real-time and post-shot diagnostics that measure
the magnetic equilibrium and plasma parameters with high
temporal resolution. We find that learned models are able to
predict these measurements for entire shots remarkably well.

We further investigate the impacts of our modelling choices.
Along with architecture and training choices, we highlight the
importance of uncertainty quantification and explore which
methods of forming predictive distributions results in the most
calibrated models. As more interest accumulates in control of
tokamaks via data-driven models [4, 5, 6, 7], we hope that this
work provides valuable insights that accelerates prediction and
control.

II. RELATED WORK

A. Simulators for Tokamaks

Predictive modeling of the plasma through first principle
equations is difficult since different aspects of the plasma
evolve at different time scales. State of the art simulators
solve this problem by evolving these aspects independently [8].
While these simulators have been useful for exploring different
regimes for the plasma [9] and making new controls [10], they
are nevertheless limited in that they require additional external
information, such as an estimate for the density at the edge
of the plasma. Our learned models are unique from these in
that the only information the models require are the settings
for the different actuators throughout the shot.
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B. System Identification and Machine Learning for Dynamics

There is a long lineage of methods for inferring behavior
of a dynamic system from data. System identification is one
broad categorization of such methods and can range from
“white” to “black” based on how much prior domain knowl-
edge is incorporated. Whereas white-box models rely strictly
on prior knowledge of the relationships between variables to
infer the system parameters, black-box methods rely on purely
observed data to model their plausible relationships. We refer
the reader to Ljung [11] and Schoukens and Ljung [12] for a
more in-depth, comprehensive survey of existing methods in
system identification.

Recently, neural networks (NN) have been widely used for
modeling dynamics and have shown substantial success [13].
Many of these methods require at least some prior knowledge
of the system (i.e. they are gray-box models). For example,
one may be able to inject prior information into the model
using a set of ODEs [14, 15] or PDEs [16, 17]. There has
been recent exciting work applying these classes of models to
tokamaks [18]; however, in our work, we explore black-box
models in which there is no prior knowledge available.

C. Machine Learning in Nuclear Fusion

There has been a recent surge of interest in applying
machine learning methods to predict the state of the plasma
within tokamaks. One of the areas with the greatest interest
is predicting whether the plasma is in (or is about to be in)
an unstable state. Fu et al. [19], Parsons [20], Rea et al.
[21], Boyer et al. [22], Seo et al. [7], Olofsson et al. [23], Keith
et al. [24] learn predictive models of whether the plasma will
become unstable and use these models to take preventative
actions to stabilize the plasma. Char et al. [25] also use
Bayesian optimization with a similar objective; however, they
directly learn the actions to be applied rather than produce a
prediction of whether the plasma is unstable or not.

In terms of learning the evolution of the plasma state,
Abbate et al. [2] learn a deep neural network in order to
predict the profiles of the plasma; however, they focus on
one step predictions for their model. In contrast, Seo et al.
[4, 5] learn a recurrent neural network to predict scalar states
of the plasma. They can use this model to autoregressively
predict these states into the future, and they leverage this to
plan shots on the KSTAR tokamak. Recently, Char et al. [6]
used a (non-recurrent) learned model that predicted both scalar
and profile states in an autoregressive manner. They used this
model as a simulator to train a reinforcement learning agent,
which was then deployed on DIII-D. Whereas most of these
works focus on the control aspect of dynamics modelling, we
do a deeper investigation on the modeling task itself. We hope
our exposition on the modeling choices, evaluation techniques,
and ablation studies will provide useful insights for future
research in dynamics modeling and model-based control for
tokamaks.

III. METHOD

A. Data

We begin this section by describing the data used to train
our dynamics model. In total, we use 7,884 historical shots
from the DIII-D tokamak. We include both the ramp up and
flat top phases of each shot, and each shot is subdivided into
a number of ”time steps” 25ms apart from each other. For
each time step, we average the measurements collected 25ms
previous to that point in time.

We partition the input signals into two groups: state signals
and actuators signals. All of these signals can be found in
Table I. For the state signals, we use 17 different scalar states
and 6 so-called profile states. While scalar states provide a
summary statistic of one aspect of the current plasma state
with a single scalar, profile states are 1D measurements of
the plasma, and in our dataset, they consist of 33 discrete
measurements along the minor radius of the cross-section of
the tokamak. Following previous works in profile modeling
[6, 3], we choose to lower the dimensionality of the (originally
33-dimensional) profile states via Principle Component Anal-
ysis (PCA). In particular, we use four principal components
to represent all profiles states except for the pressure and q
profile. For these two signals, we use the first two principal
components to represent the profile. For actuator signals, we
use 21 different scalar values that summarize neutral beam
settings, current and density targets, gas settings, and plasma
shape control.

We choose to separate these signals into two groups (states
and actuators) since we assume that all of the actuators
are known a priori (from the perspective of the experiment
operator). As such, the model takes as input the current state
measurements, the current actuators settings, and the actuator
settings 25ms into the future. The model then predicts the
change in the state variables for the next 25ms. Once trained,
the model can predict many more steps into the future by
autoregressively feeding in predicted next states back into the
model as inputs.

B. Model Architecture and Training

In designing our model architecture, we use a recurrent
neural network (RNN) with a gated recurrent unit (GRU) [26].
We use 6 hidden layers (including encoder and decoder), each
with 512 hidden units and residual connections [27]. A visual
diagram of the model architecture can be seen in Figure 1. We
train our recurrent model with full length shots, the longest of
which is 225 time steps. We use a learning rate of 3e− 4 and
a weight decay of 0.001.

For the model output, rather than making point predictions,
we have two output heads, where each head predicts the mean
and log variance of a Gaussian distribution, respectively. The
negative log likelihood (NLL) is computed with this Gaussian
prediction, and the model is trained to optimize the NLL
loss. This method of predicting the parameters of a Gaussian
distribution via the outputs of a neural network is also known
as a mean-variance network or a probabilistic neural network



Group Representation Type Signal Dimension

States
Scalar

Shape
κ, aminor, Triangularity Top, Triangularity Bottom,

R and Z Coordinates of Magnetic Axis
6

Other
βN , Line Averaged Density, Internal Inductance (li), q0, q95,
n1rms, n2rms, n3rms, vloop, wmhd, Differential Rotation [6]

11

Profile Electron Temperature, Ion Temperature, Density, Rotation, Pressure, q 20

Actuators Scalar

Beam Power Injected, Torque Injected 2

Gas gasA, gasB, gasC, gasD 4

Shape 12 Shape Controls 12

Other Current Target, Density Target, Toroidal Field 3

Total Dimension: 58

TABLE I
LIST OF ALL STATE AND ACTUATOR VARIABLES

GRUStates

Actuators

Next
Actuators

Fig. 1. Architecture for the Recurrent Model. The encoder is a single layer MLP which embeds the states, actuators, and next actuators into a 512
dimensional space. This is fed to the GRU unit which outputs a 128 dimensional embedding which is concatenated with the original embedding before being
fed to the decoder. The double headed outputs are single linear layers outputting the mean and log variance of a Gaussian. Note the pluses with circles denote
a residual connection.

(PNN) [28, 29], and is one of the most widely used methods
of modeling predictive uncertainty. We extend our discussion
on modeling uncertainty in Section IV-A.

Following Chua et al. [30], we found it essential to place
a soft bound on the log variance using a learned lower and
upper bound to ensure stability during training. The difference
between the upper and lower bound is then added as an
additional penalty term to the loss function, encouraging the
width of the bounds to be as small as possible.

With the full dataset of shots available, we dedicate 90% of
shots for training, 5% for validation, and 5% for testing. The
shots are sorted chronologically before the splits are made, and
we ensure that the testing shots consist of the 5% most recent
shots. This is essential for testing since experiments (shots)
run on the same day tend to be similar. Further, the tokamak
is upgraded over time, which alter the dynamics of the plasma.
Hence, enforcing the chronological order not only allows us
to test the generalization of the learned dynamics model, but

also reflects the realistic test setting that a practitioner will be
faced with.

C. Evaluation

To start, we visualize a “replay” of a shot from the test set.
That is, we predict the full shot using only the initial state of
the plasma and the sequence of actuators. We show the results
of this in Figure 2, where we find that the model is able to
predict the trend across time for the majority of the plasma’s
states remarkably well.

To quantitatively evaluate the model’s accuracy, we use
Explained Variance (EV) as an interpretable metric. This
metric is used for the 1D regression setting where, given
ground-truth label y ∈ R and prediction ŷ ∈ R, the metric
is defined as

EV := 1− Var (y − ŷ)

Var (y)
(1)



Fig. 2. Replay of a Test Set Shot The replay was generated with an ensemble of models which sample from their respective Gaussian distribution at each
step. While the model has access to the true actuators throughout the entire shot, it only takes in the first true state and autoregressively predicts the rest. The
faded blue lines show one sampled trajectory, while the darker blue line shows the average over the trajectories. The black lines show the true values for the
experiment. The top row shows the reconstructed profiles at the last time step. Here, the x-axis is over the minor radius of the tokamak, where 0 is the closest
to the magnetic axis and 33 is closest to the wall. The other plots show the scalar values over time. The x-axis shows the time into the shot in ms.

Here, Var (y − ŷ) and Var (y) are the empirical variance of
the residuals and labels, respectively. Intuitively, this metric
shows how much of the variability in the dataset the model
can explain, with the maximum (best) score being 1. Since the
plasma’s state is multi-dimensional, we compute EV for each
of the dimensions and for each time step into the future.

We choose to compute the EV for the difference in the
plasma’s state at some time step t and the plasma’s initial
state. With respect to Equation 1, we set y = st − s0 and
ŷ = ŝt − s0, where st is a single dimension of interest in the
plasma state at time step t, ŝt is the model’s prediction at time
step t, and s0 is the initial state. We believe that this choice
in label better aligns with the task of predicting the evolution
of the plasma. Indeed, we found if we measure EV of the
plasma state (i.e. we do not subtract s0), EV is nearly perfect
for small t since the plasma does not evolve drastically from
time step to time step.

For each of the test shots, we evaluate the model by starting
prediction at different time steps during the shot (but always
seeing the history up to that point), and then autoregressively
predicting the remainder of the shot. We assemble the dataset
to compute EV using every possible starting time step in all
testing shots. We also compare the EV when sampling from
the learned distribution versus using only the mean of the
Gaussian. For this sampling method, we sample 30 different

trajectories and take the mean over them before computing the
EV.

Figure 3 displays the EV over time for a select set of
scalar quantities, the first component of the profiles, and
averaged across all input dimensions. We chose these scalar
signals because of their significance. In particular, βN is the
normalized ratio between plasma and magnetic pressure and
can be used as an indicator of economic performance; q0 and
q95 are two points along the q (or safety factor) profile, which
is an important indicator of stability of the plasma; and n1rms
is the root mean squared of magnetic fluctuations for toroidal
mode number n = 1, which can signify an event such as a
tearing mode in the plasma. We note that we expect n1rms in
particular to be hard to predict.

For each of these plots, EV starts low and grows over time,
which can be explained by a number of factors. First, there
is noise in the system which makes it difficult to predict on
the 25ms time scale. However, we hypothesize that the signal
starts dominating over the noise after a handful of time steps.
In addition, as the number of time steps starts to grow the
variance of st− s0 continues to grow (i.e. the denominator of
Equation 1), making it easier to achieve higher EV. In terms
of using the mean of the Gaussian versus sampling from it,
it seems sampling helps with short term predictions; however,
for long term predictions, it appears that using the mean can
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Fig. 3. Explained Variance per Time Step. Each of the colored lines show a different way of generating trajectories with the same models. The blue
lines simply take the mean of the Gaussian distribution while the red line samples from the Gaussian distribution at every step. Each curve shows the mean
over four different models with different random seeds. The shaded area shows the standard error. In the bottom row, we show the EV for the first principle
component of the corresponding profiles.

be more reliable.

IV. ABLATIONS

In this section, we examine a number of choices that
we have made for modeling and inference procedures. Our
objective is to provide valuable insights that can assist other
practitioners in the field when developing dynamic models of
plasma evolution in tokamak devices.

A. Uncertainty Quantification
Uncertainty quantification is a crucial aspect in any model-

ing or prediction task, especially in the face of system stochas-
ticity or insufficient data. Adequately modeling uncertainty has
been shown to be especially critical for dynamics models when
they are leveraged for control [30].

In our modeling efforts, we account for uncertainty by pro-
ducing predictive distributions instead of point predictions, and
we do so by relying on two different methods: by predicting
a Gaussian distribution and by ensembling predictions. These
two methods were utilized by Chua et al. [30] to capture the
aleatoric uncertainty (the uncertainty inherent in the system)
and the epistemic uncertainty (the uncertainty stemming from
insufficient data), respectively. The ensemble consists of 4
models, each of which have the same model architecture as
described in Section III-B, but each model was randomly
initialized and trained independently [29] on the same dataset.

Inspired by Chua et al. [30], we test three methods of
generating predictive distributions from our ensemble of net-
works, each of which predict Gaussian distributions. In the
first method, which we denote as “Mean-TS1”, we take the
mean prediction of the Gaussian distribution, but sample a
new model from the ensemble to generate the next state
every step. In the other two methods, we sample from the
Gaussian distribution, and we either choose to sample a model
from the ensemble every step or every shot. We denote
these two methods as “Sample-TS1” and “Sample-TSInf”,
respectively. Because of ensembling and the auto-regressive
nature of the model, we do not have a closed form predicted
distribution for the plasma’s state. Instead, we approximate this
distribution with independent Gaussians for each dimension
of the plasma’s state. The mean and standard deviations are
estimated from 30 samples from the dynamics model.

To evaluate the predictive uncertainties, we measure the
Coverage of a 90% prediction interval (PI) and the so-called
Miscalibration Area. At a high level, Coverage is the empirical
frequency of observations that fall within a constructed PI.
Ideally, if the PI is constructed to capture 1 − α probability
mass, (1−α)×100% of the data should fall within this interval.
Concretely, given data points yn ∈ R and (1 − α) intervals
PIn,(1−α) for n = 1, . . . , N , the (1− α) coverage is defined
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Fig. 4. Uncertainty Metrics over Time. The leftmost plot shows coverage of the 90% prediction interval. Models with good predictive uncertainties should
therefore match this 90% (shown as dotted black line). For the miscalibration area plot, the lower the score, the better calibrated the model is. Each of the
metrics is averaged over all output dimensions. Moreover the curves show the mean over four models, and the shaded region shows the standard error.

by

Coverage(1−α) =
1

N

N∑
n=1

1{yn ∈ PIn,(1−α)}.

Building on this, the deviation from the expected probability
is regarded as miscalibration, and Miscalibration Area takes
the average deviation over a set of expected probabilities.
Given a set of M expected probabilities drawn uniformly from
[0, 1]: pi ∼ U [0, 1], i ∈ [M ], and the observed Coveragepi

,
Miscalibration Area is calculated as

1

M

∑
i∈[M ]

| pi − Coveragepi
| .

Much like EV, these metrics are for single dimensional spaces.
As such, we compute these metrics for each of the dimensions
of the state space and average the results together to produce
a single metric. We also compute both metrics for each time
step into the future.

Figure 4 shows the Coverage, Miscalibration Area (com-
puted with the “Uncertainty Toolbox” [31]), and EV for the
three methods of generating predictive distributions. We see
that in the ensemble regime, purely taking the mean of the
distribution is detrimental. Not only does the EV suffer, but
we also observe extreme overconfidence as shown by the low
Coverage (“Mean-TS1” method in Figure 4).

Looking at the other two methods, we see that both methods
are very well-calibrated at the beginning in their short-term
predictions. Moreover, there is an improvement in average EV
over the single model case (displayed in the top left plot of
Figure 3), indicating the significance of utilizing an ensemble
approach beyond simply quantifying uncertainty. We find that
in all aspects, Sample-TS1 dominates over every other method.
This aligns with the suggestion given by Chua et al. [30].

As the prediction horizon increases, Miscalibration Area
steadily increases, and as evidenced by the Coverage plot, the
predictive distributions become increasingly under-confident

Modelling Choice Scaled One-Step MSE

MLP + Gaussian 1.20
LSTM + Gaussian 1.05

GRU + Point Prediction 1.06
GRU + Gaussian 1.0

TABLE II
ONE-STEP MSE FOR MODEL CHOICES WE SCALE THE MSE BY

DIVIDING EACH SCORE BY THE BEST MSE THAT APPEARING IN THE
TABLE. THAT IS, 1.0 IS THE BEST SCORE, WHILE A SCORE OF 1.20 MEANS
THAT THE MSE ACHIEVED WAS 20% WORSE THAN THE BEST MSE. EACH

SCORE IS THE MEAN OVER FOUR DIFFERENT SEEDS.

(i.e. higher than expected coverage). In many cases, one can
apply recalibration [32] methods to adjust the calibration; how-
ever, we are unaware of any such method for the autoregressive
setting.
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Fig. 5. Explained Variance Averaged over All Output Dimensions. Each
curve was generated by taking the average over four different trained models.
The shaded area shows the standard error. All curves were generated by taking
the mean output of the predicted Gaussian distributions (where applicable).



B. Recurrent Unit

Next, we consider the impact of the recurrent unit chosen.
We consider two alternatives besides the GRU component
discussed in Section III: a model with no recurrent unit at
all (e.g. an MLP) and a model with an LSTM [33] unit. From
Table II, one can see that the GRU is superior in terms of
single step MSE. Indeed, overall we see that GRU seems to
be a good choice when looking at shorter horizon predictions.
However, from Figure 5 it appears that LSTMs are better when
considering a longer time horizon. Therefore, one may want
to decide on the best recurrent unit based on the downstream
application of the dynamics model. In either case, we see that
recurrent units are essential since a standard MLP struggles
both with one-step MSE and EV.

C. Point vs Distributional Estimate

Lastly, we look at the effect of having the model learn a
distribution, as proposed in Section III, as opposed to having
the model output a point prediction and training with MSE
loss. Interestingly, even though the models that output a point
prediction are trained on MSE, they achieve worse MSE on
the test set according to Table II. We hypothesize this is
because learning a Gaussian distribution prevents the network
from overfitting on the training data. Indeed, we observe that
on the training set, models with point predictions achieve
roughly 20% lower MSE when compared with those that
output Gaussian distributions. On top of this, Figure 5 shows
that while models with point predictions have decent EV at
first, as one predicts further into the future they achieve worse
performance than even models with no recurrent units.

V. DISCUSSION

In this work, we show that deep recurrent models are a
powerful tool that can be used for full shot predictions in
tokamak devices. We emphasize that these models were simply
given the initial state and the actuators to be applied during
the duration of the shot. We encourage the fusion community
to leverage data driven models when designing controllers and
exploring actuator choices, and we hope that insights shown
in this work will prove useful in those pursuits.
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