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One mechanistic interpretation of baroclinic instability is that of mutual constructive interference of Rossby
edge-waves. While the two edge-waves and their relative phase-shifts are invoked as part of the mechanistic
interpretation, for example in relation to suppression of baroclinic instability over slopes, the phase-tilts of
the related normal modes are often presented instead. Here we highlight the differences between edge-wave
phase-shifts and normal-mode phase-tilts, in the context of an Eady problem modified by the presence of a
sloping boundary. The resulting problem remains tractable analytically, and the interacting Rossby edge-waves
can be asymmetric, in contrast to the standard Eady case. We argue and present evidence that the normal-
mode phase-tilt is potentially a misleading quantity to use, and edge-wave phase-shifts should be the ones that
are mechanistically relevant. We also provide a clarification for the mechanistic rationalization for baroclinic
instability in the presence of slopes (such as suppression of growth rates) that is valid over all parameter space,
in contrast to previous attempts. We further present evidence that there is a strong correlation between quantities
diagnosed from the GEOMETRIC framework with the edge-wave phase-shifts, but not the normal-mode phase-
tilts. The result is noteworthy in that the geometric framework makes no explicit reference to the edge-wave
structures in its construction, but the correlation suggests that in problems where edge-wave structures are not so
well-defined or readily available, the GEOMETRIC framework should still capture mechanistic and dynamical
information. Some implications for parameterization of baroclinic instability and relevant eddy-mean feedbacks
are discussed. For completeness, we also provide an explicit demonstration that the linear instability problem of
the present modified Eady problem is parity-time symmetric, and speculate on some suggestive links between
parity-time symmetry, shear instability, and the edge-wave interaction mechanism.

I. INTRODUCTION

Baroclinic dynamics and its turbulence are ubiquitous features in rotating stratified systems, playing a key role in systems
such as the Earth’s ocean and atmosphere as well as other geophysical/astrophysical systems, for the associated transport of
buoyancy and impacts the overturning circulation [e.g., 1–10]. Understanding the mechanisms and conditions for instability, its
transition to turbulence and its eventual saturation is of interest in understanding and modeling of the evolution in the relevant
rotating stratified systems.

It is not too controversial to say the subject of baroclinic instability is rather well-understood at least in the hydrodynamic
regime, where the linear instability phase of idealized models have analytical solutions [e.g., 11–14], and general stability
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theorems may be derived [e.g., 15–18]. The nonlinear phase can also be tackled, mostly by numerical means [e.g., 19–28].
Often of interest in those cases are the associated statistics such as meridional eddy buoyancy fluxes (baroclinic instability
usually leads to poleward eddy buoyancy flux in order for reduction of available potential energy [e.g., 1]), which plays a
role in the eddy-mean interaction in the relevant rotating stratified systems, and informs on the parameterization in numerical
general circulation models. A link that has been of particular interest is that of quasi-linear control, i.e., to what degree does
the linear instability characteristics have an imprint on the nonlinear dynamics. While one could argue that the processes that
are being parameterized are inherent manifestations of the nonlinear dynamics, and there is no strong reason that the relevant
linear analysis should play any role, the fact remains that there does appear a relation between the two [e.g., 29–33]. A piece of
work of relevance here is the GEOMETRIC framework of [34, 35] (see also [36, 37]), which has highlighted a link between the
associated eddy fluxes in terms of geometric quantities associated with eddy variance ellipses (such as anisotropy factors and
angles) and the linear instability properties. The scalings provided from the GEOMETRIC framework has found particular skill
in the parameterization of eddy buoyancy fluxes in numerical ocean general circulation models [e.g., 38–40].

In the present case we are interested in the instability characteristics of baroclinic instability in the presence of a slope, where
‘slope’ is broadly interpreted to mean a slope as a physical boundary (e.g. topography in the atmosphere and/or ocean), or
motion in the presence of an impermeable surface arising from the relevant fluid properties (e.g., adiabatic flow above/below a
sloping isentrope in planetary atmospheres, magnetic field effects in the solar tachocline above the radiative zone). Analogous
investigations of classical baroclinic instability in the presence of weak slopes in the linear and nonlinear regime exist, and
is of particular relevance in the field of oceanography. The presence of continental slopes is generally seen to suppress eddy
buoyancy fluxes over the slope regions [e.g., 41–58], with consequences for the material exchange between the shelf and open
ocean environment. One possible contributing factor for the observed suppression over slope regions is that the linear instability
is itself suppressed and/or less efficient over regions with slopes [e.g., 41–45, 47, 53, 54]. In relation to the GEOMETRIC
parameterization, the work of [56] has found, by diagnoses, that a tuning parameter α normally interpreted as a baroclinic eddy
efficiency for the feedback onto the mean state [e.g., 38] is suppressed over the slope regions. A slope suppressed α has been
found to lead to improvements in idealized prognostic calculations [57], providing additional evidence that there should be
reduced eddy feedback over slopes. The links between the observed suppression of this α parameter and possible links with
linear stability analysis are to be clarified, and is one of the goals of the present work.

Why exactly are baroclinic instabilities suppressed over slopes? For this, we note first that, in the absence of slopes, a
kinematic/mechanistic interpretation of baroclinic instability is normally given in terms of a pair of counter-propagating Rossby
edge-waves [e.g., 59–61] (although the concept of instability arising from a constructive interference of edge-waves appears
to hold for general shear instabilities [e.g., 62–66]). If the edge-waves are the building blocks of the instability, then knowing
how the edge-waves interact and form the instability should help with parameterization efforts. The mechanism is illustrated in
Fig. 1a for the classical Eady problem [12], and proceeds as follows:

1. Rossby waves are supported on potential vorticity (PV) gradients, and in the standard Eady set up, PV is only non-zero
and localized at the upper and lower boundaries, associated with buoyancy anomalies [e.g. 1], hence Rossby edge-waves;

2. the Rossby edge-waves carry PV anomalies, and the self-induced PV anomalies have associated with it a velocity (via PV
inversion, cf. [60]), such that the edge-waves are counter-propagating against the background mean flow;

3. the waves interact with each other, and depending on the phase-shift of the edge-waves, can lead to mutual amplification
of the wave displacement (the theoretical optimum being quarter of a wavelength or π/2 out of phase), as well as some
hindering/helping of the other wave’s propagation;

4. the counter-propagation against the mean flow and the mutual interaction between the waves can lead to a phase-locked
configuration, and if the phase shift is also conducive for displacement amplification, then we have (modal) instability.

How is the counter-propagating Rossby wave mechanism modified by the presence of slopes? In Fig. 1b we show a case
where the slope and the isopycnal configuration are in opposite orientations (the δ < 0 regime later), adapted from the work of
[53]. In this set up, the vortex tube when moved in the meridional direction y is allowed to stretch more in the vertical direction
z, and so the vortex tube strengthens more than it would relative to the flat case. Then it is perhaps clear what is going to
happen is this setting: the bottom edge-wave is modified because the slope (if small) reinforces the value of the PV value at the
bottom boundary, increasing the bottom PV gradient, and thus changing the characteristic of the bottom edge-wave. The work
of [43] alludes to this but stops short of elaborating on the details. The work of [53] goes slightly further by arguing that, in the
setting as in Fig. 1b, the bottom Rossby edge-wave would propagate faster (because the associated PV gradient is enhanced),
the associated doppler shifted velocity Ubot− c > 0 must be smaller in value (here U denotes the basic state velocity, and suffix
‘bot’ and ‘top’ have the expected meanings). In order to maintain phase-locking, we need U top − c to match the Ubot − c > 0,
and that can only happen if c decreases in value, which for Rossby waves means selecting a higher wavenumber, i.e. shorter
waves, providing an explanation for the observed instability bandwidth (see Fig 2a in the δ < 0 regime).

We argue here the explanation provided by [53] is incomplete. A first issue is that the argument solely based on phase-speed
matching does not extend to the converse case (δ > 0): the instability does not monotonically go to the longest wavelength as
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FIG. 1. Physical schematic for the current modified Eady problem. (a) Cross-section of the set up, showing the basic state linear flow, with
Rossby edge-waves drawn on at the vertical boundaries in an unstable configuration for a case where the interaction is symmetric (cf., a
standard Eady problem, δ = 0 here); see text for a description of the counter-propagating Rossby waves mechanism. (b) Head on view,
showing the basic state linear flow going in and coming out of the page, and the associated buoyancy profile via thermal wind shear relation.
The δ < 0 case (topography and basic state buoyancy profile at opposite orientations) is illustrated, where the contribution from the slope
reinforces the bottom PV gradient by allowing extra stretching of a fluid column.

the slope is increased in the other orientation. Second is that the argument as is does not provide an explanation for the growth
rate behavior over parameter space (at least not explicitly). One of our aims of this work is to provide a more complete argument
and support it with further analysis: essentially, the mutual interaction matters. We further clarify a point regarding the usage of
the term ‘phase-shift’. The work of [53] (and also in standard textbooks such as [1]) invoke ‘phase-shifts’ when talking about
the instability mechanism associated with Rossby edge-waves in terms of PV signatures, but demonstrate it with a phase-tilt
of the streamfunction eigenfunction, where the phase-tilt coincides with that of the anticipated optimum of π/2 (quarter of a
wavelength; (see for example Fig. 1d of [53], and essentially Fig. 4c in the present work). We provide arguments that this can
be misleading: it is the Rossby edge-wave basis in the PV signature and their phase-shifts that are relevant for the mechanistic
interpretation, and those phase-shifts generically do not coincide with the phase-tilts diagnosed from the streamfunction eigen-
function. We show here that while the diagnosed phase-tilt in the streamfunction happens to be the theoretical optimum π/2 for
the most unstable mode, the associated PV edge-wave phase-shifts are essentially never at π/2 over the whole parameter space,
the latter because, again, the mutual interaction matters.

While we show that the quantities diagnosed from the streamfunction eigenfunctions directly bear little resemblance to the
quantities associated with the PV edge-wave basis, we report here that applying the GEOMETRIC framework to the modified
Eady problem and performing analysis in terms of appropriate combinations of the normal-mode eigenfunctions, the resulting
quantities, in particular the vertical eddy tilt, do correspond well to the quantities diagnosed from the PV edge-wave basis, even
though the GEOMETRIC framework makes no explicit reference to the edge-waves. Within the GEOMETRIC framework and
in the context of linear theory, the suppression of the instability and eddy efficiency as invoked in parameterization of baroclinic
eddies is attributed principally to changes in the buoyancy anisotropy of the eddies. The link between GEOMETRIC and PV
edge-waves may be of further interest: in cases where the edge-wave basis are not well-defined, it may in fact be useful to
perform an analysis in the GEOMETRIC framework instead.

In Sec. II we formulate and provide an overview of the instability characteristics of the modified Eady problem, and make
precise our arguments on why we think the existing descriptions of the instability mechanism in the modified Eady problem
is incomplete. We additionally highlight that the modified Eady problem here is in fact parity-time (PT ) symmetric [e.g.,
67–70], which has consequences for the solution spectrum, but defer the expanded details and related discussion to Appendix
A. In Sec. III we provide a rephrasing of the modified Eady problem in terms of an edge-wave basis [cf., 61, 71], where the
presence of the slope (related to a topographic PV signature) manifests as an independent adjustable parameter that controls
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the degree of asymmetry between upper and lower edge-waves (the standard Eady problem being the case with symmetric
interaction). We provide an internally consistent physical rationalization of the instability mechanism, with explicit references
to the phase-shift and asymmetry in the wave amplitude ratios that is valid over all parameter space. We further clarify the issue
of ‘phase-shifts’, by comparing results from the edge-wave basis and a standard analysis of the streamfunction eigenfunction. In
Sec. IV we demonstrate links between the quantities of interest from the GEOMETRIC framework and the edge-wave analysis,
highlighting a link between the eddy angles with edge-wave phase-shifts [cf., 72], as well as providing an analysis for what
contributes to the suppression to the eddy efficiency parameter α that is prescribed in parameterizations. We summarize our
results in Sec. V, and discuss some implications of our results for parameterization of baroclinic processes.

II. OVERVIEW OF THE MODIFIED EADY PROBLEM

The physical set up is as illustrated in Fig. 1, for the Northern Hemisphere with Coriolis parameter f0 > 0. We start with the
quasi-geostrophic (QG) equations [e.g. 1] formulated on a f -plane with potential vorticity (PV) advection in the interior, and
QG buoyancy advection on the vertical surfaces, i.e.,

Dq

Dt
= 0, z ∈ (H,−Hb),

Db

Dt
= 0, z = H,−Hb, (1)

where the domain of interest is between z = H and z = −Hb(y), Hb(y) represents the bottom slope, D/Dt = ∂/∂t+ u · ∇ is
the material derivative, u is the geostrophic velocity with associated streamfunction ψ, ∇ the horizontal gradient operator, and
(x, y, z) denotes the zonal (East-West), meridional (North-South) and vertical co-ordinate. The PV q and QG buoyancy b are
defined as

q = ∇2ψ +
∂

∂z

f0
N2

0

b, b = f0
∂ψ

∂z
,

where N2
0 = ∂B/∂z is the buoyancy frequency associated with the prescribed background stratification, where B is the basic

state buoyancy profile to be prescribed with the basic state velocity U . Contributions from the small slope will arise through the
buoyancy equation in the advective term via w = u · ∇Hb, arising from the no-normal flow condition on the bottom boundary.

We make an assumption that ∂Hb(y)/∂y is small (more precisely, that (N0/f0)∂Hb/∂y is of order Rossby number [e.g.,
43, 53]), and that ∂Hb(y)/∂y can be approximated by a small constant contribution only in the boundary condition at z = −H .
Then, linearizing against the basic state u = Uex = Λz (and so B = −f0Λy by thermal wind shear relation), the governing
linear equations are(

∂

∂t
+ Λz

∂

∂x

)(
∇2ψ +

f20
N2

0

∂2ψ

∂z2

)
= 0, z ∈ (−H,H), (2a)(

∂

∂t
+ ΛH

∂

∂x

)
∂ψ

∂z
− Λ

∂ψ

∂x
= 0, z = H, (2b)(

∂

∂t
− ΛH

∂

∂x

)
∂ψ

∂z
−
(
Λ− N2

0

f0

∂Hb

∂y

)
∂ψ

∂x
= 0, z = −H. (2c)

Non-dimensionalizing by the horizontal length-scale L, vertical length-scale H , and time-scale T = L/U = L/(ΛH), we have(
∂

∂t
+ z

∂

∂x

)(
∇2ψ + F 2 ∂

2ψ

∂z2

)
= 0, z ∈ (−1, 1), (3a)(

∂

∂t
+

∂

∂x

)
∂ψ

∂z
− ∂ψ

∂x
= 0, z = 1, (3b)(

∂

∂t
− ∂

∂x

)
∂ψ

∂z
− (1− δ)

∂ψ

∂x
= 0, z = −1, (3c)

where F 2 = (f0L/NH)2 and is related to the inverse of the Burger number. A key non-dimensional parameter in the present
system is (in terms of dimensional variables)

δ =
∂Hb

∂y

(
N2

0

f0Λ

)
=
∂Hb

∂y

/
−∂B/∂y
∂B/∂z

=
∂Hb/∂y

s
, (4)

i.e. the parameter δ relates to the orientation of intersection between the background isopycnal slopes s with the bottom slope (a
δ < 0 case is illustrated in Fig. 1b); this parameter is related to the αT parameter in [47]. With that, the case δ < 0 and δ > 0
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FIG. 2. General instability characteristics for the case of l = 0. (a) Growth rate as a function of the non-dimensional zonal wavenumber k and
δ parameter, with darker shadings denoting higher values, sample contours of growth rates, and the green dashed line denoting kmax(δ) where
the growth rate is maximized. Also shown are the growth rates kc+i and phase-speed c±r for (b, c) δ = +0.5, (d, e) the standard Eady problem
δ = 0.0, and (f, g) δ = −0.5. The shaded regions in panels b-g denote the regions where there the growth rates are non-zero.

are sometimes known as retrograde or prograde configurations, although we will not be using that terminology here. One could
relate the δ parameter here to a topographic β term, but we refer to reader to the work of [43] for that since we do not invoke
that term in this work.

With appropriate horizontal boundary choices and conditions (periodic in zonal x direction, periodic or appropriate no-normal
flow boundary conditions in meridional y direction), we consider solutions of the form

ψ(x, y, z, t) = ψ̃(z) exp[i(kx− ωt)]g(y), (5)

where ψ̃ is a vertical structure function in the streamfunction, g(y) is an appropriate eigenfunction of the Laplacian operator so
that ∂2g/∂y2 = −l2g (e.g., combinations of sin ly and cos ly as appropriate), i =

√
−1, (k, l) are the zonal and meridional

wavenumbers, ω = kc = k(cr + ici) is the angular frequency, c is the (complex) phase-speed; we have modal instability if
ci > 0. The modified Eady problem has zero PV signature in the interior, so the vertical structure function satisfies

ψ̃(z) = a coshµz + b sinhµz, µ2 = F 2(k2 + l2). (6)

The constants a and b are fixed by the compatibility condition resulting from the vertical boundary conditions. Making the
shorthand C = coshµ and S = sinhµ, after some algebraic manipulation, the dispersion relation is given by

0 = c2 +
δ

2µ

(
C

S
+
S

C

)
c+

δ2

4µ2
−

(
1− δ/2

µ
− C

S

)(
1− δ/2

µ
− S

C

)
. (7)

Computing for c analytically or numerically, and denoting the solutions of the plus and minus branch as c± for ease of
discussion, plots of c±r and growth rate of the instability kc±i as a function of wavenumber k and δ can be constructed, and a
sample of this for the case l = 0 is shown in Fig. 2; we will focus mostly on the l = 0 case in this work since the gravest
meridional mode seems to be associated with the largest growth rates at fixed δ. Note that for our computations shown for
the remainder of this work that we take F = 1 for simplicity. Additionally, compared to more standard non-dimensional
formulations [e.g., 1, 43, 47, 53], our values of k and c are smaller and larger by a factor of 2 respectively, but kci remain the
same.

We make an observation that Eq. (3) is invariant under the transformation

P : (x, y, z) 7→ (−x,−y,−z), T : (t, ψ) 7→ (−t,−ψ), (8)

so the system is parity-time (PT ) symmetric, where parity refers to a flipping or mirroring of space, while time symmetry refers
to reversal of time [67–70]. Note that we regard δ as a given and prescribed parameter of the system, so δ does not transform
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under P . The fact that the equations are PT symmetric implies the solution spectrum has certain properties (e.g., Fig. 2b-g),
and has very suggestive links for shear instability as well as the edge-wave interpretation for shear instabilities. The details are
somewhat of a digression, and we refer the reader to Appendix A for details.

There are a few features that may be observed from Fig. 2:

1. when δ = 0 and there is instability, c±r = 0;

2. when δ ̸= 0 and there is instability, c+r = c−r , and if δ > 0, c±r < 0 (and vice-versa for δ < 0);

3. there is no instability for δ ≥ 1, but instability seems to persist for δ < 0;

4. relative to the standard δ = 0 case, the most unstable wavelength kmax decreases somewhat for δ > 0, but persistently
increases for δ < 0, with the unstable bandwidth shifting to larger wavenumbers.

A test of the wave interaction interpretation would be whether we are able to rationalize the changes in the instability character-
istics via changes to the properties of these edge-waves that is valid over the whole parameter space.

The first point simply arises from our choice of problem formulation, where our domain goes from z = ±1 and our velocity
profile is anti-symmetric about z = 0 (cf. c±r = (U top + Ubot)/2 = 0.5 with the more standard formulations and choice
of non-dimensionalization in other works [e.g., 1, 43, 47, 53]). The second point relates to the first point, and together with
the third point can be rationalized as follows. Noting first that, with counter-propagation of Rossby edge-waves against the
mean flow, the top wave intrinsically propagates to the left, while the bottom wave would propagate to the right. Noting that
∂Hb/∂y ∼ δ, the presence of the slope is to alter the background PV gradient on which the the edge-waves are propagating
(cf. Fig. 1b, via PV stretching), and in the present setting, δ > 0 counteracts while δ < 0 reinforces the PV gradient provided
by the background state; mathematically this is through the (1 − δ) term in Eq. (3). For δ > 0, the bottom wave is weakened
and propagates slower for a fixed wavenumber, and one might expect the instability has more of the characteristic of the top
wave propagating left, resulting in an unstable mode with c±r < c±r (δ = 0) = 0. On the other hand, for δ < 0, the bottom
wave is strengthened and propagates faster for a fixed wavenumber, the bottom wave dominates and resulting in an unstable
mode with c±r > c±r (δ = 0) = 0. These observations can be verified with standard formulations, where we have instead
c±r ≶ (Umax+Umin)/2 = c±r (δ = 0) = 0. The third point is also consistent with the mechanistic picture: there is no instability
for δ ≥ 1, because counter-propagation is then no longer possible, but for δ < 0 counter-propagation appears to always be
possible, and could in principle persist at increasing wavenumbers, albeit over a decreasing bandwidth. Some of these points
were already noted by the work of [47, 53].

The fourth point however is not covered by the explanation given in [47, 53] as such (although it was neither work’s main
focus). Those works argue that for phase-locking the edge-wave phase-speeds must match, and therefore look for conditions
where the phase-speeds match. While that argument functions well for the δ < 0 regime, it (1) fails for the opposite case of
δ > 0, where the most unstable wavenumber do not uniformly go to longer waves or smaller wavenumbers (green dashed line of
Fig. 2a), and (2) does not explain the changes in the strength of instability over parameter space. The reason we will argue for
is simply that mutual edge-wave interaction matters, is part of the solution and central to the counter-propagating Rossby wave
mechanism, and cannot simply be ignored, as is done when considering simply phase-speeds can match. The associated mutual
interaction leads to extra helping/hindering of the wave propagation that affects phase-locking, and strength of interaction affects
the growth rates.

III. CLARIFYING THE INSTABILITY MECHANISM IN TERMS OF ROSSBY EDGE-WAVES

A. edge-wave formulation in phase-amplitude variables

To quantify the impact of slopes and its modification to the background PV on the wave interaction mechanism, here we
consider expressing the problems explicitly in terms of Rossby or PV edge-waves and its interaction, rather than in the stream-
function eigenfunction. The streamfunction eigenfunction ψ̃(z) as it stands is in general a tilted structure in space that could
be regarded as a superposition of edge-wave structures, and the problem here is in the definition of an appropriate basis of PV
edge-wave functions. While there is a general approach for constructing the PV edge-waves in terms of wave activity variables
such as pseudomomentum and pseudoenergy [e.g., 18, 61, 66, 73, 74], we do not need that amount of complexity here since
the edge-wave locations are well defined for the present problem. For elucidation purposes we will derive the structure and
governing equations explicitly.

Consider expressing the streamfunction eigenfunction ψ̃(z) in terms of a linear superposition of untilted structures focused at
the top and bottom boundary (subscript T and B respectively) such that

ψ̃ = ψ̃T + ψ̃B , q̃ = q̃T + q̃B , (9)
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where tilde denotes functions that are z only. Assuming modal solutions as in (5), q̃ and ψ̃ are related via

q̃ = −µ2ψ̃ +
∂2ψ̃

∂z2
, (10)

subject to the boundary conditions that

∂ψ̃T

∂z

∣∣∣∣∣
z=−1

= 0,
∂ψ̃B

∂z

∣∣∣∣∣
z=+1

= 0. (11)

Denoting δ̂ to be the Dirac δ-distribution, if we take (abusing mathematical rigor somewhat)

q̃B = q̂B(t)δ̂(z + 1), q̃T = q̂T (t)δ̂(z − 1), (12)

i.e. PV anomaly of an edge-wave is non-zero only at the associated locations, then either by manually constructing a solution [cf.
71], or by noting that we are in effect looking for the Green’s function associated with the one-dimensional Helmholtz operator
(in Eq. 10) subject to homogeneous Neumann conditions (in Eq. 11), for which solutions are documented (e.g., online Green’s
function libraries, with appropriate changes of variable), or otherwise, the relevant solutions are

ψ̃B = −q̂B
coshµ(1− z)

µ sinh 2µ
, ψ̃T = −q̂T

coshµ(1 + z)

µ sinh 2µ
. (13)

Note that, with (13),

b̃ =
∂ψ̃

∂z
=

{
−q̂T , z = +1,

+q̂B , z = −1,
(14)

demonstrating the explicit relation between buoyancy and PV anomalies, and that the top edge-wave induces no PV anomaly at
the location of the other edge-wave.

Taking q̂T = T eiϵT and q̂B = BeiϵB , substituting (13) into the governing equations (3b, c) and considering the real and
imaginary parts lead to

1

T

∂T

∂t
= +

k

µ sinh 2µ

B

T
sin∆ϵ, (15a)

1

B

∂B

∂t
= − k(1− δ)

µ sinh 2µ

T

B
sin∆ϵ, (15b)

−1

k

∂ϵT
∂t

= +

[
1− 1

µ sinh 2µ

(
cosh 2µ+

B

T
cos∆ϵ

)]
, (15c)

−1

k

∂ϵB
∂t

= −
[
1− (1− δ)

µ sinh 2µ

(
cosh 2µ− T

B
cos∆ϵ

)]
, (15d)

where we define ∆ϵ = ϵT − ϵB as the phase-shift of the edge-wave in terms of PV signature; ∆ϵ > 0 means the top wave has
a PV signature that is lagging behind the bottom wave PV signature (cf. Fig. 1a). The set of equations are cast in a form that
is more similar to Eq. (14) of [62] for the dimensional formulation of the Rayleigh shear profile problem, but is equivalent to
Eq. (7) of [71], who consider the phase-shift in terms of the buoyancy variable instead. Note that since ψ̃ ∼ −q̃, the phase-shift
applies also to the streamfunction; contrast this to ṽ = ikψ̃, which would be shifted by π/2, and b̃which would be shifted instead
by π. Here, k/(µ sinh 2µ) plays the role of the vertical interaction (cf. e−k in [62] for the Rayleigh profile in the barotropic
setting). Taking the amplitudes T and B as positive without loss of generality, we note that we need ∆ϵ ∈ (0, π) for growth of
edge-waves, which is consistent with what we know about baroclinic instability: an unstable mode has the PV, streamfunction
and meridional flow patterns leaning against the shear (top signal lagging bottom signal; see Fig. 4 for example), while the
buoyancy pattern leans into the shear corresponding to a shift by π [e.g., 1].

While there are four independent variables, the equations depend only on the amplitude ratios and the phase difference, and
could be considered a two-dimensional dynamical system. Following the notation of [62], we define the amplitude ratio as
tan γ = T/B. Noting then various trigonometric identities such as

B2 − T 2

B2 + T 2
= cos 2γ,

B2 + T 2

2BT
=

1

2 sin 2γ
,
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FIG. 3. Phase portrait and the fixed points of the dynamical system (stable and unstable mode marked on as a circle and cross respectively),
for three choices of δ, at wavenumber (k = kmax(δ), l = 0).

(15) takes the form

∂γ

∂t
=

k

µ sinh 2µ
sin∆ϵ(cos 2γ + δ sin2 γ), (16a)

∂∆ϵ

∂t
=

2k

µ sinh 2µ

[(
1− δ

2

)
cosh 2µ− µ sinh 2µ+

(
1

sin 2γ
− δ

2
tan γ

)
cos∆ϵ

]
. (16b)

The set of equations should be compared with Eq. (15) of [62], noting the difference in the interaction function (k/(µ sinh 2µ) vs.
e−k), arising from the differing physics between the systems being considered, encapsulated in the different Green’s functions
of the associated system.

A dynamical system could be described in terms of phase portraits [e.g., 75], and phase portraits associated with the most
unstable wavenumber k (with l = 0) for sample choices of δ are shown in Fig. 3. Note that the stable and unstable equilibrium
points of the dynamical system (repellers and attractors) are associated with the unstable and stable normal-modes respectively
in the unstable bandwidth [cf. 61, 62]. As the stability boundaries are passed there is a bifurcation, and the equilibrium points
become centers located at γ = 0, π/2, and ∆ϵ = ±π (not shown), associated with neutral and freely propagating edge-waves
with no change in amplitude or phase. The non-equilibrium points have been argued to correspond to non-modal growth [e.g.,
62, 71], and the phase portraits indicate the regime transition in terms of edge-waves as the non-modal instabilities develop, but
we leave this for the interested reader to pursue.

Focusing on the unstable modes (the attractors), we note that the associated PV phase-shifts ∆ϵ is not π/2, even for the δ = 0
case, which seems to contradict what is generally documented about the Eady problem having a phase-shift of π/2 [e.g., 1].
There is in fact no discrepancy: taking the δ = 0 case as an example (i.e., standard Eady problem), we compute the values of
γ and ∆ϵ associated with the stable equilibrium point and construct the edge-wave couplets as well as their sum, and these are
shown in Fig. 4 (recalling q̂ = BeiϵB , we take the reference to beB = 1 and ϵB = 0) . While ∆ϵ ̸= π/2, their combination does
lead to a phase-tilt in the streamfunction eigenfunction ∆ϵeigen = π/2, and the reconstructed solution can be shown to coincide
exactly with the one obtained from the more standard normal-mode analysis. A non-optimal shift is realized simply because the
mutual interaction from the interaction function (which is wavenumber dependent) is also part of the solution, and provides extra
hindering of the wave propagation required for phase-locking [e.g., 61, 62, 65, 72]. Considerations based simply on phase-shift
(or phase-tilt) and/or phase-speed matching is incomplete, because it is ignoring the interaction component.

The statement in the above paragraph holds true for different values of k and δ (not shown). For synchronized growth of
edge-waves associated with stable equilibrium points of (16), we have ∆ϵ ∈ (0, π) and γ ∈ (0, π/2), so that the growth rate can
be inferred from (15), given by

σ =

∣∣∣∣ k

µ sinh 2µ

1

tan γ
sin∆ϵ

∣∣∣∣ = ∣∣∣∣ k(1− δ)

µ sinh 2µ
tan γ sin∆ϵ

∣∣∣∣ , (17)

which numerically coincides with that of Fig. 2a (not shown). The phase-speeds of the normal-modes cr can also in principle be
reconstructed in principle from the edge-wave basis via consideration of the self- and induced-propagation by the edge-waves
[cf., 61, 66]. The edge-wave formulation here encompasses the standard formulation of the modified Eady problem, which is
not surprising given it is really a reformulation of the same problem, but expressing it in a basis that allows for a mechanistic
interpretation to be drawn from.
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FIG. 4. Edge-waves components and the combination demonstrated for the most unstable mode of the standard Eady problem (δ = 0). (a, b)
Associated edge-wave structure ψT,B (referenced by B = 1 and ϵB = 0) given in (13) of the attracting fixed point in Fig. 3b, with ∆ϵ ̸= π/2.
(c) The reconstructed normal-mode ψ = ψT + ψB that has a phase-tilt ∆ϵeigen = π/2.

We show in Fig. 5 the amplitude ratios γ and edge-wave phase-shift ∆ϵ of equilibrium points of (16) associated with unstable
modes. Starting first with the amplitude ratio γ, it is clear that γ only depend on δ. The analytic expression for γ can be obtained
by noting that, with synchronized growth and growth rate given by (17), we must have (with appropriate normalization and/or
shifts in the phase) ∣∣∣∣ 1

tan γ

∣∣∣∣ = ∣∣∣∣BT
∣∣∣∣ = √

1− δ, (18)

which is k independent. Notice that: (1) |B/T | is ill-defined for δ > 1, corresponding to the case where there is no instability
(since there is no counter-propagation possible for the bottom wave as the bottom background PV gradient has switched signs);
(2) |B| = 0 for δ = 1 for physically sound solutions (coinciding with vanishing PV gradient at the bottom); (3) |T | > |B| for
δ ∈ (0, 1), i.e. weaker bottom wave; (4) |T | = |B| for δ = 0, and there is no asymmetry in the standard Eady case; (5) |B| > |T |
for δ < 0, and there is always instability possible for δ < 0. The observations are consistent with our physical expectations
highlighted in the previous sections.

The behavior of ∆ϵ in Fig. 5c is in line with kinematic arguments from edge-waves that help or hinder each other’s propaga-
tion, with implications for phase-locking. We generally need ∆ϵ ∈ (0, π) for constructive interference. At fixed δ, long waves
propagate faster (since these are Rossby edge-waves), and the edge-waves need to hinder each other to maintain phase-locking,
which for instability requires ∆ϵ ∈ (π/2, π). The converse holds for shorter waves, requiring ∆ϵ ∈ (0, π/2) [e.g., 61].

B. Physical rationalization of the interacting edge-wave process

Our interpretation for the role of topographic PV on the Counter-propagation Rossby Wave mechanism is then as follows.
Starting with the δ < 0 case, the bottom wave is strengthened and propagate faster, but also leads to a stronger induced velocity
at the top wave. The strong interaction leads to a stronger hindering effect for fixed wavenumber, which will in general lead
to a sub-optimal phase-shift configuration. One way to drive the configuration towards a more optimal configuration would be
to go towards shorter waves, which offsets the increased interaction introduced by a stronger bottom wave from the fact that
δ < 0 (since the interaction function goes like k/(µ sinh 2µ) for the present Eady system). This also then explains the reduction
in the growth rate as we shift towards shorter waves (Fig. 2a): while the efficiency could be changed via the phase-shift, the
interaction strength is decreased. It would seem that, in the δ < 0 setting, it is always possible to compensate for the increase in
interaction from δ → −∞ by reducing the interaction function via increases in k, albeit over an increasingly narrow bandwidth
of wavenumbers. The phase-speeds are positive (Fig. 2g) because the bottom edge-wave propagating to the right (or eastwards)
dominates over the top edge-wave.

For the 1 > δ > 0 regime, the bottom wave is weakened (from (18)) and leads to a weaker hindering effect in general. What
this means is that the top wave is now propagating too fast, and this effect would have to be offset by increasing the interaction
function via decreasing in the wavenumber, i.e., going to longer wavelengths. However, unlike the δ < 0 case, reduction in
k leads an increase in edge-wave propagation since we are dealing with Rossby edge-waves, and beyond a certain point it is
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FIG. 5. (a) Normalized amplitude ratio γ in multiples of π as a function of k and δ, and (b) the same quantity along the line of kmax(δ) (red
line, with γeigen as faint green line); note 0.25 here denotes equal amplitude at top and bottom. (c) The normalized edge-wave phase-shift
∆ϵ in multiples of π as a function of k and δ, and (d) the same quantity along the line of kmax(δ) (red line); note +0.5 here denotes that the
top edge-wave lags behind the bottom edge-wave by a quarter wavelength. The line of kmax(δ) has been marked on panel (a, c) as the green
dashed line.

simply not possible for the bottom wave’s induced velocity and the background flow to hold the top wave into a phase-locked
position, and instability is no longer possible. As δ ↗ 1, the PV gradient vanishes, counter-propagation is no longer possible,
and no phase-locking can be achieved. Note that δ ≥ 1 coincides with the non-satisfaction of the Charney–Stern condition that
it is necessary for the background PV gradient to change sign in the domain in order for instability, which had previously been
interpreted as a condition required for counter-propagation [e.g., 61, 74, 76]. The phase-speeds are negative (Fig. 2c) because
the top edge-wave propagating to the left (or wastwards) dominates over the bottom edge-wave.

C. Analysis in terms of the instability normal-mode

Here we provide an analogous analysis to demonstrate how different the results are if the instability streamfunction eigen-
function from (5) is utilized instead. Focusing on unstable modes, given a value of c, we can obtain the coefficients a and b for
the vertical structure function ψ̃(z) from (6). Given ψ̃(z) = ψ̃r + iψ̃i, we can compute for a (normalized) amplitude and phase
of the eigenfunction via [e.g., 1, 53]

|ψ̃(z)|2 = ψ̃2
r(z) + ψ̃2

i (z), ϵ(z) = arctan
ψ̃i(z)

ψ̃r(z)
. (19)

Analogous to our edge-wave analysis in Sec. III, we introduce the quantities

tan γeigen =
|ψ̃(z = 1)|
|ψ̃(z = −1)|

, ∆ϵeigen = ϵ(z = 1)− ϵ(z = −1) (20)

as a measure of the amplitude ratio and phase-tilt (rather than phase-shift) between the streamfunction eigenfunction at the top
and bottom of the domain respectively. Fig. 6 shows the amplitude ratio γeigen and phase-tilt ∆ϵeigen as measured through the
eigenfunction ψ̃(z).
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FIG. 6. Analogue of Fig. 5 but for quantities diagnosed from the normal-mode directly. (a) Normalized amplitude ratio γeigen in units of π
as a function of k and δ, and (b) the same quantity along the line of kmax(δ) (green line, with γ from Fig. 5b as faint red line); note 0.25 here
denotes equal amplitude at top and bottom. (c) The normalized phase-tilt in the streamfunction ∆ϵeigen in units of π as a function of k and δ,
and (d) the same quantity along the line of kmax(δ) (green line, with ∆ϵ from Fig. 5d as faint red line); note +0.5 here denotes that the top
edge-wave lags behind the bottom edge-wave by a quarter wavelength. The line of kmax(δ) marked on as green has been marked on panel
(a, c) as the green dashed line.

Starting first with the amplitude ratio, we note that the standard Eady case with δ = 0 has γeigen = π/4 throughout the unstable
bandwidth, i.e. the top and bottom of the normal-mode have equal amplitude, and in fact the normal-mode is symmetric about
z = 0 for δ = 0 (not shown; [cf., 77]). For δ > 0, γeigen > π/4, i.e. the normal-mode amplitude at the bottom is smaller than
that at the top, and conversely for δ < 0, consistent with results from physical expectations and edge-wave analysis. However,
compared to the equivalent graph in terms of edge-waves in Fig. 6a, b, there is a wavenumber dependence in γeigen, when our
physical argument would suggest that the amplitude ratio should only depend on δ. The observation of γeigen is consistent if we
remember that diagnosed quantities between two separate edge-wave structures do not necessarily need to be the same as that
diagnosed from their combinations.

For the phase-tilt in the streamfunction, in the standard Eady case with δ = 0, the maximally growing mode has ∆ϵeigen =
π/2, where the top signal lags behind the bottom signal by quarter of a wavelength. As the wavenumber increases, the tilt
in the normal-mode reduces, while the opposite is true as the wavenumber decreases. For δ ̸= 0, the behavior of ∆ϵeigen in
the streamfunction is asymmetric with the sign of δ. Notably, the most unstable wavenumber for δ < 0 has ∆ϵeigen = π/2,
indicating the most unstable mode is still able to access a standard Eady-like configuration in the normal-mode, albeit with
decreasing growth rate. However, while a phase-shift of π/2 would be the optimum configuration for constructive interference
in the edge-wave interaction framework [e.g., 60, 61, 71], we should note that the phase-shift ∆ϵ need not coincide with the
phase-tilt ∆ϵeigen (cf. Fig. 6c, d and Fig. 5c, d). As was demonstrated in Fig. 4, ∆ϵ is generally not at the expected optimal
because one needs to take into account of the interaction function.

One could then wonder whether there is in fact any specific meaning to the value of the phase-tilt ∆ϵeigen. It is certainly true
that the phase-tilt ∆ϵeigen (as well as the PV edge-wave phase-shift) should relate to an energetic interpretation of the instability
[e.g., §6.7.2 of 1], in relation to the fact that perturbations of meridional velocity v′ and buoyancy b′ should be overall positively
correlated, so that the zonally averaged meridional buoyancy flux v′b′ is poleward, leading to a decrease in available potential
energy. While the statement about the energetics is true, the problematic aspect is linking that to the raw value of ∆ϵeigen. Since
in the linear instability analysis we should only be talking about rates and efficiencies, we might suspect that ∆ϵeigen = π/2
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would correspond to maximum efficiency in v′b′ in reducing available potential energy, i.e. maximum linear correlation. A
straightforward linear regression analysis for the correlation of v′ and b′ over the whole spatial domain (not shown) indicates
this is simply not true: v′ and b′ are maximally correlated in the linear sense at small k, and its dependence as a function of
k and fixed δ bears no resemblance to ∆ϵeigen or the growth rate plots (the scatter plots of v′ against b′ becomes increasingly
‘circular’ with increasing k). The behavior of v′b′ itself (making the choice of normalizing the eigenfunction ψ̃(z) to have unit
magnitude) also bears no resemblance to ∆ϵeigen or the growth rate: for fixed δ, maximum v′b′ occurs at a k larger than the
wavenumber at which there is maximum growth (not shown). So while ∆ϵeigen would in some way be related to the energetic as
well as the kinematic/mechanistic view of the instability problem, it may perhaps be simpler to not attribute too much meaning
to ∆ϵeigen. The fact that ∆ϵeigen = π/2 for the most unstable mode is curious and is perhaps worthy of further exploration,
but we argue here that if we are invoking the edge-wave interaction mechanism, it is perhaps quantitatively misleading or not
entirely appropriate to provide evidence in terms of something that is not in edge-wave form.

IV. ANALYSIS IN THE GEOMETRIC FRAMEWORK

The previous section highlights subtleties when using the streamfunction eigenfunction with a mechanistic explanation, and
argues that it is the edge-wave basis that are more dynamically relevant. Does that mean the instability eigenfunctions have little
utility relative to the edge-wave basis? We provide a processing of the eigenfunctions in terms of the GEOMETRIC framework
of [34, 35] (see also [36, 37]) that considers geometric quantities such as anisotropy factors and angles of eddy variance ellipses,
and turns out to have mechanistic links with baroclinic instability (cf. the barotropic case, considered in [72]). The quantitative
links between energetics and mechanistic interpretations are demonstrated here for a case where both the edge-wave basis
and eddy fluxes are well-defined. The strong correlation of the geometric quantities with that diagnosed from the edge-wave
framework provides a suggestion that in cases where the edge-wave basis is less well-defined (e.g., the linear Charney–Green
problem, or data from the nonlinear evolution of baroclinic instability), the GEOMETRIC framework may still be utilized and
has energetic and dynamical relevance.

As a recap to the work of [34–36], in the QG limit, it is known that the eddy forcing on to the mean state is determined by the
object [e.g., 34]

E =

−M + P N 0
N M + P 0
−S R 0

 , (21)

with

M =
1

2
v′2 − u′2 = −γmE cos 2ϕm cos2 λ, N = u′v′ = γmE sin 2ϕm cos2 λ,

P =
1

2N0
b′2 = E sin2 λ, R =

f0
N2

0

u′b′ = γb
f0
N0

E cosϕb sin 2λ, S =
f0
N2

0

v′b′ = γb
f0
N0

E sinϕb sin 2λ,
(22)

whereM,N denote the eddy momentum fluxes (related to the Reynolds stresses), R,S denote the eddy buoyancy fluxes (related
to the form stresses), P is the eddy potential energy, and E = P +K is the total eddy energy, with the eddy kinetic energy K
defined in the usual way. In the framework, E becomes the only dimensional variable, which is arbitrary up to a multiplicative
constant for the linear instability problem. By contrast, the non-dimensional geometric quantities related to the eddy variance
ellipses are independent of the arbitrary mulitplicative constant, and are given by

γm =

√
M2 +N2

K
, γb =

N0

2f0

√
R2 + S2

KP
,

sin 2ϕm =
N√

M2 +N2
, sinϕb =

S√
R2 + S2

,

K

E
= cos2 λ,

P

E
= sin2 λ, tan2 λ =

P

K
,

(23)

where the overbar denotes a mean operator (zonal average for the present work), γm,b are the momentum and buoyancy
anisotropy parameters, ϕm,b are angle parameters related to the eddy momentum and buoyancy ellipses, while λ is an angle
relating to the eddy energy partition. Note that there is a degeneracy in the angle parameters, where for example we could define
ϕb in terms of cosϕb = R/

√
R2 + S2 as in [34].

One idea relating to parameterization of eddy fluxes is that the non-dimensional geometric parameters might be more universal
and related to dynamics and/or instability characteristics, so are perhaps be easier to parameterize. For example, it is known that
in barotropic/horizontal shear instabilities, ϕm directly relates to the tilt angle of the eddy, where if the eddy tilts into the shear
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we have instability, while if eddy tilts with the shear we would have the converse, with eddies fluxing momentum back into the
mean state [e.g., 34, 36, 37, 72, 78]. In the present modified Eady problem, it can be demonstrated that it is the eddy buoyancy
rather than momentum fluxes that are non-trivial, consistent with the present set up leading to a pure baroclinic instability. The
parameters of interest are then

tan 2ϕt = γb tan 2λ, γt =
cos 2λ

cos 2ϕt
, (24)

where ϕt and γt are the angle and anisotropy parameter of a vertical eddy in physical space [34, 36, 79]. From this, we note that
we can define a non-dimensional parameter α where

α = γb sinϕb sin 2λ = γt sinϕb sin 2ϕt. (25)

The α parameter is a combination of geometric parameters that closely relates to the Eady growth rate, is bounded in magnitude
by unity in the QG limit [34], and is one of the tuning parameters that is at present prescribed in parameterizations of baroclinic
restratification effects [e.g., 39]. An interest here is on the dependence of ϕt and α on δ, and what is the dominant contribution
to the variation of α, with the possibility to aid/inform our parameterization efforts for baroclinic eddies and its feedback onto
the mean state in theoretical and/or numerical models [e.g., 39, 80].

For the case of l = 0, i.e. no meridional variation, u′ = 0, and so R = N = 0 while M2 = K, and so

γm = 1, ϕm = 0, ϕb = ±π
2
, α = ±γb sin 2λ = γt sin 2ϕt. (26)

For the present set up it is the sign of α that distinguishes whether we have instability or not, since ϕb is defined in term of the
zonal mean meridional advection of eddy buoyancy fluxes S, which is the principal interest for baroclinic instability (S > 0 is
poleward flux of buoyancy, and so sinϕb and α are both positive).

Fig. 7 shows the value of the vertically averaged α, buoyancy anisotropy γb and the vertical tilt ϕt over the unstable region
in parameter space. It may be seen that α correlates strongly with the growth rate (Fig. 2a), in line with the analysis of [34].
Although the values of α reported here are around an order of magnitude larger than what are used in parameterizations for
numerical ocean models [e.g., 39], we note that the diagnosed value here is for the linear instability analysis, whilst the values
used in parameterizations are applied as averages over both energetic and quiescent regions and to mimic the feedback during
the nonlinear phase. The sensitivity of α to δ is of most relevance, suggesting it should be α that is decreased in value in
the presence of slopes, particularly in the δ < 0 scenario (where topographic and isentropic/isopycnal slopes are opposite in
orientation), consistent with a previous diagnostic result in the nonlinear regime [56].

The dominant contribution to the variation of α (in both the average and pointwise sense) is principally through the buoyancy
anisotropy parameter γb (see Fig 7a and c). The eddy energy partition angle parameter λ plays a secondary role, since sin 2λ
is diagnosed to be close to 1 in value in the pointwise sense (not shown). The presence of a sloping boundary would naturally
be expected to force an anisotropy, and the feature of α correlating well with γb and not sin 2λ seems to be consistent with
diagnoses from numerical simulations in a global ocean circulation model in the nonlinear regime [80], and diagnoses in the
nonlinear regime of an idealized baroclinic flow over a topographic slope (personal communication with Huaiyu Wei and Yan
Wang). The decreasing values of γb for fixed δ as k is increased corresponds to a statement in the previous section that the scatter
plot of v′ against b′ becomes increasing ‘circular’ in the same limit [cf. 34]. If we consider instead α in terms of ϕt and γt, then
we see here that sin 2ϕt would not correlate well with α, and neither would γt (not shown). So while there is a flexibility for
the form of α used, it would seem that, in the linear regime at least, it is γb that is more relevant, and the presence of the slopes
modifies the anisotropy of the state.

The vertical eddy angle ϕt has the behavior that ϕt ↘ 0 as k is increased for fixed δ (Fig. 7e). One interpretation of the tilt
angle could be that it is related to ∆ϵ of two interacting edge-waves [cf., 72, for the horizontal case], having an optimal phase
shift leading to instability (ϕt = π/4 might be expected to be analogous to the optimum phase-shift of ∆ϵ = π/2; cf. [72] for
the case where the velocity shear is purely in the horizontal). Indeed, Fig. 7e, f showing ϕt over parameter space resembles that
of ∆ϵ over parameter space, as shown in Fig. 5c, d. In that sense, even though ϕt is defined in terms of S ∼ v′b′ (through the
definition of γb) and makes no reference to edge-wave structures whatsoever, there are apparent mechanistic links of ϕt with ∆ϵ.
In that regard, ϕt could perhaps serve as a possible proxy for edge-wave phase-shifts that is easier to diagnose in cases where
the definition of edge-wave structures becomes more ambiguous (e.g., dynamics in a nonlinear setting). Again, the phase-tilt
∆ϵeigen (Fig. 6c) bears little resemblance to ϕt (Fig. 7e) nor ∆ϵ (Fig. 5e) over parameter space.

The diagnosed results above are presented as vertically averaged quantities, which does not demonstrate the asymmetry
introduced with δ. Examination of the full vertical profiles does in fact show the quantities to be increasingly concentrated
towards the lower boundary when δ < 0 (and vice-versa), consistent with the known behavior of γ in (18) and Fig. 5a, the lower
edge-wave being the increasingly dominant contribution (not shown). We close this section with a note that the above results
should be interpreted with the caveat that the diagnoses are in the linear and nonlinear regime respectively, and the two are not
necessarily directly comparable (e.g., it is not obvious that the instability has to leave a strong imprint on the nonlinear eddy
fluxes locally).
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FIG. 7. Vertically averaged (a) αz = γb sin 2λ
z

(c) buoyancy anisotropy factor γbz and (e) vertical tile angle ϕt
z

(in multiples of π) as a
function of k and δ, and (b, d, f ) the respective quantities along the line of kmax(δ). The line of kmax(δ) marked on as green has been marked
on panel (a, c, e) as the green dashed line.

V. CLOSING REMARKS

A. Conclusions

The present work aims to clarify and point out some links between several concepts in baroclinic instability, such as the
underlying mathematical symmetries of the governing system, a mechanistic interpretation of the shear instability problem [e.g.,
59–61, 66, 81], and geometric parameters of the eddy variance ellipses [e.g., 34, 36, 72]. We considered the Eady problem in the
quasi-geostrophic system as a working example, modified to include a weak linear bottom slope. Making an assumption about
the magnitude of slopes, the presence of the slope only affects the dynamics via a bottom boundary contribution to potential
vorticity (PV), and the standard analysis leads to closed form solutions, as is known in the literature [e.g., 41–45, 53]. The
resulting modified Eady system was claimed here to be parity-time (PT ) symmetric [cf. 68–70, 81], with consequences for the
the solution spectrum; we refer the reader to Appendix A for the full details and other more speculative links.
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To clarify aspects of the edge-wave mechanism and the modification by the presence of a slope, we perform an edge-wave
interaction analysis [cf., 61, 66, 71]. For the present system, where edge-wave locations are well-defined, the edge-wave analysis
is really a rephrasing of the standard instability problem in a different choice of basis, and the standard modal instability problem
is effectively one of finding fixed points of a two-dimensional dynamical system for the amplitude ratio and edge-wave phase-
shift. Physically, we expect that for δ < 0, where topographic slope and isentrope/isopycnals have horizontal gradients of
opposite signs, more vertical stretching is allowed (cf. Fig. 1b), and thus is adds to the background PV gradient at the bottom.
The bottom wave is then stronger, and its characteristic should be more apparent in the overall normal-modes. For δ < 0,
c±r > 0 = c±r (δ = 0) with our choice of basic state set up, since the bottom wave counter-propagates to the right (or east).
The opposite is true for δ > 0. The asymmetry is supported by the resulting edge-wave analysis, where the amplitude ratios are
simply functions of δ but not of the wavenumber (Fig. 5a); the dependence on δ only should be expected from the PV point of
view, but such a dependence is not in fact seen in the analysis of the tilted streamfunction eigenfunction (Fig. 6a).

The phase-shift of the edge-waves ∆ϵ associated with the most unstable mode is not necessarily at the theoretical optimum
of π/2 (actually slightly larger), and generically differs from the phase-tilt in the unstable streamfunction ∆ϵeigen, which does
seem to be at π/2 for δ ≤ 0. We argue that ∆ϵ rather than ∆ϵeigen should be the quantity of interest if a kinematic/mechanistic
interpretation is to be invoked. The unstable normal-mode is a linear combination of the edge-wave structures (e.g. Fig. 4), and
the phase-shifts in the untilted edge-waves structures do not have to correspond to the phase-tilts in the tilted streamfunction
eigenfunctions. We are of the opinion that references to ∆ϵeigen should generally be avoided (an exception perhaps for the
Phillips problem [13], where the entries of the normal-modes are defined as per-layer quantities and could be argued to already
be in edge-wave form). If some reference is to be made to the energetics of the instability, the geometric parameters associated
with eddy variance ellipses [e.g., 34, 60] such as buoyancy anisotropy γb serve as better measures of the correlation for the
meridional velocity and buoyancy perturbations v′ and b′. On the other hand, the vertical eddy tilt ϕt, although defined with no
reference to the edge-wave structures themselves, display characteristics of the edge-wave phase-shift ∆ϵ. The realized eddy
efficiency parameter α is shown to correlate strongly with the growth rate, in line with the definition given in [34]. It is found
here that the dominant contribution to α comes from γb, and so decreases in α with variations in δ arises the decrease in γb,
consistent somewhat with previous diagnoses from a nonlinear realization of baroclinic dynamics in a numerical ocean model
[82].

Previous works have argued that the changes in instability characteristics arises from changes in the edge-wave interaction,
but only considers the need for phase-speed matching [53]. We argue that view is incomplete as the argument does not extend
to all of parameter space, and does not explain all the instability characteristics. Here we clarify the mechanistic explanation.
For δ < 0, the bottom wave increases in strength, and not only does it intrinsically propagate faster (to the right or east), but
leads to a larger action-at-a-distance. The top wave experiences a larger hindering, which can be compensated by reducing
the vertical interaction function via moving to larger wavenumbers (which also reduces the intrinsic propagation speed of both
edge-waves), and the weaker interaction function leads to weaker growth rates. It seems that it is always possible for such a
compensation to be achieved in the δ < 0 case, albeit over a decreasing bandwidth. For δ > 0, the opposite is true, except the
reduction in interaction from the weakened bottom wave cannot be arbitrarily increased by moving to smaller wavenumbers,
since that increases the intrinsic propagation speed of both edge waves. In this case the top edge-wave will become too fast for
the given background flow and wave interaction for phase-locking to be possible. The instability bandwidth decreases in width
and bounded away from the small wavenumber as δ is increased towards 1. At δ ≥ 1 there is no instability whatsoever, as
counter-propagation of the bottom wave is no longer possible since the PV gradient vanishes or reverses sign.

Although the present work focuses largely on the zero meridional wavenumber case l = 0, the results and observations
apply to the l ̸= 0 case. As a demonstration, the instability characteristics of l = 0.5 with the meridional structure function
g(y) = sin(ly) is shown in Fig. 8. Here the instabilities generally possess weaker growth rates, with a change in the domain
of instability in the δ > 0 region, but otherwise the general behavior of the growth rates and phase-speed c±r are similar to
what has been reported (since the system is still PT symmetric). The physical rationalization in terms of edge waves is still
applicable. The reduction in growth rates can be attributed to weakened interaction from l ̸= 0, since that increases the value
of µ = Bu

√
k2 + l2. The expanded domain of instability for δ > 0 can be rationalized as edge-waves having smaller intrinsic

propagation speed in general (because of the increased µ), and so the top edge-wave can be held in a phase-locking configuration
for the given basic flow, and the weakened interaction associated with weaker bottom edge-wave can in fact be compensated
by increasing the interaction via decreasing the zonal wavenumber k. Edge-wave amplitude ratios γ is as given by (18), and
the edge-wave phase-shift ∆ϵ has similar behavior to that observed in Fig. 5c (not shown). While the computation of the
geometric parameters is slightly more complex as the relevant geometric variables are now two-dimensional, the conclusions
and interpretations are essentially the same, except that the dominant contribution to α now comes from γb sinϕb (since R is
no longer trivial and so ϕb ̸= ±π/2), but the energy partition contribution sin 2λ is still close to 1 and largely constant over
the domain. In particular, the vertical eddy tilt ϕt follows the phase-shift of the edge-waves more so than the normal-mode
phase-tilts (in terms of spatial distribution, average values down the center line, or domain-averaged values; not shown).
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FIG. 8. Sample instability characteristics for l = 0.5, with the non-trivial meridional structure function g(y) = sin(y/2). (a) Growth rate as a
function of the non-dimensional wavenumber k and δ parameter, with darker shadings denoting higher values (strength of shading is the same
used in Fig. 2), sample contours of growth rates, and the green dashed line denoting kmax(δ) where the growth rate is maximized. Also shown
are the growth rates kc+i and phase-speed c±r for (b, c) δ = +0.5, (d, e) the standard Eady problem δ = 0.0, and (f, g) δ = −0.5. The shaded
regions in panels b-g denote the regions where there the growth rates are non-zero.

B. Discussions and outlooks

The present work explores the behavior of the α parameter from a linear instability point of view, to supplement parame-
terization efforts of particular relevance to ocean modeling. We find that there is indeed a suppression of α in the presence of
slopes, and the dominant contribution comes principally from changes in the buoyancy anisotropy parameter (as well as the
eddy buoyancy angle where it is present). The result here would be consistent with previous observations that buoyancy fluxes
are suppressed over sloped regions [e.g., 43, 44, 46, 48–53, 55], with previous diagnostic results but in the nonlinear regime in
a realistic global ocean model [80], and is consistent with a parameterization that α be suppressed over slopes in a way that is
dependent on the slope Burger number [56], related to the δ utilized in the present work. This work thus provides a consistency
rationalization for the proposal of [56], which was empirical in nature. While the present work is for the linear regime, previous
works have suggested that the linear instability characteristics can be useful in informing parameterizations that are invoked for
the nonlinear regime [e.g., 29–33].

The stabilization of baroclinic instability in the presence of small slopes (related to the suppression of α) is rationalized in
the PV point of view, where the presence of a slope modifies the background PV gradient and leads to modifications in the
interaction of the Rossby edge-waves. The rationalization is given in Sec. III B, but is also summarized in the schematic given in
Fig. 9. The point we clarify here is that it is the asymmetry in the wave amplitudes that lead to changes in the mutual interaction,
that in turn modifies the phase-locking configuration, and the end result dictates a change in the phase-shift. Arguments based
solely on phase-shifts and phase-speed matching is missing a key link in the interaction, and does not fully explain the instability
characteristics over the whole parameter space. Further, we highlight that, from a mechanistic point of view, it is the untilted
edge-wave basis and its phase-shift that is of relevance, and the phase-tilt in the tilted normal-modes is generally to be avoided as
it can be misleading. The physical rationalization applies generically to baroclinic instability over slopes; sample analysis on the
analogous Phillips problem [cf., 45] shows similar results and interpretations to here (not shown). It would further be interesting
to see how some of the analysis and points of view (edge-waves and GEOMETRIC framework) here carry over to the case of
transient / optimal growth [e.g., 83], but we leave this for a follow up study.

It was found that the vertical tilt angle ϕt (rather than the buoyancy angle ϕb) possesses qualitative similarities to the edge-
wave phase shifts, even though the former is defined with no reference to the edge-waves whatsoever. The observation is in
line with the results in [72], who find that in the barotropic instability of the Rayleigh sheet that there is a relation between
the horizontal tilt angles ϕm (the momentum flux angles) and the edge-wave phase-shift. Then perhaps a parameterization of
baroclinic instability could be based on the geometric parameters such as ϕt, which informs the spatial structure of the eddy
fluxes as well as an efficiency via α, with a realized magnitude based on a parameterized eddy energy [cf. 34, 39]. For diagnostic
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FIG. 9. Pictorial schematic for the change in instability characteristics over parameter space in terms of interacting Rossby edge-waves. (a)
For the δ < 0 case, the bottom PV gradient is stronger, leader to a stronger bottom edge-wave that strengthens the magnitude of interaction
and edge-wave propagation speed (represented by longer arrows), but this effect can be compensated by going to shorter waves (represented
here by the thinner arrows). (b) The standard Eady case δ = 0, where the interaction is symmetric. (c) For 1 > δ > 0, the bottom PV gradient
weakens, leading to a weaker bottom edge-wave and a weaker interaction (represented by the shorter arrows), but this can be offset somewhat
by going to longer waves (represented by the thicker arrows). (d) For δ > 1, the PV gradient switches sign and the bottom edge-wave no
longer counter-propagates against the background mean flow, no phase-locking configuration is possible, and there is no instability.

purposes, in cases where the edge-waves are not so well-defined (e.g., nonlinear cases, although see next paragraph), diagnoses
of ϕt could be done instead as a proxy for the phase-shift, since the geometric parameters considered here applies generically to
cases where eddy fluxes can be diagnosed [34].

For the present linear problem the edge-waves are well-defined, and Sec. III provides a manual construction of the edge-wave
basis (e.g., where one part of the edge-wave couplet has an untilted structure and no PV signal at the location of the other
edge-wave). There are problems where edge wave structures are harder to define (e.g., instability in the presence of planetary
β [11, 14, 72], the Rayleigh sheet problem in the presence of a magnetic field [65]), or cases where one might naturally expect
linear theory to play no longer play a dominant role (e.g., during a nonlinear evolution). However, there are still ways to
define an edge-wave basis, for example making use of orthogonality in the wave activity quantities such as pseudomomentum
and pseudoenergy [e.g., 18, 61, 66, 73]. It is possible to extend the present analysis to some of the other models, such as the
Charney–Green model, which has been pointed to possibly be more relevant than the Eady model in certain oceanic settings
[e.g., 43, 46, 50, 52], problems with smooth profiles and/or profiles containing multiple PV gradients (e.g. jet profiles), and
mixed barotropic-baroclinic problems [e.g., 84, 85]. In particular, if one believes that there is some sort of quasi-linear control
on the linear instability on the nonlinear evolution, then perhaps the procedure will be illuminating for an analogous analysis
for simulations of the nonlinear phase of the shear instabilities [e.g., 86]. These are left as possible future investigations to be
pursued.
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Appendix A: Parity-Time PT symmetry of the modified Eady problem

Note that in the text we made the observation that Eq. (3) is invariant under the transformation

P : (x, y, z) 7→ (−x,−y,−z), T : (t, ψ) 7→ (−t,−ψ). (A1)

More formally, an operator H governing a system is Parity-Time (PT ) symmetric if it satisfies

(PT )H∗(PT )−1 = H, (A2)

where H∗ denotes the complex conjugate (rather than the Hermitian conjugate H†, which for a matrix representation involves a
transpose on top of the element-wise complex conjugate).

PT symmetry is a concept that originates from quantum physics [e.g., 67], but has found recent interest in classical fluid
systems also [e.g., 68–70]. Here we show explicitly that the present modified Eady problem is PT symmetric, which leads to
certain features in the solution spectrum that was previously highlighted in Sec. II. The ideas and tools were previous given in the
work of [70] for the Phillips-like problem (two layer QG with uniform flow in each layer, cf. [1, 13]). The following exposition
is largely given for completeness, but also serves to highlight very suggestive links between PT symmetry, shear instability and
the edge-wave formalism, possibly enabling tools to be borrowed from quantum physics to further our understanding of classical
fluid systems (e.g. nonlinear shear instability), or providing classical analogues with well-understood physics to complement the
mathematical analysis of quantum systems.

Note that we can write the linearized system (3) in the form

∂

∂t
Lφ = Mφ, (A3)

which is a generalized eigenvalue problem for the relevant operators L and M acting on an eigenfunction φ. If we are taking
modal solutions as in (5), then L has an explicit representation whose inverse that can in principle be computed for, and we can
define M = L−1M where

cϕ =Mϕ, (A4)

with the eigenvector ϕ = (a, b) in this case. For the system here, it can be shown that (using again the notation C = coshµ and
S = sinhµ)

L = µ

(
−S C
S C

)
, L−1 =

1

2µCS

(
−C C
S S

)
, M =

−1

SC


δ

2µ
C2

(
1−

δ

2

)
CS

µ
− C2(

1−
δ

2

)
CS

µ
− S2

δ

2µ
S2

 , (A5)

where L denotes the representation of L when modal solutions (5) are taken.
In the present work, M is already real, PT happens to be the negative identity in the matrix representation relevant for the

present system [70], so M is PT -symmetric. Another way to see that M is PT -symmetric is to note that, for P and T denoting
the matrix representations of P and T , µ is invariant under P : (k, l) 7→ (−k,−l) (interpreting µ = Bu|k| if l = 0), while T

https://github.com/julianmak/julianmak.github.io/blob/master/files/Eady/Eady_analysis.ipynb
https://github.com/julianmak/julianmak.github.io/blob/master/files/Eady/Eady_analysis.ipynb
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introduces a minus sign through its action on the eigenvector ϕ, but this is done twice, so since M is real, the above equality
holds.

A particular consequence forM being PT symmetric is that the entriesM are all real (which we have manually demonstrated
here in (A5), but is in fact a general feature). Further, the dispersion relation (A4), for a two component system, satisfies

c2 − Tr(M) + Det(M) = 0, c =
1

2

(
Tr(M)±

√
Tr(M)2 − 4Det(M)

)
, (A6)

where the trace and determinant of M are given by

M =

(
a1 a2
a3 a4

)
, Tr(M) = a1 + a3, Det(M) = a1a4 − a2a3.

The entries of M are given in (A5), and the resulting dispersion relation and be shown to coincide exactly with that given (7)
obtained from standard means. Further, the eigenfunction of the system (defined up to some arbitrary constant) can be written as

ϕ =

(
a
b

)
=

 a2

−a1 +
1

2

(
Tr(M)±

√
Tr(M)2 − 4Det(M)

) , (A7)

and the eigenfunction ϕ is PT -symmetric if ϕ is real. However, for the eigenvector of an unstable mode in the present system,
Tr(M)2− 4Det(M) < 0, and the resulting eigenvector becomes complex and ceases being an eigenfunction of the PT operator
(because there is an extra minus introduced under a complex conjugate of the eigenvector), and we have what is termed sponta-
neous breaking of PT -symmetry. The boundary between the region with and without spontaneous PT -symmetry breaking are
called exceptional points, and these correspond precisely to the locations of marginal stability. The collision of eigenvalues c±

on the real axis into complex conjugates is related to what are known as Krein collisions [e.g., 67, 69].
It is perhaps easy to see that, using the same framework of [70], other shear flow instability problems should also be PT

symmetric, such as Phillips-like problems [cf., 45, 70], Charney–Green-like problems [cf. 1, 11, 14], the standard Rayleigh sheet
problem [81] in hydrodynamics, the Rayleigh sheet problem in magnetohydrodynamics with a uniform background magnetic
field [e.g., 65], and more general shear flow problems presumably. Additionally, given the link between shear instabilities and
its physical interpretation as a pair of interacting edge-waves, one is left to wonder on the exact links between PT symmetry
and interacting edge waves. Suggestive links include that spontaneous breaking of PT symmetry seems to correspond exactly
to when phase-locking occurs [cf., 70]. A Krein collision of the eigenvalue occurs at exception points requires opposite signed
Krein signatures, reminiscent of the requirement that shear instabilities require modes of opposite signed wave activity to collide
(as positive/negative energy modes [87] or pseudomomentum [e.g., 73]), which is sometimes interpreted as a necessary (but not
sufficient) condition for instability is the need for counter-propagation of edge-waves [e.g., 61].

While an explicit link to the edge-wave system with PT symmetry has been highlighted in the recent work of [81], and
low-dimensional edge-wave systems (low-dimensional in the sense of dynamical systems) could be considered as a rephrasing
of certain shear instability problem [e.g., 61], the links with the general shear instability problem for general shear flows remain
to be explored (since generic shear flow instability problems should be regarded an infinite dimensional dynamical system). For
example, what is the analogue of the Krein signature of the modes of the governing operator in the more standard fluid dynamics
context? (Likely something related to pseudomomentum or pseudoenergy?) How are the standard shear flow linear stability
conditions related to the properties of the governing operator, and in terms of interacting edge-waves? (Related to proofs of
a purely real spectrum in PT symmetric systems [e.g., 88, 89]?) Are there conditions beyond the standard necessary but not
sufficient conditions of shear instability derivable from the PT symmetry property, using techniques drawn from quantum
physics? Most references of PT symmetry in relation to shear instability systems so far is on the linear problem, but are there
nonlinear analogues of the stability conditions such as the Arnol’d conditions [e.g., 18] derivable from a similar approach? Such
links could in principle provide a mechanistic/physical interpretation to a theoretical properties related to PT symmetry, and
techniques in relation to analyzing PT symmetric systems from quantum physics could provide new approaches for improving
our understanding of classical fluid/plasma systems. The role of PT symmetry for fluid/plasma systems remains to be fully
explored, and research in this direction is a subject of future work.
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