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Abstract

Extreme rainfall in the Indian summer monsoon can be destructive and
deadly [1]. Although El Niño events in the equatorial Pacific make dry
days and whole summers more likely throughout India [2–4], their influ-
ence on daily extremes is not well established. Despite this summer-mean
drying effect, we show using observational data spanning 1901-2020 that
El Niño increases extreme rainfall likelihoods within monsoonal India,
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especially in the the summer’s core rainy areas of central-eastern India
and the narrow southwestern coastal band. Conversely, extremes are
broadly suppressed in the drier southeast and far northwest, and more
moderate accumulations are inhibited throughout the domain. These
rainfall signals appear driven by corresponding ones in convective buoy-
ancy, provided both the undilute instability of near-surface air and its
dilution by mixing with drier air above are accounted for [5]. When the
summer ENSO state is predicted from a seasonal forecast ensemble ini-
tialized in May, the extreme rainfall patterns broadly persist, suggesting
the potential for skillful seasonal forecasts. The framework of analyzing
the full distributions of rainfall and convective buoyancy could be usefully
applied to hourly extremes, other tropical regions under ENSO, other
variability modes, and to trends in extreme rainfall under climate change.

Keywords: India, monsoon, rainfall, extremes, ENSO

The influence of the El Niño-Southern Oscillation (ENSO) on total sum-

mer rainfall in India has been recognized since the early 20th century

[2–4, 6]. Anomalously warm equatorial Pacific sea surface temperatures (SSTs)

in El Niño summers generate anomalous season-mean ascent locally but

compensating descent over much of the rest of the tropics including India.

One might expect summer-mean subsidence to inhibit moist convection of

all intensities, extremes included, reducing both the mean and variance of daily

rainfall. Indeed, recent studies [7, 8] establish that El Niño reduces the average

accumulation on rainy days—the rainfall intensity—within southeastern India

and in Rajasthan state in the northwest. These are the summer monsoon’s

climatologically dry areas, and within them during El Niño summers it tends

to rain even less overall, less often, and less intensely [7, 8].

But the opposite rainfall intensity signal emerges in the summer monsoon’s

climatologically rainy areas [7, 8]: the broad Central Monsoon Zone in central

India and the narrow southwestern coastal band of peninsular India. Within

them during El Niño summers it tends to rain less overall and less often—but

more intensely when the rain comes.
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Whether these signals in rainfall intensity stem from destructive extremes

[9] or beneficial moderate events [10]—and mechanistically what causes them—

remain unanswered. Observational studies have investigated ENSO’s influence

on daily or hourly rainfall extremes in other tropical domains [11–18] but not

the Indian summer monsoon.

ENSO influences on extreme daily rainfall

Our primary metric of extreme daily rainfall is the cutoff accumulation [19, 20],

computed as the ratio of the variance to the mean of daily rainfall across

summer days (Methods). This metric is motivated by the fact that daily

rainfall reliably follows a gamma distribution [21]: probabilities follow a shal-

low power-law below the cutoff before dropping off exponentially above it

(Fig. 1a). Increasing the cutoff, which in the exact gamma limit is identical to

the scale parameter, therefore makes all extreme rain rates more likely. Our

primary dataset is the Indian Meteorological Department daily 0.25×0.25◦

gridded rainfall product spanning 1901-2020 derived from a dense, temporally

varying in situ rain gauge network [22]. We use all 122 days within each June-

July-August-September (JJAS) summer season and all gridpoints within the

“monsoonal India” domain [23] (Methods). As shown below, key results are

robust across alternative metrics of extremes and to another daily rainfall

dataset.

The climatological cutoff spans from 11.8 to 75.9 mm across all monsoonal

India gridpoints (Fig. 1b), with a spatial structure that largely tracks that

of summer-mean rainfall: high values within the southwestern coastal band, a

sharp gradient moving east across the Western Ghats mountain range to much

smaller values in the southeast, intermediate values north thereof in most of

the Central Monsoon Zone, and low values again in the far northwest. This
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Fig. 1 (a) Daily rainfall empirical probability distributions (Methods), in log-log space,
combining all June-July-August-September (JJAS) days 1901-2020 and all gridpoints within
all of monsoonal India (black), the Central Monsoon Zone (blue), the Western Ghats coastal
band (green), or Southeast India (brown). Overlaid circles indicate the climatological cutoff.
(b) Local climatological cutoff daily rainfall (mm) across all JJAS days 1901-2020 according
to the colorbar. The portions of northern and northeast India shaded grey are excluded from
all analyses (Methods). The dotted black contour denotes the median across gridpoints of
the climatological 99th percentile daily rain rate (63.1 mm day−1). (c) Pearson correlation
coefficient between the JJAS NINO3.4 value and each gridpoint’s cutoff rain rate. The dot-
ted black contour denotes the JJAS climatological rainfall median (5.9 mm day−1) across
gridpoints. Semi-transparent shading indicates statistical insignificance at the 95% confi-
dence level based on a block-bootstrap method. All timeseries are linearly detrended over
1901-2020 prior to correlations being computed.

pattern emerges in many properties of summer monsoon rainfall from daily to

interannual timescales [7, 8, 24] (Fig. 1a; overlaid contour in Fig. 1b; Extended

Data Fig. 1). The cutoff and other metrics of extremes are large compared to

the mean in Gujarat (along the Arabian Sea coast within the Central Monsoon

Zone), which is rather dry most summers but in others receives synoptically

driven extreme accumulations [25] (Extended Data Fig. 2).

Based on lag-zero correlations of each gridpoint’s JJAS cutoff with the

standard NINO3.4 index of ENSO (Methods), extreme daily rainfall becomes

more likely over much of the southwestern coastal band and central India as

NINO3.4 increases but less likely over much of the southeast and far north-

west (Fig. 1c). This pattern resembles the climatological summer-mean rainfall

(overlaid contour in Fig. 1c; Extended Data Fig. 1) and the established [7, 8]
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ENSO-driven patterns in rainfall intensity. As one quantification of this resem-

blance, of the 581 gridpoints with statistically significant positive correlations,

75% occur in gridpoints with climatological summer-mean rainfall above the

median across gridpoints, and of the 384 gridpoints with significant negative

correlations, 99% occur in gridpoints below it. As another, linear regressions

of each gridpoint’s NINO3.4-cutoff correlation vs. its summer-mean climato-

logical rainfall are significantly positive for the whole domain and within each

subregion (Extended Data Fig. 3).

For each of the four subregions of India outlined in Fig. 1, we com-

pute an aggregate cutoff by combining all gridpoints within that region

into a single daily rainfall distribution for each summer (Methods). While

the cutoff for Southeast India is negatively correlated with NINO3.4 and

marginally statistically significant (r = −0.16, p = 0.08), the corresponding

correlations for All-Monsoonal India, the Central Monsoon Zone, and the

Western Ghats regions are all significantly positive (r = +0.34, +0.34, +0.20

and p = 2× 10−4, 2× 10−4, 0.03, respectively; Methods). Composites combin-

ing either all summers 1901-2020, the 36 El Niño summers, or the 41 La Niña

summers behave similarly: except for Southeast India, the region-aggregated

cutoffs are all significantly larger for the El Niño than the La Niña composites

(Fig. 2b; Methods).

These signals in extremes differ qualitatively from those in less severe

rain rates, which are suppressed throughout the domain by El Niño. Point-

wise exceedance counts—the number of days in each summer exceeding a

specified local rainfall percentile—are predominantly negatively correlated

with NINO3.4 for low through moderate percentiles (Extended Data Fig. 4a-

c), becoming positive for the climatologically wet regions only around the
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Fig. 2 (a) Composite regional cutoffs (in mm) in circles. Bars are 95% confidence intervals
based on yearly cutoff values, and squares are the estimates from gamma fits (Methods). (b)
ENSO risk ratios: restricting to rainy days (> 1 mm), the probability that rainfall exceeds
a given rain rate in the El Niño composite divided by that in the La Niña composite. The
horizontal axis is the percentile daily rain rate across all rainy days in all years and points
for that region. Overlaid circles show each region’s climatological cutoff. (c) Same as panel
c, but with logarithmically spaced horizontal axis and wider vertical axis to better discern
extremes.

95th percentile and above. The same overall behavior also holds using fixed

accumulations in mm (Extended Data Fig. 4d-f).

This can also be seen in ENSO risk ratios for each region [19–21]: at each

daily accumulation, the fraction of rainy days exceeding that value in El Niño

summers divided by the corresponding fraction for La Niña summers (Fig. 2b,c;

Methods). Accumulations are inhibited under El Niño compared to La Niña

at all percentiles in Southeast India, up to the 75th percentile in the Central

Monsoon Zone, and up to the 90th percentile for both the whole domain and

the Western Ghats coastal band. For the latter two especially, the percentile

above which likelihoods are enhanced under El Niño occurs near that of the

climatological cutoff (overlaid circles in Fig. 2b), above which probabilities

increase quasi-exponentially with rain rate (Fig. 2c)—both signatures of an

increased cutoff [19]. At the 99.99th rain-intensity percentile, for example, the

increases are approximately 43%, 58%, and 70% respectively for the whole

domain, Central Monsoon Zone, and Western Ghats.

Cutoffs and risk ratios estimated from gamma fits to each composite dis-

tribution yield similar results (Methods; Extended Data Fig. 5), as do other

metrics of extreme rainfall (Methods; Extended Data Fig. 6). These include
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correlations of block maxima with NINO3.4, pointwise Gumbel fits to the block

maxima for El Niño vs. La Niña composites, and quantile regressions of daily

rainfall vs. JJAS NINO3.4 at the 99th and 99.9th percentiles. Results are also

similar in the Indian Meteorological Department 1◦ × 1◦ gridded daily rainfall

dataset [26], which importantly for extremes [27] is generated from a fixed net-

work of rain gauges (Methods; dashed curves and unfilled elements in Fig. 1,

Fig. 2 and Extended Data Figs. 3 and 5).

Finally, while El Niño’s propensity to generate summer-mean Indian

drought notoriously weakened from the pre-satellite (1901-1978) to satellite

(1979-2020) eras [28–30]—with respective NINO3.4 correlations r = −0.59 to

-0.41—the ENSO signals in extremes are more robust (Extended Data Fig. 7;

Methods). This holds in terms of the overall geographic patterns seen in point-

wise cutoffs, linear regressions of the region-aggregated cutoffs on NINO3.4,

and an index linearly combining the region-aggregated cutoffs of the Core

Monsoon Zone, Western Ghats, and Southeast India regions (Methods). Nev-

ertheless, within peninsular India both the increase in extremes with NINO3.4

in the southwestern coastal band and the decrease in the southeast weaken

nontrivially. As such for the region-aggregate cutoffs only the Central Mon-

soon Zone’s regression against NINO3.4 is statistically significant within the

satellite era. The extent to which these modest differences between epochs are

physically forced vs. merely sampling-driven [29] remains to be seen.

Mechanisms: ENSO-forced changes in

convective buoyancy extremes

We expect extreme rain where near-surface air is especially warm and moist

relative to air above it that, too, is very moist. These conditions enable the

near-surface air to precipitate out copious water as it ascends deeply, despite
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losing buoyancy to cooling through expansion and to dilution through mixing

with the drier ambient air. These processes have been encapsulated into a

scalar metric of convective buoyancy known as BL [5, 31], which we compute

for each gridpoint and summer day of 1979 to 2020 using ERA5 reanalysis

data [32] (Methods).

Daily rainfall depends strongly on local convective buoyancy, with nonlin-

ear Spearman correlation coefficient positive at every gridpoint, up to +0.71

(Fig. 3a) and the expected quasi-threshold relationship [5, 31] in region-

aggregated averages (Fig. 3b) and quantiles (Fig. 3c) of gridpoint-wise rainfall

conditioned on local buoyancy (Methods). Rainfall is typically absent or weak

until buoyancy reaches a threshold value slightly below zero, above which rain-

fall increases sharply, rapidly consuming buoyancy with it (Fig. 3b). These

conditional curves rise to higher rainfall values in the rainy southwestern

coastal band and Central Monsoon Zone compared to the drier southeast India,

but to first approximation they are insensitive to the state of ENSO (Fig. 3c).

Based on correlations at each gridpoint against NINO3.4, summer-mean

and moderate-percentile convective buoyancy values are, like rainfall, widely

suppressed in El Niño summers (not shown). And also like rainfall, the right-

tail values are suppressed in the southeast and northwest but enhanced over

much of central-eastern India (Fig. 4a for 99th percentile values, with results

similar for block maxima and other high percentiles, not shown). The indi-

vidual buoyancy components of moisture and undilute instability behave

similarly to one another over these parts of the domain (Fig. 4b,c): both very

moist and very gravitationally unstable days are predominantly enhanced over

eastern-central India vs. suppressed over the northwest and southeast.

What, then, accounts for these convective buoyancy signals? Preliminary

results point toward synoptic low-pressure systems [33], which generate heavy
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Fig. 3 (a) Spearman correlation coefficient across all JJAS days 1979-2020 at each gridpoint
between daily rainfall and the convective buoyancy metric. (b) In dotted curves, PDFs of
the buoyancy metric for each region. In solid curves, daily rainfall conditionally averaged
on the buoyancy metric. (c) For the whole monsoonal India domain, composite quantiles of
rainfall conditioned on the buoyancy metric as labeled.

rainfall within their cores [34] and track predominantly over Central India,

though occasionally traveling farther south or extending to Rajasthan in the

northwest [25]. A prior study indicates that the core of monsoon low-pressure

systems are very humid and that during El Niño summers the rainfall within
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term for each JJAS. (d,e,f) Regional ENSO risk ratios of rainy-day buoyancy, for (d) the
full metric, (e) just the moisture term, or (f) just the undilute instability term as a function
of return period.

those cores is enhanced [35]. And preliminary findings (Yujia You, pers. comm.)

indicate that those low-pressure system tracks over and ending in central India

are favored by El Niño, at the expense of those over peninsular India and

those long tracks reaching northwestern India. If true, this would promote

very humid, buoyant days in central-eastern India and suppress them in the

southeast and northwest.

For the southwestern coastal band, which is less directly influenced by

these low pressure systems, nearly saturated days above the boundary layer

are strongly suppressed in El Niño summers while highly unstable days are
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strongly enhanced. This undilute buoyancy signal emerges to some degree

for the other regions as well, as is particularly evident in region-aggregated

ENSO risk ratios of the convective buoyancy terms on rainy days (Fig. 4d-f;

Methods). Moreover, based on differences in the ENSO composites of rainfall

conditioned on the buoyancy terms (not shown), tropospheric dryness inhibits

heavy rainfall somewhat less during El Niño summers; this holds for each region

but especially the southwest. We therefore speculate that the anomalous free-

tropospheric subsidence and dryness under El Niño throughout the domain

(Extended Data Fig. 8) suppress moderate rain events, enabling higher undi-

lute instability values to occasionally build up, fueling extreme convection once

a passing wave or advective event re-moistens the lower free troposphere just

enough. This mechanism would be broadly consistent with observational and

modeling evidence for less frequent but more intense rain events in drier ambi-

ent conditions [36]. Moreover, though it would in principle operate throughout

the domain, plausibly it would be strongest in the southwest, where the prevail-

ing monsoon southwesterlies reliably converging warm air into the boundary

layer, promoting buoyancy.

Outlook: seasonal forecasts, climate change,

and other regions

Despite ENSO’s known “spring predictability barrier” [37], existing seasonal

forecasts of ENSO during boreal summer are skillful [38]; for example, the

multi-model-mean forecasted JJAS value of NINO3.4 from the North American

Multi-Model Ensemble (NMME) [39] seasonal forecast integrations initialized

each May 1st are correlated with the actual value at r = 0.86 over 1981-2020

(Methods). We have re-computed the correlations between the JJAS cutoff

rain rate and NINO3.4 using this forecasted value, and the overall signals
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remain (Extended Data Fig. 9). This preliminary result raises the prospect of

skillful ENSO-based seasonal forecasts of extreme rainfall probability within

monsoonal India.

An observed, long-term trend toward more extreme daily rainfall events in

central India into the 2000s has been argued to stem from mean moistening

of the troposphere due to global warming [40, 41], as have future projec-

tions of increased extreme rainfall events globally [20]. Notwithstanding that

more recent trends in the Indian summer monsoon have been flat or negative

[42], underlying this argument are the assumptions that right-tail daily mois-

ture events (a) track with the season-mean value and (b) predominate over

changes in undilute instability. Based on our results, however, for ENSO (a)

is violated within central India and (b) is violated within the southwestern

coastal band—precisely the regions where daily extreme rainfall is projected

to increase most in model simulations under future global warming [43]. This

argues for revisiting both observed trends and model projections of extreme

rainfall, incorporating the full daily distributions of rainfall and of the con-

vective buoyancy terms. Only then can we meaningfully evaluate whether

these observed, interannual, internally generated ENSO signals constitute a

meaningful emergent constraint on model-projected, secular, externally forced

trends [44].

Our approach could also be applied to climate variability modes in the

Indian [45, 46] and Atlantic Oceans [47] thought to influence the summer

monsoon, as well as to hourly rainfall. Many Indian summer monsoon rain

events span considerably less than 24 hours [48], and a study [17] using hourly

rainfall suggests that the average rain rate during rainy hours increases with

El Niño over much of the Tropics. Perhaps, as for daily rain in the Indian

summer monsoon, these signals reflect buoyancy-driven increased extremes.
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Methods

Region definitions

The four subregions of India are those used by [8]. The “All Monsoonal India”

(AMI) region comprises all gridpoints in the monsoonal India domain defined

by [23]. The remaining three are non-overlapping subsets of AMI. The Central

Monsoon Zone (CMZ) definition also follows [23], spanning from Pakistan to

the Bay of Bengal in a wide band north of peninsular India. The Western Ghats

(WG) region is defined as all land points within the polygon whose vertices

are (76.5◦E, 7.5◦N), (78.5◦E, 7.5◦N), (74◦E, 18◦N), (74◦E, 21.5◦N), (72.25◦E,

21.5◦N), and (72.25◦E, 18◦N). The Southeast India (SEI) region includes all

points south of 18◦N that are not within WG. The WG and SEI region borders

were defined by [8] explicitly based on JJAS-mean rainfall properties in the

Indian Meteorological Department 0.25◦ dataset to distinguish the coherent

regimes within peninsular India, but neither they nor the other regions were

defined explicitly with reference to extreme rainfall characteristics.

Region-aggregated distributions are computed by combining fields from all

gridpoints of a given region into a single distribution without any area weight-

ing. Region-averaged fields are area-weighted averages across all gridpoints

within each region.

Indian Meteorological Department 0.25◦ × 0.25◦ rainfall

dataset

Daily rainfall data comes from the 0.25◦×0.25◦ latitude-longitude gridded

product produced by the Indian Meteorological Department (IMD) [22]. This

dataset spans all days of the year from January 1, 1901 to the present, and we

use all days in June, July, August, and September (JJAS) from 1901 through



Springer Nature 2021 LATEX template

24 Extreme Indian rainfall under El Niño

2020. This gridded product is derived from a dense network of in situ rain

gauges with coverage throughout India, using a simple interpolation procedure

to go from the irregular station coverage to the regular latitude-longitude grid.

The rain gauge coverage varies in time, with ∼1500 stations in 1901, peak-

ing above 4000 stations in the early 1990s, and then decreasing appreciably to

∼2000 in the 2010s [22]. These secular trends in station coverage have been

argued to strongly influence inferences about long-term trends in daily rain-

fall extremes [27]. For our purposes, however, for interannual variability it is

unlikely that the fluctuations in station coverage would alias onto ENSO.

This dataset contains spurious values in a few gridpoints and times, which

appear to us to stem from errant reported values from one or more stations

which then propagate in space through the interpolation procedure. In partic-

ular, in northeast India directly along the border with Bangladesh, starting in

the 1970s values become insensible. We mask these out along with the rest of

northeastern and far northern India as part of our “monsoonal India” mask

[23]. Despite these problems, the density of rain gauges dating back to the 19th

century and the stewardship of the resulting data by the Indian Meteorological

Department make this a very high-quality dataset.

Cutoff rain rate

We compute the cutoff daily rain rate using the method of moments, which for

a given daily rainfall distribution is simply the variance divided by the mean.

This measure is motivated by the correspondence of daily rainfall distributions

to gamma distributions [21]. In terms of shape parameter k and scale parame-

ter θ, the gamma probability density function, f(x), follows f(x) ∝ xk−1e−x/θ,

from which the cutoff is easily identified as the scale parameter θ. More-

over, for gamma distributions the variance is exactly kθ2 and the mean is kθ.
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Thus, insofar as the daily rainfall distributions approximately follow gamma

distributions, the variance-to-mean ratio usefully estimates the cutoff.

The method of moments is easily calculated, but being computed over the

entire distribution, it is influenced by behavior at the low end of the daily

rainfall distribution as well as the extremes. Given the strong influence of

ENSO on no- and low-rainfall day frequencies, this potentially makes it a

biased metric of extremes. We have tested the sensitivity to behaviors at low

rain rates by computing it restricting to rain rates over different thresholds.

This increases the mean of the remaining sample, yielding a low-biased cutoff

estimate, but results in terms of correlations with NINO3.4 or ratios of ENSO

composite quantities are qualitatively insensitive (not shown).

An alternative method for computing the cutoff is via a linear regression of

the daily rainfall PDF in semi-log space [49]. Denoting the daily rainfall PDF

as f(P ), a linear regression is performed of log(f(P )) on P but restricting to

the right tail of the distribution (which, being quasi-exponential, is close to

a straight line); denoting the slope of this regression r, the cutoff estimate is

then −1/r. While this avoids contamination by the low end of the distribution,

we find it strongly determined by the few largest values: for the parameter

choices explored, we find the regional cutoffs for each JJAS computed via

the regression to all be correlated at r > 0.9 with the region’s JJAS block

maximum rain, compared to r ∼ 0.5− 0.7 with the method of moments.

As such, we elect to use the cutoff computed from the method of moments,

taking it to be more representative of behaviors throughout the right tails of

the daily rainfall distributions.
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NINO3.4 index

As our index of ENSO, we compute the standard NINO3.4 index of sea

surface temperature (SST) anomalies averaged over the central and eastern

equatorial Pacific: 120◦–170◦W, 5◦S–5◦N. The monthly SSTs come from the

National Oceanic and Atmospheric Administration Extended Reconstructed

SST (ERSST) dataset, version 5 [50]. The SSTs are first averaged with area-

weighting over the NINO3.4 region for each month. They are then averaged

over JJAS for each year. The linear trend computed by least squares regres-

sion over 1901-2020 of this timeseries of JJAS values is then computed and

subtracted off. Finally, the time mean of this detrended timeseries is com-

puted and subtracted off to generate an anomaly timeseries; the result is the

NINO3.4 index we use.

We have also repeated key calculations using JJAS deviations of the

NINO3.4 averaged SSTs from a 30-year rolling mean with no detrending, more

akin (but not identical) to the NOAA Oceanic Niño Index (ONI), finding little

sensitivity. For example, the region cutoffs for each JJAS are correlated with

ONI at r = 0.29, 0.29, 0.19, and -0.19 for AMI, CMZ, WG, and SEI, respec-

tively, all less positive but within 0.05 of the corresponding correlations using

NINO3.4.

Detrending

The trend for each field is computed via least-squares regression in time over

1901-2020. De-trended fields are constructed by subtracting this trend from the

full field. All correlation coefficients are computed on fields linearly detrended

in this way.
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Statistical significance estimates

We use a standard bootstrapping technique to assess the statistical significance

of the pointwise correlations between the cutoff and NINO3.4. Specifically, we

randomly draw with replacement 120 years from the 1901-2020 period, taking

the NINO3.4 value and each point’s cutoff for that JJAS. We then compute

the Pearson correlation coefficient at each gridpoint for that randomly drawn

sample of 120 years. We repeat this procedure 10,000 times, and finally con-

struct a 95% confidence interval by selecting the 2.5th and 97.5th percentiles

for each gridpoint of these 10,000 correlation coefficients. The inferred con-

fidence intervals converge rapidly as the number of bootstrap draws exceeds

100 (not shown). Those points whose confidence interval do not cross zero we

deem statistically significant at the 95% confidence level.

For the ENSO-composite region-aggregated cutoffs, we proceed as follows.

First, we compute region-aggregated cutoff rain rates for each individual JJAS.

For both ENSO composites and for the composite over all years 1901-2020, the

average across these yearly cutoffs is similar to the cutoffs computed across

all years (compare filled circles to center of corresponding vertical lines in

Fig. 2b). We therefore use the sample sizes (36 El Niño years, 41 La Niña

years, 120 total years) and the interannual standard deviations in the yearly

cutoffs for each region and ENSO composite to construct the 95% confidence

intervals (vertical lines in Fig. 1b). These regional yearly cutoffs are reasonably

normally distributed (not shown), and so we employ a standard t-test to assess

the statistical significance of the correlations between the yearly cutoffs and

NINO3.4. The resulting p values are p = 0.0002, 0.0003, 0.03, and 0.06 for

AMI, CMZ, WG, and SEI, respectively.
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ENSO composites and risk ratios

For ENSO-based composites, we use a ±0.3 K threshold of the NINO3.4 index:

all summers w/ JJAS NINO3.4 exceeding +0.3 K are designated El Niño,

those between -0.3 and +0.3 neutral, and those less than -0.3 La Niña. These

-0.3 and +0.3 threshold values correspond to the 34th and 70th percentiles of

the JJAS NINO3.4 distribution respectively. Results appear insensitive to this

threshold from values of 0 to roughly ±1.0. For example, the AMI composite

cutoffs for a 0 K threshold are 36.7 and 33.8 mm respectively for El Niño

and La Niña; for a ±1 K threshold they are 36.4 and 33.5 mm, respectively,

with only small fluctuations for intermediate values. The ±0.3 K threshold

was subjectively chosen as a compromise between maximizing the sample size

of each composite vs. maximizing the difference in the large-scale atmospheric

state between the composites.

To compute the ENSO risk ratio for a given field, first we compute the

empirical cumulative distribution function (CDF, denoted F (x)) for that field

for the El Niño composite and separately for the La Niña composite. By defini-

tion of the CDF, in either composite, the empirical probability of exceeding a

given value equals one minus the CDF at that value: P (X ≥ x) = 1− F (x). As

such, the ENSO risk ratio is computed as (1− FEN(x))/(1− FLN(x)), where

the subscripts “EN” and “LN” refer to El Niño and La Niña respectively.

We compute risk ratios in this manner for daily rain accumulation on rainy

days (using a standard >1 mm threshold). We then interpolate these risk

ratios, which are functions of daily rain accumulation in mm, to climatological

quantiles of daily rainfall across all years 1901-2020 and all points in the given

region. Denoting a given quantile q, the quantiles are converted as standard

to return periods as 1/(1− q). Because the risk ratios restrict to rainy days,
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the return periods correspond to JJAS rainy days as well rather than JJAS

calendar days.

Exceedance counts

The exceedance count is defined for each gridpoint, year, and daily rainfall

percentile as the number of days in that year’s JJAS and gridpoint exceeding

the climatological rainfall at the given percentile across all years and all days of

JJAS. For example, if a given year and gridpoint experienced rainfall exceeding

the climatological 90th percentile on three days, the exceedance count at the

90th percentile would be three.

The exceedance count can also be applied to fixed mm day−1 thresholds

rather than local percentiles. Extended Data Fig. 4d,e,f shows the correlations

vs. NINO3.4 of the yearly exceedance counts for three of the official thresholds

in mm day−1 the Indian Meteorological Department uses to categorize rainfall

severity.

Explicit gamma fits

For each region and each ENSO-composite daily rainfall distribution, a

gamma distribution was fitted for all daily accumulations > 0.1 mm using the

scipy.stats.gamma.fit function from the SciPy package [51] for Python.

This yields for each distribution values of the three parameters of the gamma

distribution, location, shape, and scale. In the exact gamma limit, the cutoff

as estimated by the method of moments is identical to the scale parameter,

and we therefore take the scale parameter for each of these fits as the gamma-

estimated cutoff. The ENSO risk ratios computed for the explicit gamma

fits were computed from their CDFs identically to those for the empirical

distributions.
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Other extreme daily rainfall metrics

The block maximum daily rainfall for each JJAS is simply the single daily

maximum rainfall in that JJAS at each gridpoint. We create El Niño and

La Niña composite block-maxima distributions for each gridpoint by combin-

ing the block maxima across all El Niño summers or all La Niña summers into

a single distribution. We then fit a Gumbel distribution to each El Niño com-

posite and La Niña composite using the scipy.stats.gumbel r.fit function,

yielding for each gridpoint and composite a scale parameter value and a loca-

tion parameter value. Increasing either the scale or location parameter of the

Gumbel distribution increases right-tail probabilities.

Quantile regression determines the linear slope of the dependent variable

(in this case, daily rainfall) vs. the independent variable (in this case, the

JJAS NINO3.4 value) such that, for the specified quantile q, a fraction q of the

dependent variable points fall below that line and a fraction 1− q of points fall

above that line [52]. For a given JJAS, each day is assigned the JJAS-mean

NINO3.4 value, and for each gridpoint all JJAS days of all years are combined

into one distribution. We perform quantile regression for the 99th and 99.9th

percentiles.

Indian Meteorological Department 1◦ × 1◦ rainfall dataset

We have replicated all key analyses on the Indian Meteorological Department’s

1◦×1◦ gridded product [26]. This product uses the same interpolation pro-

cedure of Indian Meteorological Department station data, but in addition to

being coarser, it differs from the 0.25◦ product in that its network of 1,803 sta-

tions is fixed in time. There are no substantive discrepancies in our key findings

between the two products. Perhaps most notable is that daily rainfall values

within the very narrow WG coastal band reach considerably larger values in
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the higher-resolution product, which is reflected in the WG region-aggregated

daily cutoff (Fig. 2b). But this amounts to a approximately constant offset; the

ENSO signals in this and other regions are similar between the two products.

Pre-satellite and satellite era results

A multiple linear regression over 1901-2020 on NINO3.4 of the Central Mon-

soon Zone, Western Ghats, and Southeast India cutoffs yields respective

weights of +1.0, +0.4, and -1.0, and the resulting timeseries is correlated

with NINO3.4 for the full, pre-satellite, and satellite periods respectively at

r = 0.45, 0.46, and 0.44. In the satellite era, the JJAS NINO3.4 ±0.3 K

threshold results in 14 El Niño summers and 13 La Niña summers.

ERA5 reanalysis data

Large-scale environmental fields come from the European Center for Medium-

range Weather Forecasting (ECMWF) ERA5 reanalysis dataset [32], which

provides data at hourly and monthly resolutions on a global 0.25×0.25◦ grid.

Conveniently, over India this grid aligns identically with that of the Indian

Meteorological Department rainfall. Though the ERA5 dataset now extends

from 1950 to present, we restrict to the satellite era, 1979-2020, as the amount

of observational data assimilated into the underlying numerical model increases

dramatically with the availability of satellite retrievals. We compute JJAS-

mean quantities from ERA5 monthly fields for June through September, and

we compute daily-mean fields from ERA5 hourly fields, averaging over all 24

hourly fields.
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BL convective buoyancy metric

We compute the convective buoyancy metric, BL, following [5] as

BL ≡ g

[
wpbl

θe,pbl − θ∗e,lft
θ∗e,lft

+ wlft

θe,lft − θ∗e,lft
θ∗e,lft

]
, (1)

where g is gravity, θe is equivalent potential temperature, θe,pbl is θe averaged

over the boundary layer, θ∗e is saturation equivalent potential temperature,

θe,lft is θe averaged over the lower free troposphere, θ∗e,lft is θ∗e averaged over

the lower free troposphere, and wpbl and wlft are the weights given to the

undilute instability and subsaturation terms respectively. Equivalent potential

temperature is computed conventionally as

θe ≡ T

(
p0
pd

)Rd/cp

H−Rvrv/cp exp

(
Lvrv
cpT

)
, (2)

where T is temperature, p0 = 1000 hPa is a reference pressure, pd is the dry

air partial pressure, Rd is the dry air gas constant, cp is the specific heat of dry

air at constant pressure, H is relative humidity, Rv is the gas constant of water

vapor, and rv is the water vapor mixing ratio. This definition neglects the

contribution to θe of liquid water. Saturation equivalent potential temperature

is computed using (2) but setting H = 1 and the vapor mixing ratio to its

saturation value.

The layer weights are given by

wpbl ≡
a∆ppbl
b∆plft

ln

(
a∆ppbl + b∆plft

a∆ppbl

)
(3)

wlft ≡ 1− wpbl, (4)
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where a and b are parameters relating to the relative mass inflow rates in

the PBL and LFT layers, respectively, and ∆ppbl and ∆plft are the pressure

thicknesses of the PBL and LFT layers, respectively. We follow [5] in setting

a = b = 0.5, but we compute ∆ppbl and ∆plft for each day and gridpoint as

follows.

Following convention [5], we define the boundary layer to extend from the

local surface pressure to 150 hPa above. To better resolve the layer boundaries

and thus depths, ERA5 fields are linearly interpolated in pressure from their

native resolution (of 25 hPa spacing from 1000 to 750 hPa, 50 hPa spacing from

750 to 250 hPa, and 25 hPa spacing from 250 to 100 hPa) to 5 hPa spacing up

to 200 hPa. The LFT is taken to span from the next level vertically above to

the last level below the freezing level, defined as where the temperature drops

below 273 K.

When computing the free-tropospheric subsaturation term, BL,s, and the

subcloud undilute instability term, BL,i, individually, the layer-depth weights

are included in each:

BL,s ≡ gwlft

θe,pbl − θ∗e,lft
θ∗e,lft

(5)

BL,i ≡ gwpbl

θe,lft − θ∗e,lft
θ∗e,lft

. (6)

Given our focus on extremes, we use this version of BL in terms of equiv-

alent potential temperatures rather than the simplified version in terms of

moist enthalpies [5], as the latter loses some of the variations within either tail.

Our use of a spatiotemporally varying PBL bounds and LFT layer thickness

defined in terms of the local surface pressure and freezing level are also more
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involved than the original version which uses constant values of 1000 hPa as

the surface pressure, 850 hPa as the PBL top, and 500 hPa as the LFT top.

ENSO risk ratios of BL

Risk ratios for BL, BL,s, and BL,i components are computed identically to

those for rainfall, other than being restricted to the satellite era 1979-2020. This

includes restricting to rainy days and the risk ratios then being interpolated

to regional climatological quantiles and then return periods.

Data availability statement

Indian Meteorological Department rainfall data used is available at https://

www.imdpune.gov.in/cmpg/Griddata/Rainfall 25 NetCDF.html and https://

www.imdpune.gov.in/cmpg/Griddata/Rainfall 1 NetCDF.html. ERSST data

is available at https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf/.

ERA5 data is available at https://www.ecmwf.int/en/forecasts/dataset/

ecmwf-reanalysis-v5. NMME data is available at https://iridl.ldeo.columbia.

edu/SOURCES/.Models/.NMME/.

https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_NetCDF.html
https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_NetCDF.html
https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_1_NetCDF.html
https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_1_NetCDF.html
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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Extended Data Figures

(a) (b) (c)
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Extended Data Fig. 1 In color shading according to each colorbar, (a) climatological
JJAS-mean rainfall (units mm/day), (b) JJAS-mean rainfall interannual standard deviation
(units mm/day), (c) daily rainfall standard deviation (units mm), (d) average number of
days exceeding the Indian Meteorological Department’s “heavy rain” threshold of 64.5 mm,
(e) average across years of each year’s JJAS block maximum rain (units mm), and (f) the
climatological 99.9th percentile daily accumulation across all JJAS days (units mm). For
each, brown shades denote values less than approximately the median across gridpoints, and
blue shades denote values above that value.
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Extended Data Fig. 2 Timeseries of daily rainfall block maximum within each JJAS at
three representative points. In very rainy points of WG (dark green), there are very heavy
rain events nearly every summer; in dry points of SEI (brown), the heaviest events are much
weaker. In Gujarat (far western CMZ; orange), most summers see modest max rainfall but
occasionally receive extremely high values.
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Extended Data Fig. 3 Scatterplot of the JJAS cutoff-NINO3.4 correlation coefficient
vs. climatological JJAS-mean rainfall for points with JJAS climatology < 12 mm day−1

restricting to points below the JJAS climatological rain 95th percentile across grid-
points (12.0 mm day−1). Overlaid lines are the corresponding linear regressions, from the
0.25× 0.25◦ dataset in solid and the 1◦ × 1◦ dataset in dashed.
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(a) 95th percentile (b) 99th percentile (c) 99.9th percentile

(d) "moderate" (¸7.6 mm) (e) "heavy" (¸64.5 mm) (f) "very heavy" (¸124.5 mm)
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corr. coeff. of exceedance count w/ NINO3.4 [unitless]

Extended Data Fig. 4 In color shading according to the colorbar, correlation coefficient
of exceedance counts for each JJAS against NINO3.4 of the local climatological (a) 95th,
(b) 99th, and (c) 99.9th percentile, or of the Indian Meteorological Department’s thresholds
for (d) moderate, (e) heavy, or (f) very heavy daily accumulations, with the corresponding
value in mm printed in each label.
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Extended Data Fig. 5 (a) In squares, composite regional cutoffs computed from gamma
fits; all other plotted elements are identical to Fig. 2(a). (b) ENSO risk ratios of daily rainfall
for each of the four monsoonal India regions according to the colors and labels. Dotted curves
are the actual risk ratios from the 0.25◦ × 0.25◦ Indian Meteorological Department rainfall
dataset. Solid curves are the corresponding gamma fits. Dashed curves are the gamma fits
for the 1◦ × 1◦ dataset.
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(a) Block max vs. NINO3.4 (b) Gumbel location (c) Gumbel scale

−0.4 −0.2 0.0 0.2 0.4
corr coeff. [unitless]

0.0 0.5 1.0 1.5 2.0
ENSO comp. ratio [unitless]

0.0 0.5 1.0 1.5 2.0
ENSO comp. ratio [unitless]

(d) 0.99th quantile regression (e) 0.999th quantile regression

−32−24−16−8 0 8 16 24 32
mm day¡1 K¡1

−120−90−60−30 0 30 60 90 120
mm day¡1 K¡1

Extended Data Fig. 6 (a) Pearson correlation coefficient between the JJAS block maxi-
mum daily rainfall and NINO3.4, 1901-2020. (b and c) Ratio of El Niño to La Niña composite
Gumbel fits to JJAS block maximum daily rainfall at each gridpoint, for the (b) location
and (c) scale parameters. (d and e) Quantile regression for the (c) 99th and (d) 99.9th per-
centile daily rainfall (including both rainy and dry days) against NINO3.4.
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(a) cutoff, 1901-1978 (b) cutoff, 1979-2020
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Extended Data Fig. 7 (a and b) Pointwise correlations between the JJAS cutoff and
NINO3.4 restricting to (a) the pre-satellite era of 1901-1978 and (b) the satellite era of 1979-
2020. (c) ENSO risk ratios for each region restricting to (dashed) the pre-satellite era and
(solid) the satellite era. (d through g) Scatterplots of the region-aggregated cutoff in each
JJAS vs. NINO3.4, for (d) All Monsoonal India, (e) Central Monsoon Zone, (f) Western
Ghats, and (g) Southeast India. Overlaid lines are corresponding linear regressions. Yellow
elements are for the pre-satellite era, dark red elements are for the satellite era, and black
elements are for the full period. Printed values above each panel are the regression slopes
for that region, in mm K−1, with values in bold statistically significant at the p = 0.05
level. Light red and blue shading denote El Niño and La Niña conditions based on the
±0.3 K threshold used elsewhere for constructing composites. Note differing vertical axis
spans across d-f.
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Extended Data Fig. 8 JJAS-mean ENSO composite anomaly profiles, El Niño minus
La Niña, averaged over the AMI domain, in relative humidity and vertical velocity.

(a) actual JJAS NINO3.4 (b) NMME forecasted NINO3.4 (c) difference, (a) minus (b)
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Extended Data Fig. 9 For the 1980-2020 period for which NMME data is available,
correlation coefficient of the local JJAS cutoff vs. the JJAS NINO3.4 value computed (a)
directly from ERSST, or (b) forecasted by the NMME multi-model mean of runs initialized
at the preceding May 1st. Panel (c) shows their difference.
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