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The supersymmetric connection that exists between the Jaynes-Cummings (JC) and anti-Jaynes
Cummings (AJC) models in quantum optics is unraveled entirely. A new method is proposed to
obtain the temporal evolution of observables in the AJC model using supersymmetric techniques,
providing an overview of its dynamics and extending the calculation to full photon counting statistics.
The approach is general and can be applied to determine the high-order cumulants given an initial
state. The analysis reveals that engineering the collapse-revival behavior and the quantum properties
of the interacting field is possible by controlling the initial state of the atomic subsystem and the
corresponding atomic frequency in the AJC model. The substantial potential for applications of
supersymmetric techniques in the context of photonic quantum technologies is thus demonstrated.

INTRODUCTION

The introduction of the Jaynes-Cummings (JC) model
in 1963 [1] marked a crucial moment in the history of
quantum optics and continues to be a cornerstone of re-
search in this discipline today, as it captures the fun-
damental dynamics of the radiation-matter interaction
within the weak coupling quantum regime. This model
relies on three key approximations: (i) the reduction of
matter-light interaction to the dipolar regime, (ii) the
portrayal of subsystem matter as a quantum two-level
system, and (iii) the conservation of total excitations, of-
ten referred to as the “rotating wave approximation”.
Consequently, the traditional form of the Hamiltonian
for the JC model is expressed as follows (from now on
ℏ = 1)

ĤJC =
ωa

2
σ̂z + ωcâ

†â+ λ
(
âσ̂+ + â†σ̂−

)
, (1)

where the light-matter coupling is given by λ, represent-
ing ωc and ωa, respectively, the fundamental energies of
the single-mode quantized electromagnetic field in the
cavity and of the two-level atomic system. The mat-
ter operators can be expressed in the basis of the ex-
cited state |e⟩ and the ground state |g⟩ of the atom as
σ̂z = |e⟩⟨e| − |g⟩⟨g|, σ̂− = |g⟩⟨e|, and σ̂+ = |e⟩⟨g|. Addi-
tionally, the operators â† and â represent the traditional
creation and annihilation photon operators acting on the
usual Fock or number states |n⟩ . The action of these op-

erators that make up ĤJC is schematically depicted on
the left side of Fig 1. Over the past few decades, rapid ad-
vancements in quantum technologies have enabled the ex-
perimental realization of the JC model in laboratory set-
tings. This versatile model has found applications across
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Figure 1. Schematic representation of SUSY map-
ping in quantum optics models. Experimental setups for
studying the JC and AJC models traditionally involve confin-
ing a single electromagnetic mode between two mirrors. This
mode interacts with an atomic system possessing two energy
levels, {|g⟩ , |e⟩}. In the JC model Eq. (1), excitations can
be exchanged between photons (γ) and atomic energy levels
using operators such as â†σ̂− and âσ̂+. On the contrary, the
AJC model Eq. (2) allows for simultaneous creation or annihi-
lation processes in both subsystems, as described by operators
â†σ̂+ and âσ̂−.

a spectrum of physical platforms. These include neutral
atoms confined within optical and microwave cavities [2],
trapped ions [3, 4], and superconducting qubits coupled
with electromagnetic cavities [5], transmission line res-
onators [6], and cold atoms [7], among others. For a
comprehensive review, please refer to Ref. [8].

Additionally, due to the success of the JC model, sev-
eral researchers have begun to explore a counterpart
version of it. This alternative version, known as the
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anti-Jaynes-Cummings (AJC) model [9, 10], modifies the
radiation-matter interaction term by allowing only those
terms that do not conserve the number of excitations,
as schematically shown in the right side of Fig. 1. This
characteristic sets it apart from the JC model and opens
up new avenues for exploring non-conservative dynamics
in quantum systems. Therefore, the Hamiltonian takes
the following form:

ĤAJC =
ωa

2
σ̂z + ωcâ

†â+ λ
(
â†σ̂+ + âσ̂−

)
. (2)

The exploration of the AJC model has revealed intriguing
properties, drawing parallels with the JC model [11–15],
thereby providing fresh perspectives and insights that
deepen our understanding of quantum dynamics.

In a parallel historical context, supersymmetry
(SUSY) has fascinated particle physicists since its incep-
tion [16]. Notably, seminal ideas have brought SUSY
concepts into the realm of quantum optics, particularly
within the JC model [17–19]. Recently, Rodŕıguez-Lara
and collaborators have conducted significant work on ex-
ploring the relationship between quantum optics models
and SUSY [20–22]. Despite these advances, an important
gap remains a clear connection between two of the most
paradigmatic models in quantum optics, the JC model,
and its counterpart, the AJC model.

In this work, we address this gap by presenting a new
approach to map the JC model solutions into the AJC
model ones. We introduce a SUSY transformation that
allows a clear mapping between the JC and AJC Hamil-
tonians. This work presents extensive theoretical and
numerical studies of the SUSY connection between both
models. Additionally, it provides a general conceptual
framework for obtaining high-order cumulants in the con-
text of full counting statistics of photons.

The paper is organized as follows. In Sec. I, we reca-
pitulate the theoretical background of the JC model for
the exact dynamical solution. In Sec. II, we introduce the
SUSY mapping between the JC and AJC models. Specif-
ically, we define a SUSY transformation that allows us to
map the time-dependent solutions of the JC into the AJC
model. We demonstrate that the partner Hamiltonian of
the JC model is the AJC model with a shifted qubit fre-
quency. In Sec. III, we present a comprehensive analysis
of the expectation values of qubit and field operators. For
the field operators, we extend the calculation to obtain
key properties of the counting statistics of photons. In
Sec. IV, we present numerical experiments demonstrating
sensible results regarding the control of collapse-revival
behavior and the quantum nature of the radiation in the
AJC model. The work is closed with a final section of
conclusions, where some interesting possibilities of future
work are indicated, for the study of more sophisticated
systems. A couple of Appendices are given for the sake
of completeness.

I. THEORETICAL BACKGROUND

As mentioned in the introduction, the JC model has
been one of the most studied from both theoretical and
experimental perspectives. In this section, we provide
a brief overview of the solution of the corresponding
Schrödinger equation, through the evolution operator for
the JC model. These results will be employed throughout
the manuscript, aiming to create a self-contained work.
The Hamiltonian of the JC model, given in Eq. (1), can
be written in matrix form as:

ĤJC =

(
ωcn̂+ ωa

2 Î λâ

λâ† ωcn̂− ωa

2 Î

)
, (3)

where n̂ = â†â is the operator representing the number
of photons and Î represents the identity operator in Fock
space. In general, the solution of the Schrödinger equa-
tion i∂t |ψJC(t)⟩ = ĤJC |ψJC(t)⟩ is given by |ψJC(t)⟩ =

Û(t) |ψJC(0)⟩ , where |ψJC(0)⟩ is the initial state of the
total system: light and matter. As the Hamiltonian
(Eq. (3)) is time-independent, the unitary evolution op-

erator Û(t) can be expressed as [23]:

Û (t) = exp
[
−itĤJC

]
=

(
F†

n̂+Î
(t) Gn̂,â (t)

Gn̂+Î,â† (t) Fn̂(t)

)
, (4)

where the matrix elements are given by the three non-
trivial operators

Fm̂ = cos [Ωm̂t] + i
∆

2

sin [Ωm̂t]

Ωm̂
,

Gm̂,Ô = −i λ Ô sin [Ωm̂t]

Ωm̂
,

Ωm̂ =

√
(∆/2)

2 Î+ λ2m̂,

(5)

Ô being any of the three operators Î, â or â†, and the
photon index operator m̂ being either n̂ or n̂+ Î. Here we
are denoting as Ωm̂ the Rabi-modified frequency operator
and by ∆ = ωa−ωc the detuning between the atomic and
field frequencies. In particular, we can give specific cases
of the expected value of functions defined by Eq. (5) as

Fm = ⟨m| Fm̂ |m⟩ = cos(Ωmt) + i
∆

2

sin(Ωmt)

Ωm
, (6a)

Gm = ⟨m| Gm̂,Î |m⟩ = −iλ sin(Ωmt)

Ωm
, (6b)

with Ωm =

√
(∆/2)

2
+ λ2m. Note that the functions

Fm and Gm are time-dependent. A rather general initial
state of the JC model at t = 0 can be written as:

|ψJC(0)⟩ =
1

N0
(βe |e⟩ + βg |g⟩ )⊗

∞∑
n=0

Cn |n⟩ , (7)

where the field probability amplitudes Cn satisfy∑∞
n=0 |Cn|2 = 1, and N0 =

√
|βg|2 + |βe|2 is the nor-

malization constant. The parameters βi ∈ C, with
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i ∈ {e, g}, represent the corresponding initial probabil-
ity amplitudes of finding the atomic system either in the
excited state |e⟩ or in the ground state |g⟩ , respectively.
Note that we are considering a state of light written as
a superposition of Fock states |n⟩ with complex ampli-
tudes Cn. Using the exact analytical results provided by
Eq. (4) and Eq. (5), the evolution operator is to be ap-
plied to any initial state (Eq. (7)) to obtain the evolved

wave function |ψJC(t)⟩ = Û (t) |ψJC(0)⟩ .
The dynamics of the JC model captures the fundamen-

tal interaction between a two-level atom and a single-
mode quantized electromagnetic field [24–26], giving rise
to intriguing phenomena such as the collapse and revival
in the populations [27–30]. These phenomena, charac-
terized by the periodic disappearance and reappearance
of the excited state population [27, 28], have been ex-
tensively studied and observed experimentally in vari-
ous physical systems [31, 32]. In addition to collapse
and revival, the JC model also exhibits other fascinat-
ing features such as vacuum Rabi oscillations [33–35],
quantum interference [36, 37], and entanglement gen-
eration between the atom and the field [38–40] (see
also Refs. [41, 42]). These details have aroused signifi-
cant interest due to their potential applications in quan-
tum information processing [43–45], quantum communi-
cation [46, 47], and quantum metrology [48, 49]. In the
next section, we establish a supersymmetric (SUSY) ap-
proach that will allow us to map the dynamics of the JC
model into that of the AJC model in a straightforward
way.

II. DUALITY IN QUANTUM DYNAMICS: JC
AND ITS SUSY COUNTERPART, THE AJC

HAMILTONIAN

The SUSY approach introduces the operator Â inter-
twining [16, 18, 50–62] two Hamiltonians Ĥ1 and Ĥ2 as

ÂĤ1 = Ĥ2Â. (8)

By choosing Ĥ1 = ĤJC given in Eq. (3), and taking the
operator

Â =

(
â† 0
0 â

)
, (9)

generating a new matrix Hamiltonian Ĥ2 in the form

Ĥ2 =

(
ωcn̂+

(
ωa

2 − ωc

)
Î λâ†

λâ ωcn̂−
(
ωa

2 − ωc

)
Î

)
, (10)

which is precisely the AJC Hamiltonian. It is impor-
tant to note that the atomic frequency in Ĥ2 is not the
same as in Ĥ1, but it is displaced by the field frequency
due to Eq. (8): the JC Hamiltonian, under an intertwin-
ing transformation given by Eq. (9), produces an AJC
Hamiltonian, which is its SUSY partner, with a modified
atomic frequency. Here, we rewrite Eq. (8) as:

Â ĤJC (ωa) = ĤAJC (ωa − 2ωc) Â, (11)

where, for the sake of clarity, we have now explicitly
stated the value of the atomic frequency on which each
Hamiltonian depends. However, to keep the notation as
simple as possible, the change in atomic frequency in
Eq. (11) will not be shown explicitly from now on. In
Appendix A, some interesting properties derived from
Eq. (11) are presented.
If we assume that f(z) admits a Taylor series expan-

sion, then it makes sense to consider f(Ĥ), and we have
that the operator relation given by Eq. (11) can be writ-
ten in a more general form as:

Âf
(
ĤJC

)
= f

(
ĤAJC

)
Â. (12)

In Section I we have presented the exact analytical solu-
tion of the JC model, from which the corresponding ob-
servables and the expected values of the relevant dynam-
ical variables can be easily obtained. In the following, we
will develop a novel approach to obtain the solution of
the AJC model by starting from the solution |ψJC(t)⟩ of
the JC model. In turn, this will provide a direct way to
obtain the observables and expectation values of dynam-
ical variables associated with the AJC model.

III. EXACT QUANTUM DYNAMICS
UNRAVELED THROUGH SUSY MAPPING

In this section, we present a comprehensive approach
to mapping the exact dynamics of the JC into that
of the AJC model. The AJC dynamics is character-
ized by the state |ϕAJC(t)⟩ , which is the solution of the

Schrödinger equation i∂t |ϕAJC(t)⟩ = ĤAJC |ϕAJC(t)⟩ .
Using Eq. (12), we obtain the normalized solution of the
AJC system as follows:

|ϕAJC(t)⟩ =
1

NA

[
Â |ψJC(t)⟩

]
, (13)

where |NA|2 = |N0|−2[⟨n0⟩|βg|2 + (1 + ⟨n0⟩) |βe|2] has
been included because the SUSY intertwining operator
(Eq. (9)) is not unitary, ⟨n0⟩ being the initial mean pho-
ton number, ⟨n0⟩ =

∑∞
n=0 n|Cn|2. The process described

above is schematically represented in Figure 2. It is
noteworthy that to derive the solution |ϕAJC(t)⟩ associ-

ated with ĤAJC one can either transform the (evolved)
solution |ψJC(t)⟩ , as indicated in Eq. (13), or to start
from the initial state |ψJC(0)⟩ , then transform it into

|ϕAJC(0)⟩ using Â, and subsequently evolve it [cf. Eq.

(12)] via exp
[
−itĤAJC

]
. In turn, Eq. (13) allows for the

direct computation of the expectation value of a given
observable Ô associated with the AJC system in the
Schrödinger picture, as follows:

⟨ϕAJC(t)| Ô |ϕAJC(t)⟩ =
⟨ψJC(t)| Â†ÔÂ |ψJC(t)⟩

|NA|2
. (14)

Thus the expectation values of observables associated
with the AJC model can be obtained from the solution
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|ψJC(0)⟩ //ÛJC(t) +3

��

Â

��

|ψJC(t)⟩

��

Â

��
|ϕAJC(0)⟩ //

ÛAJC(t)

+3 |ϕAJC(t)⟩

Figure 2. Schematic Commutative Diagram for Map-
ping JC Solutions into the AJC Solutions. The time-
dependent solution of the AJC model can be obtained from
the evolved solution corresponding to the JC model. This
is represented by the path of red arrows (right-down), where

ÛJC(t) is the evolution operator given in Eq. (4). Alterna-
tively, the solution of the AJC model can be obtained by
applying the intertwining operator to the initial state of the
JC model and then performing the time evolution through

ÛAJC (t) = exp
[
−itĤAJC

]
. This in turn is depicted by the

path of blue arrows (down-right).

of the JC model by a remarkably easy transformation

Â†ÔÂ =

(
âÔ11â

† âÔ12â

â†Ô21â
† â†Ô22â

)
, (15)

of the corresponding operator Ô, through the also simple
intertwining operator (9). In this representation, any ar-

bitrary qubit operator ÔQubit ∈ {σ̂α, σ̂±}, α ∈ {x, y, z},
can be expressed in a simplified form as:

Â†ÔQubitÂ =

(
O11 (I+ n̂) O12â

2

O21

(
â†
)2

O22n̂

)
, (16)

where Onm ∈ C are the matrix elements of ÔQubit. In

addition, for any field operator ÔField ∈ {fn̂, fâ, fâ†},
where fẑ represents a function of the corresponding sub-

index operator, Eq. (15) can be written as:

Â†ÔFieldÂ =

(
âÔâ† 0

0 â†Ôâ

)
. (17)

Then, this mapping provides a general approach for ob-
taining expectation values of observables Ô of the AJC
model from the solution corresponding to the JC model
employing a simple transformation on Ô. In the follow-
ing subsections, we derive exact analytical expressions for
calculating the expectation value of a general operator Ô
in each subsystem: the field and the qubit.

A. Computing expectation values of qubit
operators

In this section, we present a general framework for
computing the expectation value of a conventional qubit
operator by mapping the solutions of the JC to the
AJC model. To achieve this, we will take the gen-
eral initial state given by Eq. (7) and let it evolve by
the action of the evolution operator of the JC model
(Eq. (4)). We first express a general qubit operator as

ÔQubit = Ôd
Qubit + Ôad

Qubit, where Ôd
Qubit is a diagonal

spin operator (e.g. σ̂z) and Ôad
Qubit is an antidiagonal

spin operator (e.g. σ̂x, σ̂y, σ̂+ or σ̂−). Then, using Eq.
(16), we write the transformed operators as

Â†σ̂zÂ =

(
I+ n̂ 0
0 −n̂

)
, (18a)

Â†Ôad
QubitÂ =

(
0 O12 (â)

2

O21

(
â†
)2

0

)
. (18b)

In the last expressions, we used the fact that σ̂z is the
only diagonal qubit operator. By following the path of
red arrows in Fig. 2 and from the general initial state for
the JC model given by Eq. (7), we calculate the expec-
tation value of σ̂z for the AJC model as:

⟨ϕAJC(t)| σ̂z |ϕAJC(t)⟩ =
1

|N |2
∞∑

n=0

|Cn|2
[
|βe|2Tn+1 − |βg|2Tn

]
+ 4

√
(n+ 1)

3
Re [βgβ

∗
eCn+1C

∗
nGn+1Fn+1] , (19)

where |N |2 = ⟨n0⟩|βg|2 +(1 + ⟨n0⟩) |βe|2. The transition
amplitudes

Tn = n
[
|Fn|2 − n|Gn|2

]
(20)

also appear in Eq. (19), an equation that can be drasti-
cally simplified if the initial state of the matter subsystem
is, for instance, the ground state |βg|2 = 1, βe = 0. In

this case, the last two terms of Eq. (19) vanish, and the
expectation value takes on a reduced expression. Fol-
lowing a similar approach as described above, but using
Eq. (18b), we now compute the general explicit form of
the expectation value of any antidiagonal qubit operator,
σ̂x or σ̂y, which can be written as linear combinations of
σ̂+ and σ̂−. Without loss of generality, we focus our
attention on the operator σ̂+, obtaining by direct calcu-
lation
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⟨ϕAJC(t)| σ̂+ |ϕAJC(t)⟩ =
1

|N |2
∞∑

n=0

(√
n+ 1C∗

nCn+1Fn+1

[
(n+ 2)Gn+2|βe|2 − nGn|βg|2

]
+
√
(n+ 1)(n+ 2)C∗

nCn+2Fn+1Fn+2 βgβ
∗
e − n(n+ 1)|Cn|2GnGn+1β

∗
gβe

)
.

(21)

From here, we can easily determine the expectation value
of σ̂−, by evaluating the complex conjugate of Eq. (21),
considering that G∗

n = −Gn. Similar to the expectation
value of the qubit population (Eq. (19)), the expectation
value of the ladder qubit operator takes a simple form
when the qubit is initialized in a simpler state. We will
perform a similar analysis for the field operators in the
next subsection, focusing on computing general expres-
sions for the high-order expectation values of the field
operators.

B. Analysis of expectation values for field
operators

In quantum optics, the ability to calculate powers
of the photon number operator ⟨n̂k⟩, creation operator
⟨(â†)k⟩, and annihilation operator ⟨âk⟩ is highly valued
as through them a deeper understanding of the quan-
tum properties of light and its interactions with matter
is achieved. Moreover, the photon statistical properties
are analyzed within the framework of the full counting
statistics, providing insights into the photon number dis-
tribution and correlations. These results can be directly
measured using traditional quantum optics setups, fa-
cilitating experimental verification of theoretical predic-

tions [63–66]. Below, we show how the SUSY map allows
the calculations of powers for these operators.

1. Full counting statistics of photons

The statistical properties of photons are analyzed
within the framework of full counting statistics, which
provides information about the probability distribution
P (n, t) of having n photons within a time t. Instead of
directly computing the probability distribution P (n, t),
it is more convenient to examine the behavior of the cu-
mulants ⟨n̂k⟩, k = 1, 2 . . . of the distribution. These cu-
mulants offer valuable information about the statistical
properties of photons, which are essential for understand-
ing various quantum phenomena and their experimental
manifestations. The k-th cumulant of the distribution
can be expressed using SUSY transformations as follows:

Â†n̂kÂ =

(
(I+ n̂)k 0

0 n̂(n̂− I)k
)
. (22)

Therefore, employing an approach similar to that de-
scribed in Sec. III A, we explicitly calculate the form of
the k-th cumulant of the photon distribution. After a
simple calculation, we finally obtain

⟨ϕAJC(t)|n̂k |ϕAJC(t)⟩ =
1

|N |2
∞∑

n=0

|Cn|2
{
|βe|2

[
(1 + n)

k+1 |Fn+1|2 + (1 + n)2nk|Gn+1|2
]

+ |βg|2
[
n (n− 1)

k |Fn|2 + nk+2|Gn|2
]}

− 2

√
(n+ 1)

3
[
nk − (1 + n)

k
]
Re [βgβ

∗
eCn+1C

∗
nGn+1Fn+1] ,

(23)

a result that offers a powerful method for computing
high-order cumulants for the AJC model over time. For
example, it provides an easy way to evaluate the Fano
factor: FF = Var(n̂)/⟨n̂⟩, where Var(n̂) = ⟨n̂2⟩ − ⟨n̂⟩2.
Recall that FF = 1 means a coherent state, while values
less (greater) than 1 indicate a sub-Poissonian (super-
Poissonian) photon state. For completeness, in the fol-
lowing, we extend our analysis by calculating the SUSY
map for the high-order cumulants of the creation and an-
nihilation photon operators. This calculation will com-
prehensively understand the photon statistics and fur-
ther clarify the relationship between the JC and the AJC
models.

2. Comprehensive analysis of field operator full counting
statistics

The statistical characteristics of the resulting pho-
ton field amplitude ⟨â⟩ can be measured in contempo-
rary experimental setups of light-matter interaction sys-
tems. The measuring method depends on the specific
cavity quantum electrodynamics setup used. Potential
approaches include Ramsey interferometry (where a sec-
ond atom is employed to probe the cavity’s state), homo-
dyne measurement of photons escaping from the cavity
by interfering them with a reference beam, and homo-
dyne measurement conducted within the cavity by de-
tecting the interfering fields with a second atom [38, 67].
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We begin by writing the general form of the SUSY map
for the field amplitudes as:

Â†âkÂ =

(
âk (I+ n̂) 0

0 n̂âk

)
, (24a)

Â† (â†)k Â =

(
(I+ n̂)

(
â†
)k

0

0
(
â†
)k
n̂

)
. (24b)

These are related to the k-th cumulant of the field am-
plitude, which is directly associated with fluctuations in
photon creation and annihilation. Similar to the qubit

case, we define new transition amplitudes as follows:

T m̃
m = m [Fm̃F∗

m + m̃Gm̃G∗
m] ,

T̃ m̃
m = m̃FmGm̃ −mFm̃Gm,

T̄ m̃
m = F∗

mGm̃ −F∗
m̃Gm.

(25)

Given the general form of the initial state (see
Eq. (7)) and the structure of the SUSY transformation
Eq. (24a), and using the following relation: âk |n⟩ =√
n!/ (n− k)! |n− k⟩ , we obtain the k-th cumulant:

⟨ϕAJC(t)| âk |ϕAJC(t)⟩ =
1

|N |2
∞∑

n=0

√
(n+ k)!

n!
C∗

n

(
Cn+k

[
|βe|2T n+1

n+k+1 + |βg|2T n+k
n

]
+
[
βgβ

∗
e

√
n+ k + 1Cn+k+1T̃ n+k+1

n+1 + β∗
gβe n

√
n+ kCn+k−1T̄ n+k

n

])
.

(26)

Furthermore, as in the case of the qubit, the expectation
value of (a†)k can be obtained simply from a complex
conjugation of Eq. (26). In the next section, some specific
numerical examples are given to show the usefulness of
the results that have been found.

IV. NUMERICAL EXPERIMENTS

In this section, we will present examples that clarify
the applicability of the general results developed in Sec-
tion III, analyzing the evolution in time of some observ-
ables of the AJC system. The initial state of the partner
JC system is taken to be |ψJC(0)⟩ = |Qubit⟩ ⊗ |Field⟩ ,
with

|Qubit⟩ = cos θ |g⟩ + eiφ sin θ |e⟩ , (27)

where the initial probability amplitudes are given by
|βe|2 = sin2 θ and |βg|2 = cos2 θ. The angle θ modu-
lates the ratio of the probability amplitudes of the atom
to be initially in the ground or the excited state, and the
angle φ shifts the phase between both states of the qubit
(from now on we set φ = π/4). On the other hand, we
initialize the field subsystem so that

|Field⟩ =
1

Nϑ

[
|α⟩ + eiϑ |−α⟩

]
, (28)

is a Schrödinger cat-like state, i.e. a superposition of
the two coherent states |α⟩ and |−α⟩ , the normalization

constant being N2
ϑ = 2

(
1 + e−2|α|2 cosϑ

)
. For simplic-

ity, from now on we assume that α is real. Field states
as Eq. (28) allows to generate states like the following:
(a) Even coherent cat state (ϑ = 0): the photon number
distribution is nonzero only for even photon numbers and

the average photon number is ⟨n0⟩ = |α|2 tanh
(
|α|2

)
. (b)

Odd coherent cat state (ϑ = π): only odd number of pho-
tons have a nonzero probability, and the average photon
number is ⟨n0⟩ = |α|2 coth

(
|α|2

)
. (c) Yurke-Stoler co-

herent state (ϑ = π/2): the average photon number is
|α|2. In addition, field states such as those in Eq. (28)
are accessible light states that can currently be created
in the laboratory. From now on we set ϑ = 0, so the ini-
tial state of the photon in Eq. (28) becomes an even cat
state, whose coefficients in the basis of the Fock states
{|n⟩} are given by

Cn =
1

N0
exp

[
−|α|2

2

]
(1 + (−1)

n
)√

n!
αn. (29)

Next, and for the states that we have just discussed, we
show various numerical results that have been computed
from the analytical expressions obtained in Section III.
In turn, these analytical results were tested numerically
using the Quantum Toolbox in Python (QuTiP) [68].
We have set the time scale in units of ωc and have
considered a weak coupling regime, that is, we set
λ = 0.1ωc. Furthermore, we have taken α = 4. A
convergence analysis has been carried out for both the
numerical and analytical calculations. The Fock basis
was truncated for N = 250 photons in both cases.

It is worth mentioning that, for numerical calculations,
the path of the blue arrows shown in Figure 2 has been
followed; note that the initial condition of the AJC sys-
tem is not, in general, the same as the initial condition
for the JC model, but rather its image under the map-
ping defined by Â. Thus, we have started from the initial
condition of the JC model and, after transforming it with
the operator in Eq. (9), its evolution was obtained by

ÛAJC(t). This, on the one hand, validates the commuta-
tive diagram of Figure 2, remembering that the analytical
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results were obtained taking the path of the red arrows:
we have used the time-dependent solution for the JC sys-
tem. On the other hand, the numerical results allow us
to verify the accuracy and robustness of the obtained
analytical results. Furthermore, it is also worth noting
that the analytical results presented are valid out of res-
onance, that is ∆ ̸= 0. For the resonant case ∆ = 0 of a
coherent state and an atom initially in the ground state,
the results are shown in Appendix B. Next, we present
the analysis of the qubit subsystem in Sec. IVA and of
the light subsystem in Sec. IVB.

A. Atomic inversion

The first observable we are going to analyze is the
atomic inversion (see Eq. (19)), defined as the difference
between the probabilities of finding the two-level system
in the excited or the ground state. Thus, the atomic
inversion gives information about the state of the atomic
subsystem. Note that the expression of Eq. (19) reduces
in the current situation, as C∗

nCn+1 = 0 for the initial
even (odd) cat state. The first row of Figure 3 shows the
atomic inversion of the AJC system for three specific
cases of the atomic frequency ωa: (a) ωa < ωc, (b)
ωa = ωc and (c) ωa > ωc. The archetypal behavior of
collapses and revivals can be appreciated, particularly at
θ = 0. Observe, however, the disappearance for θ = π/4
(θ = 3π/4) of the oscillations before (ωct ∼ 0) and after
(ωct ∼ 300) the first revival. This can be particularly
seen in Fig 3(a).

Another interesting fact is that at resonance (Fig-
ure 3(b)) the first revival retains its amplitude, regard-
less of the initial atomic state (without considering θ).
As in the previous case, the oscillations before and after
the first revival (i.e., the second revival) can be manip-
ulated by judiciously controlling the initial state of the
two-level system (θ = π/4, for example), which is pos-
sible with the currently available laboratory technology.
Note also that, in resonance, the first and second col-
lapses approach each other. On the other hand, out of
resonance (Figures 3(a) and 3(c)) atomic transitions are
not very probable despite the collapse-revival behavior.
Thus, it is possible to perform collapse-revival engineer-
ing by controlling the initial atomic state, as well as the
system detuning, in the AJC system.

B. Photon full-counting statistics

The analysis of the higher-order cumulants of the
field amplitude distribution described in Section III B
is now presented. A significant understanding of the
characteristics of the field subsystem is obtained, since
the quantities presented are measurable and contain
information about the quantum character of the electro-
magnetic field.

The square of the photon number operator provides in-
formation about the state of the field, specifically about
the mean number of photons present in it. Usually, the
analysis of the mean photon number is obtained directly
from ⟨n̂⟩, however, the square of the number operator
carries equivalent information. Furthermore, ⟨n̂2⟩ gives
information about the quantum (classical) nature of
the field, through the Fano factor, as explained before.
Figure 3(d) shows the expectation value of the square of
the number operator, according to Eq. (23), for k = 2
and ωa = 2ωc. As in the case of the atomic inversion,
the Eq. (23) is simplified for the chosen initial state of
the radiation: a Schrödinger’s cat type. Note that ⟨n̂2⟩
is scaled by a factor of 1/|α|4 through the color bar in
Figure 3(d). Collapses and revivals can be observed,
along with the disappearance of the oscillations at the
beginning of the interaction (before the first revival), as
well as after the first revival (not shown). However, the
mean value of the square of the photon number takes
larger values for the AJC system, compared to the JC
model (not shown either), due to the counter-rotating

terms
{
â†σ̂+, âσ̂−

}
present in ĤAJC .

Analogously, the expectation value of the square of the
annihilation operator is analyzed. It is directly connected
to the field quadratures and can therefore be measured
in the laboratory. Figure 3(e) shows the evolution of
the expectation value of the square of the annihilation
operator, according to Eq. (26). Note that for the initial
even (odd) cat state and k an even number, the last two
terms in Eq. (26) disappear. In addition, as k = 2, we
have that

C∗
nCn+2 = α2 e−|α|2 |α|2n√

n!(n+ 2)!
[1 + (−1)n]2. (30)

The same parameters as for the square of the photon
number operator (Figure 3(d)) are considered in Fig-
ure 3(e), and ⟨â2⟩ is scaled by a factor of 1/|α|2. The
oscillations shown in Figure 3(e) are a different mani-
festation of the interference between the superposition
of Fock states that generate the collapses and revivals
in ⟨σ̂z⟩ and ⟨n̂2⟩, which are directly detectable by
homodyne measurements. Indeed, such oscillations are
a fingerprint of entanglement between the atomic and
radiation subsystems, just like collapse-revival behavior,
and decrease in amplitude over time. In addition, such
amplitude can be precisely adjusted only by properly
establishing the initial atomic state through the control
parameter θ, as can be seen in Figure 3(e).

The FF is another quantity of interest that can be
straightforwardly obtained from our results, more pre-
cisely from Eq. (23). As mentioned, FF provides us with
information about the nature of the field. In particular,
FF < 1 means that the field is sub-Poissionian and
presents quantum features; FF = 1 means that the field
is Poissonian, that is, that the field is in a coherent
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Figure 3. Exact dynamic landscapes of the AJC model via SUSY transformation. In the upper panels, we present
the results for the qubit subsystem. The dynamics of the qubit, given by the expected value of σ̂z, is represented as a function
of the angle of the initial state of the qubit θ and the evolution time, for three values of the qubit frequency: (a) ωa < ωc,
(b) ωa = ωc and (c) ωa > ωc. In the bottom panels, we show the fingerprints for the full photon counting statistics. Panels
(d) and (e) show the evolution of fluctuations in photon number and field amplitude, respectively. In panel (f) we illustrate
the complex trade-off from sub-Poissonian to super-Poissonian statistics (see blue plane for FF = 1), presented by the Fano
factor. The results for the field subsystem (bottom panels) correspond to the case of ωa > ωc, presenting a qualitatively similar
behavior in the other regimes though.

(quasi-classical) state; and FF > 1 means that the field
presents a super-Poissonian distribution of photons.
The temporal evolution of the FF is shown in Fig. 3(f)
for the same parameter values used in Fig. 3(d)(e).
A horizontal plane at FF = 1 has been added, as a
reference for the eye. It can be seen that the field
photon distribution oscillates between Poissonian, sub-
Poissonian, and super-Poissonian over time. However,
such time intervals can be engineered by controlling
the initial atomic state through θ. In particular, for
θ = π/2, namely, an initial two-level system in the
excited state, FF < 1 for all t, which reveals the quan-
tum nature (sub-Poissonian) of the electromagnetic field.

Therefore, it is also possible to control the quantum
features of the field in the AJC system by appropriately
fixing the initial atomic state. It is worth mentioning that
the simpler case of a coherent state is usually shown for
the AJC system. However, we have shown that the more
involved case of an even cat state for the field shows sim-
ilar features, such as well-defined collapses and revivals

in atomic inversion and mean photon number.

V. CONCLUSIONS

In this study, we have presented a new interpretation
of a model widely studied in quantum optics, the Jaynes-
Cummings model. Such interpretation lays on the discov-
ery that a SUSY transformation can map the JC model
into the anti-Jaynes-Cummings model. Moreover, the ex-
act dynamics can be mapped through this SUSY trans-
formation, facilitating a simplified description to under-
stand the dynamics arising from a very general interac-
tion state between light and matter. We have provided a
comprehensive analysis, both theoretical and numerical,
of the dynamics of the AJC model as a SUSY partner of
the JC model. We extended these results to the context
of full counting statistics of photons. Our findings allow
the computation of exact solutions regardless of the ini-
tial state. However, an appropriate choice of the initial
conditions of the system makes it possible to engineer the
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collapse-revival behavior and the quantum characteristics
of the interacting radiation field. We have evaluated and
analyzed the dynamics of the Fano factor as a fingerprint
of complex quantum behavior over time.

The results presented in this study can be experimen-
tally validated using current quantum technologies and
are of interest in hot areas of physics such as quan-
tum optics, quantum communication, information pro-
cessing, and quantum computing. Looking ahead, this
work opens new avenues to explore connections between
more elaborated models in quantum optics, such as the
Dicke model, and their corresponding SUSY partners.
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Appendix A: Further factorization properties for the
intertwining operators

In addition to the analytical techniques discussed
throughout the manuscript, we would like to mention
some straightforward general consequences of the inter-
twining relation given by Eq. (11). First, the following
intertwining relation is also satisfied

ĤJC (ωa) Â† = Â†ĤAJC (ωa − 2ωc) . (A1)

Therefore, it can be checked that Â†Â is a Hermitian
symmetry of ĤJC. We can express this symmetry as
[Â†Â, ĤJC] = 0. In general, we define an eigenvalue

equation Â†Â|Ψn⟩ = λn|Ψn⟩, where the eigenvalues
λn = n, with n = 0, 1, . . . , and the corresponding eigen-

vectors |Ψn⟩ are given by

|Ψn⟩ =

{
|g, 0⟩, for n = 0,

{|e, n− 1⟩, |g, n⟩} , for n ≥ 1.
(A2)

Similarly, the Hermitian symmetry for the AJC model
can be expressed as [ÂÂ†, ĤAJC] = 0, and the cor-

responding eigenvalue equation is ÂÂ†|Φn⟩ = λn|Φn⟩,
where λn is the same as in the JC model symmetry. The
corresponding eigenvectors are given by

|Φn⟩ =

{
|e, 0⟩, for n = 0,

{|e, n⟩, |g, n− 1⟩} , for n ≥ 1.
(A3)

Note that in both cases the ground state is a singlet, while
the excited states are two-fold degenerate. Furthermore,
the intertwining operators Â and Â† annihilate the re-
spective ground states |Ψ0⟩ and |Φ0⟩ which in turn allows
the construction of coherent states for the AJC (JC) sys-
tem, nevertheless this is out of the scope of the present
work. The Hamiltonians can be diagonalized within each
of the eigenspaces above described. In addition, for any
|ψn⟩ = c1|Ψn⟩ + c2|Ψ′

n⟩ and |ϕn⟩ = d1|Φn⟩ + d2|Φ′
n⟩,

ci, di ∈ C, i = 1, 2, where |Ψ′
n⟩, |Φ′

n⟩ denote solutions (if
any) that are linearly-independent of |Ψn⟩, |Φn⟩, respec-
tively, it follows that: Â|ψn⟩ =

√
n|ϕn⟩.

Appendix B: Analytical reductions: transitioning
from resonant JC model to non-resonant AJC model

via SUSY

The general approach described in the main text allows
us to characterize the dynamics of the AJC model start-
ing from the solution of the JC model. Recall that the
mapping defined by the SUSY transformation produces
an AJC model with a qubit frequency shifted by the field
frequency. Here, we will delve into the scenario where
the Hamiltonian of the JC model is in resonance, i.e.,
ωc = ωa = ω. Consequently, the corresponding SUSY
partner generated from Eq. (10) is given by:

ĤAJC = ωâ†â− ω

2
σ̂z + λ

(
â†σ̂+ + âσ̂−

)
. (B1)

In the current resonance limit (∆ = 0), all the equa-
tions presented in the main text can be simplified. To
illustrate this, we will consider a particularly simple case
where the initial state is |ψJC(0)⟩ = |g⟩ ⊗ |ζ⟩ , with
|ζ⟩ =

∑∞
n=0 Cn |n⟩ . Observe that the normalization con-

stant becomes |N |2 = ⟨n0⟩. Therefore, the complete dy-
namics of the expectations values for both subsystems is
given by:
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Figure 4. Parallelism of higher-order cumulants for the photon probability distribution for the JC and AJC
models. In the resonance limit of the JC model and with an initial state given by |ψJC(0)⟩ = |g⟩ ⊗ |α⟩ , being |α⟩ a coherent
state with α = 4, we characterize the behavior of the higher-order cumulants of the time-dependent photon number distribution
using (a) the Fano factor and (b) the fluctuation of the amplitude of the field. In panel (a), a horizontal blue line at FF = 1
is plotted to delineate the transition from sub-Poissonian to super-Poissonian photon statistics. Additionally, we denote four
instants of time with blue dot markers labeled 1 to 4 in both the Fano factor and the field amplitude fluctuation. In panel
(c), the Wigner function W (α, α∗) is plotted for the four selected times. The density plot corresponds to the projection of
the Wigner function on the plane (α, α∗), with a blue circle of radius 4, and arrows indicating the direction of rotation and
evolution of the Wigner function.

⟨ϕAJC(t)| σ̂+ |ϕAJC(t)⟩ =
i

⟨n0⟩

∞∑
n=0

√
n (n+ 1) cos

[
λ
√
n+ 1t

]
sin
[
λ
√
nt
]
C∗

nCn+1. (B2a)

⟨ϕAJC(t)| σ̂z |ϕAJC(t)⟩ = − 1

⟨n0⟩

∞∑
n=0

n cos
[
2λ

√
n t
]
|Cn|2. (B2b)

⟨ϕAJC(t)| n̂k |ϕAJC(t)⟩ =
1

⟨n0⟩

∞∑
n=0

|Cn|2
[
n (n− 1)

k
cos2

[
λ
√
nt
]
+ nk+1 sin2

[
λ
√
nt
]]
. (B2c)

⟨ϕAJC(t)| âk |ϕAJC(t)⟩ =
1

⟨n0⟩

∞∑
n=0

√
(n+ k)!

n!
C∗

nCn+k

(
n cos

[
λ
√
n+ k t

]
cos
[
λ
√
n t
]

+
√
n (n+ k) sin

[
λ
√
n+ k t

]
sin
[
λ
√
n t
])

.

(B2d)

To obtain these expressions we have used the transition
amplitudes Eq. (20) and Eq. (25), given in the present

case by

Tn = n cos
[
2λ

√
n t
]
, (B3)

T m̃
m = m cos

[
λ
√
m̃ t
]
cos
[
λ
√
m t
]

+
√
mm̃ sin

[
λ
√
m̃ t
]
sin
[
λ
√
m t
]
. (B4)
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Note that expressions Eq. (B2) depend only on the co-
efficients Cn of the initial state of the field. Here we
simplify the notation as ⟨ϕAJC(t)| Ô |ϕAJC(t)⟩ = ⟨Ô⟩ϕt

.
For the Fock state |m⟩ , the coefficients satisfy Cn =
δnm and ⟨n0⟩ = m. Therefore, the expectation val-
ues are easily seen to be ⟨σ̂+⟩ϕt

= ⟨âk⟩ϕt
= 0, and

⟨σ̂z⟩ϕt
= − cos [2g

√
m t]. Finally, the mean value of the

k-th cumulant for the number of photons is shown to be

⟨n̂k⟩ϕt
= (m− 1)

k
cos2 [g

√
mt]+mk sin2 [g

√
mt] . The FF

for a Fock state |m⟩ can be straighforwardly calculated:

FFm (t) =
sin2 [2g

√
mt]

2 (2m− cos [2g
√
mt]− 1)

. (B5)

This function exhibits a distinctive behavior: it al-
ways remains less than one. Specifically, for m = 1,
the Fano factor decreases as FF1 = cos2(gt). When
m > 1, the Fano factor can be approximated as
FFm ∼ sin2

[
2g

√
m
(
t+ 1

4

)]
/2(2m − 1). Therefore,

the distribution of photons presents a sub-Poissonian
(purely quantum) behavior.

On the other hand, if the initial state of the
field is a coherent state |α⟩ , the coefficients Cn

are given by Cn = e−|α|2/2 αn
√
n!
. We also have

C∗
nCn+k = αk exp

[
−|α|2

] |α|2n√
n!(n+k)!

, and ⟨n0⟩ = |α|2.
Exact expressions for the expectation values can be
obtained using Eq. (B2). In Figure 4, we characterize
the high-order cumulants of the photon distribution for
both the JC model and its SUSY partner, the AJC
model, for |ψJC(0)⟩ = |g⟩ ⊗ |α⟩. Due to the simple
choice of the initial state, the action of the SUSY
transformation leaves the state invariant. For this rea-
son, a direct comparison between both models is possible.

In Fig. 4(a), we show the behavior of the Fano
factor for a coherent state |α⟩ of the field. Similar
collapses and revivals structures appear in both models.
However, the photon statistics in the AJC case is
sub-Poissonian during the collapse, while the JC model
presents super-Poissonian statistics. Furthermore, the
Fano oscillations are also inverted, with local maxima
for the AJC corresponding to local minima for the
JC model (and viceversa). The SUSY nature of both
models is revealed in the Fano factor. Similarly, we plot
the absolute value of the second cumulant for the field
amplitude ⟨â2⟩ in Fig. 4(b). The field amplitude presents
an oscillatory structure, which can be approximated as
|⟨â2⟩| ∼ |α|2 | cos [g(ωct/|α| − 1)] |. Analogous to the
Fano factor, the field amplitude reveals the SUSY nature
of both models due to the antipodal oscillations involved.

To visualize the peculiar quantum behavior in the
AJC dynamics, we select four instants of time and
show the corresponding Wigner functions, defined as
W (α, α∗) = 1

π

∑∞
k=0(−1)k ⟨k| D̂†(α)ρ̂D̂(α) |k⟩ , where

D̂(α) = exp
[
αâ† − α∗â

]
is the Glauber displacement op-

erator and ρ̂ represents the density matrix, in Figure 4(c).
At t = 0, the Wigner function is a Gaussian centered at
the value of α = 4. The Wigner function moves anti-
clockwise in a circle of radius equal to α. At the first
maximum of FF, the Wigner function completes a rota-
tion of π. At the collapse, the Wigner function takes on
a cat-like state structure. Finally, we represent the com-
plex Wigner structure at the maximum of the first FF
revival. These results provide a fingerprint of the SUSY
nature of the JC and its partner, the AJC model.
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