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Abstract: High-performance catalysts are crucial for sustainable energy conversion and human 
health. However, the discovery of catalysts faces challenges due to the absence of efficient approaches 
to navigating vast and high-dimensional structure and composition spaces. In this study, we propose a 
high-throughput computational catalyst screening approach integrating density functional theory (DFT) 
and Bayesian Optimization (BO). Within the BO framework, we propose an uncertainty-aware 
atomistic machine learning model, UPNet, which enables automated representation learning directly 
from high-dimensional catalyst structures and achieves principled uncertainty quantification. Utilizing 
a constrained expected improvement acquisition function, our BO framework simultaneously 
considers multiple evaluation criteria. Using the proposed methods, we explore catalyst discovery for 
the CO2 reduction reaction. The results demonstrate that our approach achieves high prediction 
accuracy, facilitates interpretable feature extraction, and enables multicriteria design optimization, 
leading to significant reduction of computing power and time (10x reduction of required DFT 
calculations) in high-performance catalyst discovery.       
 
Keywords: Catalyst screening, Bayesian Optimization, multicriteria, neural networks, uncertainty 
quantification. 

1. Introduction 
High-performing catalysts are crucial for sustainable energy conversion and human health. Due 

to huge reaction and composition spaces, the catalyst discovery cannot be achieved solely through 
experimental exploration. Atomistic density functional theory (DFT) simulations, aiding in 
understanding catalyst structures and performance, have been essential to complement experiments [1-
3]. A common practice for catalyst screening is to calculate the adsorption energy using DFT and then 
to predict the catalyst activity and selectivity using microkinetic models. The promising candidate 
catalysts from simulations are then subject to experimental validation [4-8]. Nevertheless, this 
workflow encounters formidable challenges when employed in the high-throughput catalyst discovery, 
particularly in complex structure spaces, owing to the substantial computational costs of DFT [1]. 
Therefore, an efficient computational workflow to accelerate screening the composition–structure 
space is needed for high-throughput catalyst discovery.  
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Active learning, which adaptively queries DFT simulation, has been utilized to optimize the 
catalytic activity in diverse reactions such as carbon dioxide reduction [4], nitrate reduction [9], oxygen 
reduction [5, 10], and polymerization [11], involving a range of materials including pure metals, 
intermetallic compounds, binary alloys, and high-entropy alloys. A commonly used active learning 
method is Bayesian Optimization (BO). The fundamental concept of BO is to build a surrogate model 
of expensive simulations (e.g., DFT) while quantifying the model uncertainty. Next samples of 
simulations are determined according to an acquisition function (e.g., expected improvement [12]) that 
balances exploration and exploitation. Despite promising outcomes in prior attempts, current 
applications of BO in catalyst screening have several limitations. First, data representation is crucial 
to learning the structure–property relationships [13]. In existing BO frameworks, the inputs to machine 
learning (ML) are usually handcrafted features which are simplified summaries of chemistry and 
structure [11, 14-18]. However, the selection of relevant features is a difficult endeavor. Identifying 
and selecting features often involve a combination of trial-and-error tests and human intuition [4, 19], 
which are system-specific and limited for generalization [1], hindering the applications in broader 
materials families [20]. This calls for ML methods capable of operating directly on the high-
dimensional atomic structures, thus avoiding system-specific feature engineering. Second, existing 
computational catalyst screening approaches are multi-step processes, i.e., narrowing down the 
candidates step by step considering multiple criteria such as activity, selectivity, stability, price, and 
toxicity, in a sequential manner. When BO approach is used for optimization, targeting solely for high 
activity (design objective) may result in violating other design criteria. Thus, merging the screening 
steps for simultaneous multicriteria evaluation is needed to enhance the effectiveness and efficiency 
of BO in catalyst screening. 

In light of these issues, we propose a high-throughput computational catalyst screening framework 
with automated representation learning considering high-dimensional atomic structures and multiple 
evaluation criteria simultaneously. First, we develop a representation learning model, named 
Uncertainty-aware PointNet (UPNet), to automatically extract information from high-dimensional 
atomic structure data without requiring feature engineering. UPNet facilitates the creation of a ML 
model with principled uncertainty quantification (UQ) by taking into account the spatial correlations. 
Using the quantified uncertainty, our adaptive learning method effectively balances the exploration of 
novel catalyst structures with the exploitation of information from known optimal catalyst structures. 
Second, we develop a constrained BO method to enable catalyst screening considering multiple 
evaluation criteria simultaneously. In this case, BO searches for catalysts with high activity (i.e., 
desired property as an optimization objective) under the constraints of other criteria. Combining high 
prediction accuracy, interpretable feature extraction, and multicriteria evaluation, our method guides 
efficient discovery of high-performance catalysts. The success of the approach highlights the benefits 
of combining computational simulations and uncertainty-driven adaptive learning for high-throughput 
catalyst screening. Beyond catalysis, the developed method has the potential to accelerate materials 
discovery for various other applications [21, 22] with high-dimensional design representations and 
time-consuming simulations. 
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2. Results 

2.1 Automated Feature Extraction and Bayesian Optimization for Multicriteria Catalyst 
Screening 
The proposed Bayesian Optimization framework for catalyst screening is shown in Fig. 1. DFT 

and kinetic models [23, 24] (Fig. 1a and b) are used as the simulation models to calculate reactivity 
(e.g., activity, selectivity, and stability) for various catalyst structures. An initial set of catalyst atomic 
structures and calculated performance are used to build surrogate models (Fig. 1c). The prediction and 
quantified uncertainty are obtained from the surrogate models using our proposed UPNet approach. 
Using the constrained acquisition function (Fig. 1d), next samples are suggested as additional DFT 
simulations and added to the training set for the new BO iteration. Our work enhances the conventional 
BO framework to facilitate (1) automated feature extraction from the high-dimensional atomic 
structure by replacing the Gaussian Process model with a neural network model incorporating 
principled Uncertainty Quantification (Fig. 1c) considering spatial correlations and (2) screening with 
the simultaneous consideration of multiple evaluation criteria through constrained acquisition function 
(Fig. 1d). 

 
Fig. 1 Proposed Bayesian Optimization (BO) for multicriteria catalyst screening. The BO framework. The density 
functional theory (DFT) simulations and kinetic models are used for generating data for training machine learning (ML) 
models with principled uncertainty quantification (UQ). The constrained acquisition function suggests the next samples to 
query the DFT simulations considering multiple criteria. 

 
Fig. 2a shows the architecture of the proposed ML surrogate model, UPNet, for prediction and 

principled UQ. There are two components in UPNet. First, it takes high-dimensional inputs of atomic 
structures used for DFT simulations, which is compiled in a tabular format shown in Fig. 2b. Each row 
of the table is one atom, represented by its element and three-dimensional locations (x, y, and z). The 
number of rows is the number of atoms in a molecule. In this way, the atomic structure is encoded in 
a point cloud format. Next, PointNet [25, 26] (Fig. 2c), a type of convolutional neural network model 
specific for point cloud data, is deployed to handle the high input dimensionality. PointNet respects 
the permutation invariance of points in the input. In other words, the atoms in a structure can be 
randomly arranged among the rows of the input table and this randomness does not lead to different 
predictions of the PointNet. Second, for a ML model to serve as a surrogate model in BO, it should 
provide principled UQ to quantify model uncertainty through distance-awareness, indicating the 
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distance between testing data and training data (i.e., spatial correlations among the data). This is a 
feature of Gaussian Process [27] models but is lacking in conventional neural network models. To 
enable principled UQ using neural networks, Spectral-normalized Neural Gaussian Process (SNGP) 
[28] was developed recently with the enhanced distance-awareness capability for neural networks. In 
this work, we develop the UPNet approach by integrating the PointNet with the SNGP (Fig. 2c) 
through adding residual connections and spectral normalization in the hidden layers in PointNet and 
using the approximated Gaussian Process as the output layer. There are several other existing UQ 
methods in deep learning such as Bayesian neural networks and ensemble methods, but they require 
multiple training/inference processes and often result in high computational cost. This creates a barrier 
for BO since each iteration involves retraining the model and many model evaluations. SNGP can 
obtain prediction and UQ through a single training and inference process and is chosen for our 
framework due to its low memory requirement and computation cost. 

To consider multiple evaluation criteria simultaneously, we formulate the screening as a 
constrained BO problem,  

 min
𝑐𝑐(𝐱𝐱)≥𝜆𝜆

𝑙𝑙(𝐱𝐱). (1) 
In this case, one evaluation criterion is selected as the objective 𝑙𝑙(𝐱𝐱) (e.g., activity), and the remaining 
criteria are treated as constraints 𝑐𝑐(𝐱𝐱) (e.g., selectivity and stability), where 𝐱𝐱 is the input atomic 
structure. 𝑙𝑙(𝐱𝐱)  and 𝑐𝑐(𝐱𝐱)  are both expensive to evaluate and are surrogated by regression and 
classification neural networks, respectively (the first and second architecture in Fig. 2a). By this way, 
the goal of the screening is to optimize the objective (finding a material targeting high activity) while 
not violating the constraints (e.g., selectivity or stability should exceed a threshold 𝜆𝜆).  For each 
iteration of the constrained BO, we select the new sample with the highest constrained expected 
improvement [29] for DFT simulations and then add it to the training dataset. The screening stops 
when a predefined total amount of iterations (i.e., computational cost) is reached or there is no further 
improvement of performance. 

 
Fig. 2 Machine learning models with principled uncertainty quantification for regression and classification. a, The 
ML model as surrogate models (UPNet) in BO. Separate ML models are built for the objective (regression) and constraints 
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(classification). b, The inputs are the atomic structures formulated as point cloud data. c, The architecture of hidden layers 
and output layer of UPNet. 

2.2 Regression and Classification with Uncertainty Quantification 
For demonstrating our approach, the dataset for carbon dioxide (CO2) reduction reaction is 

extracted from Ref. [4] where the unrelaxed structure data and adsorption energies of CO and H are 
provided. The unrelaxed structure data contains the atomic structures used as inputs of ML models. 
The adsorption energies together with the volcano scaling relationships (Fig. 3a and b, digitized from 
Ref. [30] and range normalized to [0, 1]) are used to calculate the catalyst activity and selectivity used 
as outputs. The distributions of the activity and selectivity are shown in Fig. 3c. It is noted that while 
the activity values are distributed relatively uniformly, the majority of selectivity is concentrated in 
the low-value region. Consequently, there is a high possibility of discovering a catalyst that violates 
selectivity requirements, which highlights the need for multicriteria screening. In Ref. [4], for the same 
dataset, a different active learning approach was employed for screening, utilizing only exploitation, 
manually engineered input features and a single evaluation criterion. In this paper, we demonstrate the 
benefits of using the BO approach that leverages both exploitation and exploration, by integrating 
automated representation learning and multicriteria evaluation to further enhance screening efficiency. 

We first test the predictive performance of the UPNet model using the full dataset. Two models, 
one regression and one classification, are built for activity (objective) and selectivity (constraint), 
respectively. 0.9 is chosen as the threshold to distinguish high and low selectivity. Fig. 3d shows the 
results for the activity prediction with predicted means (points) and predictive uncertainty (±1 standard 
deviation, vertical bars). The mean absolute error is 11%, and the coefficient of determination (R2) 
value is 0.69. The true values are located within one (1) predictive standard deviation. The 
classification results for selectivity are shown in Fig. 3e. The accuracy is 0.89 and the F1 score is 0.61. 
Fig. 3f shows the predictive uncertainty for selectivity classification. It can be seen that 
misclassifications are associated with higher uncertainty than correct classifications. We then 
randomly selected 10,000 samples and added random prediction errors ranging from [0, 0.2] eV to [0, 
0.3] eV (with means of 0.1 and 0.15 eV, respectively) for adsorption energy, which resulted in a mean 
absolute error from 9% to 14% for activity and accuracy from 0.92 to 0.86 for selectivity. Thus, we 
conclude that the prediction errors of the developed model fall within that range based on the current 
dataset.  
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Fig. 3 Dataset and results for regression and classification with uncertainty quantification. a, The volcano scaling 
relationship for activity. b, The volcano scaling relationship for selectivity. Both a and b are digitized from Ref. [30] and 
are normalized to range [0, 1]. a, The distributions of activity and selectivity. c, The testing performance of predicting 
activity with uncertainty quantification (1 standard deviation). d, The testing performance of classifying selectivity. The 
uncertainty quantification for d is shown in f. Misclassifications are associated with higher uncertainty. 

2.3 Catalyst Screening Results 
After evaluating the predictive performance of the UPNet model, we use it in the proposed BO 

approach for catalyst screening. Fig. 4 shows the results of BO sampling. To construct the initial data 
set, for each chemical composition with the number of structures greater than 10, 1 sample was selected, 
which resulted in an initial training dataset of 51 samples. At each iteration of BO, the sample with the 
highest value of constrained expected improvement was selected and added to the training dataset. In 
total, there are 80 iterations. The initial samples and the sequential samples from BO with and without 
considering constraints and random search are shown in Fig. 4a. The solid points indicate high 
selectivity (selectivity = 1) and the hollow circles indicate catalysts with selectivity smaller than 1. 
Overall, BO more effectively samples areas with high activity compared to random search. With the 
constrained BO, more solutions satisfying both high activity and high selectivity can be found 
compared to BO without considering constraints (Fig. 4a). 
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Fig. 4 Catalyst discovery results by Bayesian Optimization with and without considering constraints and random 
search. a, Initial samples, and samples selected by different methods. The solid points and hollow circles indicate satisfying 
or violating selectivity constraints. b, The number of solutions (high activity and high selectivity) vs. interactions. c, The 
number of solutions (high selectivity) vs. interactions. d, The number of solutions (high activity) vs. interactions. e, The 
average of top 10 solutions (high activity and high selectivity) vs. interactions. 

 
To illustrate that the above results are robust against stochastic model training, the search process 

is repeated 20 times for each sampling method using the same initial samples. The results of means 
and 95% uncertainty bounds are presented in Fig. 4b-e. Fig. 4b shows the number of solutions with 
high activity (greater than 0.85) and high selectivity (equal to 1) for each iteration. Our proposed 
constrained BO method identifies more solutions than regular BO and random search. This can be 
further illustrated in Fig. 4c and d which show the solutions with higher activity and higher selectivity, 
respectively. The constrained BO performs comparably to unconstrained BO in optimizing the 

a

b c

d e



8 

objective, characterized by high activity (Fig. 4c), while outperforming unconstrained BO in satisfying 
the constraint, namely achieving high selectivity (Fig. 4d). It has been observed that regular BO has a 
high possibility of discovering an optimal solution (activity = 1) with low selectivity when constraints 
are not considered. Considering the purpose of screening in identifying numerous top candidates, 
rather than just the single top one, for further experimental validation, we assess the screening 
performance of the top 10 candidates based on their average product of activity and selectivity (Fig. 
4e)). The ideal product is equal to 1. It is noted from Fig. 4e that the constrained BO performs better 
than unconstrained BO and random search. 

We also varied the number of samples per iteration (1, 2, 5, 10 and 20) when using the constrained 
BO. The results (SI Fig. S1) show that the convergence becomes slower with the increased number of 
samples per iteration. Given the same total number of samples (i.e., 80), the same performance can be 
achieved with less than 5 samples per iteration. Thus, with less statistical computation (i.e., more 
samples per iteration), more DFT calculations (i.e., more total number of samples) are needed to reach 
convergence of BO. 

2.4 Latent Space Interpretability 
A desired feature of a surrogate model used in BO is proper spatial correlation modeling, i.e., the 

capability to quantify the distance among data. To visualize the spatial distance, the t-distributed 
stochastic neighbor embedding (t-SNE) method is used to map the high-dimensional data to low-
dimensional space (two-dimensional in this work) while preserving significant data structure (i.e., 
pairwise similarities) [31]. The key idea is that similar data in the high-dimensional space are closer to 
each other in the low-dimensional space. The data of chemical compositions each with more than 25 
structures are extracted and used as training data for SNGP. Fig. 5c shows the embeddings of latent 
space (the features from the last hidden layer before the output layer) from SNGP (also in SI Fig. S2). 
The black points in Fig. 5c represent out-of-distribution data which have only one structure per 
chemical composition. It can be observed that the same chemical compositions are clustered and 
separated among the clusters and most of the out-of-distribution data is separated from the training 
data. This shows the capability of UPNet to preserve the similarities of the catalyst structures from the 
input space to the latent space, which is necessary for differentiating seen and unseen data. 
Nevertheless, it is noted that there exists another cluster of out-of-distribution data that is close to the 
training data (a mixture of different chemical compositions). One plausible explanation is that the 
SNGP model discerns challenging-to-predict data, mapping them closer in the latent space. Next, the 
distributions of the standard deviations which are the outputs of SNGP are plotted in Fig. 5d. One data 
point per chemical composition is partitioned from the training dataset to serve as in-distribution 
testing data. It can be seen that the uncertainty for in-distribution testing data is within the range of 
training data and the uncertainty for out-of-distribution data is distinctively higher than training data 
and in-distribution testing data, which is a desired property of the surrogate model in BO to predict 
high/low uncertainty for dissimilar/similar unseen data to the seen data (or far away from/close to the 
seen data in terms of the spatial distribution). For comparison with the latent space obtained from the 
proposed UPNet (Fig. 5c), the latent space from mere PointNet (CNN model) without the capability 
of uncertainty quantification is visualized in Fig. 5b. In this case, catalyst structures with different 
chemical compositions can be mapped close together in the latent space (i.e., feature collapses) for 
training data, and the out-of-distribution data are distributed among and close to the training data, 
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which show the spatial distance from the input space is not well preserved without integrating PointNet 
with SNGP (UPNet in Fig. 5c). Fig. 5a shows the t-SNE of the input space (i.e., the catalyst structures). 
Due to the high dimensionality of inputs, it is difficult for t-SNE to separate out-of-distribution data 
from the training data, which pinpoints the effectiveness of the extracted low dimensional features [32-
34] in the latent space of UPNet.  

 
Fig. 5 t-Distributed stochastic neighbor embedding (t-SNE) and uncertainty quantification. a, t-SNE of latent space 
from Spectral-normalized Neural Gaussian Process (SNGP) model. b, t-SNE of latent space from CNN model. c, t-SNE 
of the input space. d, Uncertainty (standard deviation) distribution of training data, in-distribution testing data, and out-of-
distribution testing data from the SNGP model. e, t-SNE of the search path from constrained Bayesian Optimization. 

 
Furthermore, we tracked the search path of BO, and the first 15 sequential samples are illustrated 

in the low dimensional latent space (Fig. 5c). It is noted that the search traverses among 5 clusters of 
chemical compositions. Before jumping to another cluster (i.e., exploration), multiple samples were 
selected within one cluster (i.e., exploitation). This shows that BO balances exploration and 
exploitation to find the global optimum. The activity (design objective) increases throughout the search 
process. Al8Cu24 was selected by the proposed constrained BO approach, which is consistent with the 
conclusion [30] that Cu-Al alloys exhibiting a higher proportion of Cu than Al are of great potential 
for CO2 reduction. Compared to the existing active learning approach [30], the total number of data is 
reduced from approximately 4,000 to 131 (51 initial training data and 80 during constrained BO), 
showing the efficiency of our proposed approach. 
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3. Conclusions 
In summary, we develop an adaptive catalyst discovery framework combining DFT and active 

learning. Due to the high computational cost of DFT and vast varieties of catalyst structures and 
compositions, BO is utilized to adaptively sample the catalyst space. To accelerate screening, we seek 
to predict catalytic properties directly from the atomic structures, which avoids problem-specific 
feature engineering, and to search for the catalyst with high activity while satisfying other evaluation 
criteria (e.g., high selectivity) simultaneously. To achieve these two goals, we extended the BO 
framework by developing an uncertainty-aware physics-based ML model (UPNet) and utilizing a 
constrained expected improvement acquisition function, respectively. With UPNet, the high-
dimensional atomic coordinates and descriptors of the catalysts can be directly used as the input, which 
are physically meaningful, generic, and easy to obtain, in contrast to handcrafted features.  Furthermore, 
the UPNet can reliably quantify the uncertainties of the predictions, which enables exploration and 
exploitation of the vast catalyst space. Next, we formulate multicriteria screening as a constrained 
optimization problem with the activity as the objective and other evaluation criteria as constraints. The 
constrained acquisition function augments the expected improvement function with the probability of 
constraint satisfaction. We demonstrated the method in the discovery of CO2 reduction reaction 
catalyst, a promising material for pursuing carbon neutrality. The results show that the UPNet model 
archives high prediction accuracy. The model can also extract interpretable latent features due to its 
ability to preserve the similarities of the catalyst structures from the input space to the latent space. 
The developed constrained BO method outperforms unconstrained BO and random search in terms of 
the quantity and quality of the discovered catalysts with top performance. With the generic 
representation of high dimensional catalyst structures, our proposed methods can seamlessly extend to 
catalyst discovery in more complex structure spaces (e.g., high-entropy alloy), and for other reactions 
[35]. In the broad context of materials research, this work provides a general method for automated 
multicriteria screening, facilitating high-throughput materials discovery. 

4. Materials and Methods 

4.1 Data Preparation 
We sourced our datasets from the publicly available datasets 

https://github.com/ulissigroup/GASpy_manuscript [4], which contained two separate sets: one with 
20,909 intermetallic-CO adsorption datapoints and the other with 22,675 intermetallic-H adsorption 
datapoints. We paired the datapoints in each set that shared the same intermetallic surface and same 
adsorption position. We also excluded the data outside the range of the activity/selectivity map in Fig. 
3a and b. This resulted in a CO-H paired dataset with 3,163 datapoints. The dataset contains the 
unrelaxed intermetallic structures adsorbing CO and H, and adsorption energies of CO and H. The 
activity and selectivity were added to the dataset after calculation using adsorption energies and 
activity/selectivity map. 

4.2 Bayesian Optimization 
Bayesian Optimization (BO) is a ML-based optimization method [36] solving the problem 

 min𝑓𝑓(𝐱𝐱), (2) 



11 

where is 𝐱𝐱  the design variable. The objective function 𝑓𝑓(𝐱𝐱)  is expensive to query in terms of 
computational, monetary, or opportunity cost. Typically, 𝑓𝑓(𝐱𝐱) lacks the property of convexity or 
linearity and can only be observed without information on derivatives, which makes it difficult to 
optimize using gradient-based methods. The goal of BO is to find global optimum instead of local 
optima. 

BO involves two main components: a surrogate model of the objective function for statistical 
inference, and an acquisition function to decide the next samples to query 𝑓𝑓(𝐱𝐱). BO is an iterative 
optimization process: First, initial samples are obtained according to the design of experiments. A 
surrogate model is then built using the observed samples. The predictions and corresponding 
uncertainties are used to construct the acquisition function. Next, new samples are observed which 
maximize the acquisition function and are added to the dataset. Following that, the surrogate model is 
updated with the augmented dataset and the iteration continues until a predefined target is reached or 
budget is exhausted.  

The subsequent sections discuss the above two main components of BO customized in this work 
for catalyst screening. First, a typical surrogate model for 𝑓𝑓(𝐱𝐱) is Gaussian Process which requires the 
dimension of 𝐱𝐱 to be not too large. This paper overcomes the dimensionality restriction by developing 
a neural network-based model (UPNet). Second, BO was initially developed for unconstrained 
optimization. To enable multicriteria catalyst screening, a constrained acquisition function is adopted 
in this paper. 

4.3 Uncertainty Quantification for Deep Learning 
Denote a data generation distribution 𝑝𝑝(𝑦𝑦, 𝐱𝐱) = 𝑝𝑝(𝑦𝑦|𝐱𝐱)𝑝𝑝(𝐱𝐱), where 𝐱𝐱 ∈ 𝓧𝓧 is the input and 𝑦𝑦 is the 

output. We can express the conditional data generation distribution 𝑝𝑝(𝑦𝑦|𝐱𝐱) [37, 38] as  
 𝑝𝑝(𝑦𝑦|𝐱𝐱) = 𝑝𝑝(𝑦𝑦|𝐱𝐱, 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼) × 𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑝𝑝(𝑦𝑦|𝐱𝐱, 𝐱𝐱 ∈ 𝓧𝓧𝑂𝑂𝑂𝑂𝐼𝐼) × 𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝑂𝑂𝑂𝑂𝐼𝐼), (3) 

where 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼  and 𝓧𝓧𝑂𝑂𝑂𝑂𝐼𝐼  are in-domain and out-of-domain data, respectively. To formulate the 
uncertainty quantification problem as a learning problem, a proper loss function needs to be defined 
to evaluate the quality of the predictive uncertainty from the model [39-41]. In Ref. [28], the loss 
function of expected risk over the entire input domain 𝓧𝓧 is used to construct an optimal predictive 
distribution. As a result, 𝑝𝑝(𝑦𝑦|𝐱𝐱) is expressed as 

 𝑝𝑝(𝑦𝑦|𝐱𝐱) = 𝑝𝑝(𝑦𝑦|𝐱𝐱, 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼) × 𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼)
+ 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑦𝑦|𝐱𝐱, 𝐱𝐱 ∈ 𝓧𝓧𝑂𝑂𝑂𝑂𝐼𝐼) × 𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝑂𝑂𝑂𝑂𝐼𝐼). (4) 

which can be interpreted as follows: if a data point is in the training data domain 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼 (i.e., high 
𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼)), the predictive distribution from the model is trusted, otherwise, a uniform distribution 
is assigned representing a lack of knowledge. Thus, it is crucial to estimate 𝑝𝑝( 𝐱𝐱 ∈ 𝓧𝓧𝐼𝐼𝐼𝐼𝐼𝐼) for reliable 
uncertainty quantification in ML, which requires the model to be distance-aware to quantify the 
similarity between a data point and the in-domain training data. 

Spectral-normalized Neural Gaussian Process (SNGP) was developed [28] to quantify uncertainty 
in deep learning through distance-awareness. SNGP replaces the commonly used dense output layer 
with an approximated Gaussian Process (GP) layer which models the distance from the last hidden 
layer to the output layer. To handle the large dimensionality and large data size, Laplace-
approximation inference is applied to the random Fourier features expansion of the GP layer [42]. This 
operation enables the model to be distance-aware from the last hidden layer to the output layer. There 
is a feature collapse issue in neural networks. That is, the testing data which is dissimilar to the training 
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data can be possibly mapped close to the training data in the hidden representation space [43]. Thus, 
it is needed to preserve the distance from the input layer throughout the hidden layers so that the 
distance in the hidden layers ‖ℎ(𝐱𝐱1)− ℎ(𝐱𝐱2)‖ to reflect the distance in the input layer ‖𝐱𝐱1 − 𝐱𝐱2‖. 
SNGP preserves the distance approximately through adopting a residual neural network architecture 
and up-bounding the spectral norm of the weights in the nonlinear residual blocks.  

The SNGP outputs predictive logits that follow Gaussian distribution 𝐼𝐼�𝜇𝜇(𝐱𝐱),𝜎𝜎2(𝐱𝐱)� . For 
regression, the predictive mean and variance are 𝜇𝜇(𝐱𝐱) and 𝜎𝜎2(𝐱𝐱), respectively. For classification, the 
predictive probability [44] is  

 𝑝𝑝(𝑦𝑦|𝐱𝐱) = softmax�
𝜇𝜇(𝐱𝐱)

�1 + 𝜋𝜋 8⁄ ∙ 𝜎𝜎2(𝐱𝐱) 
�. (5) 

The demonstrations of using SNGP for regression and classification are shown in SI Fig. S3. 

4.4 Machine Learning Model Architecture 
The architecture of the ML model is illustrated in Fig. 2a, and the detailed specifications are 

provided in Table 1. The output is activity or selectivity. The input is the catalyst structure. As shown 
in Fig. 2b, the structural information is encapsulated as a matrix. Each row represents an atom. The 
columns represent the features of the atoms which are obtained without the need to perform DFT 
simulations, containing one-hot encoding of the chemical element, atomic mass, electronegativity, 
atomic radius, and the coordinates of the three-dimensional location. The input catalyst structure is a 
format of point cloud data since each atom corresponds to a point. We used the PointNet model to 
handle the point cloud data. PointNet is a type of convolutional neural network (CNN). Different from 
the regular CNN, the convolutional layers are connected sequentially without pooling layers in 
between. At the end of all convolutional layers, there is a global pooling layer. The convolutional 
layers have 64 filters and a kernel size of 1 by 45 (the number of atom features). This architecture 
provides permutation invariance, that is, the random arrangement of the rows in the input matrix does 
not influence the model training and outputs. This work integrates PointNet with SNGP (Table 1). We 
added residual connections between adjacent convolutional layers, i.e.,  

 𝑥𝑥𝑙𝑙+1 = 𝐹𝐹(𝑥𝑥𝑙𝑙) + 𝑥𝑥𝑙𝑙, (6) 
where 𝑥𝑥𝑙𝑙 and 𝐹𝐹(𝑥𝑥𝑙𝑙) are the input and the output of the l-th layer, respectively. Strides of size 1 and 
“same” padding are added to keep the dimension of the filters unchanged after each convolutional 
operation to enable the summation in Eq. (6). The spectral normalization with spectral norm bound 
equal to 0.95 is applied in each convolutional layer. The output layer is a Random Feature Gaussian 
Process [28]. The model is trained using Adam optimizer [45] with the mean squared error (for 
regression) or categorical cross entropy (for classification) loss function, learning rate of 1e-5, batch 
size of 32, and epochs of 500 for regression or 300 for classification. 

Table 1 UPNet layers and specifications. 
Layers Specifications 
Input Layer Shape: (147, 45) 
Convolutional layer 1 Kernel size: 1 × 45, Filter size: 64, Activation: ReLU, Strides = 1, 

Padding = same, Spectral normalization, Spectral norm bound = 0.95 
Residual layer 1 Input Layer + Convolutional layer 1 
Convolutional layer 2 Same specifications as Convolutional layer 1 
Residual layer 2 Residual layer 1 + Convolutional layer 2 
Convolutional layer 3 Same specifications as Convolutional layer 1 
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Residual layer 3 Residual layer 2 + Convolutional layer 3 
Convolutional layer 4 Same specifications as Convolutional layer 1 
Residual layer 4 Residual layer 3 + Convolutional layer 4 
Convolutional layer 5 Same specifications as Convolutional layer 1 
Residual layer 5 Residual layer 4 + Convolutional layer 5 
Pooling layer Global max pooling 
Output layer Random Feature Gaussian Process, Size: 1 for regression and 2 for 

classification, Activation: ReLU 

4.5 Constrained Acquisition Function 
In this work, the constraint 𝑐𝑐(𝐱𝐱) ≥ 𝜆𝜆 in Eq. (1) is treated as a classification problem. That is, the 

label is 1 if 𝑐𝑐(𝐱𝐱) − 𝜆𝜆 ≥0 and 0 otherwise. The constrained BO is fulfilled through a constrained 
acquisition function, i.e., constrained expected improvement [29],  

 𝐸𝐸𝐼𝐼𝐶𝐶(𝐱𝐱�) = 𝑃𝑃𝑃𝑃[𝑐𝑐(𝐱𝐱�) − 𝜆𝜆 ≥ 0]𝐸𝐸𝐼𝐼(𝐱𝐱�). (7) 
𝐸𝐸𝐼𝐼(𝐱𝐱�) is the expected improvement for a candidate sample 𝐱𝐱�,  

 𝐸𝐸𝐼𝐼(𝐱𝐱�) = (𝜇𝜇(𝐱𝐱�)−𝑓𝑓𝑡𝑡𝑢𝑢𝑚𝑚𝑚𝑚)Φ�
𝜇𝜇(𝐱𝐱�)−𝑓𝑓𝑡𝑡𝑢𝑢𝑚𝑚𝑚𝑚

𝜎𝜎(𝐱𝐱�)
� + 𝜎𝜎(𝐱𝐱�)𝜙𝜙�

𝜇𝜇(𝐱𝐱�)−𝑓𝑓𝑡𝑡𝑢𝑢𝑚𝑚𝑚𝑚

𝜎𝜎(𝐱𝐱�) �, (8) 

where 𝑓𝑓𝑡𝑡𝑢𝑢𝑚𝑚𝑚𝑚 is the maximum value observed till iteration 𝑡𝑡, Φ(∙) is the standard Gaussian cumulative 
distribution function, and 𝜙𝜙(∙) is the standard Gaussian probability density function. 𝑃𝑃𝑃𝑃[𝑐𝑐(𝐱𝐱�)− 𝜆𝜆 ≥ 0] 
is the probability of the constraint being satisfied, i.e., 𝑝𝑝(𝑦𝑦 = 1|𝐱𝐱�) according to Eq. (5).  
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and the code for constrained Bayesian Optimization using UPNet are available at 
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Fig. S1 Impact of number of samples for iteration for constrained Bayesian Optimization. a, The number of solutions 
(high activity and high selectivity) vs. the number of samples. b, The number of solutions (high selectivity) vs. the number 
of samples. c, The number of solutions (high activity) vs. the number of samples. d, The average of top 10 solutions (high 
activity and high selectivity) vs. the number of samples. 
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Fig. S2 Examples of latent space clusters. a, t-SNE of latent space from Spectral-normalized Neural Gaussian Process 
(SNGP) model. b and c, The demonstration examples for Al8Cu24 and Al16Au16, respectively. The three rows of notation 
near the clusters are top, miller index, shift, respectively, where top (and non-top) indicates the chosen surface was at the 
top (or bottom) of the originally enumerated surface; miller index is a 3-tuple of integers indicating the Miller indices of 
the surface; shift represents for c-direction shift used to determine cutoff for the surface [1]. This suggests that these three 
types of information influence the similarities among subclusters. 
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Fig. S3 Demonstration of Spectral-normalized Neural Gaussian Process (SNGP). In order to apply SNGP with 
PointNet, this demonstration is to show the effectiveness of SNGP with convolution layers. a, A regression demonstration. 
The input of the regression problem is a 10 by 2 matrix with repeated values. The mean predictions match the training data. 
The predictive uncertainty (i.e., the standard deviation) is small (or large) near (or far away from) the training data. b and 
c, A classification demonstration. The input size is 10 by 2 with each row representing the location of a point and repeated 
rows. The blue and orange points are the binary training data. The red points are the out-of-distribution data. Results in b 
show that the probability near the training data is close to 0 or 1 and is 0.5 far away from the training data.  Correspondingly, 
in c, the uncertainty is low (close to 0) near the training data and is high for the out-of-distribution data. 
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