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Abstract

In this paper, we first propose a coupled numerical model of unsaturated flow in soils and
plant root water uptake. The Richards equation and different formulations are used in the
developed numerical model to describe infiltration in root zone and to investigate the impact
of the plant root on the distribution of soil moisture. The Kirchhoff transformed Richards
equation is used and the Gardner model is considered for capillary pressure. In our ap-
proach, we employ a meshless method based on localized radial basis functions (LRBF) to
solve the resulting system of equations. The LRBF approach is an accurate and computa-
tionally efficient method that does not require mesh generation and is flexible in addressing
high-dimensional problems with complex geometries. Furthermore, this method leads to a
sparse matrix system, which avoids ill-conditioning issues. We implement the coupled nu-
merical model of infiltration and plant root water uptake for one, two, and three-dimensional
soils. Numerical experiments are performed using nontrivial analytical solutions and avail-
able experimental data to validate the coupled numerical model. The numerical results
demonstrate the performance and ability of the proposed numerical method to predict soil
moisture dynamics in root zone.

Keywords: Richards equation, Unsaturated water flow, Root water uptake, Kirchhoff
transformation, Soil-water-plant interactions, Meshfree methods, Localized Radial Basis
Function

1. Introduction

Studying water flow dynamics is crucial in modeling hydrological processes. Water up-
take by plant roots is a significant process in subsurface unsaturated flow modeling and has
a significant impact on the evolution of soil moisture and nutrient transport [1]. Predicting
moisture fluxes in unsaturated soils and their interaction with vegetation has practical im-
plications in agriculture, water management, and climate science [2]. Understanding root
water uptake process is needed to estimate crops water requirements and design best water
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management practices. For instance, optimum irrigation scheduling for efficient water man-
agement of crops requires a proper understanding of soil, water and plant interactions [3, 4].
Plant root water absorption is a complex process that involves various interactions between
soil, plant, and climate [1]. The interactions of these complex processes can be explained
using robust and efficient coupled numerical models.

The Richards equation [5] is the most commonly used model to describe water flow
in unsaturated soils due to the effects of gravity and capillarity. This equation is highly
nonlinear due to the nonlinear constitutive relations which describe the relationship among
capillary pressure, relative permeability, and saturation [6, 7, 8].

Several models have been developed to describe plant root water uptake. Molz [9] classi-
fied these models into two categories. The first is based on a microscopic approach, whereas
the second is based on a macroscopic one. The microscopic approach describes water ex-
traction at an individual root level and considers soil water flow toward the particular root,
predominantly radial [10, 11, 12]. The microscopic models are physically-based and are
efficiently used in various studies [13, 12, 14].

The macroscopic approach [15, 16, 17] considers properties of the overall root system. In
this case, the root water extraction is considered as a volumetric sink term in the Richards
equation. The macroscopic models are typically empirical [17, 18, 19]. Several macroscopic
models have been developed based on different approaches. For instance, Gardner [20]
proposed a macroscopic model describing the dynamic aspects of water availability to plants.
Feddes et al. [17] proposed a relatively simple empirical model to describe root water uptake.
Molz and Remsen [16] proposed a linear model where the extraction rate is assumed to vary
linearly with the soil depth. Prasad [21] proposed another linear model for root water uptake
which depends on the root depth and rate of evapotranspiration. In [21], the author showed
that the linear models give satisfactory results in predicting soil moisture in the root zone.
Li et al. [22] suggested an exponential root water uptake model derived from measured
root length distributions. In comparison with field data, they showed that the exponential
model [22] performs well compared to constant and linear models [17, 21]. Ojha and Rai
[23] proposed a nonlinear root water extraction model and investigated its performance on
irrigation scheduling compared to experimental data [24]. Several studies have favoured the
use of macroscopic models for their simplicity since they don’t require information about
the detailed geometry of the root system. For more details, we refer to the previous studies
[16, 9, 25, 26].

Incorporating the plant root water uptake as a sink term in the Richard equation adds
more complexity to its analytical and numerical solutions. Except for some simple cases,
analytical solutions have been developed [27, 28, 29, 30, 31, 32, 33, 34]. For instance, Lomen
and Warrick [29] presented analytical solutions for the Richards equation under steady-state
conditions. Their solutions were based on the Gardner model for capillary pressure, and
they incorporated a sink term that depends on the matrix flux potential. Yuan and Lu [34]
developed exact solutions using the Gardner model [6] for the soil hydraulic conductivity and
different formulations for root water uptake sink term. Broadbridge et al. [35] developed
exact solutions for the Richards equation with a sink term nonlinearly dependent on soil
water content. In their solutions, they used the Gardner model for the capillary pressure.
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Most of these analytical solutions assume a simplified model for root water uptake and
consider specific initial and boundary conditions. In more practical situations, efficient
numerical approaches in terms of computing cost and accuracy are required.

Various numerical approaches have been proposed to solve the Richards equation without
a sink term [36, 37, 38, 39, 40]. Nevertheless, the design of appropriate numerical schemes
for the Richards equation that includes a sink term remains challenging. Few numerical
techniques have been proposed to solve the Richards equation considering root water uptake
as a sink term. For instance, Neuman et al. [41] used a finite-element method to solve the
soil water flow equation, taking into account water uptake by roots. Feddes et al. [42]
proposed an implicit finite-difference method to solve the Richards equation considering
plant root water uptake as sink term. Vrugt et al. [43] introduce the Galerkin finite element
method to solve the Richards equation with a sink term of water uptake by roots. Rees and
Ali [44] used the finite-element method to solve the Richards equation incorporating a sink
term for root water extraction. Difonzo et al. [45] proposed a numerical approach based on
the shooting method to solve the unsaturated flow equation with root water uptake models.
Despite the studies conducted, there remains a need for more advanced numerical methods
for computing water flow in unsaturated soils taking into account the absorption of water
by the roots.

This study presents a coupled numerical model that accounts for both unsaturated soil
flow and plant root water uptake. The proposed model uses the Richards equation and
includes different root water uptake formulations as sink terms in the governing equation.
The first formulation is proposed by Yoan et al. [34], where the stepwise and exponential
functional forms are considered for the root water uptake. The second formulation is pro-
posed by Broadbridge et al. [35], where root water uptake’s sink term is assumed nonlinearly
dependent on soil water content. In all considered formulations, the Gardner model [6] is
employed for the capillary pressure.

In our approach, we employ a meshless method based on localized radial basis function
(LRBF) to solve the resulting system of equations. The RBF meshless approach is an
accurate and computationally efficient method that eliminates the need for mesh generation
and is flexible in addressing high-dimensional problems with complex geometries. RBF
meshless methods can be categorized into global [46, 47] and local [48, 49] methods. In
the global approach, the collocation is performed globally over the entire computational
domain, while the local approach performs collocation locally over a set of influence domains.
Although the global method is simple to implement [46, 47], it faces two challenges which are:
ill-conditioned resultant matrices and the issue of selecting an appropriate shape parameter
for certain radial basis functions [50]. To overcome these drawbacks, LRBF methods are
proposed [48, 51, 49]. These local approaches result in a sparse matrix that avoids ill-
conditioning issues encountered in the global approach, where a full matrix is produced
[49]. LRBF meshless methods have been effective in solving various partial differential
equations, such as the Richards equation without the sink term [52, 53, 54, 37, 38]. To our
best knowledge, no studies have explored the use of LRBF methods in solving the Richards
equation that includes a sink term accounting for root water uptake.

In this paper, we propose LRBF meshless method [49] to solve the Richards equation with
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the presence of a sink term of water uptake by plant roots. To deal with the nonlinearity
of the governing equation, we employed the Kirchhoff transformation. To linearize the
nonlinear problem resulting from the Kirchhoff transformation technique, Picard’s iterations
are used. The numerical results are validated and compared with nontrivial analytical
solutions and available experimental data.

The structure of the paper is organized as follows: Section 2 introduces the coupled
mathematical model of infiltration and plant root water uptake. Section 3 presents the
proposed LRBF meshless method to solve the governing system. Numerical experiments for
modeling soil moisture distribution in the root zone are performed in Section 4. Conclusions
are provided in Section 5.

2. Mathematical model

2.1. The governing equations
The Richards equation [5], which governs water flow in the unsaturated zone while ac-

counting for root water uptake with a sink term, is given by:

∂θ

∂t
−∇. (D(θ)∇θ)− ∂K(θ)

∂z
= −R(x, θ), x ∈ Ω, 0 < t ≤ T , (2.1)

where θ [L3/L3] is the volumetric water content, D = Kdh/dθ [L2/T ] is the soil-water
diffusivity, h [L] is the pressure head, K [L/T ] is the unsaturated hydraulic conductivity
which is given by K = Kskr where Ks [L/T ] is the saturated hydraulic conductivity and kr
[−] is the water relative permeability, R [T−1] is the root water uptake, the coordinate vector
x = (x, y, z)T consists of the lateral directions x [L] and y [L], and the vertical direction
z [L], which is positive upward, Ω is an open bounded set of Rd, where d represents the
dimension of the computational domain and T is a fixed time.

The Richards equation is highly nonlinear due to the nonlinear constitutive relations
which describe the relationship among capillary pressure, relative permeability and satura-
tion [6, 8, 7]. The inclusion of the root-water uptake term in the Richards equation makes it
further complicated in terms of numerical resolution. In this study, we simplify our analysis
by considering a homogeneous soil. We adopt the assumption made by Broadbridge et al.
[35], wherein the derivative of K with respect to θ is expressed as follows:

dK

dθ
= αD, (2.2)

where α [1/L] is a pore size parameter, then the Richards equation becomes:

∂θ

∂t
−∇.(D(θ)∇θ)− αD

∂θ

∂z
= −R(x, θ). (2.3)

2.2. Root water uptake models
The sink term R represents the rate of water uptake by plants, expressed as the volume

of water removed per unit of time from a unit volume of soil. Different mathematical
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models are developed to describe plant root water uptake, which are classified into two
approaches: microscopic [10, 11, 12] and macroscopic [55, 56, 22, 16] approaches. Here,
different macroscopic models are considered sink terms in the Richards equation to study
the impact of plant root absorption on soil moisture distribution.

2.2.1. Model I
We present the first model used in [34] where the stepwise and exponential functional

forms are considered for the root water uptake. In this case, the Gardner model [6] for the
soil hydraulic conductivity function and a simple formulation [57] for the volumetric water
content are used:

K = Ks exp(αh), (2.4)
θ = θr + (θs − θr) exp(αh), (2.5)

where θr [L/L] and θs [L/L] are the residual and saturated moisture content respectively.
We consider an unsaturated soil zone stretching from the soil surface (z = L) to the water
table (z = 0). As shown in Figure 1, L1 denotes the maximum root depth [L], q1 is time-
dependent flux applied at the soil surface [L/T ] and ET is the evapotranspiration through
the root zone [L/T ]. Assuming R0 represents the maximum uptake at the land surface [T−1],

Figure 1: Schematic of vadose zone.

the stepwise form of the root water uptake may be written as [34]:

R(z) = R0δ(z − L1), (2.6)

where δ(z − L1) is the Heaviside function given by:

δ(z − L1) =

{
1, if L1 ≤ z ≤ L,

0, if 0 ≤ z < L1.
(2.7)

Root water extraction can be represented using the exponential form [27, 30, 34] given by:

R(z) = R0 exp (β(z − L)) , (2.8)

where β [L−1] is a parameter represents the rate of reduction of root uptake.
5



2.2.2. Model II
The second model is proposed by Broadbridge et al. [35]. In this case, water uptake

by plant roots is assumed nonlinearly dependent on soil water content. The soil diffusivity,
unsaturated hydraulic conductivity, and root water uptake rate are expressed as follows [35]:

D =
1

α2ts

m

(em −1)
emΘ,

K = Ks
emΘ −1

(em −1)
,

R =

(
θs
ts

)(
−k

(em − 1)
(eΘm − 1)− A

m
(1− e−Θm)

)
,

(2.9)

where Θ = (θ − θr)/(θs − θr) [−] is the normalized water content, ts = θs/(αKs) [T ] is the
gravity time scale, A [−], m [−] and k [−] are constant parameters depend on plant root
water uptake rate and verify [35]:

|k| < −A

m
e−m(1− e−m), A < 0 and m > 0. (2.10)

At high moisture contents, R is very high and close to a maximum value called the potential
extraction rate Rs [T

−1]. As soil moisture decreases and is near the wilting point, R decreases
as well and becomes very low and close to zero.

2.3. Kirchhoff-transformed gouverning equation
We use the Kirchhoff transformation to circumvent some difficulties encountered in solv-

ing Richards’ equation due to its high nonlinearity. This transformation is given by:

µ =

∫ θ

0

D(θ)dθ. (2.11)

According to models presented before, this integral can be analytically calculated, which
results in the following:

µ =


Ks

(θs − θr)
θ, Model I,(

θs − θr
α2ts

)(
emΘ−1

em −1

)
, Model II.

(2.12)

Using this transformation, Equation (2.3) can be simplified to:

1

D(µ)

∂µ

∂t
−∇2.µ− α

∂µ

∂z
= −R(µ). (2.13)

The boundary conditions are transformed according to the Kirchhoff variable:
For Dirichlet boundary conditions, we assume θ = θd, which leads to µ = µ(θd). In the case

of Neumann boundary conditions, two cases are considered. First, when −K
∂h

∂xi
= qx, it
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follows that − ∂µ

∂xi
= qx. Second, when −K

[
∂h

∂z
+ 1

]
= qz, it implies that −

[
∂µ

∂z
+ αµ

]
=

qz, where, θd, qx and qz are given functions associated with the boundary conditions. The
variable i can take the values of 1, 2, which correspond to the horizontal spatial dimensions
(x1, x2) = (x, y). The high nonlinearity of the governing equation is reduced using the
Kirchhoff transformation, which has the advantage of improving the convergence properties
of the proposed numerical method [38, 40, 53]. Once the approximate values of µ are
determined by solving Equation (2.13), we can deduce the estimated values of θ based on
Equation (2.12):

θ =


(θs − θr)

Ks

µ, Model I,

θr +
(θs − θr)

m
log

(
1 + α2ts

(
em −1

θs − θr

)
µ

)
, Model II.

(2.14)

Evenly, one can deduce the approximate solutions of h and Θ using the constitutive relations
given by Equations (2.5) and (2.9).

3. Materiel and methodology

In this section, we present the numerical approach proposed to solve Equation (2.13).
Specifically, we employ LRBF meshless techniques to solve the Richards equation, which
includes a sink term to account for the root water uptake. For temporal discretization,
we utilize an implicit scheme based on the backward differentiation formula (BDF). This
choice ensures stability when solving Richards’ equation and permits the use of reasonable
time steps, which enhance the computational efficiency. To linearize the system, Picard’s
iterations are utilized.

3.1. Linearization techniques
The backward Euler method of Equation (2.13) is given by:

1

Dn+1

µn+1 − µn

∆t
−∇2.µn+1 − α

∂µn+1

∂z
= −Rn+1, (3.1)

where n ≥ 0, ∆t is the time step, µn+1, Dn+1 and Rn+1 are the estimate values of µ, D and R
at time tn+1 = (n+1)∆t, respectively. Starting from a given initial condition µ0 = µ(θ{t=0}),
Equation (3.1) is linearized using the Picard iteration scheme [36], which is given by:

1

Dn+1,m

µn+1,m+1 − µn

∆t
−∇2.µn+1,m+1 − α

∂µn+1,m+1

∂z
= −Rn+1,m, (3.2)

where m denotes iteration levels and µn+1,0 = µn is the initial guess of µ. At (m+ 1)th iter-
ation, Equation (3.1) is solved for µn+1,m+1 using the values of Rn+1,m and Dn+1,m obtained

7



from the previous iteration. Subject to boundary and initial conditions, Equation (3.2) can
be written as: 

Lmµn+1,m+1(x) = fn,m(x), x ∈ Ω,

Bµn+1,m+1(x) = g(x), x ∈ ∂Ω,

µ0(x) = µ0(x), x ∈ Ω,

(3.3)

where Lm and fn,m are given by:

Lm =

(
1

Dn+1,m

1

∆t
.−∇2.− α

∂.

∂z

)
, (3.4)

fn,m =

(
µn

Dn+1,m

1

∆t
−Rn+1,m

)
. (3.5)

Lm denotes the differential operator, which is linearized during each Picard iteration (m+1),
Bm is a linear border operator, which can be either Dirichlet or Neumann. At each time
level n and iteration (m + 1), LRBF meshless method [48] is used to solve Equation (3.3)
until the stop condition is satisfied, which is determined by:

|δn+1,m+1| = |µn+1,m+1 − µn+1,m| < TOL, (3.6)

where TOL is the error tolerance.

3.2. Meshless method based on LRBF
Let {xj}Ni

j=1 be a set of Ni distinct interior collocation points located in Ω, and {xj}Nj=Ni+1

be the boundary points, where N is the total number of collocation points in Ω ∪ ∂Ω. For
each point xs ∈ Ω, s = 1, 2, ..., N , a localized influence domain Ω[s] is created using the kd-
algorithm [58]. It contains ns nearest neighbors interpolation points

{
x
[s]
j

}ns

j=1
to xs. Figure

2 shows three examples of local influence domains including ns = 3, 5 and 9. According to

Figure 2: Schematic of influence domains Ω[s] for ns = 3, 5, and 9.

previous research [49, 59, 40], the number of neighboring points ns needed for an accurate
8



scheme may vary depending on the dimension of the computational domain. For instance,
Lee et al. [48] recommend to select 2 dim(Ω)+1 nodes in each influence domain. The
approximate solution of µm+1,n+1

[s] can be expressed as a linear combination of RBFs within
each influence domain:

µn+1,m+1
[s] (xs) =

ns∑
k=1

λ
[s]n+1,m+1

k φ(∥xs − x
[s]
k ∥), (3.7)

where {λ[s]n+1,m+1

k }ns
k=1 are unknown coefficients and φ is a RBF. In our case, we employ the

exponential RBF defined as:
φ(rk) = exp(−ε2r2k), (3.8)

where rk = ∥xs −x
[s]
k ∥ indicates the distance between xs and x

[s]
k , and ε > 0 is an arbitrary

shape parameter. The exponential RBF is chosen due to its proven positive definiteness, as
demonstrated in various studies [60, 61, 62]. This characteristic is crucial to guarantee that
the resulting matrix will be non-singular [60, 61, 62, 63, 64]. The choice of an appropriate
shape parameter is crucial for the accuracy of RBF meshless methods [65]. Various studies
have proposed optimal choices for the shape parameter [66, 67]. In this study, the use of
LRBF methods allows us to overcome the issue of selecting the optimal shape parameter, as
shown in previous studies [48, 68], they are less sensitive to the choice of shape parameter
compared to the global RBF methods. From Equation (3.7), we obtain the matrix form of
the solution µn+1,m+1

[s] :
µn+1,m+1
[s] = φ[s]λ[s]n+1,m+1

, (3.9)

where µn+1,m+1
[s] =

[
µn+1,m+1
[s] (x

[s]
1 ), µn+1,m+1

[s] (x
[s]
2 ), ..., µn+1,m+1

[s] (x[s]
ns
)
]T

,

λ[s]n+1,m+1
=

[
λ[s]n+1,m+1

(x
[s]
1 ), λ[s]n+1,m+1

(x
[s]
2 ), ..., λ[s]n+1,m+1

(x[s]
ns
)
]T

and φ[s] =
[
φ(∥x[s]

i − x
[s]
j ∥)

]
1≤i,j≤ns

is an ns × ns real symmetric coefficient matrix. The unknown coefficients λ[s]n+1,m+1 can be
obtained as follow:

λ[s]n+1,m+1

= (φ[s])−1µn+1,m+1
[s] . (3.10)

Using the linear operator Lm to Equation (3.7) yields the following equations for xs ∈ Ω:

Lmµn+1,m+1
[s] (xs) =

ns∑
k=1

λ
[s]n+1,m+1

k Lmφ(∥xs − xk
[s]∥) =

ns∑
k=1

λ
[s]n+1,m+1

k Ψm(∥xs − xk
[s]∥)

= ϑm
[s]λ

n+1,m+1
[s] = ϑm

[s](φ
[s])−1µn+1,m+1

[s] = Λm
[s]µ

n+1,m+1
[s] ,

(3.11)

where Ψm = Lmφ, ϑm
[s] =

[
Ψ(∥xs − x1

[s]∥), ...,Ψ(∥xs − x[s]
ns
∥)
]

and Λm
[s] = ϑm

[s](φ
[s])−1. In

order to reformulate Equation (3.11) in terms of the global µn+1,m+1 instead of the local
µn+1,m+1
[s] , Λm is considered as the expansion of Λm

[s] obtained by padding the local vector
with zeros at the proper positions. It follows that:

Lmµn+1,m+1
[s] (xs) = Λmµn+1,m+1, (3.12)
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where µn+1,m+1 = [µn+1,m+1(x1), µ
n+1,m+1(x2), ..., µ

n+1,m+1(xN )]
T . In the same way, we

apply the linear operator B to Equation (3.7) for xs ∈ ∂Ω:

Bµm+1,n+1
[s] (xs) =

ns∑
k=1

λ
[s]m+1,n+1

k Bφ(∥xs − xk
[s]∥) = (Bφ[s])λ[s]m+1,n+1

= (Bφ[s])(φ[s])−1µn+1,m+1
[s] = σ[s]µn+1,m+1

[s] = σµn+1,m+1,

(3.13)

where σ[s] is defined as (Bφ[s])(φ[s])−1, and σ is the expansion of σ[s] that is obtained by
adding zeros at the appropriate positions. Combining Equations (3.12) and (3.13) into
Equation (3.3), we obtain the following system:

Lmµn+1,m+1(xs) = Λm(xs)µ
n+1,m+1 = fm,n(xs),

Bµn+1,m+1(xs) = σ(xs)µ
n+1,m+1 = g(xs).

(3.14)

As a result, we obtain a sparse system:

Λm(x1)
Λm(x2)

.

.
Λm(xNi

)
σ(xNi+1)

.

.
σ(xN )





µn+1,m+1(x1)
µn+1,m+1(x2)

.

.
µn+1,m+1(xNi

)
µn+1,m+1(xNi+1)

.

.
µn+1,m+1(xN )


=



fn,m(x1)
fn,m(x2)

.

.
fn,m(xNi

)
g(xNi+1)

.

.
g(xN )


. (3.15)

This localized approach leads to inverting a sparse matrix, which avoids ill-conditioning
problems that occur in the full matrix generated using the global method. By solving this
sparse system, we get the approximate solution µn+1,m+1 at all given points. Once the
condition given by Equation (3.6) is satisfied, we assign µn+1 = µn+1,m+1.

4. Numerical simulations

This section presents numerical experiments to solve the Richards equation with a sink
term, which represents the plant root water uptake. Our approach is based on LRBF
meshless method based on the exponential function to solve the governing system (3.5).
The first numerical test investigates soil water content dynamics during evaporation process.
In the second example, root water uptake is described using model I. The third numerical
test focuses on a 2D irrigation furrows system and aims to explore the influence of plant
roots uptake on soil moisture distribution. The final numerical test applies the proposed
numerical model to a 3D irrigation system from a circular source, evaluating its ability to
predict 3D soil moisture distribution in the root zone. The numerical results are validated
in comparison with non trivial analytical solutions and available experimental data. Note
that, in the numerical tests where z is considered positive downward, the same equation
(2.1) is considered by replacing z with −z.
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4.1. Test 1: Soil water dynamics during evaporation process
In this numerical test, we consider a laboratory evaporation experience which is carried

out by Teng et al. [69, 70]. A kind of soil in Japan named K-7 sand was selected in this
experience to investigate soil water content dynamics during evaporation. The soil was
filled into a cylinder with a height of 20 cm and a diameter of 10 cm and then was wetted to
saturation. Three soil samples were subjected to different environmental conditions which
include relative humidity, wind speed and temperature. These conditions were controlled in
three cases which are summarized in [70]. Five water content probes were injected into the
cylinder at depths of 1, 5, 10, 15 and 19 cm, respectively. The hydraulic parameters of the
considered soil are α = 4.8 m−1, Ks = 3.9× 10−6 m/s, θr = 0 and θs = 0.4. The initial and
boundary conditions corresponding to this experiment are:{

Θ(z, 0) = 1,

Θ(0, t) = exp(−βt),
(4.1)

where β is a positive constant given by β = 4Db2 [70] and b ≤ α/4 is a fitting parameter.
The values of b are 0.413, 0.489 and 0.37 for cases 1, 2, and 3, respectively. The exact
solution associated to this numerical test is given by [70]:

Θ(z, t) =
1

2

[
erfc

(
Dαt− z

2
√
Dt

)
− eαz erfc

(
Dαt+ z

2
√
Dt

)]
+

1

2
e(

αz
2
−4b2Dt)

[
e2αz erfc

(
z

2
√
Dt

+ 2c
√
Dt

)
+ e−2αz erfc

(
z

2
√
Dt

− 2c
√
Dt

)]
, (4.2)

where erfc is the complementary error function and c =
√

(α/4)2 − b2. We display in
Figure 3 (left) a comparison of water content distributions at different times of measured,
approximate and exact solutions.

We can observe that the drying rate is higher for the case where the b value is large.
It is evident that a higher drying rate results in a lower moisture content profile, whereas
a slower drying rate persists for a more extended period. For instance, in the second case
where b = 0.489, the water content takes nearly 200 h to reach 10%. In contrast, the third
case requires a minimum of 300 h. The evaporation rates under the three cases are displayed
in Figure 3 (right). The computed evaporation rate E(t) by neglecting the gravity is given
by [70]:

−E(t) = −D
∂θ

∂z

∣∣∣
z=0

. (4.3)

Scatter points, dashed and solid lines present the experimental profile, the exact and ap-
proximate solutions, respectively. A good agreement is observed in comparison to the exact
solution. Similarly, a satisfactory correspondence with measured data is obtained, confirm-
ing the efficacy of the proposed numerical method in accurately predicting evaporation. For
each case, both experimental and numerical results show two distinct evaporation phases.
The constant rate stage persists for approximately 90, 60, and 180 hours in cases 1, 2, and 3,
respectively. Subsequently, a falling rate phase occurs, followed by the initiation of a residual
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Figure 3: Left: measured and computed water content profile for three cases. Right: measured and computed
evaporative rate. Symbols present the experimental profile, dashed lines are for exact solution and the solid
lines are for approximate solution.

falling-rate phase at 250, 200, and 370 hours, for cases 1,2 and 3 respectively. The results
are obtained using ε = 0.4, ns = 3, Nz = 200 and ∆t = 0.01. The root mean squared errors
(RMSE) for water content in the three cases, obtained by comparing the approximate and
exact solutions at T = 600 h, 350 h, and 900 h, are 3.8× 10−8, 5.31× 10−8, and 1.98× 10−8

for cases 1, 2, and 3, respectively. These results show the efficacy of the LRBF technique
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in providing accurate numerical solutions. The numerical results confirm that the proposed
numerical model is able to predict the water content distribution during the evaporation
process.

4.2. Test 2: Unsaturated flow in rooted soils under variable surface flux conditions
Here, we take into account the presence of the root water uptake in our model, and we

use the stepwise (2.6) and exponential (2.7) forms as sink terms in the governing equation.
We conduct numerical experiments of the distribution of water content, pressure head, and
water flux through a rooted soil with a depth of L = 100 cm and a root depth of 40 cm, which
corresponds to L1 = 60 cm. We consider the following hydraulic parameters: θs = 0.45,
θr = 0.2, and Ks = 1 cm h−1 [71, 34]. The rate of reduction in root uptake β is set at 0.04
m−1, and the maximum water uptake R0 is set at 0.02 h−1 for α = 0.01 cm−1 and 0.0025 h−1

for α = 0.1 cm−1, respectively. The following boundary and initial conditions are used:
h(z, 0) = h0(z),

h(0, t) = 0,[
K(h)

(
∂h

∂z
+ 1

)]
z=L

= −q1(t),

(4.4)

where h0 is the initial pressure head and q1 is the time-dependent flux at the soil surface.
Both steady-state and transient surface fluxes are considered in this numerical test.

We start with steady-state surface flux for the upper boundary condition where we
consider a constant infiltration flux of q1 = −0.9 cm h−1. In this case the stepwise (2.4)
formulation is used for root water uptake. We display in Figures 4 and 5 the distribution of
the water content and pressure head for α = 0.01 cm−1 and α = 0.1 cm−1 respectively.

The numerical simulations are conducted over a duration of 50 hours. To investigate the
impact of water uptake by plan roots on the distribution of soil moisture and pressure head,
the time evolution of h and θ is presented with (right) and without (left) root water uptake.
We can observe that the impact of the root water uptake is significant, particularly when
α = 0.01 m−1 and R0 = 0.02 h−1. However, the change is relatively weak for the water
content in the case of α = 0.1 m−1 and R0 = 0.0025 h−1 due to the low value of the
maximum water uptake considered. In the first case, the time required to reach a steady
state is nearly 50 hours in the absence of root water uptake and 30 hours in the presence of
root water uptake. However, in the second case, the time required to attain a stable state
is quite similar, at about 50 hours.

Now, we use a time-dependent surface flux for the upper boundary condition which is
more realistic, because the soil surface conditions vary over time due to factors such as
evaporation, rainfall and irrigation. In this case, the flux at the upper boundary is assumed
to decrease exponentially as a function of time, represented by q1(t) = q0 + δ exp(k1t),
where δ = −0.8 cm h−1 and k1 = −0.1 h−1. The exponential formulation (2.8) is used
for root water uptake. The evolution of water content in time and space for the rooted
soils is shown in Figure 6. The left figure illustrates the rooted soil with α = 0.01 cm−1

and R0 = 0.02 h−1. The right figure corresponds to the case where α = 0.1 cm−1 and
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Figure 4: Case 1: α = 0.01 cm−1 and R0 = 0.02 h−1. Comparison of the water content and pressure head
results of the approximate and exact solutions. Left: with root water uptake. Right: without root water
uptake.

R0 = 0.0025 h−1. Both soils are supplied with an equal amount of water from the surface,
but they exhibit distinct moisture content patterns. The soil profile 1 characterized by
R0 = 0.02 h−1 and α = 0.01 m−1 is on average wetter than the soil 2 with R0 = 0.0025 h−1

and α = 0.1 m−1 even though the volume of water absorbed by the roots is greater than
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Figure 5: Case 2: α = 0.1 cm−1 and R0 = 0.0025 h−1. Comparison of the water content and pressure head
results of the approximate and exact solutions. Left: with root water uptake. Right: without root water
uptake.

that received from the soil surface. This difference can be attributed to the soil profile 1
favoring capillary rise, which facilitates water transfer from the water table into the root
zones.

To assess the transient water flow responding to surface flux changes, we perform nu-
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Figure 6: Time evolution of soil water content.

merical simulations of the water flux q2(t) at the interface between the root zone and subsoil
(z = L1), as well as the flow q3(t) at the water table (z = 0). Figure 7 displays the flows
q2(t) and q3(t) for both constant (left) and varying surface flux (right).
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Figure 7: Time evolution of water flows at the interface between the root zone and subsoil q2(t) and at the
water table q3(t). Left: constant surface flux. Right: varying surface flux.

As the time reaches 50 hours, q2 and q3 approach 0.5 cm h−1 for the constant surface flux
and near 0.6 cm h−1 for the transient surface flux. The results are obtained using ε = 0.2,
ns = 5, Nz = 1001 and ∆t = 0.005. In all the studied cases, a good agreement is observed
between the approximate solutions and the exact solutions which are developed in [34]. The
root mean square errors (RMSE) of the water content for these cases are shown in Figure 8.
The error values are very small for both constant and varying surface fluxes which highlight
the accuracy of the proposed LRBF method. This efficiency is particularly important in cases
where the surface fluxes may change over time or under different environmental conditions, as
it ensures that the proposed method can provide reliable results under a variety of scenarios.
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4.3. Test 3: 2D flow from periodic irrigation furrows
In this numerical test, we consider surface irrigation furrows with an irrigation rate of

F0 = 4 cm/h. The furrows have a width of 2x0 and are periodically placed apart with a
spatial period of 2l > 2x0, as illustrated in Figure 9 (left). The prescribed uniform vertical

Figure 9: Schematic of the periodic irrigation furrows (left). The computational domain (right).

flux through the furrows V0(t) = F0 e
(A/tst) ensures water infiltration into the soil at a

specified rate, while the zero flux through the surface between furrows, which is presumed
to be protected by mulch, maintains soil moisture by preventing water movement. These
boundary conditions at the soil surface exhibit symmetry due to the periodic placement
of the irrigation furrows and the uniform behavior of water infiltration and conservation
between these furrows. Owing to the symmetry present in this problem, we can simplify
our study by restricting the computational domain to a rectangular region [0, l] as shown in
Figure 9 (right). The horizontal water movement must be absent along the lines of symmetry
at x = 0 and x = l, maintaining zero flux across these planes.
We use Model II (2.9) for plant root water uptake, where the sink term depends on soil depth
and water content. This dependency increases the nonlinearity of the system, resulting in a
more complex numerical test compared to previous tests. We select two distinct plants with
their respective parameters [35]: Plant 1 with m = 3, A = −0.0021, and k = −3.31× 10−5,
and plant 2 with m = 5, A = −0.007, and k = −3.18× 10−8.

17



We select the Brindabella silty clay loam soil [72, 73], characterized by the parameters
θr = 0, θs = 0.485, Ks = 12 cm h−1 and α = 0.142 cm−1 to simulate water content dynamics,
taking into account root water extraction. The chosen values for the parameters l and x0

are 4ls and ls respectively, where ls = 7 cm [35].
The boundary conditions associated to this numerical test can be expressed as follows

[35]: 

−K

(
∂h

∂z
− 1

)
= V0(t), z = 0 and 0 ≤ x ≤ x0,

−K

(
∂h

∂z
− 1

)
= 0, z = 0 and x0 < x < l,

−K
∂h

∂x
= 0, x = 0, x = l,

−K

(
∂h

∂z
− 1

)
= e(A/tst)

(
x0F0

l

)
e−α(

√
1−4k−1)z/2, z = L.

(4.5)

The analytical solution in this case is given by [35]:

µ =

(
θs
α2ts

)
e(A/tst)Φ(x, z), (4.6)

where, Φ is given by:

Φ(x, z) =
∞∑
j=1

2Aj cos

(
jπx

l

)
e−α(

√
1+4(jπls/l)2−4k−1)z/2

1 +
√

1 + 4(jπls/l)2 − 4k
, (4.7)

where A0 = F0x0/(Ksl) and Aj = 2F0/(Ksjπ) sin(jπx0/l). According to Equation (2.14), Θ
can be expressed as follow:

Θ =
1

m
log

(
1 + α2ts

(
em −1

θs − θr

)
µ

)
. (4.8)

In our numerical experiments, we set ε = 0.5, ∆t = 0.001, ns = 5, Nx = 1000 and Nz = 2000.
The evolution of Θ near the surface (z∗ = z/ls = 4) and deeper in the soil (z∗ = z/ls = 8.5),
associated with plant 1 and plant 2 respectively, is presented in Figures 9 and 10. These
figures illustrate the changes in soil moisture levels at different soil depths as influenced by
the distinct root water uptake characteristics of the two plants.

We can notice that the soil associated with plant 2 is, on average, more humid than that
of plant 1, which shows that the plant corresponding to soil 1 absorbs water at a higher
rate than the plant corresponding to soil 2. This observation is confirmed by the values of
Θ, which are greater for plant 2 than for plant 1. This difference can be attributed to the
distinct values of k, m, and A chosen for each plant, emphasizing the effect of the plant root
system on the soil moisture distribution. For both plant 1 and plant 2, a comparison of the
contour plots of Θ between the approximate and exact solutions is displayed in Figures 9
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Figure 10: Evolution of Θ near the surface (z∗ = 4) (a), and deep in the soil (z∗ = 8.5) (b): Approximate
solution (left), exact solution (middle), and comparison contours (right).

Table 1: RMSE errors between approximate and exact solutions.

Plant Nz Nx RMSE

1 2000 1000 6.35× 10−5

3000 1500 4.23× 10−5

4000 2000 3.18× 10−5

2 2000 1000 3.73× 10−5

3000 1500 2.49× 10−5

4000 2000 1.87× 10−5

and 10, respectively. The results show a good correspondence between the two solutions,
validating the reliability of the model used in this study.

Table 1 presents the RMSE errors between the approximate and exact solutions of Θ
for both plant 1 and plant 2. We fix the values of ∆t, ε, and ns, and then vary the number
of nodes distributed in the computational domain. The error values, which are small for
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Figure 11: Evolution of Θ near the surface (z∗ = 1.5) (a), and deep in the soil (z∗ = 9) (b): Approximate
solution (left), exact solution (middle), and comparison contours (right).

both plants, diminish as the number of nodes increases. This confirms the convergence and
accuracy of the proposed LRBF method in solving the governing equation. The results
demonstrate the effectiveness of our approach in simulating soil moisture dynamics while
taking into account root water uptake.

4.4. Test 4: 3D irrigation from a circular source
In this three-dimensional numerical test, we extend the previous analysis on furrow ir-

rigation to assess the effectiveness of the proposed numerical model in predicting 3D soil
moisture distribution in the root zone under cylindrical coordinates. We consider a cylin-
drical region with a length of L = 56 cm and a radius of R = 7 cm [35], and assume that
the irrigation source is a circular region of radius r0 located at the soil surface, as illustrated
in Figure 12. At the top of the cylinder, a prescribed flux boundary V0(t) is imposed at the
circular region of radius r0, and no-flow boundary condition is applied outside of this circu-
lar region. Notably, at the lateral sides of the cylinder (i.e., at r = R), no-flow boundary
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Figure 12: The 3D computational domain.

condition is imposed. The boundary conditions described above can be written as follows:
−K

(
∂h

∂z
− 1

)
= V0(t), z = 0 and r ≤ r0,

−K

(
∂h

∂z
− 1

)
= 0, z = 0 and r > r0,

−K
∂h

∂r
= 0, r = R.

(4.9)

We consider model II for plant root water uptake. The analytical solution associated with
this numerical test in case of axisymmetric flow is given by [35]:

µ =

(
θs
α2ts

)
eA/tstΦ(r), (4.10)

where
Φ =

αr0F0

Ks

∫ ∞

0

2J1(αvr0)J0(αvr)

1 +
√

1 + 4(v2 − k)
e
−α

(√
1+4(v2−k)−1

)
z/2

dv, (4.11)

where J0 and J1 are Bessel functions of the first kind, for orders 0 and 1, respectively. Θ is
calculated using Equation (4.8). With the same parameters of soil and plants taken in the
previous test, we show in Figures 13 and 14 the evolution of saturation for r∗0 = r0/ls = 1/5
and 1/2 for both plants 1 and 2, respectively.

As in the 2D results, we observe that the soil with plant 2 remains more saturated
than that with plant 1, which indicates the significant impact of the corresponding root
water uptake parameters on soil moisture distribution. The impact of the radius r0 of the
circular irrigation source is also evident from the numerical results. As r0 increases, the
soil saturation increases accordingly, which is expected since a larger area is irrigated. This
effect is more pronounced near the soil surface, where the irrigation is applied. However,
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Figure 13: Approximate solution of the evolution of Θ corresponding to plant 1 for r∗0 = 1/5 and r∗0 = 1/2.

the impact of r0 on the soil moisture distribution decreases with depth as the soil becomes
less affected by the irrigation source.

Table 2 presents the computed errors for r∗0 = 1/2 with varying numbers of collocation
points, indicating that the accuracy of the proposed method increases with the increasing of
the number of points. This highlights the effectiveness of the numerical model in accurately
predicting 3D soil moisture dynamics in the root zone. Moreover, the results demonstrate the
capability of the proposed method in handling the complex geometry of the problem and the
ability to capture the dynamics of soil moisture distribution under cylindrical coordinates.

The proposed model offers a robust and efficient numerical approach for simulating soil
moisture dynamics in root zone, which can be used to inform irrigation management strate-
gies and improve crop yields. The efficiency of the LRBF method makes it a valuable tool for
investigating the impact of different irrigation scenarios and soil properties on soil moisture
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Figure 14: Approximate solution of the evolution of Θ corresponding to plant 2 for r∗0 = 1/5 and r∗0 = 1/2.

Table 2: RMSE errors between approximate and exact solutions.

Plant Nz Nr ∆t ϵ ns RMSE

1 500 235 0.01 0.5 7 4.94× 10−4

1000 125 0.01 0.5 7 1.62× 10−4

2 500 62 0.01 0.3 7 5.03× 10−4

1000 125 0.01 0.5 7 5.83× 10−5

distribution.
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5. Conclusion

In this paper, we focus on modeling soil moisture distribution in the root zone and
introducing computational techniques for efficiently solving the coupled numerical model
of infiltration in soils and plant root water uptake. The proposed model is based on the
Richards equation and different formulations for root water extraction to study the impact
of plant root water uptake on the soil moisture distribution. The Gardner model is used for
the capillary pressure. Incorporating an implicit sink term of root water uptake in the system
increases the complexity in terms of numerical resolution. The Kirchhoff transformation of
the governing equation is employed to reduce the nonlinearity of the system. Our numerical
approach is based on LRBF meshless method to solve the coupled numerical model. This
technique provides significant computational advantages, including reduced computational
cost and accurate numerical solutions since it does not require mesh generation. Our pro-
posed coupled model is validated through various numerical tests, including simulations of
soil moisture distribution during evaporation and root water uptake processes in one-, two-,
and three-dimensional cases. The reliability of our approach is validated against both ex-
perimental data and non-trivial exact solutions. The numerical results show the capability
of the proposed method to effectively predict the dynamics of unsaturated flow through soils
under evaporation and plant root water absorption. Our study offers a robust numerical
framework for studying the impact of root water uptake on soil moisture dynamics, which is
important for agriculture and ecosystem management. The proposed numerical techniques
could be further extended to incorporate more complex root water uptake models, which
can provide a promising avenue for future research.
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